1
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2025; 36:169-187. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
2
|
Smith HM, Ng HK, Moodie JE, Gadd DA, McCartney DL, Bernabeu E, Campbell A, Redmond P, Taylor A, Page D, Corley J, Harris SE, Tay D, Deary IJ, Evans KL, Robinson MR, Chambers JC, Loh M, Cox SR, Marioni RE, Hillary RF. DNA methylation-based predictors of metabolic traits in Scottish and Singaporean cohorts. Am J Hum Genet 2025; 112:106-115. [PMID: 39706196 PMCID: PMC11739919 DOI: 10.1016/j.ajhg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Exploring the molecular correlates of metabolic health measures may identify their shared and unique biological processes and pathways. Molecular proxies of these traits may also provide a more objective approach to their measurement. Here, DNA methylation (DNAm) data were used in epigenome-wide association studies (EWASs) and for training epigenetic scores (EpiScores) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio, and blood-based measures of glucose, high-density lipoprotein cholesterol, and total cholesterol in >17,000 volunteers from the Generation Scotland (GS) cohort. We observed a maximum of 12,033 significant findings (p < 3.6 × 10-8) for BMI in a marginal linear regression EWAS. By contrast, a joint and conditional Bayesian penalized regression approach yielded 27 high-confidence associations with BMI. EpiScores trained in GS performed well in both Scottish and Singaporean test cohorts (Lothian Birth Cohort 1936 [LBC1936] and Health for Life in Singapore [HELIOS]). The EpiScores for BMI and total cholesterol performed best in HELIOS, explaining 20.8% and 7.1% of the variance in the measured traits, respectively. The corresponding results in LBC1936 were 14.4% and 3.2%, respectively. Differences were observed in HELIOS for body fat, where the EpiScore explained ∼9% of the variance in Chinese and Malay -subgroups but ∼3% in the Indian subgroup. The EpiScores also correlated with cognitive function in LBC1936 (standardized βrange: 0.08-0.12, false discovery rate p [pFDR] < 0.05). Accounting for the correlation structure across the methylome can vastly affect the number of lead findings in EWASs. The EpiScores of metabolic traits are broadly applicable across populations and can reflect differences in cognition.
Collapse
Affiliation(s)
- Hannah M Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joanna E Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew R Robinson
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Wang W, Liang W, Sun C, Liu S. Sex Differences in Depression: Insights from Multimodal Gray Matter Morphology and Peripheral Inflammatory Factors. Int J Mol Sci 2024; 25:13412. [PMID: 39769178 PMCID: PMC11677592 DOI: 10.3390/ijms252413412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Major depressive disorder (MDD) exhibits notable sex differences in prevalence and clinical and neurobiological manifestations. Though the relationship between peripheral inflammation and MDD-related brain changes is well studied, the role of sex as a modifying factor is underexplored. This study aims to assess how sex influences brain and inflammatory markers in MDD. We utilized voxel-based and surface-based morphometry to analyze gray matter (GM) structure, along with GM-based spatial statistics (GBSS) to examine GM microstructure among treatment-naive patients with depression (n = 174) and age-matched healthy controls (n = 133). We uncovered sex-by-diagnosis interactions in several limbic system structures, the frontoparietal operculum and temporal regions. Post hoc analyses revealed that male patients exhibit pronounced brain abnormalities, while no significant differences were noted in females despite their higher depressive scores. Additionally, heightened inflammation levels in MDD were observed in both sexes, with sex-specific effects on sex-specific brain phenotypes, particularly including a general negative correlation in males. Intriguingly, mediation analyses highlight the specific role of the parahippocampal gyrus (PHG) in mediating interleukin (IL)-8 and depression in men. The findings suggest that in clinical practice, it would be beneficial to prioritize sex-specific assessments and interventions for MDD. This includes recognizing the possibility that male patients may experience significant brain alterations, especially when identifying male patients who may underreport symptoms. Possible limitations encompass a small sample size and the cross-sectional design. In future research, the incorporation of longitudinal studies or diverse populations, while considering illness duration, will enhance our understanding of how inflammation interacts with brain changes in depression.
