1
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
2
|
Lee H, Lee H, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024; 23:e14267. [PMID: 39118344 PMCID: PMC11561659 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Hong‐Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eva A. Krijnen
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC Location VUmcAmsterdamThe Netherlands
| | - Andrew W. Russo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David H. Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eric C. Klawiter
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
3
|
da Silva VF, Gayger-Dias V, da Silva RS, Sobottka TM, Cigerce A, Lissner LJ, Wartchow KM, Rodrigues L, Zanotto C, Fróes FCTDS, Seady M, Quincozes-Santos A, Gonçalves CA. Calorie restriction protects against acute systemic LPS-induced inflammation. Nutr Neurosci 2024; 27:1237-1249. [PMID: 38386276 DOI: 10.1080/1028415x.2024.2316448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.
Collapse
Affiliation(s)
- Vanessa-Fernanda da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Vitor Gayger-Dias
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Rafaela Sampaio da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Thomas Michel Sobottka
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Anderson Cigerce
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, Rome
| | - Krista Minéia Wartchow
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Letícia Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Caroline Zanotto
- Biochemistry Laboratory, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | - Marina Seady
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| |
Collapse
|
4
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
5
|
Raoofi Nejad M, Siasi E, Abdollahifar MA, Aliaghaei A. Elderberry diet enhances motor performance and reduces neuroinflammation-induced cell death in cerebellar ataxia rat models. J Chem Neuroanat 2024; 137:102399. [PMID: 38401660 DOI: 10.1016/j.jchemneu.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
Cerebellar ataxia (CA) is a condition in which cerebellar dysfunction results in movement disorders such as dysmetria, synergy and dysdiadochokinesia. This study investigates the therapeutic effects of elderberry (EB) diet on the 3-acetylpyridine-induced (3-AP) CA rat model. First, CA rat models were generated by 3-AP administration followed by elderberry diet treatment containing 2 % EB for 8 consecutive weeks. Motor performance, electromyographic activity and gene expression were then evaluated. The number of Purkinje neurons were evaluated by stereological methods. Immunohistochemistry for the microgliosis, astrogliosis and apoptosis marker caspase-3 was also performed. In addition, the morphology of microglia and astrocytes was assessed using the Sholl analysis method. The results showed that EB diet administration in a 3-AP ataxia model improved motor coordination, locomotor activity and neuro-muscular function, prevented Purkinje neurons degeneration, increased microglia and astrocyte complexity and reduced cell soma size. Moreover, EB diet administration decreased apoptosis in cerebellum of 3-AP ataxic model. In addition, elderberry diet treatment decreased the expression of inflammatory, apoptotic and necroptotic genes and increased the expression of antioxidant-related genes. The results suggest that the EB diet attenuates 3-AP-induced neuroinflammation leading to cell death and improves motor performance. Thus, the EB diet could be used as a therapeutic procedure for CA due to its neuroprotective effects.
Collapse
Affiliation(s)
- Maryam Raoofi Nejad
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Siasi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
7
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
8
|
Romagnolo A, Dematteis G, Scheper M, Luinenburg MJ, Mühlebner A, Van Hecke W, Manfredi M, De Giorgis V, Reano S, Filigheddu N, Bortolotto V, Tapella L, Anink JJ, François L, Dedeurwaerdere S, Mills JD, Genazzani AA, Lim D, Aronica E. Astroglial calcium signaling and homeostasis in tuberous sclerosis complex. Acta Neuropathol 2024; 147:48. [PMID: 38418708 PMCID: PMC10901927 DOI: 10.1007/s00401-024-02711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca2+) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Alessia Romagnolo
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mirte Scheper
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark J Luinenburg
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcello Manfredi
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Veronica De Giorgis
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
- Department of Translational Medicine, UPO, Novara, Italy
| | - Simone Reano
- Center on Autoimmune and Allergic Diseases (CAAD), UPO, Novara, Italy
| | | | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-L'Alleud, Belgium
| | | | - James D Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
9
|
Zhou M, Zhong S, Verkhratsky A. Astrocyte syncytium: from neonatal genesis to aging degeneration. Neural Regen Res 2024; 19:395-396. [PMID: 37488898 PMCID: PMC10503608 DOI: 10.4103/1673-5374.379047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achücarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain
| |
Collapse
|
10
|
Niu J, Jiao Q, Cui D, Dou R, Guo Y, Yu G, Zhang X, Sun F, Qiu J, Dong L, Cao W. Age-associated cortical similarity networks correlate with cell type-specific transcriptional signatures. Cereb Cortex 2024; 34:bhad454. [PMID: 38037843 DOI: 10.1093/cercor/bhad454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Human brain structure shows heterogeneous patterns of change across adults aging and is associated with cognition. However, the relationship between cortical structural changes during aging and gene transcription signatures remains unclear. Here, using structural magnetic resonance imaging data of two separate cohorts of healthy participants from the Cambridge Centre for Aging and Neuroscience (n = 454, 18-87 years) and Dallas Lifespan Brain Study (n = 304, 20-89 years) and a transcriptome dataset, we investigated the link between cortical morphometric similarity network and brain-wide gene transcription. In two cohorts, we found reproducible morphometric similarity network change patterns of decreased morphological similarity with age in cognitive related areas (mainly located in superior frontal and temporal cortices), and increased morphological similarity in sensorimotor related areas (postcentral and lateral occipital cortices). Changes in morphometric similarity network showed significant spatial correlation with the expression of age-related genes that enriched to synaptic-related biological processes, synaptic abnormalities likely accounting for cognitive decline. Transcription changes in astrocytes, microglia, and neuronal cells interpreted most of the age-related morphometric similarity network changes, which suggest potential intervention and therapeutic targets for cognitive decline. Taken together, by linking gene transcription signatures to cortical morphometric similarity network, our findings might provide molecular and cellular substrates for cortical structural changes related to cognitive decline across adults aging.
