1
|
Panda M, Markaki M, Tavernarakis N. Mitostasis in age-associated neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167547. [PMID: 39437856 DOI: 10.1016/j.bbadis.2024.167547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are essential organelles that play crucial roles in various metabolic and signalling pathways. Proper neuronal function is highly dependent on the health of these organelles. Of note, the intricate structure of neurons poses a critical challenge for the transport and distribution of mitochondria to specific energy-intensive domains, such as synapses and dendritic appendages. When faced with chronic metabolic challenges and bioenergetic deficits, neurons undergo degeneration. Unsurprisingly, disruption of mitostasis, the process of maintaining cellular mitochondrial content and function within physiological limits, has been implicated in the pathogenesis of several age-associated neurodegenerative disorders. Indeed, compromised integrity and metabolic activity of mitochondria is a principal hallmark of neurodegeneration. In this review, we survey recent findings elucidating the role of impaired mitochondrial homeostasis and metabolism in the onset and progression of age-related neurodegenerative disorders. We also discuss the importance of neuronal mitostasis, with an emphasis on the major mitochondrial homeostatic and metabolic pathways that contribute to the proper functioning of neurons. A comprehensive delineation of these pathways is crucial for the development of early diagnostic and intervention approaches against neurodegeneration.
Collapse
Affiliation(s)
- Mrutyunjaya Panda
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Department of Medicine, University of Verona, Verona 37134, Italy; Faculdade de Farmácia, University of Lisbon, Lisbon 1649-003, Portugal
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion 71003, Crete, Greece.
| |
Collapse
|
2
|
Tanaka S, Elgaabari A, Seki M, Kuwakado S, Zushi K, Miyamoto J, Sawano S, Mizunoya W, Ehara K, Watanabe N, Ogawa Y, Imakyure H, Fujimaru R, Osaki R, Shitamitsu K, Mizoguchi K, Ushijima T, Maeno T, Nakashima T, Suzuki T, Nakamura M, Anderson JE, Tatsumi R. In vitro immuno-prevention of nitration/dysfunction of myogenic stem cell activator HGF, towards developing a strategy for age-related muscle atrophy. Aging Cell 2024; 23:e14337. [PMID: 39297318 PMCID: PMC11464115 DOI: 10.1111/acel.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024] Open
Abstract
In response to peroxynitrite (ONOO-) generation, myogenic stem satellite cell activator HGF (hepatocyte growth factor) undergoes nitration of tyrosine residues (Y198 and Y250) predominantly on fast IIa and IIx myofibers to lose its binding to the signaling receptor c-met, thereby disturbing muscle homeostasis during aging. Here we show that rat anti-HGF monoclonal antibody (mAb) 1H41C10, which was raised in-house against a synthetic peptide FTSNPEVRnitroY198EV, a site well-conserved in mammals, functions to confer resistance to nitration dysfunction on HGF. 1H41C10 was characterized by recognizing both nitrated and non-nitrated HGF with different affinities as revealed by Western blotting, indicating that the paratope of 1H41C10 may bind to the immediate vicinity of Y198. Subsequent experiments showed that 1H41C10-bound HGF resists peroxynitrite-induced nitration of Y198. A companion mAb-1H42F4 presented similar immuno-reactivity, but did not protect Y198 nitration, and thus served as the control. Importantly, 1H41C10-HGF also withstood Y250 nitration to retain c-met binding and satellite cell activation functions in culture. The Fab region of 1H41C10 exerts resistivity to Y250 nitration possibly due to its localization in the immediate vicinity to Y250, as supported by an additional set of experiments showing that the 1H41C10-Fab confers Y250-nitration resistance which the Fc segment does not. Findings highlight the in vitro preventive impact of 1H41C10 on HGF nitration-dysfunction that strongly impairs myogenic stem cell dynamics, potentially pioneering cogent strategies for counteracting or treating age-related muscle atrophy with fibrosis (including sarcopenia and frailty) and the therapeutic application of investigational HGF drugs.
Collapse
Affiliation(s)
- Sakiho Tanaka
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Alaa Elgaabari
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Miyumi Seki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Junri Miyamoto
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Kenshiro Ehara
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Naruha Watanabe
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Yohei Ogawa
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Hikaru Imakyure
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Reina Fujimaru
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Rika Osaki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Kazuki Shitamitsu
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Kaoru Mizoguchi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Tomoki Ushijima
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource SciencesGraduate School of Agriculture, Kyushu UniversityFukuokaJapan
| |
Collapse
|
3
|
Takahashi M, Sakamoto A, Morikawa H. Atmospheric nitrogen dioxide suppresses the activity of phytochrome interacting factor 4 to suppress hypocotyl elongation. PLANTA 2024; 260:42. [PMID: 38958765 PMCID: PMC11222245 DOI: 10.1007/s00425-024-04468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.
Collapse
Affiliation(s)
- Misa Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan.
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| | - Hiromichi Morikawa
- School of Science, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
4
|
Gilbert E, Žagar A, López-Darias M, Megía-Palma R, Lister KA, Jones MD, Carretero MA, Serén N, Beltran-Alvarez P, Valero KCW. Environmental factors influence cross-talk between a heat shock protein and an oxidative stress protein modification in the lizard Gallotia galloti. PLoS One 2024; 19:e0300111. [PMID: 38470891 DOI: 10.1371/journal.pone.0300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.