Collapse
Affiliation(s)
- Wenjun Wang
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
| | - Wenjia Liang
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
| | - Chenxi Sun
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
| | - Shuwei Liu
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Suleri A, Creasey N, Walton E, Muetzel R, Felix JF, Duijts L, Bergink V, Cecil CAM. Mapping prenatal predictors and neurobehavioral outcomes of an epigenetic marker of neonatal inflammation - A longitudinal population-based study. Brain Behav Immun 2024; 122:483-496. [PMID: 39209009 PMCID: PMC11784988 DOI: 10.1016/j.bbi.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND DNA methylation levels at specific sites can be used to proxy C-reactive protein (CRP) levels, providing a potentially more stable and accurate indicator of sustained inflammation and associated health risk. However, its use has been primarily limited to adults or preterm infants, and little is known about determinants for - or offspring outcomes of - elevated levels of this epigenetic proxy in cord blood. The aim of this study was to comprehensively map prenatal predictors and long-term neurobehavioral outcomes of neonatal inflammation, as assessed with an epigenetic proxy of inflammation in cord blood, in the general pediatric population. METHODS Our study was embedded in the prospective population-based Generation R Study (n = 2,394). We created a methylation profile score of CRP (MPS-CRP) in cord blood as a marker of neonatal inflammation and validated it against serum CRP levels in mothers during pregnancy, as well as offspring at birth and in childhood. We then examined (i) which factors (previously associated with sustained inflammation) explain variability in MPS-CRP at birth, including a wide range of prenatal lifestyle and clinical conditions, pro-inflammatory exposures, as well as child genetic liability to elevated CRP levels; and (ii) whether MPS-CRP at birth associates with child neurobehavioral outcomes, including global structural MRI and DTI measures (child mean age 10 and 14 years) as well as psychiatric symptoms over time (Child Behavioral Checklist, at mean age 1.5, 3, 6, 10 and 14 years). RESULTS MPS-CRP at birth was validated with serum CRP in cord blood (cut-off > 1 mg/L) (AUC = 0.72). Prenatal lifestyle pro-inflammatory factors explained a small part (i.e., < 5%) of the variance in the MPS-CRP at birth. No other prenatal predictor or the polygenic score of CRP in the child explained significant variance in the MPS-CRP at birth. The MPS-CRP at birth prospectively associated with a reduction in global fractional anisotropy over time on mainly a nominal threshold (β = -0.014, SE = 0.007, p = 0.032), as well as showing nominal associations with structural differences (amygdala [(β = 0.016, SE = 0.006, p = 0.010], cerebellum [(β = -0.007, SE = 0.003, p = 0.036]). However, no associations with child psychiatric symptoms were observed. CONCLUSION Prenatal exposure to lifestyle-related pro-inflammatory factors was the only prenatal predictor that accounted for some of the individual variability in MPS-CRP levels at birth. Further, while the MPS-CRP prospectively associated with white matter alterations over time, no associations were observed at the behavioral level. Thus, the relevance and potential utility of using epigenetic data as a marker of neonatal inflammation in the general population remain unclear. In the future, the use of epigenetic proxies for a wider range of immune markers may lend further insights into the relationship between neonatal inflammation and adverse neurodevelopment within the general pediatric population.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Creasey
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Meier HCS, Klopack ET, Farnia MP, Hernandez B, Mitchell C, Faul JD, McCrory C, Kenny RA, Crimmins EM. A novel DNA methylation-based surrogate biomarker for chronic systemic inflammation (InfLaMeS): results from the Health and Retirement Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315339. [PMID: 39484273 PMCID: PMC11527057 DOI: 10.1101/2024.10.11.24315339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Chronic low-grade systemic inflammation is a risk factor for chronic diseases and mortality and is an important biomarker in health research. DNA methylation (DNAm) surrogate biomarkers are valuable exposure, risk factor and health outcome predictors in studies where the measures cannot be measured directly and often perform as well or better than direct measure. We generated a DNAm surrogate biomarker for chronic, systemic inflammation from a systemic inflammation latent variable of seven inflammatory markers and evaluated its performance relative to measured inflammatory biomarkers in predicting several age-associated outcomes of interest, including mortality, activities of daily living and multimorbidity in the Health and Retirement Study (HRS). The DNAm surrogate, Inflammation Latent Variable Methylation Surrogate (InfLaMeS), correlated with seven individual inflammation markers (r= -0.2-0.6) and performed as well or better to the systemic inflammation latent variable measure when predicting multimorbidity, disability, and 4-year mortality in HRS. Findings were validated in an external cohort, The Irish Longitudinal Study of Ageing. These results suggest that InfLaMeS provides a robust alternative to measured blood-chemistry measures of inflammation with broad applicability in instances where values of inflammatory markers are not measured but DNAm data is available.