Collapse
Affiliation(s)
- Jinpeng Niu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dong Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Ruhai Dou
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yongxin Guo
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Guanghui Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Xiaotong Zhang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fengzhu Sun
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an 271000, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
11
|
Tremblay MÈ, Verkhratsky A. General Pathophysiology of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:3-14. [PMID: 39207683 DOI: 10.1007/978-3-031-55529-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences,University of the Basque Country,, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
12
|
Popov A, Brazhe N, Morozova K, Yashin K, Bychkov M, Nosova O, Sutyagina O, Brazhe A, Parshina E, Li L, Medyanik I, Korzhevskii DE, Shenkarev Z, Lyukmanova E, Verkhratsky A, Semyanov A. Mitochondrial malfunction and atrophy of astrocytes in the aged human cerebral cortex. Nat Commun 2023; 14:8380. [PMID: 38104196 PMCID: PMC10725430 DOI: 10.1038/s41467-023-44192-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.
Collapse
Affiliation(s)
- Alexander Popov
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Nadezda Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Kseniia Morozova
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Konstantin Yashin
- Department of Neurosurgery, Privolzhskiy Research Medical University, Nizhny, Novgorod, 603005, Russia
| | - Maxim Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Olga Nosova
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Oksana Sutyagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Evgenia Parshina
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Li Li
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China
| | - Igor Medyanik
- Department of Neurosurgery, Privolzhskiy Research Medical University, Nizhny, Novgorod, 603005, Russia
| | | | - Zakhar Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
| | - Ekaterina Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, 518172, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, 314001, Jiaxing, Zhejiang Pro, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, 117997, Russia.
- Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
- Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
13
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
14
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Kobiec T, Mardaraz C, Toro-Urrego N, Kölliker-Frers R, Capani F, Otero-Losada M. Neuroprotection in metabolic syndrome by environmental enrichment. A lifespan perspective. Front Neurosci 2023; 17:1214468. [PMID: 37638319 PMCID: PMC10447983 DOI: 10.3389/fnins.2023.1214468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Metabolic syndrome (MetS) is defined by the concurrence of different metabolic conditions: obesity, hypertension, dyslipidemia, and hyperglycemia. Its incidence has been increasingly rising over the past decades and has become a global health problem. MetS has deleterious consequences on the central nervous system (CNS) and neurological development. MetS can last several years or be lifelong, affecting the CNS in different ways and treatments can help manage condition, though there is no known cure. The early childhood years are extremely important in neurodevelopment, which extends beyond, encompassing a lifetime. Neuroplastic changes take place all life through - childhood, adolescence, adulthood, and old age - are highly sensitive to environmental input. Environmental factors have an important role in the etiopathogenesis and treatment of MetS, so environmental enrichment (EE) stands as a promising non-invasive therapeutic approach. While the EE paradigm has been designed for animal housing, its principles can be and actually are applied in cognitive, sensory, social, and physical stimulation programs for humans. Here, we briefly review the central milestones in neurodevelopment at each life stage, along with the research studies carried out on how MetS affects neurodevelopment at each life stage and the contributions that EE models can provide to improve health over the lifespan.
Collapse
Affiliation(s)
- Tamara Kobiec
- Facultad de Psicología, Centro de Investigaciones en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mardaraz
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
16
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
17
|
Lin SS, Zhou B, Chen BJ, Jiang RT, Li B, Illes P, Semyanov A, Tang Y, Verkhratsky A. Electroacupuncture prevents astrocyte atrophy to alleviate depression. Cell Death Dis 2023; 14:343. [PMID: 37248211 DOI: 10.1038/s41419-023-05839-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Astrocyte atrophy is the main histopathological hallmark of major depressive disorder (MDD) in humans and in animal models of depression. Here we show that electroacupuncture prevents astrocyte atrophy in the prefrontal cortex and alleviates depressive-like behaviour in mice subjected to chronic unpredictable mild stress (CUMS). Treatment of mice with CUMS induced depressive-like phenotypes as confirmed by sucrose preference test, tail suspension test, and forced swimming test. These behavioural changes were paralleled with morphological atrophy of astrocytes in the prefrontal cortex, revealed by analysis of 3D reconstructions of confocal Z-stack images of mCherry expressing astrocytes. This morphological atrophy was accompanied by a decrease in the expression of cytoskeletal linker Ezrin, associated with formation of astrocytic leaflets, which form astroglial synaptic cradle. Electroacupuncture at the acupoint ST36, as well as treatment with anti-depressant fluoxetine, prevented depressive-like behaviours, astrocytic atrophy, and down-regulation of astrocytic ezrin. In conclusion, our data further strengthen the notion of a primary role of astrocytic atrophy in depression and reveal astrocytes as cellular target for electroacupuncture in treatment of depressive disorders.