Collapse
Affiliation(s)
- Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, United Kingdom
| | - Anamarija Žagar
- National Institute of Biology, Ljubljana, Slovenia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
| | - Marta López-Darias
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- Universidad de Alcalá (UAH), Biomedicine and Biotechnology, Alcalá de Henares, Madrid, Spain
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Karen A Lister
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Max Dolton Jones
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nina Serén
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto Campus de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, United Kingdom
| | - Katharina C Wollenberg Valero
- School of Natural Sciences, The University of Hull, Hull, United Kingdom
- School of Biology and Environmental Science, University College Dublin, Belfield Campus, Dublin, Ireland
| |
Collapse
|
5
|
Elgaabari A, Imatomi N, Kido H, Nakashima T, Okuda S, Manabe Y, Sawano S, Mizunoya W, Kaneko R, Tanaka S, Maeno T, Matsuyoshi Y, Seki M, Kuwakado S, Zushi K, Daneshvar N, Nakamura M, Suzuki T, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Age-related nitration/dysfunction of myogenic stem cell activator HGF. Aging Cell 2024; 23:e14041. [PMID: 37985931 PMCID: PMC10861216 DOI: 10.1111/acel.14041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Okuda
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yoshitaka Manabe
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ronald E. Allen
- The School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Fröhlich-Nowoisky J, Bothen N, Backes AT, Weller MG, Pöschl U. Oligomerization and tyrosine nitration enhance the allergenic potential of the birch and grass pollen allergens Bet v 1 and Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1303943. [PMID: 38125293 PMCID: PMC10732249 DOI: 10.3389/falgy.2023.1303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Protein modifications such as oligomerization and tyrosine nitration alter the immune response to allergens and may contribute to the increasing prevalence of allergic diseases. In this mini-review, we summarize and discuss relevant findings for the major birch and grass pollen allergens Bet v 1 and Phl p 5 modified with tetranitromethane (laboratory studies), peroxynitrite (physiological processes), and ozone and nitrogen dioxide (environmental conditions). We focus on tyrosine nitration and the formation of protein dimers and higher oligomers via dityrosine cross-linking and the immunological effects studied.
Collapse
Affiliation(s)
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Division 1.5 - Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
7
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
8
|
Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 2023; 14:7782-7817. [PMID: 37502317 PMCID: PMC10370606 DOI: 10.1039/d3sc02543h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.
Collapse
Affiliation(s)
- Shengping Zhang
- Center for Translational Medicine, Shenzhen Bay Laboratory New Zealand
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
9
|
Kut K, Stefaniuk I, Bartosz G, Sadowska-Bartosz I. Formation of a Purple Product upon the Reaction of ABTS Radicals with Proteins. Int J Mol Sci 2023; 24:ijms24108912. [PMID: 37240256 DOI: 10.3390/ijms24108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The reaction of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) free radical (ABTS●) with proteins (bovine serum albumin, blood plasma, egg white, erythrocyte membranes, and Bacto Peptone) leads not only to a reduction of ABTS● but also to the appearance of a purple color (absorption maximum at 550-560 nm). The aim of this study was to characterize the formation and explain the nature of the product responsible for the appearance of this color. The purple color co-precipitated with protein, and was diminished by reducing agents. A similar color was generated by tyrosine upon reaction with ABTS●. The most feasible explanation for the color formation is the addiction of ABTS● to proteins' tyrosine residues. The product formation was decreased by nitration of the bovine serum albumin (BSA) tyrosine residues. The formation of the purple product of tyrosine was optimal at pH 6.5. A decrease in pH induced a bathochromic shift of the spectra of the product. The product was not a free radical, as demonstrated by electrom paramagnetic resonance (EPR) spectroscopy. Another byproduct of the reaction of ABTS● with tyrosine and proteins was dityrosine. These byproducts can contribute to the non-stoichiometry of the antioxidant assays with ABTS●. The formation of the purple ABTS adduct may be a useful index of radical addition reactions of protein tyrosine residues.
Collapse
Affiliation(s)
- Kacper Kut
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, 1 Pigonia Street, 35-310 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland
| |
Collapse
|
10
|
Tian J, Yang F. Site-specific tyrosine nitration of group 1 allergens of house dust mite Dermatophagoides farinae (der f 1) and Dermatophagoides pteronyssinus (der p 1) in indoor dusts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121716. [PMID: 37142204 DOI: 10.1016/j.envpol.2023.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
Nitration can enhance the allergenicity of proteins. The nitration status of house dust mite (HDM) allergens in indoor dusts, however, remains to be elucidated. In the study, site-specific tyrosine nitration degrees of the two important HDM allergens Der f 1 and Der p 1 in indoor dust samples were investigated by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The measured concentrations of native and nitrated allergens in the dusts were in the range of 0.86-29 μg g-1 for Der f 1 and from below the detection limit to 29 μg g-1 for Der p 1. Site-specific analysis revealed that all ten tyrosine residues in Der f 1 and Der p 1 were nitrated to different degrees in the investigated samples. The preferred nitration sites were Y56 in Der f 1 and Y37 in Der p 1 with the nitration degrees of 7.6-84% and 17-96% among the detected tyrosine residues, respectively. The measurements reveal high site-specific nitration degrees for tyrosine in Der f 1 and Der p 1 detected in the indoor dust samples. Further investigations are required to find out if the nitration really aggravates the health effects of HDM allergens and if the effects are tyrosine site-dependent.
Collapse
Affiliation(s)
- Jingyi Tian
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
11
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Reinmuth-Selzle K, Bellinghausen I, Leifke AL, Backes AT, Bothen N, Ziegler K, Weller MG, Saloga J, Schuppan D, Lucas K, Pöschl U, Fröhlich-Nowoisky J. Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5. FRONTIERS IN ALLERGY 2023; 4:1066392. [PMID: 36873048 PMCID: PMC9975604 DOI: 10.3389/falgy.2023.1066392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO-) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO- and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO--induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment.