Collapse
Affiliation(s)
- Helen C S Meier
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Eric T Klopack
- Leonard Davis School of Gerontology, University of Southern California
| | - Mateo P Farnia
- Human Development and Family Sciences, University of Texas at Austin
| | | | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing, Trinity College Dublin
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
6
|
Suleri A, Salontaji K, Luo M, Neumann A, Mulder RH, Tiemeier H, Felix JF, Marioni RE, Bergink V, Cecil CAM. Prenatal exposure to common infections and newborn DNA methylation: A prospective, population-based study. Brain Behav Immun 2024; 121:244-256. [PMID: 39084542 PMCID: PMC11784989 DOI: 10.1016/j.bbi.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Infections during pregnancy have been robustly associated with adverse mental and physical health outcomes in offspring, yet the underlying molecular pathways remain largely unknown. Here, we examined whether exposure to common infections in utero associates with DNA methylation (DNAm) patterns at birth and whether this in turn relates to offspring health outcomes in the general population. METHODS Using data from 2,367 children from the Dutch population-based Generation R Study, we first performed an epigenome-wide association study to identify differentially methylated sites and regions at birth associated with prenatal infection exposure. We also examined the influence of infection timing by using self-reported cumulative infection scores for each trimester. Second, we sought to develop an aggregate methylation profile score (MPS) based on cord blood DNAm as an epigenetic proxy of prenatal infection exposure and tested whether this MPS prospectively associates with offspring health outcomes, including psychiatric symptoms, BMI, and asthma at ages 13-16 years. Third, we investigated whether prenatal infection exposure associates with offspring epigenetic age acceleration - a marker of biological aging. Across all analysis steps, we tested whether our findings replicate in 864 participants from an independent population-based cohort (ALSPAC, UK). RESULTS We observed no differentially methylated sites or regions in cord blood in relation to prenatal infection exposure, after multiple testing correction. 33 DNAm sites showed suggestive associations (p < 5e10 - 5; of which one was also nominally associated in ALSPAC), indicating potential links to genes associated with immune, neurodevelopmental, and cardiovascular pathways. While the MPS of prenatal infections associated with maternal reports of infections in the internal hold out sample in the Generation R Study (R2incremental = 0.049), it did not replicate in ALSPAC (R2incremental = 0.001), and it did not prospectively associate with offspring health outcomes in either cohort. Moreover, we observed no association between prenatal exposure to infections and epigenetic age acceleration across cohorts and clocks. CONCLUSION In contrast to prior studies, which reported DNAm differences in offspring exposed to severe infections in utero, we do not find evidence for associations between self-reported clinically evident common infections during pregnancy and DNAm or epigenetic aging in cord blood within the general pediatric population. Future studies are needed to establish whether associations exist but are too subtle to be statistically meaningful with present sample sizes, whether they replicate in a cohort with a more similar infection score as our discovery cohort, whether they occur in different tissues than cord blood, and whether other biological pathways may be more relevant for mediating the effect of prenatal common infection exposure on downstream offspring health outcomes.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Paganin W, Signorini S. Inflammatory biomarkers in depression: scoping review. BJPsych Open 2024; 10:e165. [PMID: 39343996 PMCID: PMC11536280 DOI: 10.1192/bjo.2024.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Inflammation is increasingly recognised as a fundamental component of the pathophysiology of major depressive disorder (MDD), with a variety of inflammatory biomarkers playing pivotal roles. These markers are closely linked to both the severity of symptoms and the responsiveness to treatments in MDD. AIMS This scoping review aims to explore the scientific literature investigating the complex relationships between inflammatory biomarkers and depression, by identifying new studies and critical issues in current research. METHOD Following the PRISMA Extension for Scoping Reviews guidelines, we systematically searched databases including PubMed, Scopus, PsycINFO, Open Grey and Cochrane Library. Our search focused on articles published from 1 January 2020 to 1 May 2024. We included studies evaluating inflammatory biomarkers in adult patients with MDD, utilising observational and randomised controlled trial designs, and review studies. RESULTS Our analysis examined 44 studies on the complex interplay between inflammation and its multiple effects on MDD. Significant associations between specific inflammatory biomarkers and depression severity were found, requiring cautious interpretation. We also highlight several methodological limitations in the current studies, which warrant caution in directly applying these findings to clinical practice. However, identified methodologies show potential for using these biomarkers as diagnostic tools or therapeutic targets, including anti-inflammatory interventions. CONCLUSIONS The findings emphasise the need for sophisticated, integrative research to understand inflammation's role in MDD. Future studies should identify specific biomarker panels for diagnosing depression and bridging peripheral biomarker measurements with central neuroinflammatory processes, leading to better diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Walter Paganin
- School of Neuroscience, University of Tor Vergata, Italy
| | | |
Collapse
|
8
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Thomas-Odenthal F, Ringwald K, Teutenberg L, Stein F, Alexander N, Bonnekoh LM, Brosch K, Dohm K, Flinkenflügel K, Grotegerd D, Hahn T, Jansen A, Leehr EJ, Meinert S, Pfarr JK, Renz H, Schürmeyer N, Stief T, Straube B, Thiel K, Usemann P, Winter A, Krug A, Nenadić I, Dannlowski U, Kircher T. Neural foundation of the diathesis-stress model: longitudinal gray matter volume changes in response to stressful life events in major depressive disorder and healthy controls. Mol Psychiatry 2024; 29:2724-2732. [PMID: 38553539 PMCID: PMC11420061 DOI: 10.1038/s41380-024-02526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 09/25/2024]
Abstract
Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.
Collapse
Affiliation(s)
- Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany.
| | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Linda M Bonnekoh
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
- Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University of Marburg, Marburg, Germany
| | - Navid Schürmeyer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Thomas Stief
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Gießen, Marburg, Germany
| |
Collapse
|
10
|
Hédouin R, Roy JC, Desmidt T, Robert G, Coloigner J. Microstructural brain assessment in late-life depression and apathy using diffusion MRI multi-compartments models and tractometry. Sci Rep 2024; 14:18193. [PMID: 39107406 PMCID: PMC11303796 DOI: 10.1038/s41598-024-67535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Late-life depression (LLD) is both common and disabling and doubles the risk of dementia onset. Apathy might constitute an additional risk of cognitive decline but clear understanding of its pathophysiology is lacking. While white matter (WM) alterations have been assessed using diffusion tensor imaging (DTI), this model cannot accurately represent WM microstructure. We hypothesized that a more complex multi-compartment model would provide new biomarkers of LLD and apathy. Fifty-six individuals (LLD n = 35, 26 females, 75.2 ± 6.4 years, apathy evaluation scale scores (41.8 ± 8.7) and Healthy controls, n = 21, 16 females, 74.7 ± 5.2 years) were included. In this article, a tract-based approach was conducted to investigate novel diffusion model biomarkers of LLD and apathy by interpolating microstructural metrics directly along the fiber bundle. We performed multivariate statistical analysis, combined with principal component analysis for dimensional data reduction. We then tested the utility of our framework by demonstrating classically reported from the literature modifications in LDD while reporting new results of biological-basis of apathy in LLD. Finally, we aimed to investigate the relationship between apathy and microstructure in different fiber bundles. Our study suggests that new fiber bundles, such as the striato-premotor tracts, may be involved in LLD and apathy, which bring new light of apathy mechanisms in major depression. We also identified statistical changes in diffusion MRI metrics in 5 different tracts, previously reported in major cognitive disorders dementia, suggesting that these alterations among these tracts are both involved in motivation and cognition and might explain how apathy is a prodromal phase of degenerative disorders.