Collapse
Affiliation(s)
- Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bin Zhou
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Bin-Jie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ruo-Tian Jiang
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
18
|
Verkhratsky A, Semyanov A. Decline of astrocyte Ca 2+ signalling in Alzheimer's disease: STIM1 to the rescue! Cell Calcium 2023; 113:102756. [PMID: 37187057 DOI: 10.1016/j.ceca.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Lia et al. [1] discovered the critical role of STIM1 ER Ca2+ sensor in the functional decline of astrocytes in the AD-like pathology in PS2APP mice. Profound downregulation of STIM1 expression in astrocytes in the disease results in the decreased ER Ca2+ content and severely impaired evoked as well as spontaneous astrocytic Ca2+ signalling. Aberrant astrocytic Ca2+ signalling translated into impaired synaptic plasticity and memory. Astrocyte-specific overexpression of STIM1 restored Ca2+ excitability and rectified synaptic and memory deficits.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang Pro, China; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119435, Russia.
| |
Collapse
|
19
|
Aten S, Du Y, Taylor O, Dye C, Collins K, Thomas M, Kiyoshi C, Zhou M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem Res 2023; 48:1191-1210. [PMID: 35796915 PMCID: PMC9823156 DOI: 10.1007/s11064-022-03663-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/18/2022] [Indexed: 01/11/2023]
Abstract
Now astrocytes appear to be the key contributors to the pathophysiology of major depression. Evidence in rodents shows that chronic stress is associated with a decreased expression of astrocytic GFAP-immunoreactivity within the cortex in addition to changes in the complexity and length of astrocyte processes. Furthermore, postmortem brains of individuals with depression have revealed a decrease in astrocyte density. Notably, astrocytes are extensively coupled to one another through gap junctions to form a network, or syncytium, and we have previously demonstrated that syncytial isopotentiality is a mechanism by which astrocytes function as an efficient system with respect to brain homeostasis. Interestingly, the question of how astrocyte network function changes following chronic stress is yet to be elucidated. Here, we sought to examine the effects of chronic stress on network-level astrocyte (dys)function. Using a transgenic aldh1l1-eGFP astrocyte reporter mouse, a six-week unpredictable chronic mild stress (UCMS) paradigm as a rodent model of major depression, and immunohistochemical approaches, we show that the morphology of individual astrocytes is altered by chronic stress exposure. Additionally, in astrocyte syncytial isopotentiality measurement, we found that UCMS impairs the syncytial coupling strength of astrocytes within the hippocampus and prefrontal cortex-two brain regions that have been implicated in the regulation of mood. Together, these findings reveal that chronic stress leads to astrocyte atrophy and impaired gap junction coupling, raising the prospect that both individual and network-level astrocyte functionality are important in the etiology of major depression and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Olivia Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Courtney Dye
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Kelsey Collins
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Matthew Thomas
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
| | - Conrad Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA
- Northern Marianas College, Saipan, MP, USA
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Graves Hall, Rm 4066C, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Verkhratsky A, Pivoriūnas A. Astroglia support, regulate and reinforce brain barriers. Neurobiol Dis 2023; 179:106054. [PMID: 36842485 DOI: 10.1016/j.nbd.2023.106054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Nervous system is segregated from the body by the complex system of barriers. The CNS is protected by (i) the blood-brain and blood-spinal cord barrier between the intracerebral and intraspinal blood vessels and the brain parenchyma; (ii) the arachnoid blood-cerebrospinal fluid barrier; (iii) the blood-cerebrospinal barrier of circumventricular organs made by tanycytes and (iv) the choroid plexus blood-CSF barrier formed by choroid ependymocytes. In the peripheral nervous system the nerve-blood barrier is secured by tight junctions between specialised glial cells known as perineural cells. In the CNS astroglia contribute to all barriers through the glia limitans, which represent the parenchymal portion of the barrier system. Astroglia through secretion of various paracrine factors regulate the permeability of endothelial vascular barrier; in pathology damage or asthenia of astrocytes may compromise brain barriers integrity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
21
|
Villablanca C, Vidal R, Gonzalez-Billault C. Are cytoskeleton changes observed in astrocytes functionally linked to aging? Brain Res Bull 2023; 196:59-67. [PMID: 36935053 DOI: 10.1016/j.brainresbull.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.