Collapse
Affiliation(s)
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Lena Leifke
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael G. Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | |
Collapse
|
13
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
14
|
Zhang YX, Wei QY, Wang YT, Zeng LP, Sun SY, Wu YF, Ren CY, Wang F, Chen GH, Cao L. A postpartum enriched environment rescues impaired cognition and oxidative markers in aged mice with gestational inflammation. Brain Behav 2022; 12:e2817. [PMID: 36409568 PMCID: PMC9759132 DOI: 10.1002/brb3.2817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Previous studies have shown that gestational inflammation can accelerate age-associated cognitive decline (AACD) in maternal mice; enriched environments (EEs) have been reported to protect normally aging mice from AACD and improve mitochondrial function. However, it is unclear whether the nitrosative stress-related proteins tet methylcytosine dioxygenase 1 (TET1) and S-nitrosoglutathione reductase (GSNOR) are involved in the accelerated aging process of gestational inflammation and whether EEs can slow this process. METHODS In this study, CD-1 female mice on the 15th day of pregnancy were injected with bacterial lipopolysaccharide (50 μg/kg; LPS group) or an equivalent amount of normal saline (CON group) from the abdominal cavity for 4 consecutive days. Twenty-one days after delivery, half of the LPS-treated mice were randomly selected for EE until the end of the behavioral experiment (LPS-E group). When the female rats were raised to 6 months and 18 months of age, the Morris water maze (MWM) was used to detect spatial learning and memory ability; RT-PCR and Western blots were used to measure the mRNA and protein levels of hippocampal TET1 and GSNOR. RESULTS As for the control group, compared with 6-month-old mice, the spatial learning and memory ability of 18-month-old mice decreased, and the hippocampal TET1 and GSNOR mRNA and protein levels were decreased. Gestational inflammation exacerbated these age-related changes, but an EE alleviated the effects. Pearson's correlation analysis indicated that performance during the learning and memory periods in the MWM correlated with the levels of hippocampal TET1 and GSNOR. CONCLUSIONS Our findings suggest that gestational inflammation accelerates age-related learning and memory impairments and that postpartum EE exposure could alleviate these changes. These effects may be related to hippocampal TET1 and GSNOR expression.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, P. R. China.,Department of Neurology, Bengbu Second People's Hospital, Bengbu, Anhui Province, P. R. China
| | - Qi-Yao Wei
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), Anhui, P. R. China
| | - Li-Ping Zeng
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), Anhui, P. R. China
| | - Shi-Yu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui Province, P. R. China
| | - Yong-Fang Wu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), Anhui, P. R. China
| | - Chong-Yang Ren
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), Anhui, P. R. China
| | - Fang Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, P. R. China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), Anhui, P. R. China
| | - Lei Cao
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, P. R. China
| |
Collapse
|
15
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
16
|
Grujić-Milanović J, Jaćević V, Miloradović Z, Milanović SD, Jovović D, Ivanov M, Karanović D, Vajić UJ, Mihailović-Stanojević N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed Pharmacother 2022; 154:113642. [PMID: 36942598 DOI: 10.1016/j.biopha.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia.
| | - Zoran Miloradović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, biomedical engineering and physics of complex systems, Belgrade, Serbia.
| | - Djurdjica Jovović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Milan Ivanov
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Danijela Karanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Una-Jovana Vajić
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Nevena Mihailović-Stanojević
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| |
Collapse
|
17
|
Wu DC, Yang TC, Hu SX, Candy Chen HJ. Multiple oxidative and advanced oxidative modifications of hemoglobin in gastric cancer patients measured by nanoflow LC-MS/MS. Clin Chim Acta 2022; 531:137-144. [DOI: 10.1016/j.cca.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
|
18
|
Ebanks B, Chakrabarti L. Mitochondrial ATP Synthase is a Target of Oxidative Stress in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:854321. [PMID: 35237666 PMCID: PMC8882969 DOI: 10.3389/fmolb.2022.854321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial ATP synthase is responsible for the production of cellular ATP, and it does so by harnessing the membrane potential of the mitochondria that is produced by the sequential oxidation of select cellular metabolites. Since the structural features of ATP synthase were first resolved nearly three decades ago, significant progress has been made in understanding its role in health and disease. Mitochondrial dysfunction is common to neurodegeneration, with elevated oxidative stress a hallmark of this dysfunction. The patterns of this oxidative stress, including molecular targets and the form of oxidative modification, can vary widely. In this mini review we discuss the oxidative modifications of ATP synthase that have been observed in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Oxidative modifications of ATP synthase in Alzheimer’s disease are well-documented, and there is a growing body of knowledge on the subject in Parkinson’s disease. The consideration of ATP synthase as a pharmacological target in a variety of diseases underlines the importance of understanding these modifications, both as a potential target, and also as inhibitors of any pharmacological intervention.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Brad Ebanks,
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, United Kingdom
| |
Collapse
|
19
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
20
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects. Int J Mol Sci 2021; 22:ijms22147616. [PMID: 34299235 PMCID: PMC8303544 DOI: 10.3390/ijms22147616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.
Collapse
|
22
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
23
|
Fernández-Espejo E, Rodríguez de Fonseca F, Suárez J, Tolosa E, Vilas D, Aldecoa I, Berenguer J, Damas-Hermoso F. Native α-Synuclein, 3-Nitrotyrosine Proteins, and Patterns of Nitro-α-Synuclein-Immunoreactive Inclusions in Saliva and Submandibulary Gland in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10050715. [PMID: 34062880 PMCID: PMC8147273 DOI: 10.3390/antiox10050715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson's disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded "Lewy-type" aggregates of 10-25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3-5 µm in diameter. "Lewy-type" and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. "Lewy-type" inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients' saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, "Lewy-type" inclusions expressing 3-NT-αSyn are observed in the patients, not the controls-a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
- Correspondence: (E.F.-E.); (F.R.d.F.); Tel.: +34-954-184-712 (E.F.-E.); +34-952-614-012 (F.R.d.F.)