Collapse
Affiliation(s)
- Renaud Hédouin
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
| | - Jean-Charles Roy
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- CIC 1415, CHU de Tours, INSERM, Tours, France
| | - Gabriel Robert
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Julie Coloigner
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France.
| |
Collapse
|
11
|
Merrill SM, Hogan C, Bozack AK, Cardenas A, Comer JS, Bagner DM, Highlander A, Parent J. Telehealth Parenting Program and Salivary Epigenetic Biomarkers in Preschool Children With Developmental Delay: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2424815. [PMID: 39073812 PMCID: PMC11287424 DOI: 10.1001/jamanetworkopen.2024.24815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Children with developmental delays are at a heightened risk of experiencing mental health challenges, and this risk is exacerbated among racially minoritized children who face disproportionate adversity. Understanding the impact of parenting interventions on biological markers associated with these risks is crucial for mitigating long-term health disparities. Objective To examine the effect of 20 weeks of an internet-based parent-child interaction training (iPCIT) program on biomarkers associated with aging and chronic inflammation among preschoolers with developmental delay at 12-month follow-up. Design, Setting, and Participants An observational secondary analysis of data from a randomized clinical trial conducted from March 17, 2016, to December 15, 2020, to assess changes in salivary DNA methylation (DNAm)-derived biomarkers following iPCIT intervention. Participants were recruited from 3 Part C early intervention sites in a large southeastern US city. Eligible participants included children recruited within 3 months of their third birthday who had a Child Behavior Checklist Externalizing Problems T score greater than 60 and provided saliva in at least 1 study wave. Data analysis was conducted May 2023 to April 2024. Intervention Participants received either iPCIT (a telehealth therapeutic intervention focused on enhancing the parent-child relationship and addressing behavioral challenges in young children) or referrals as usual. Main Outcomes and Measures DNAm at the 12-month follow-up was assessed using the Infinium HumanMethylationEPIC Bead Chip Assay to derive biomarkers DunedinPACE, C-reactive protein (CRP), and interleukin-6 (IL-6). Analyses were intent-to-treat and used path analysis. Results A total of 71 children (mean [SD] age, 36.27 [0.61] months 51 male [71.8%] and 20 female [28.2%]) were analyzed, of whom 34 received iPCIT and 37 received referrals as usual. The iPCIT group had a slower pace of aging (β = 0.26; 95% CI, 0.06 to 0.50; P = .03) and less DNAm-derived CRP (β = 0.27; 95% CI, 0.05 to 0.49; P = .01) relative to the control condition at the 12-month follow-up. These associations remained significant after accounting for baseline DNAm score, child demographics, and symptom severity, and were independent of predicted buccal epithelial cell proportion for both DunedinPACE and CRP. There was no association with DNAm-derived IL-6 (β = 0.14; 95% CI, -0.08 to 0.36; P = .21). Conclusions and Relevance In this study of a parenting intervention, iPCIT, the association of intervention with decreased molecular markers of inflammation and biological aging suggests their potential to modify aspects of the biological embedding of stress. Understanding the systemic biological impact of such interventions offers insights into addressing health disparities and promoting resilience among vulnerable populations. Trial Registration ClinicalTrials.gov Identifier: NCT03260816.
Collapse
Affiliation(s)
- Sarah M. Merrill
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Christina Hogan
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
| | - Andres Cardenas
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, California
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, California
| | | | - Daniel M. Bagner
- Department of Psychology, Florida International University, Miami
| | - April Highlander
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Justin Parent
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Psychology, Florida International University, Miami
- Department of Psychology, University of Rhode Island, Kingston
| |
Collapse
|
12
|
Mckinnon K, Conole ELS, Vaher K, Hillary RF, Gadd DA, Binkowska J, Sullivan G, Stevenson AJ, Corrigan A, Murphy L, Whalley HC, Richardson H, Marioni RE, Cox SR, Boardman JP. Epigenetic scores derived in saliva are associated with gestational age at birth. Clin Epigenetics 2024; 16:84. [PMID: 38951914 PMCID: PMC11218140 DOI: 10.1186/s13148-024-01701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins. RESULTS In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10-3). These included EpiScores for chemokines, growth factors, proteins involved in neurogenesis and vascular development, cell membrane proteins and receptors, and other immune proteins. Three EpiScores were associated with SES, or the interaction between birth GA and SES: afamin, intercellular adhesion molecule 5, and hepatocyte growth factor-like protein (standardised estimates |0.06 to 0.13|, Bonferroni-adjusted p-value < 8.3 × 10-3). In a preterm subgroup (n = 217, median [range] GA 29.29 weeks [22.14 to 33.0 weeks]), SES-EpiScore associations did not remain statistically significant after adjustment for sepsis, bronchopulmonary dysplasia, necrotising enterocolitis, and histological chorioamnionitis. CONCLUSIONS Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.