Collapse
Affiliation(s)
- Cristopher Villablanca
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - René Vidal
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Nutrition and Food Technologies, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Bondi H, Chiazza F, Masante I, Bortolotto V, Canonico PL, Grilli M. Heterogenous response to aging of astrocytes in murine Substantia Nigra pars compacta and pars reticulata. Neurobiol Aging 2023; 123:23-34. [PMID: 36630756 DOI: 10.1016/j.neurobiolaging.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Currently, little is known about the impact of aging on astrocytes in substantia nigra pars compacta (SNpc), where dopaminergic neurons degenerate both in physiological aging and in Parkinson's disease, an age-related neurodegenerative disorder. We performed a morphometric analysis of GFAP+ astrocytes in SNpc and, for comparison, in the pars reticulata (SNpr) of young (4-6 months), middle-aged (14-17 months) and old (20-24 months) C57BL/6J male mice. We demonstrated an age-dependent increase of structural complexity only in astrocytes localized in SNpc, and not in SNpr. Astrocytic structural remodelling was not accompanied by changes in GFAP expression, while GFAP increased in SNpr of old compared to young mice. In parallel, transcript levels of selected astrocyte-enriched genes were evaluated. With aging, decreased GLT1 expression occurred only in SNpc, while xCT transcript increased both in SNpc and SNpr, suggesting a potential loss of homeostatic control of extracellular glutamate only in the subregion where age-dependent neurodegeneration occurs. Altogether, our results support an heterogenous morphological and biomolecular response to aging of GFAP+ astrocytes in SNpc and SNpr.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Fausto Chiazza
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Irene Masante
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
23
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
24
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
25
|
Astrocytes as Context for the Involvement of Myelin and Nodes of Ranvier in the Pathophysiology of Depression and Stress-Related Disorders. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230001. [PMID: 36866235 PMCID: PMC9976698 DOI: 10.20900/jpbs.20230001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Astrocytes, despite some shared features as glial cells supporting neuronal function in gray and white matter, participate and adapt their morphology and neurochemistry in a plethora of distinct regulatory tasks in specific neural environments. In the white matter, a large proportion of the processes branching from the astrocytes' cell bodies establish contacts with oligodendrocytes and the myelin they form, while the tips of many astrocyte branches closely associate with nodes of Ranvier. Stability of myelin has been shown to greatly depend on astrocyte-to-oligodendrocyte communication, while the integrity of action potentials that regenerate at nodes of Ranvier has been shown to depend on extracellular matrix components heavily contributed by astrocytes. Several lines of evidence are starting to show that in human subjects with affective disorders and in animal models of chronic stress there are significant changes in myelin components, white matter astrocytes and nodes of Ranvier that have direct relevance to connectivity alterations in those disorders. Some of these changes involve the expression of connexins supporting astrocyte-to-oligodendrocyte gap junctions, extracellular matrix components produced by astrocytes around nodes of Ranvier, specific types of astrocyte glutamate transporters, and neurotrophic factors secreted by astrocytes that are involved in the development and plasticity of myelin. Future studies should further examine the mechanisms responsible for those changes in white matter astrocytes, their putative contribution to pathological connectivity in affective disorders, and the possibility of leveraging that knowledge to design new therapies for psychiatric disorders.
Collapse
|
26
|
Verkhratsky A, Semyanov A. Astrocytes in Ageing. Subcell Biochem 2023; 103:253-277. [PMID: 37120471 DOI: 10.1007/978-3-031-26576-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Ageing is associated with a morphological and functional decline of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is manifested by the shrinkage of astrocytic processes: branches and leaflets, which decreases synaptic coverage. Astrocytic dystrophy affects multiple functions astrocytes play in the brain active milieu. In particular, and in combination with an age-dependent decline in the expression of glutamate transporters, astrocytic atrophy translates into deficient glutamate clearance and K+ buffering. Decreased astrocyte presence may contribute to age-dependent remodelling of brain extracellular space, hence affecting extrasynaptic signalling. Old astrocytes lose endfeet polarisation of AQP4 water channels, thus limiting the operation of the glymphatic system. In ageing, astrocytes down-regulate their antioxidant capacity leading to decreased neuroprotection. All these changes may contribute to an age-dependent cognitive decline.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang Pro, China
| |
Collapse
|
27
|
Ding F, Liang S, Li R, Yang Z, He Y, Yang S, Duan Q, Zhang J, Lyu J, Zhou Z, Huang M, Wang H, Li J, Yang C, Wang Y, Gong M, Chen S, Jia H, Chen X, Liao X, Fu L, Zhang K. Astrocytes exhibit diverse Ca2+ changes at subcellular domains during brain aging. Front Aging Neurosci 2022; 14:1029533. [PMID: 36389078 PMCID: PMC9650392 DOI: 10.3389/fnagi.2022.1029533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Astrocytic Ca2+ transients are essential for astrocyte integration into neural circuits. These Ca2+ transients are primarily sequestered in subcellular domains, including primary branches, branchlets and leaflets, and endfeet. In previous studies, it suggests that aging causes functional defects in astrocytes. Until now, it was unclear whether and how aging affects astrocytic Ca2+ transients at subcellular domains. In this study, we combined a genetically encoded Ca2+ sensor (GCaMP6f) and in vivo two-photon Ca2+ imaging to determine changes in Ca2+ transients within astrocytic subcellular domains during brain aging. We showed that aging increased Ca2+ transients in astrocytic primary branches, higher-order branchlets, and terminal leaflets. However, Ca2+ transients decreased within astrocytic endfeet during brain aging, which could be caused by the decreased expressions of Aquaporin-4 (AQP4). In addition, aging-induced changes of Ca2+ transient types were heterogeneous within astrocytic subcellular domains. These results demonstrate that the astrocytic Ca2+ transients within subcellular domains are affected by aging differently. This finding contributes to a better understanding of the physiological role of astrocytes in aging-induced neural circuit degeneration.