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
- Correspondence: (E.F.-E.); (F.R.d.F.); Tel.: +34-954-184-712 (E.F.-E.); +34-952-614-012 (F.R.d.F.)
| | - Juan Suárez
- Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, IBIMA, Universidad de Málaga, 29071 Málaga, Spain;
| | - Eduardo Tolosa
- Unidad de Parkinson y movimientos anormales, Servicio de Neurología, Hospital Clínic, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain
| | - Dolores Vilas
- Servicio de Neurología, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Iban Aldecoa
- Centro de Diagnóstico Biomédico, Departamento de Patología, Hospital Clinic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain;
- Banco de Tejidos Neurológicos del Biobanco, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joan Berenguer
- Servicio de Radiología, Hospital Clínic, 08036 Barcelona, Spain;
| | | |
Collapse
|
24
|
Chen HJC, Liao KC, Tu CW. Quantitation of Nitration, Chlorination, and Oxidation in Hemoglobin of Breast Cancer Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Chem Res Toxicol 2021; 34:1664-1671. [PMID: 33909420 DOI: 10.1021/acs.chemrestox.1c00075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells are continually exposed to endogenous reactive oxygen, nitrogen, and halogen species, causing damage to biomolecules. Among them, peroxynitrite and hypochlorous acid are not only oxidants but also biological nitrating and chlorinating agents, leading to the formation of 3-nitrotyrosine and 3-chlorotyrosine, respectively, in proteins. 3-Nitrotyrosine has been detected in vivo under several pathophysiological conditions, including breast cancer. Studies show that the concentrations of 3-nitrotyrosine in plasma proteins and platelets were significantly elevated in breast cancer patients. Compared to blood serum albumin, hemoglobin adducts represent biomonitoring of exposure with a longer lifetime. In this study, human hemoglobin was freshly isolated from blood and digested into peptides with trypsin, and the levels of protein adducts, including nitration, nitrosylation, and chlorination of tyrosine as well as oxidation of methionine residues, were simultaneously quantified by nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) with selected reaction monitoring. The results demonstrated that the relative extents of nitration at α-Tyr-42 and β-Tyr-130, nitrosylation at α-Tyr-24, and chlorination at α-Tyr-24 and β-Tyr-130 are significantly higher in globin of 25 breast cancer patients compared to those in 25 healthy subjects (p < 0.05). In particular, nitration at α-Tyr-42 and chlorination at α-Tyr-24 showed the area under the receiver operating characteristic curve of >0.8. While the age of the subjects is correlated with the extents of some of these adducts, the body mass index does not have an effect on any of them. Starting with 1 drop of blood, our results indicated that this highly sensitive and specific nanoLC-NSI/MS/MS is useful in investigating the role of reactive nitrogen oxide species and reactive chlorine species in the etiology of breast cancer.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi 62142, Taiwan
| | - Kuan-Ching Liao
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi 62142, Taiwan
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, 539 Zhongxiao Road, East Dist., Chiayi 60002, Taiwan
| |
Collapse
|
25
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
26
|
Assunção HCR, Cruz YMC, Bertolino JS, Garcia RCT, Fernandes L. Protective effects of luteolin on the venous endothelium. Mol Cell Biochem 2021; 476:1849-1859. [PMID: 33469821 DOI: 10.1007/s11010-020-04025-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Luteolin is a flavonoid with antioxidant properties already demonstrated in studies related to inflammation, tumor, and cardiovascular processes; however, there are no available information regarding its antioxidant effects at the venous endothelial site. We investigated the effects of luteolin (10, 20, and 50 μmol/L) in cultures of rat venous endothelial cells. Nitric oxide (NO) and reactive oxygen species (ROS) were analyzed by fluorimetry; 3-nitrotyrosine (3-NT) residues were evaluated by immunofluorescence, and prostacyclin (PGI2) release was investigated by colorimetry. Intracellular NO levels were significantly enhanced after 10 min of luteolin incubation, with a parallel decrease in ROS generation. These results were accompanied by a significant reduction in the expression of 3-NT residues and enhanced PGI2 rates. Therefore, luteolin is effective in reducing ROS thereby improving NO availability in venous endothelial cells. Besides, luteolin-induced decrease in 3-NT residues may correlate with the enhancement in endothelial PGI2 bioavailability. These findings suggest the future application of this flavonoid as a protective agent by improving endothelial function in several circulatory disorders related to venous insufficiency.
Collapse
Affiliation(s)
- Henrique Charlanti Reis Assunção
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Yan Milen Coelho Cruz
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Jéssica Silva Bertolino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Raphael Caio Tamborelli Garcia
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil
| | - Liliam Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP, 09913-030, Brazil.
| |
Collapse
|
27
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
28
|
Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020; 37:101581. [PMID: 32739154 PMCID: PMC7767743 DOI: 10.1016/j.redox.2020.101581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. Pollutants and oxidative stress can cause protein nitration and oligomerization. Peroxynitrite amplifies inflammatory potential of disease-related proteins in vitro. Chemical modification of damage-associated molecular patterns (DAMPs). Positive feedback of modified DAMPs via pattern recognition receptor (TLR4). Air pollution may promote inflammatory disorders in the Anthropocene.