Collapse
Affiliation(s)
- Katie Mckinnon
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Eleanor L S Conole
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kadi Vaher
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Justyna Binkowska
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gemma Sullivan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Amy Corrigan
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Milbourn H, McCartney D, Richmond A, Campbell A, Flaig R, Robertson S, Fawns-Ritchie C, Hayward C, Marioni RE, McIntosh AM, Porteous DJ, Whalley HC, Sudlow C. Generation Scotland: an update on Scotland's longitudinal family health study. BMJ Open 2024; 14:e084719. [PMID: 38908846 PMCID: PMC11340249 DOI: 10.1136/bmjopen-2024-084719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
PURPOSE Generation Scotland (GS) is a large family-based cohort study established as a longitudinal resource for research into the genetic, lifestyle and environmental determinants of physical and mental health. It comprises extensive genetic, sociodemographic and clinical data from volunteers in Scotland. PARTICIPANTS A total of 24 084 adult participants, including 5501 families, were recruited between 2006 and 2011. Within the cohort, 59% (approximately 14 209) are women, with an average age at recruitment of 49 years. Participants completed a health questionnaire and attended an in-person clinic visit, where detailed baseline data were collected on lifestyle information, cognitive function, personality traits and mental and physical health. Genotype array data are available for 20 026 (83%) participants, and blood-based DNA methylation (DNAm) data for 18 869 (78%) participants. Linkage to routine National Health Service datasets has been possible for 93% (n=22 402) of the cohort, creating a longitudinal resource that includes primary care, hospital attendance, prescription and mortality records. Multimodal brain imaging is available in 1069 individuals. FINDINGS TO DATE GS has been widely used by researchers across the world to study the genetic and environmental basis of common complex diseases. Over 350 peer-reviewed papers have been published using GS data, contributing to research areas such as ageing, cancer, cardiovascular disease and mental health. Recontact studies have built on the GS cohort to collect additional prospective data to study chronic pain, major depressive disorder and COVID-19. FUTURE PLANS To create a larger, richer, longitudinal resource, 'Next Generation Scotland' launched in May 2022 to expand the existing cohort by a target of 20 000 additional volunteers, now including anyone aged 12+ years. New participants complete online consent and questionnaires and provide postal saliva samples, from which genotype and salivary DNAm array data will be generated. The latest cohort information and how to access data can be found on the GS website (www.generationscotland.org).
Collapse
Affiliation(s)
- Hannah Milbourn
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Daniel McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Anne Richmond
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Robin Flaig
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Sarah Robertson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Chloe Fawns-Ritchie
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
- Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| | - Cathie Sudlow
- Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher, Edinburgh, UK
| |
Collapse
|
14
|
Smith HM, Ng HK, Moodie JE, Gadd DA, McCartney DL, Bernabeu E, Campbell A, Redmond P, Taylor A, Page D, Corley J, Harris SE, Tay D, Deary IJ, Evans KL, Robinson MR, Chambers JC, Loh M, Cox SR, Marioni RE, Hillary RF. Methylome-wide studies of six metabolic traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308103. [PMID: 38853823 PMCID: PMC11160850 DOI: 10.1101/2024.05.29.24308103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Exploring the molecular correlates of metabolic health measures may identify the shared and unique biological processes and pathways that they track. Here, we performed epigenome-wide association studies (EWASs) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio (WHR), and blood-based measures of glucose, high-density lipoprotein (HDL) cholesterol, and total cholesterol. We considered blood-based DNA methylation (DNAm) from >750,000 CpG sites in over 17,000 volunteers from the Generation Scotland (GS) cohort. Linear regression analyses identified between 304 and 11,815 significant CpGs per trait at P<3.6×10-8, with 37 significant CpG sites across all six traits. Further, we performed a Bayesian EWAS that jointly models all CpGs simultaneously and conditionally on each other, as opposed to the marginal linear regression analyses. This identified between 3 and 27 CpGs with a posterior inclusion probability ≥ 0.95 across the six traits. Next, we used elastic net penalised regression to train epigenetic scores (EpiScores) of each trait in GS, which were then tested in the Lothian Birth Cohort 1936 (LBC1936; European ancestry) and Health for Life in Singapore (HELIOS; Indian-, Malay- and Chinese-ancestries). A maximum of 27.1% of the variance in BMI was explained by the BMI EpiScore in the subset of Malay-ancestry Singaporeans. Four metabolic EpiScores were associated with general cognitive function in LBC1936 in models adjusted for vascular risk factors (Standardised βrange: 0.08 - 0.12, PFDR < 0.05). EpiScores of metabolic health are applicable across ancestries and can reflect differences in brain health.