Collapse
Affiliation(s)
- Fusheng Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Advanced Institute for Brain and Intelligence and School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yong He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shaofan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Qingtian Duan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jianxiong Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jing Lyu
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhenqiao Zhou
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingzhu Huang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Haoyu Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Yuxia Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence and School of Physical Science and Technology, Guangxi University, Nanning, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Xiang Liao,
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
- Ling Fu,
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Kuan Zhang,
| |
Collapse
|
28
|
Zhang X, Wolfinger A, Wu X, Alnafisah R, Imami A, Hamoud AR, Lundh A, Parpura V, McCullumsmith RE, Shukla R, O’Donovan SM. Gene Enrichment Analysis of Astrocyte Subtypes in Psychiatric Disorders and Psychotropic Medication Datasets. Cells 2022; 11:3315. [PMID: 36291180 PMCID: PMC9600295 DOI: 10.3390/cells11203315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes have many important functions in the brain, but their roles in psychiatric disorders and their responses to psychotropic medications are still being elucidated. Here, we used gene enrichment analysis to assess the relationships between different astrocyte subtypes, psychiatric diseases, and psychotropic medications (antipsychotics, antidepressants and mood stabilizers). We also carried out qPCR analyses and "look-up" studies to assess the chronic effects of these drugs on astrocyte marker gene expression. Our bioinformatic analysis identified gene enrichment of different astrocyte subtypes in psychiatric disorders. The highest level of enrichment was found in schizophrenia, supporting a role for astrocytes in this disorder. We also found differential enrichment of astrocyte subtypes associated with specific biological processes, highlighting the complex responses of astrocytes under pathological conditions. Enrichment of protein phosphorylation in astrocytes and disease was confirmed by biochemical analysis. Analysis of LINCS chemical perturbagen gene signatures also found that kinase inhibitors were highly discordant with astrocyte-SCZ associated gene signatures. However, we found that common gene enrichment of different psychotropic medications and astrocyte subtypes was limited. These results were confirmed by "look-up" studies and qPCR analysis, which also reported little effect of psychotropic medications on common astrocyte marker gene expression, suggesting that astrocytes are not a primary target of these medications. Conversely, antipsychotic medication does affect astrocyte gene marker expression in postmortem schizophrenia brain tissue, supporting specific astrocyte responses in different pathological conditions. Overall, this study provides a unique view of astrocyte subtypes and the effect of medications on astrocytes in disease, which will contribute to our understanding of their role in psychiatric disorders and offers insights into targeting astrocytes therapeutically.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Promedica Neurosciences Institute, Toledo, OH 43606, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|
29
|
Yang Z, Gong M, Jian T, Li J, Yang C, Ma Q, Deng P, Wang Y, Huang M, Wang H, Yang S, Chen X, Yu Z, Wang M, Chen C, Zhang K. Engrafted glial progenitor cells yield long-term integration and sensory improvement in aged mice. Stem Cell Res Ther 2022; 13:285. [PMID: 35765112 PMCID: PMC9241208 DOI: 10.1186/s13287-022-02959-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/05/2022] [Indexed: 12/31/2022] Open
Abstract
Aging causes astrocyte morphological degeneration and functional deficiency, which impairs neuronal functions. Until now, whether age-induced neuronal deficiency could be alleviated by engraftment of glial progenitor cell (GPC) derived astrocytes remained unknown. In the current study, GPCs were generated from embryonic cortical neural stem cells in vitro and transplanted into the brains of aged mice. Their integration and intervention effects in the aged brain were examined 12 months after transplantation. Results indicated that these in-vitro-generated GPC-derived astrocytes possessed normal functional properties. After transplantation they could migrate, differentiate, achieve long-term integration, and maintain much younger morphology in the aged brain. Additionally, these GPC-derived astrocytes established endfeet expressing aquaporin-4 (AQP4) and ameliorate AQP4 polarization in the aged neocortex. More importantly, age-dependent sensory response degeneration was reversed by GPC transplantation. This work demonstrates that rejuvenation of the astrocyte niche is a promising treatment to prevent age-induced degradation of neuronal and behavioral functions.
Collapse
Affiliation(s)
- Zhiqi Yang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, 730030, Gansu, China.,Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qinlong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Yuxia Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mingzhu Huang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Haoyu Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shaofan Yang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, 730030, Gansu, China.
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China.
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
30
|
Zheng Y, Huo J, Yang M, Zhang G, Wan S, Chen X, Zhang B, Liu H. ERK1/2 Signalling Pathway Regulates Tubulin-Binding Cofactor B Expression and Affects Astrocyte Process Formation after Acute Foetal Alcohol Exposure. Brain Sci 2022; 12:brainsci12070813. [PMID: 35884621 PMCID: PMC9312805 DOI: 10.3390/brainsci12070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Foetal alcohol spectrum disorders (FASDs) are a spectrum of neurological disorders whose neurological symptoms, besides the neuronal damage caused by alcohol, may also be associated with neuroglial damage. Tubulin-binding cofactor B (TBCB) may be involved in the pathogenesis of FASD. To understand the mechanism and provide new insights into the pathogenesis of FASD, acute foetal alcohol exposure model on astrocytes was established and the interference experiments were carried out. First, after alcohol exposure, the nascent astrocyte processes were reduced or lost, accompanied by the absence of TBCB expression and the disruption of microtubules (MTs) in processes. Subsequently, TBCB was silenced with siRNA. It was severely reduced or lost in nascent astrocyte processes, with a dramatic reduction in astrocyte processes, indicating that TBCB plays a vital role in astrocyte process formation. Finally, the regulating mechanism was studied and it was found that the extracellular signal-regulated protease 1/2 (ERK1/2) signalling pathway was one of the main pathways regulating TBCB expression in astrocytes after alcohol injury. In summary, after acute foetal alcohol exposure, the decreased TBCB in nascent astrocyte processes, regulated by the ERK1/2 signalling pathway, was the main factor leading to the disorder of astrocyte process formation, which could contribute to the neurological symptoms of FASD.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiechao Huo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400063, China;
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital & Institute, Chengdu 610044, China;