Collapse
Affiliation(s)
- Kira Ziegler
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Anna T Kunert
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | | | - Anna Lena Leifke
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, 02215, USA
| | | | - Kurt Lucas
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Multiphase Chemistry Department, 55128, Mainz, Germany.
| |
Collapse
|
29
|
Montagna C, Cirotti C, Rizza S, Filomeni G. When S-Nitrosylation Gets to Mitochondria: From Signaling to Age-Related Diseases. Antioxid Redox Signal 2020; 32:884-905. [PMID: 31931592 DOI: 10.1089/ars.2019.7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Cysteines have an essential role in redox signaling, transforming an oxidant signal into a biological response. Among reversible cysteine post-translational modifications, S-nitrosylation acts as a redox-switch in several pathophysiological states, such as ischemia/reperfusion, synaptic transmission, cancer, and muscular dysfunctions. Recent Advances: Growing pieces of in vitro and in vivo evidence argue for S-nitrosylation being deeply involved in development and aging, and playing a role in the onset of different pathological states. New findings suggest it being an enzymatically regulated cellular process, with deep impact on mitochondrial structure and function, and in cellular metabolism. In light of this, the recent discovery of the denitrosylase S-nitrosoCoA (coenzyme A) reductase takes on even greater importance and opens new perspectives on S-nitrosylation as a general mechanism of cellular homeostasis. Critical Issues: Based on these recent findings, we aim at summarizing and elaborating on the established and emerging crucial roles of S-nitrosylation in mitochondrial metabolism and mitophagy, and provide an overview of the pathophysiological effects induced by its deregulation. Future Directions: The identification of new S-nitrosylation targets, and the comprehension of the mechanisms through which S-nitrosylation modulates specific classes of proteins, that is, those impinging on diverse mitochondrial functions, may help to better understand the pathophysiology of aging, and propose lines of intervention to slow down or extend the onset of aging-related diseases.
Collapse
Affiliation(s)
- Costanza Montagna
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Signal Transduction, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
30
|
Mishra D, Patel V, Banerjee D. Nitric Oxide and S-Nitrosylation in Cancers: Emphasis on Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223419882688. [PMID: 32030066 PMCID: PMC6977095 DOI: 10.1177/1178223419882688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, endogenously produced, water-soluble signaling molecule playing critical roles in physiological processes. Nitric oxide plays pleiotropic roles in cancer and, depending on its local concentration, may lead to either tumor progression or tumor suppression. Addition of NO group to a cysteine residue within a protein, termed as S-nitrosylation, plays diverse regulatory roles and affects processes such as metabolism, apoptosis, protein phosphorylation, and regulation of transcription factors. The process of S-nitrosylation has been associated with development of different cancers, including breast cancer. The present review discusses different mechanisms through which NO acts, with special emphasis on breast cancers, and provides detailed insights into reactive nitrogen species, posttranslational modifications of proteins mediated by NO, dual nature of NO in cancers, and the implications of S-nitrosylation in cancers. Our review will generate interest in exploring molecular regulation by NO in different cancers and will have significant therapeutic implications in the management and treatment of breast cancer.
Collapse
Affiliation(s)
- Deepshikha Mishra
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Vaibhav Patel
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
31
|
Lai CK, Tang WK, Siu CK, Chu IK. Evidence for the Prerequisite Formation of Phenoxyl Radicals in Radical-Mediated Peptide Tyrosine Nitration In Vacuo. Chemistry 2020; 26:331-335. [PMID: 31657861 DOI: 10.1002/chem.201904484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/30/2022]
Abstract
The elementary mechanism of radical-mediated peptide tyrosine nitration, which is a hallmark of post-translational modification of proteins under nitrative stress in vivo, has been elucidated in detail by using an integrated approach that combines the gas-phase synthesis of prototypical molecular tyrosine-containing peptide radical cations, ion-molecule reactions, and isotopic labeling experiments with DFT calculations. This reaction first involves the radical recombination of . NO2 towards the prerequisite phenoxyl radical tautomer of a tyrosine residue, followed by proton rearrangements, finally yielding the stable and regioselective 3-nitrotyrosyl residue product. In contrast, nitration with the π-phenolic radical cation tautomer is inefficient. This first direct experimental evidence for the elementary steps of the radical-mediated tyrosine nitration mechanism in the gas phase provides a fundamental insight into the regioselectivity of biological tyrosine ortho-nitration.
Collapse
Affiliation(s)
- Cheuk Kuen Lai
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, S.A.R. China
| | - Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, S.A.R. China
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, S.A.R. China
| | - Ivan K Chu
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, S.A.R. China
| |
Collapse
|
32
|
Feng J, Chen L, Zuo J. Protein S-Nitrosylation in plants: Current progresses and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1206-1223. [PMID: 30663237 DOI: 10.1111/jipb.12780] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/14/2019] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based posttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein. S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. During the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins in plants. Emerging evidence indicates that protein S-nitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Immune Effects of the Nitrated Food Allergen Beta-Lactoglobulin in an Experimental Food Allergy Model. Nutrients 2019; 11:nu11102463. [PMID: 31618852 PMCID: PMC6835712 DOI: 10.3390/nu11102463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/18/2022] Open
Abstract
Food proteins may get nitrated by various exogenous or endogenous mechanisms. As individuals might get recurrently exposed to nitrated proteins via daily diet, we aimed to investigate the effect of repeatedly ingested nitrated food proteins on the subsequent immune response in non-allergic and allergic mice using the milk allergen beta-lactoglobulin (BLG) as model food protein in a mouse model. Evaluating the presence of nitrated proteins in food, we could detect 3-nitrotyrosine (3-NT) in extracts of different foods and in stomach content extracts of non-allergic mice under physiological conditions. Chemically nitrated BLG (BLGn) exhibited enhanced susceptibility to degradation in simulated gastric fluid experiments compared to untreated BLG (BLGu). Gavage of BLGn to non-allergic animals increased interferon-γ and interleukin-10 release of stimulated spleen cells and led to the formation of BLG-specific serum IgA. Allergic mice receiving three oral gavages of BLGn had higher levels of mouse mast cell protease-1 (mMCP-1) compared to allergic mice receiving BLGu. Regardless of the preceding immune status, non-allergic or allergic, repeatedly ingested nitrated food proteins seem to considerably influence the subsequent immune response.