Collapse
Affiliation(s)
- Hannah M. Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danni A. Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ian J. Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Robinson
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - John C. Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Hillary RF, Ng HK, McCartney DL, Elliott HR, Walker RM, Campbell A, Huang F, Direk K, Welsh P, Sattar N, Corley J, Hayward C, McIntosh AM, Sudlow C, Evans KL, Cox SR, Chambers JC, Loh M, Relton CL, Marioni RE, Yousefi PD, Suderman M. Blood-based epigenome-wide analyses of chronic low-grade inflammation across diverse population cohorts. CELL GENOMICS 2024; 4:100544. [PMID: 38692281 PMCID: PMC11099341 DOI: 10.1016/j.xgen.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024]
Abstract
Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.
Collapse
Affiliation(s)
- Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; School of Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Felicia Huang
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
| | - Kenan Direk
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Janie Corley
- Lothian Birth Cohort Studies, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| | - Cathie Sudlow
- Centre for Clinical Brain Sciences, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; British Heart Foundation Data Science Centre, Health Data Research UK, London NW1 2BE, UK; Health Data Research UK, London NW1 2BE, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon R Cox
- Lothian Birth Cohort Studies, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK; National Skin Centre, Singapore 308205, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Paul D Yousefi
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK.
| |
Collapse
|
16
|
Liu WS, Zhang YR, Ge YJ, Wang HF, Cheng W, Yu JT. Inflammation and Brain Structure in Alzheimer's Disease and Other Neurodegenerative Disorders: a Mendelian Randomization Study. Mol Neurobiol 2024; 61:1593-1604. [PMID: 37736795 DOI: 10.1007/s12035-023-03648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Previous in vitro and post-mortem studies have reported the role of inflammation in neurodegenerative disorders. However, the association between inflammation and brain structure in vivo and the transcriptome-driven functional basis with relevance to neurodegenerative disorders remains elusive. The aim of the present study is to identify the association among inflammation, brain structure, and neurodegenerative disorders at genetic and transcriptomic levels. Genetic variants associated with inflammatory cytokines were selected from the latest and largest genome-wide association studies of European ancestry. Neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and dementia with Lewy bodies (DLB) and brain structure imaging measures were selected as the outcomes. Two-sample Mendelian randomization analyses were conducted to identify the causal associations. Single-nucleus transcriptome data of the occipitotemporal cortex was further analyzed to identify the differential expressed genes in AD, which were tested for biological processes and protein interaction network. MR analysis indicated that genetically predicted TREM2 and sTREM2 were significantly associated with AD (TREM2: z-score = -9.088, p-value = 1.02 × 10-19; sTREM2: z-score = -7.495, p-value = 6.61 × 10-14). The present study found no evidence to support the causal associations between other inflammatory cytokines and the risks of AD, PD, ALS, or DLB. Genetically predicted TREM2 was significantly associated with the cortical thickness of inferior temporal (z-score = -4.238, p-value = 2.26 × 10-5) and pole temporal (z-score = -4.549, p-value = 5.40 × 10-6). In the occipitotemporal cortex samples, microglia were the main source of TREM2 gene and showed increasing expression of genes associated with inflammation and immunity. The present study has leveraged genetic and transcriptomic data to identify the association among TREM2, temporal lobe, and AD and the underlying cellular and molecular basis, thus providing a new perspective on the role of TREM2 in AD and insights into the complex associations among inflammation, brain structure, and neurodegenerative disorders, particularly AD.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Zheng J, Womer FY, Tang L, Guo H, Zhang X, Tang Y, Wang F. Integrative omics analysis reveals epigenomic and transcriptomic signatures underlying brain structural deficits in major depressive disorder. Transl Psychiatry 2024; 14:17. [PMID: 38195555 PMCID: PMC10776753 DOI: 10.1038/s41398-023-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Several lines of evidence support the involvement of transcriptomic and epigenetic mechanisms in the brain structural deficits of major depressive disorder (MDD) separately. However, research in these two areas has remained isolated. In this study, we proposed an integrative strategy that combined neuroimaging, brain-wide gene expression, and peripheral DNA methylation data to investigate the genetic basis of gray matter abnormalities in MDD. The MRI T1-weighted images and Illumina 850 K DNA methylation microarrays were obtained from 269 patients and 416 healthy controls, and brain-wide transcriptomic data were collected from Allen Human Brain Atlas. The between-group differences in gray matter volume (GMV) and differentially methylated CpG positions (DMPs) were examined. The genes with their expression patterns spatially related to GMV changes and genes with DMPs were overlapped and selected. Using principal component regression, the associations between DMPs in overlapped genes and GMV across individual patients were investigated, and the region-specific correlations between methylation status and gene expression were examined. We found significant associations between the decreased GMV and DMPs methylation status in the anterior cingulate cortex, inferior frontal cortex, and fusiform face cortex regions. These DMPs genes were primarily enriched in the neurodevelopmental and synaptic transmission process. There was a significant negative correlation between DNA methylation and gene expression in genes associated with GMV changes of the frontal cortex in MDD. Our findings suggest that GMV abnormalities in MDD may have a transcriptomic and epigenetic basis. This imaging-transcriptomic-epigenetic integrative analysis provides spatial and biological links between cortical morphological deficits and peripheral epigenetic signatures in MDD.