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| |
Collapse
|
31
|
de Siqueira Mendes FDCC, de Almeida MNF, Falsoni M, Andrade MLF, Felício APG, da Paixão LTVB, Júnior FLDA, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. The Sedentary Lifestyle and Masticatory Dysfunction: Time to Review the Contribution to Age-Associated Cognitive Decline and Astrocyte Morphotypes in the Dentate Gyrus. Int J Mol Sci 2022; 23:ijms23116342. [PMID: 35683023 PMCID: PMC9180988 DOI: 10.3390/ijms23116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As aging and cognitive decline progresses, the impact of a sedentary lifestyle on the appearance of environment-dependent cellular morphologies in the brain becomes more apparent. Sedentary living is also associated with poor oral health, which is known to correlate with the rate of cognitive decline. Here, we will review the evidence for the interplay between mastication and environmental enrichment and assess the impact of each on the structure of the brain. In previous studies, we explored the relationship between behavior and the morphological features of dentate gyrus glial fibrillary acidic protein (GFAP)-positive astrocytes during aging in contrasting environments and in the context of induced masticatory dysfunction. Hierarchical cluster and discriminant analysis of GFAP-positive astrocytes from the dentate gyrus molecular layer revealed that the proportion of AST1 (astrocyte arbors with greater complexity phenotype) and AST2 (lower complexity) are differentially affected by environment, aging and masticatory dysfunction, but the relationship is not straightforward. Here we re-evaluated our previous reconstructions by comparing dorsal and ventral astrocyte morphologies in the dentate gyrus, and we found that morphological complexity was the variable that contributed most to cluster formation across the experimental groups. In general, reducing masticatory activity increases astrocyte morphological complexity, and the effect is most marked in the ventral dentate gyrus, whereas the effect of environment was more marked in the dorsal dentate gyrus. All morphotypes retained their basic structural organization in intact tissue, suggesting that they are subtypes with a non-proliferative astrocyte profile. In summary, the increased complexity of astrocytes in situations where neuronal loss and behavioral deficits are present is counterintuitive, but highlights the need to better understand the role of the astrocyte in these conditions.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | - Marina Negrão Frota de Almeida
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Manoela Falsoni
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Lorena Ferreira Andrade
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - André Pinheiro Gurgel Felício
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Luisa Taynah Vasconcelos Barbosa da Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Fábio Leite do Amaral Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Correspondence:
| |
Collapse
|
32
|
Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W, Jiang T. Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement Through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in Rats With Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2022; 14:866336. [PMID: 35721009 PMCID: PMC9198634 DOI: 10.3389/fnagi.2022.866336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD). The neuroinflammation involving astrocytes is an important pathogenic mechanism. Along with the advancement of the concept and technology of astrocytic biology, the astrocytes have been increasingly regarded as the key contributors to neurological diseases. It is well known that physical exercise can improve cognitive function. As a safe and effective non-drug treatment, physical exercise has attracted continuous interests in neurological research. In this study, we explored the effects of physical exercise on the response of reactive astrocytes, and its role and mechanism in CCH-induced cognitive impairment. A rat CCH model was established by 2 vessel occlusion (2VO) and the wheel running exercise was used as the intervention. The cognitive function of rats was evaluated by morris water maze and novel object recognition test. The phenotypic polarization and the primary cilia expression of astrocytes were detected by immunofluorescence staining. The activation of MAPKs cascades, including ERK, JNK, and P38 signaling pathways, were detected by western blot. The results showed that physical exercise improved cognitive function of rats 2 months after 2VO, reduced the number of C3/GFAP-positive neurotoxic astrocytes, promoted the expression of S100A10/GFAP-positive neuroprotective astrocytes, and enhanced primary ciliogenesis. Additionally, physical exercise also alleviated the phosphorylation of ERK and JNK proteins induced by CCH. These results indicate that physical exercise can improve the cognitive function of rats with CCH possible by promoting primary ciliogenesis and neuroprotective function of astrocytes. The MAPKs signaling cascade, especially ERK and JNK signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Wenyue Cao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junbin Lin
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biru Wang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Weijing Liao,
| | - Ting Jiang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Ting Jiang,
| |
Collapse
|
33
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
34
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
35
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
36
|
Zhang X, Alnafisah RS, Hamoud ARA, Shukla R, Wen Z, McCullumsmith RE, O'Donovan SM. Role of Astrocytes in Major Neuropsychiatric Disorders. Neurochem Res 2021; 46:2715-2730. [PMID: 33411227 DOI: 10.1007/s11064-020-03212-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Astrocytes are the primary homeostatic cells of the central nervous system, essential for normal neuronal development and function, metabolism and response to injury and inflammation. Here, we review postmortem studies examining changes in astrocytes in subjects diagnosed with the neuropsychiatric disorders schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BPD). We discuss the astrocyte-related changes described in the brain in these disorders and the potential effects of psychotropic medication on these findings. Finally, we describe emerging tools that can be used to study the role of astrocytes in neuropsychiatric illness.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rawan S Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Abdul-Rizaq A Hamoud
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Rammohan Shukla
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine, Block Health Science Building, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
37
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
38
|
Lalo U, Pankratov Y. Astrocytes as Perspective Targets of Exercise- and Caloric Restriction-Mimetics. Neurochem Res 2021; 46:2746-2759. [PMID: 33677759 PMCID: PMC8437875 DOI: 10.1007/s11064-021-03277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Yuriy Pankratov
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
39
|
Preman P, TCW J, Calafate S, Snellinx A, Alfonso-Triguero M, Corthout N, Munck S, Thal DR, Goate AM, De Strooper B, Arranz AM. Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques. Mol Neurodegener 2021; 16:68. [PMID: 34563212 PMCID: PMC8467145 DOI: 10.1186/s13024-021-00487-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer's disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease.