Collapse
|
34
|
Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, Sadowska-Bartosz I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany NY) 2019; 10:868-901. [PMID: 29779015 PMCID: PMC5990388 DOI: 10.18632/aging.101450] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications accumulate during aging of cells and organisms and may contribute to their age-related functional deterioration. This review presents the formation of irreversible protein modifications such as carbonylation, nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation of these protein modifications during aging of humans and model organisms, and their enhanced accumulation in age-related brain diseases.
Collapse
Affiliation(s)
- Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens 11635, Greece.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens 15701, Greece
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Vilnius 2040, Lithuania
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
35
|
Johnstone J, Nash S, Hernandez E, Rahman MS. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. MARINE ENVIRONMENTAL RESEARCH 2019; 149:40-49. [PMID: 31150926 DOI: 10.1016/j.marenvres.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Increasing seawater temperature affects growth, reproduction and development in marine organisms. In this study, we examined the effects of elevated temperatures on reproductive functions, heat shock protein 70 (HSP70) and nitrotyrosine protein (NTP, an indicator of reactive nitrogen species) expressions, protein carbonyl (PC, an indicator of oxidative stress) contents, cellular apoptosis, and coelomic fluid (CF) conditions in Atlantic sea urchin. Sea urchins were housed in six aquaria with control (24 °C) and elevated temperatures (28 °C and 32 °C) for a 7-day period. After exposure, sea urchins exhibited decreased percentages of gametes (eggs/sperm), as well as increased HSP70 and NTP expressions in eggs and spermatogenic cells, increased gonadal apoptosis, and decreased CF pH compared to controls. PC contents were also significantly increased in gonadal tissues at higher temperatures. These results suggest that elevated temperature acidifies CF, increases oxidative stress and gonadal apoptosis, and results in impairment of reproductive functions in sea urchins.
Collapse
Affiliation(s)
- Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Eleazar Hernandez
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
36
|
Takahashi M, Morikawa H. Nitrogen Dioxide at Ambient Concentrations Induces Nitration and Degradation of PYR/PYL/RCAR Receptors to Stimulate Plant Growth: A Hypothetical Model. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8070198. [PMID: 31262027 PMCID: PMC6681506 DOI: 10.3390/plants8070198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Exposing Arabidopsis thaliana (Arabidopsis) seedlings fed with soil nitrogen to 10-50 ppb nitrogen dioxide (NO2) for several weeks stimulated the uptake of major elements, photosynthesis, and cellular metabolisms to more than double the biomass of shoot, total leaf area and contents of N, C P, K, S, Ca and Mg per shoot relative to non-exposed control seedlings. The 15N/14N ratio analysis by mass spectrometry revealed that N derived from NO2 (NO2-N) comprised < 5% of the total plant N, showing that the contribution of NO2-N as N source was minor. Moreover, histological analysis showed that leaf size and biomass were increased upon NO2 treatment, and that these increases were attributable to leaf age-dependent enhancement of cell proliferation and enlargement. Thus, NO2 may act as a plant growth signal rather than an N source. Exposure of Arabidopsis leaves to 40 ppm NO2 induced virtually exclusive nitration of PsbO and PsbP proteins (a high concentration of NO2 was used). The PMF analysis identified the ninth tyrosine residue of PsbO1 (9Tyr) as a nitration site. 9Tyr of PsbO1 was exclusively nitrated after incubation of the thylakoid membranes with a buffer containing NO2 and NO2- or a buffer containing NO2- alone. Nitration was catalyzed by illumination and repressed by photosystem II (PSII) electron transport inhibitors, and decreased oxygen evolution. Thus, protein tyrosine nitration altered (downregulated) the physiological function of cellular proteins of Arabidopsis leaves. This indicates that NO2-induced protein tyrosine nitration may stimulate plant growth. We hypothesized that atmospheric NO2 at ambient concentrations may induce tyrosine nitration of PYR/PYL/RCAR receptors in Arabidopsis leaves, followed by degradation of PYR/PYL/RCAR, upregulation of target of rapamycin (TOR) regulatory complexes, and stimulation of plant growth.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
37
|
Urmey AR, Zondlo NJ. Design of a Protein Motif Responsive to Tyrosine Nitration and an Encoded Turn-Off Sensor of Tyrosine Nitration. Biochemistry 2019; 58:2822-2833. [PMID: 31140788 PMCID: PMC6688601 DOI: 10.1021/acs.biochem.9b00334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine nitration is a protein post-translational modification that is predominantly non-enzymatic and is observed to be increased under conditions of nitrosative stress and in numerous disease states. A small protein motif (14-18 amino acids) responsive to tyrosine nitration has been developed. In this design, nitrotyrosine replaced the conserved Glu12 of an EF-hand metal-binding motif. Thus, the non-nitrated peptide bound terbium weakly. In contrast, tyrosine nitration resulted in a 45-fold increase in terbium affinity. Nuclear magnetic resonance spectroscopy indicated direct binding of nitrotyrosine to the metal and EF-hand-like metal contacts in this designed peptide. Nitrotyrosine is an efficient quencher of fluorescence. To develop a sensor of tyrosine nitration, the initial design was modified to incorporate Glu residues at EF-hand positions 9 and 16 as additional metal-binding residues, to increase the terbium affinity of the peptide with unmodified tyrosine. This peptide with a tyrosine at residue 12 bound terbium and effectively sensitized terbium luminescence. Tyrosine nitration resulted in a 180-fold increase in terbium affinity ( Kd = 1.6 μM) and quenching of terbium luminescence. This sequence was incorporated as an encoded protein tag and applied as a turn-off fluorescent protein sensor of tyrosine nitration. The sensor was responsive to nitration by peroxynitrite, with fluorescence quenched upon nitration. The greater terbium affinity upon tyrosine nitration resulted in a large dynamic range and sensitivity to substoichiometric nitration. An improved approach for the synthesis of peptides containing nitrotyrosine was also developed, via the in situ silyl protection of nitrotyrosine. This work represents the first designed, encodable protein motif that is responsive to tyrosine nitration.