Collapse
Affiliation(s)
- Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Fay Y Womer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Huiling Guo
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China.
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China.
- Shengjing Hospital of China Medical University, Shenyang, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res 2024; 1822:148644. [PMID: 37871673 DOI: 10.1016/j.brainres.2023.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Depression holds the title of the largest contributor to worldwide disability, with the numbers expected to continue growing. Currently, there are neither reliable biomarkers for the diagnosis of the disease nor are the current medications sufficient for a lasting response in nearly half of patients. In this comprehensive review, we analyze the previously established pathophysiological models of the disease and how the interplay between NLRP3 inflammasome activation and depression might offer a unifying perspective. Adopting this inflammatory theory, we explain how NLRP3 inflammasome activation emerges as a pivotal contributor to depressive inflammation, substantiated by compelling evidence from both human studies and animal models. This inflammation is found in the central nervous system (CNS) neurons, astrocytes, and microglial cells. Remarkably, dysregulation of the NLRP3 inflammasome extends beyond the CNS boundaries and permeates into the enteric and peripheral immune systems, thereby altering the microbiota-gut-brain axis. The integrity of the brain blood barrier (BBB) and intestinal epithelial barrier (IEB) is also compromised by this inflammation. By emphasizing the central role of NLRP3 inflammasome activation in depression and its far-reaching implications, we go over each area with potential modulating mechanisms within the inflammasome pathway in hopes of finding new targets for more effective management of this debilitating condition.
Collapse
Affiliation(s)
- Ghazaleh Ghaffaripour Jahromi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
19
|
Maayan L, Maayan M. Inflammatory mediation of the relationship between early adversity and major depressive disorder: A systematic review. J Psychiatr Res 2024; 169:364-377. [PMID: 38154266 DOI: 10.1016/j.jpsychires.2023.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023]
Abstract
Early adverse experience is related to psychiatric illness that occurs decades later. The mechanisms underlying this phenomenon have not been fully identified. There is a translational and clinical literature linking early adversity with Major Depressive Disorder (MDD) and inflammation. We reviewed articles that examine whether inflammation mediates this relationship. METHODS Literature review of PUB MED, CINAHL and APA Psycinfo articles that explicitly examine inflammation as a mediator between early adversity and depression using ((((((((((adversity) OR (trauma)) OR (maltreatment)) OR (child abuse)) AND (inflammation)) OR (inflammatory cytokines)) OR (crp)) OR (il-6)) OR (tnf)) AND (mediates)) AND (depression))))))))) as key words. RESULTS 2842 articles were initially identified. 1338 non-human studies were excluded and 512 more were filtered out as reviews. The remaining 992 titles and, when necessary, abstracts and manuscripts were reviewed and 956 were removed as being of other non-related phenomena. Four additional studies were added by hand searching the references of remaining studies. Out of these 40, 15 explicitly examined inflammation as a mediator of the relationship between early adversity and later depression. Approximately half (8/15) showed evidence that inflammation mediated the relationship between early adversity and depression. Sensitivity analyses showed that studies taking place in clinical populations, in youth and those that used the Adverse Childhood Events Scale to measure adversity, and IL-6 and TNF-α (as opposed to CRP) to measure inflammation were most likely to show mediation. CONCLUSIONS There is evidence to support the model of inflammation mediating the relationship between early adversity and depression. Certain measures in clinical populations appear more likely to support this model. Further study with more standardized, robust methods will help to answer this question more definitively and may elucidate a subtype of depression related to early adversity by alterations in immune function.
Collapse
Affiliation(s)
- Lawrence Maayan
- New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Michal Maayan
- Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| |
Collapse
|
20
|
Shao S, Zou Y, Kennedy KG, Dimick MK, MacIntosh BJ, Goldstein BI. Higher Levels of C-reactive Protein Are Associated With Higher Cortical Surface Area and Lower Cortical Thickness in Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2023; 26:867-878. [PMID: 37947206 PMCID: PMC10726415 DOI: 10.1093/ijnp/pyad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Inflammation is implicated in the neuropathology of bipolar disorder (BD). The association of C-reactive protein (CRP) with brain structure has been examined in relation to BD among adults but not youth. METHODS Participants included 101 youth (BD, n = 55; control group [CG], n = 46; aged 13-20 years). Blood samples were assayed for levels of CRP. T1-weighted brain images were acquired to obtain cortical surface area (SA), volume, and thickness for 3 regions of interest (ROI; whole-brain cortical gray matter, prefrontal cortex, orbitofrontal cortex [OFC]) and for vertex-wise analyses. Analyses included CRP main effects and interaction effects controlling for age, sex, and intracranial volume. RESULTS In ROI analyses, higher CRP was associated with higher whole-brain SA (β = 0.16; P = .03) and lower whole-brain (β = -0.31; P = .03) and OFC cortical thickness (β = -0.29; P = .04) within the BD group and was associated with higher OFC SA (β = 0.17; P = .03) within the CG. In vertex-wise analyses, higher CRP was associated with higher SA and lower cortical thickness in frontal and parietal regions within BD. A significant CRP-by-diagnosis interaction was found in frontal and temporal regions, whereby higher CRP was associated with lower neurostructural metrics in the BD group but higher neurostructural metrics in CG. CONCLUSIONS This study found that higher CRP among youth with BD is associated with higher SA but lower cortical thickness in ROI and vertex-wise analyses. The study identified 2 regions in which the association of CRP with brain structure differs between youth with BD and the CG. Future longitudinal, repeated-measures studies incorporating additional inflammatory markers are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada (Ms Shao, Drs Zou and Goldstein)