Collapse
Affiliation(s)
- Pranav Preman
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Julia TCW
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Sara Calafate
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - An Snellinx
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Maria Alfonso-Triguero
- grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.11480.3c0000000121671098Department of Neurosciences, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Nikky Corthout
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sebastian Munck
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,VIB Bio Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- grid.5596.f0000 0001 0668 7884Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Department of Pathology, KU Leuven (University of Leuven), University Hospital Leuven, Leuven, Belgium
| | - Alison M Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Bart De Strooper
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.83440.3b0000000121901201Dementia Research Institute, University College London, London, UK
| | - Amaia M Arranz
- grid.511015.1VIB Center for Brain & Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium ,grid.427629.cAchucarro Basque Center for Neuroscience, Leioa, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
40
|
Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci 2021; 44:781-792. [PMID: 34479758 DOI: 10.1016/j.tins.2021.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
We define a new concept of 'active milieu' that unifies all components of nervous tissue (neuronal and glial compartments, extracellular space, extracellular matrix, and vasculature) into a dynamic information processing system. Within this framework, we focus on the role of astrocytic processes, classified into organelle-containing branches and organelle-free leaflets. We argue that astrocytic branches with emanating leaflets are homologous to dendritic shafts with spines. Within the active milieu, astrocytic processes are engaged in reciprocal interactions with neuronal compartments and communication with other cellular and non-cellular elements of the nervous tissue.
Collapse
Affiliation(s)
- Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
41
|
Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021; 10:cells10082019. [PMID: 34440788 PMCID: PMC8395029 DOI: 10.3390/cells10082019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders whose incidence is likely to duplicate in the next 30 years along with the progressive aging of the western population. Non-cell-specific therapeutics or therapeutics designed to tackle aberrant pathways within neurons failed to slow down or halt neurodegeneration. Yet, in the last few years, our knowledge of the importance of glial cells to maintain the central nervous system homeostasis in health conditions has increased exponentially, along with our awareness of their fundamental and multifaced role in pathological conditions. Among glial cells, astrocytes emerge as promising therapeutic targets in various neurodegenerative disorders. In this review, we present the latest evidence showing the astonishing level of specialization that astrocytes display to fulfill the demands of their neuronal partners as well as their plasticity upon injury. Then, we discuss the controversies that fuel the current debate on these cells. We tackle evidence of a potential beneficial effect of cell therapy, achieved by transplanting astrocytes or their precursors. Afterwards, we introduce the different strategies proposed to modulate astrocyte functions in neurodegeneration, ranging from lifestyle changes to environmental cues. Finally, we discuss the challenges and the recent advancements to develop astrocyte-specific delivery systems.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| | - Agostino Possenti
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (A.P.); (L.B.)
- Correspondence: (C.F.V.); (D.R.); Tel.: +49-7071-9254-122 (C.F.V.); +39-0382-592064 (D.R.)
| |
Collapse
|
42
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
43
|
Zhang H, Zhang X, Hong X, Tong X. Homogeneity or heterogeneity, the paradox of neurovascular pericytes in the brain. Glia 2021; 69:2474-2487. [PMID: 34152032 PMCID: PMC8453512 DOI: 10.1002/glia.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Pericytes are one of the main components of the neurovascular unit. They play a critical role in regulating blood flow, blood–brain barrier permeability, neuroinflammation, and neuronal activity. In the central nervous system (CNS), pericytes are classified into three subtypes, that is, ensheathing, mesh, and thin‐strand pericytes, based on their distinct morphologies and region‐specific distributions. However, whether these three types of pericytes exhibit heterogeneity or homogeneity with regard to membrane properties has been understudied to date. Here, we combined bulk RNA sequencing analysis with electrophysiological methods to demonstrate that the three subtypes of pericytes share similar electrical membrane properties in the CNS, suggesting a homogenous population of neurovascular pericytes in the brain. Furthermore, we identified an inwardly rectifying potassium channel subtype Kir4.1 functionally expressed in pericytes. Electrophysiological patch clamp recordings indicate that Kir4.1 channel currents in pericytes represent a small portion of the K+ macroscopic currents in physiological conditions. However, a significant augmentation of Kir4.1 currents in pericytes was induced when the extracellular K+ was elevated to pathological levels, suggesting pericytes Kir4.1 channels might play an important role as K+ sensors and contribute to K+ homeostasis in local neurovascular networks in pathology.