Collapse
Affiliation(s)
- Andrew R. Urmey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
38
|
Ziegler K, Neumann J, Liu F, Fröhlich-Nowoisky J, Cremer C, Saloga J, Reinmuth-Selzle K, Pöschl U, Schuppan D, Bellinghausen I, Lucas K. Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in vitro. Front Immunol 2019; 9:3174. [PMID: 30740114 PMCID: PMC6357940 DOI: 10.3389/fimmu.2018.03174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/24/2018] [Indexed: 01/22/2023] Open
Abstract
Amylase trypsin inhibitors (ATI) can be found in all gluten containing cereals and are, therefore, ingredient of basic foods like bread or pasta. In the gut ATI can mediate innate immunity via activation of the Toll-like receptor 4 (TLR4) on immune cells residing in the lamina propria, promoting intestinal, as well as extra-intestinal, inflammation. Inflammatory conditions can induce formation of peroxynitrite (ONOO-) and, thereby, endogenous protein nitration in the body. Moreover, air pollutants like ozone (O3) and nitrogen dioxide (NO2) can cause exogenous protein nitration in the environment. Both reaction pathways may lead to the nitration of ATI. To investigate if and how nitration modulates the immunostimulatory properties of ATI, they were chemically modified by three different methods simulating endogenous and exogenous protein nitration and tested in vitro. Here we show that ATI nitration was achieved by all three methods and lead to increased immune reactions. We found that ATI nitrated by tetranitromethane (TNM) or ONOO- lead to a significantly enhanced TLR4 activation. Furthermore, in human primary immune cells, TNM nitrated ATI induced a significantly higher T cell proliferation and release of Th1 and Th2 cytokines compared to unmodified ATI. Our findings implicate a causative chain between nitration, enhanced TLR4 stimulation, and adaptive immune responses, providing major implications for public health, as nitrated ATI may strongly promote inhalative wheat allergies (baker's asthma), non-celiac wheat sensitivity (NCWS), other allergies, and autoimmune diseases. This underlines the importance of future work analyzing the relationship between endo- and exogenous protein nitration, and the rise in incidence of ATI-related and other food hypersensitivities.
Collapse
Affiliation(s)
- Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jan Neumann
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Christoph Cremer
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| |
Collapse
|
39
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
40
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
41
|
Baruteau J, Perocheau DP, Hanley J, Lorvellec M, Rocha-Ferreira E, Karda R, Ng J, Suff N, Diaz JA, Rahim AA, Hughes MP, Banushi B, Prunty H, Hristova M, Ridout DA, Virasami A, Heales S, Howe SJ, Buckley SMK, Mills PB, Gissen P, Waddington SN. Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nat Commun 2018; 9:3505. [PMID: 30158522 PMCID: PMC6115417 DOI: 10.1038/s41467-018-05972-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanna Hanley
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maëlle Lorvellec
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eridan Rocha-Ferreira
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanne Ng
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Ahad A Rahim
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen Prunty
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Deborah A Ridout
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1E, UK
| | - Alex Virasami
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Simon Heales
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Stewen J Howe
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Philippa B Mills
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Paul Gissen
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa.
| |
Collapse
|
42
|
Zhang P, Ma L, Yang Z, Li H, Gao Z. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS), a peroxynitrite decomposition catalyst, catalyzes protein tyrosine nitration in the presence of hydrogen peroxide and nitrite. J Inorg Biochem 2018. [DOI: 10.1016/j.jinorgbio.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Biotic and environmental stress induces nitration and changes in structure and function of the sea urchin major yolk protein toposome. Sci Rep 2018; 8:4610. [PMID: 29545577 PMCID: PMC5854732 DOI: 10.1038/s41598-018-22861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The major yolk protein toposome plays crucial roles during gametogenesis and development of sea urchins. We previously found that nitration of toposome increases in the gonads of a Paracentrotus lividus population living in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata, compared to control populations. This modification is associated with ovatoxin accumulation, high levels of nitric oxide in the gonads, and a remarkable impairment of progeny development. However, nothing is known about the environmental-mediated-regulation of the structure and biological function of toposome. Here, we characterize through wide-ranging biochemical and structural analyses the nitrated toposome of sea urchins exposed to the bloom, and subsequently detoxified. The increased number of nitrated tyrosines in toposome of sea urchins collected during algal bloom induced structural changes and improvement of the Ca2+-binding affinity of the protein. After 3 months’ detoxification, ovatoxin was undetectable, and the number of nitric oxide-modified tyrosines was reduced. However, the nitration of specific residues was irreversible and occurred also in embryos treated with metals, used as a proxy of environmental pollutants. The structural and functional changes of toposome caused by nitration under adverse environmental conditions may be related to the defective development of sea urchins’ progeny.