Collapse
Affiliation(s)
- Huimin Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqi Hong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Ribeiro TN, Delgado-García LM, Porcionatto MA. Notch1 and Galectin-3 Modulate Cortical Reactive Astrocyte Response After Brain Injury. Front Cell Dev Biol 2021; 9:649854. [PMID: 34222228 PMCID: PMC8244823 DOI: 10.3389/fcell.2021.649854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
After a brain lesion, highly specialized cortical astrocytes react, supporting the closure or replacement of the damaged tissue, but fail to regulate neural plasticity. Growing evidence indicates that repair response leads astrocytes to reprogram, acquiring a partially restricted regenerative phenotype in vivo and neural stem cells (NSC) hallmarks in vitro. However, the molecular factors involved in astrocyte reactivity, the reparative response, and their relation to adult neurogenesis are poorly understood and remain an area of intense investigation in regenerative medicine. In this context, we addressed the role of Notch1 signaling and the effect of Galectin-3 (Gal3) as underlying molecular candidates involved in cortical astrocyte response to injury. Notch signaling is part of a specific neurogenic microenvironment that maintains NSC and neural progenitors, and Gal3 has a preferential spatial distribution across the cortex and has a central role in the proliferative capacity of reactive astrocytes. We report that in vitro scratch-reactivated cortical astrocytes from C57Bl/6J neonatal mice present nuclear Notch1 intracellular domain (NICD1), indicating Notch1 activation. Colocalization analysis revealed a subpopulation of reactive astrocytes at the lesion border with colocalized NICD1/Jagged1 complexes compared with astrocytes located far from the border. Moreover, we found that Gal3 increased intracellularly, in contrast to its extracellular localization in non-reactive astrocytes, and NICD1/Gal3 pattern distribution shifted from diffuse to vesicular upon astrocyte reactivation. In vitro, Gal3–/– reactive astrocytes showed abolished Notch1 signaling at the lesion core. Notch1 receptor, its ligands (Jagged1 and Delta-like1), and Hes5 target gene were upregulated in C57Bl/6J reactive astrocytes, but not in Gal3–/– reactive astrocytes. Finally, we report that Gal3–/– mice submitted to a traumatic brain injury model in the somatosensory cortex presented a disrupted response characterized by the reduced number of GFAP reactive astrocytes, with smaller cell body perimeter and decreased NICD1 presence at the lesion core. These results suggest that Gal3 might be essential to the proper activation of Notch signaling, facilitating the cleavage of Notch1 and nuclear translocation of NICD1 into the nucleus of reactive cortical astrocytes. Additionally, we hypothesize that reactive astrocyte response could be dependent on Notch1/Jagged1-Hes5 signaling activation following brain injury.
Collapse
Affiliation(s)
- Tais Novaki Ribeiro
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lina Maria Delgado-García
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A Porcionatto
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
46
|
Garaschuk O. Understanding normal brain aging. Pflugers Arch 2021; 473:711-712. [PMID: 33885976 PMCID: PMC8076117 DOI: 10.1007/s00424-021-02567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department of Neurophysiology, University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany.
| |
Collapse
|
47
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
48
|
Rivera AD, Pieropan F, Chacon‐De‐La‐Rocha I, Lecca D, Abbracchio MP, Azim K, Butt AM. Functional genomic analyses highlight a shift in Gpr17-regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell 2021; 20:e13335. [PMID: 33675110 PMCID: PMC8045941 DOI: 10.1111/acel.13335] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.
Collapse
Affiliation(s)
- Andrea D. Rivera
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
- Department of NeuroscienceInstitute of Human AnatomyUniversity of PaduaPaduaItaly
| | - Francesca Pieropan
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| | | | - Davide Lecca
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
| | | | - Kasum Azim
- Department of NeurologyNeuroregenerationMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Arthur M. Butt
- School of Pharmacy and Biomedical ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
49
|
Bondi H, Bortolotto V, Canonico PL, Grilli M. Complex and regional-specific changes in the morphological complexity of GFAP + astrocytes in middle-aged mice. Neurobiol Aging 2021; 100:59-71. [PMID: 33493951 DOI: 10.1016/j.neurobiolaging.2020.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
During aging, alterations in astrocyte phenotype occur in areas associated with age-related cognitive decline, including hippocampus. Previous work reported subregion-specific changes in surface, volume, and soma size of hippocampal astrocytes during physiological aging. Herein we extensively analyzed, by morphometric analysis, fine morphological features of GFAP+ astrocytes in young (6-month-old) and middle-aged (14-month-old) male mice. We observed remarkable heterogeneity in the astrocytic response to aging in distinct subfields and along the dorsoventral axis of hippocampus and in entorhinal cortex. In middle-aged mice dorsal granule cell and molecular layers, but not hilus, astrocytes underwent remarkable increase in their morphological complexity. These changes were absent in ventral Dentate Gyrus (DG). In addition, in entorhinal cortex, the major input to dorsal DG, astrocytes underwent remarkable atrophic changes in middle-aged mice. Since dorsal DG, and not ventral DG, is involved in cognitive functions, these findings appear worth of further evaluation. Our findings also suggest an additional level of complexity in the structural changes associated with brain aging.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
50
|
Ramos-Gonzalez P, Mato S, Chara JC, Verkhratsky A, Matute C, Cavaliere F. Astrocytic atrophy as a pathological feature of Parkinson's disease with LRRK2 mutation. NPJ Parkinsons Dis 2021; 7:31. [PMID: 33785762 PMCID: PMC8009947 DOI: 10.1038/s41531-021-00175-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
The principal hallmark of Parkinson's disease (PD) is the selective neurodegeneration of dopaminergic neurones. Mounting evidence suggests that astrocytes may contribute to dopaminergic neurodegeneration through decreased homoeostatic support and deficient neuroprotection. In this study, we generated induced pluripotent stem cells (iPSC)-derived astrocytes from PD patients with LRRK2(G2019S) mutation and healthy donors of the similar age. In cell lines derived from PD patients, astrocytes were characterised by a significant decrease in S100B and GFAP-positive astrocytic profiles associated with marked decrease in astrocyte complexity. In addition, PD-derived astrocytes demonstrated aberrant mitochondrial morphology, decreased mitochondrial activity and ATP production along with an increase of glycolysis and increased production of reactive oxygen species. Taken together, our data indicate that astrocytic asthenia observed in patient-derived cultures with LRRK2(G2019S) mutation may contribute to neuronal death through decreased homoeostatic support, elevated oxidative stress and failed neuroprotection.
Collapse
Affiliation(s)
- Paula Ramos-Gonzalez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Susana Mato
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Biocruces, Bizkaia, Barakaldo, Spain
| | - Juan Carlos Chara
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alexei Verkhratsky
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Fabio Cavaliere
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain.
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|