Collapse
|
44
|
Sujkowska-Rybkowska M, Czarnocka W, Sańko-Sawczenko I, Witoń D. Effect of short-term aluminum stress and mycorrhizal inoculation on nitric oxide metabolism in Medicago truncatula roots. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:145-154. [PMID: 29179082 DOI: 10.1016/j.jplph.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Aluminum (Al) toxicity can induce oxidative and nitrosative stress, which limits growth and yield of crop plants. Nevertheless, plant tolerance to stress may be improved by symbiotic associations including arbuscular mycorrhiza (AM). Nitric oxide (NO) is a signaling molecule involved in physiological processes and plant responses to abiotic and biotic stresses. However, almost no information about the NO metabolism has been gathered about AM. In the present work, Medicago truncatula seedlings were inoculated with Rhizophagus irregularis, and 7-week-old plants were treated with 50μM AlCl3 for 3h. Cytochemical and molecular techniques were used to measure the components of the NO metabolism, including NO content and localization, expression of genes encoding NO-synthesis (MtNR1, MtNR2 and MtNIR1) and NO-scavenging (MtGSNOR1, MtGSNOR2, MtHB1 and MtHB2) enzymes and the profile of protein tyrosine nitration (NO2-Tyr) in Medicago roots. For the first time, NO and NO2-Tyr accumulation was connected with fungal structures (arbuscules, vesicles and intercellular hyphae). Expression analysis of genes encoding NO-synthesis enzymes indicated that AM symbiosis results in lower production of NO in Al-treated roots in comparison to non-mycorrhizal roots. Elevated levels of transcription of genes encoding NO-scavenging enzymes indicated more active NO scavenging in AMF-inoculated Al-treated roots compared to non-inoculated roots. These results were confirmed by less NO accumulation and lower protein nitration in Al-stressed mycorrhizal roots in comparison to non-mycorrhizal roots. This study provides a new insight in NO metabolism in response to arbuscular mycorrhiza under normal and metal stress conditions. Our results suggest that mycorrhizal fungi decrease NO and tyrosine nitrated proteins content in Al-treated Medicago roots, probably via active NO scavenging system.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| |
Collapse
|
45
|
Pezzotti G, Bock RM, McEntire BJ, Adachi T, Marin E, Boschetto F, Zhu W, Mazda O, Bal SB. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I.In situtime-lapse Raman spectroscopy. Analyst 2018; 143:3708-3721. [DOI: 10.1039/c8an00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman spectroscopy proved why the antibacterial response of non-oxide Si3N4bioceramic is superior to those of alumina-based oxide bioceramics.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Orthopedic Surgery
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kamigyo-ku
- Japan
| | - Sonny B. Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| |
Collapse
|
46
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
47
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Suprun EV, Radko SP, Farafonova TE, Kozin SA, Makarov AA, Archakov AI, Shumyantseva VV. Electrochemical detection of protein post-translational modifications: Phosphorylation and nitration of amyloid-beta (1–16). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells. Int J Mol Sci 2017; 18:ijms18112258. [PMID: 29077055 PMCID: PMC5713228 DOI: 10.3390/ijms18112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
The conversion of peptidylarginine into peptidylcitrulline by calcium-dependent peptidylarginine deiminases (PADs) has been implicated in the pathogenesis of a number of diseases, identifying PADs as therapeutic targets for various diseases. The PAD inhibitor Cl-amidine ameliorates the disease course, severity, and clinical manifestation in multiple disease models, and it also modulates dendritic cell (DC) functions such as cytokine production, antigen presentation, and T cell proliferation. The beneficial effects of Cl-amidine make it an attractive compound for PAD-targeting therapeutic strategies in inflammatory diseases. Here, we found that Cl-amidine inhibited nitric oxide (NO) generation in a time- and dose-dependent manner in maturing DCs activated by lipopolysaccharide (LPS). This suppression of NO generation was independent of changes in NO synthase (NOS) enzyme activity levels but was instead dependent on changes in inducible NO synthase (iNOS) transcription and expression levels. Several upstream signaling pathways for iNOS expression, including the mitogen-activated protein kinase, nuclear factor-κB p65 (NF-κB p65), and hypoxia-inducible factor 1 pathways, were not affected by Cl-amidine. By contrast, the LPS-induced signal transducer and the activator of transcription (STAT) phosphorylation and activator protein-1 (AP-1) transcriptional activities (c-Fos, JunD, and phosphorylated c-Jun) were decreased in Cl-amidine-treated DCs. Inhibition of Janus kinase/STAT signaling dramatically suppressed iNOS expression and NO production, whereas AP-1 inhibition had no effect. These results indicate that Cl-amidine-inhibited STAT activation may suppress iNOS expression. Additionally, we found mildly reduced cyclooxygenase-2 expression and prostaglandin E2 production in Cl-amidine-treated DCs. Our findings indicate that Cl-amidine acts as a novel suppressor of iNOS expression, suggesting that Cl-amidine has the potential to ameliorate the effects of excessive iNOS/NO-linked immune responses.
Collapse
|
50
|
Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1376157. [PMID: 28895781 PMCID: PMC5647944 DOI: 10.1080/15592324.2017.1376157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exposure of intact Arabidopsis leaves to 40 ppm nitrogen dioxide (NO2) in light resulted almost exclusively in nitration of PsbO1, PsbO2, and PsbP1 of photosystem II (PSII), with minor nitration of four non-PS II proteins, including peroxiredoxin II E, as reported previously. Our previous findings that light-triggered selective nitration of PsbO1 decreased oxygen evolution and that inhibition of photoelectric electron transport inhibited nitration of PsbO1 implied that the nitratable tyrosine residue of PsbO1 is redox-active. However, whether the nitratable tyrosine residues of PsbO2 and PsbP1 are redox-active is unknown. In this study, we determined the oxygen evolution and maximal photochemical efficiency of PSII in intact Arabidopsis leaves following exposure to 40 ppm NO2 in light and found that these parameters were decreased to 60 and 70% of the non-exposed control, respectively. Because PsbO1, PsbO2, and PsbP1 accounted for > 80% of anti-3-nitrotyrosine antibody signal intensities, observed decreases in the oxygen evolution and maximal photochemical efficiency of PSII were mainly attributable to nitration of the tyrosine residues of these PSII proteins. Thus, it is postulated that nitratable tyrosine residues of PsbO2 and PsbP1 are redox-active, as in the case of PsbO1. A new hypothetical model is proposed.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- CONTACT Misa Takahashi , Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8526, Japan
| | - Jun Shigeto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|