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Dr Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Fabrazzo M, Cipolla S, Pisaturo M, Camerlengo A, Bucci P, Pezzella P, Coppola N, Galderisi S. Bidirectional Relationship between HIV/HBV Infection and Comorbid Depression and/or Anxiety: A Systematic Review on Shared Biological Mechanisms. J Pers Med 2023; 13:1689. [PMID: 38138916 PMCID: PMC10744606 DOI: 10.3390/jpm13121689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Mental disorders that are comorbid with chronic infectious diseases may worsen clinical outcomes and patients' quality of life. We hypothesized that depression and/or anxiety syndromes or symptoms comorbid with human immunodeficiency virus (HIV) or hepatitis B virus (HBV) infection might stem from shared biological mechanisms. METHODS We conducted a systematic review applying the PRISMA statement by searching into the PubMed, APA PsycInfo, and Scopus databases. We examined the literature on HIV/HBV infection comorbid with depression and/or anxiety in adults ≥18 years. RESULTS Thirty-one studies on HIV and three on HBV were analyzed. The Tat protein contributed to HIV-associated mood disorders due to the protein's ability to cause neurodegeneration and induce hypothalamic-pituitary-adrenal (HPA) axis dysregulation in response to natural stressors. The decreased brain-derived neurotrophic factor (BDNF) levels also emerged as a mechanism involved in HIV neuropathogenesis and the associated mood symptoms. Neuroinflammation was implicated in depression and/or anxiety onset in patients with HIV/HBV infections. Microglial activation and release of cytokines, in particular, appeared as potential pathogenetic mechanisms. Furthermore, an altered balance between quinolinic acid and kynurenic acid production emerged in HIV patients with comorbid depression, indicating a glutamatergic dysfunction. Inflammatory cytokine production and the downregulation of cellular immune responses contributed to persisting inflammation, delayed healing, and functional decline in patients with chronic hepatitis B (CHB) infection. A shift in type 1-type 2 cytokine balance might be implicated in HBV-related immune pathogenesis, and depression and anxiety might be considered immunomodulatory factors. Cytokines also caused HPA axis hyperactivity, frequently observed in HIV/HBV patients with comorbid depression/anxiety. CONCLUSIONS The present systematic review showed, for the first time, that HIV/HBV and depression and/or anxiety might have several biological mechanisms as common denominators. The longitudinal course of the highlighted biological mechanisms should be explored to establish the causative interrelationship among the involved mechanisms. In addition, future research should investigate the possibility that a patient's clinical outcome might improve using pharmacological treatments acting on the biological mechanisms we described as common denominators of chronic inflammatory infective diseases and depression/anxiety.
Collapse
Affiliation(s)
- Michele Fabrazzo
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.C.); (M.P.); (A.C.); (P.B.); (P.P.); (N.C.); (S.G.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao Y, Lizano P, Deng G, Sun H, Zhou X, Xie H, Zhan Y, Mu J, Long X, Xiao H, Liu S, Gong Q, Qiu C, Jia Z. Brain-derived subgroups of bipolar II depression associate with inflammation and choroid plexus morphology. Psychiatry Clin Neurosci 2023; 77:613-621. [PMID: 37585287 DOI: 10.1111/pcn.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
AIM Elevated inflammation and larger choroid plexus (ChP) volume has been previously identified in mood disorders. Connections between inflammation, ChP, and clinical symptoms in bipolar II depression (BDII-D) are unclear. Data-driven clustering based on neuroanatomical phenotypes may help to elucidate neurobiological associations in BDII-D. METHODS Inflammatory cytokines, clinical symptoms, and neuroanatomical features were assessed in 150 BDII-D patients. Sixty-eight cortical surface area (SA) and 19 subcortical volumes were extracted using FreeSurfer. The ChP volume was segmented manually using 3D Slicer. Regularized canonical correlation analysis was used to identify significantly correlated components between cortical SA and subcortical volumes (excluding the ChP), followed by k-means clustering to define brain-derived subgroups of BDII-D. Low-grade inflammation was derived by averaging the standardized z scores of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), which were computed to create a composite z-value score. Partial Pearson correlations followed by multiple comparison correction were conducted to explore associations between inflammation, clinical symptoms, and ChP volume. RESULTS Subgroup I demonstrated smaller subcortical volume and cortical SA, higher inflammation, and larger ChP volume compared with subgroup II. Greater ChP volume was associated with a higher low-grade inflammation (mean r = 0.289, q = 0.003), CRP (mean r = 0.249, q = 0.007), IL-6 (left r = 0.200, q = 0.03), and TNF-α (right r = 0.226, q = 0.01), while greater IL-1β was significantly associated with severe depressive symptoms in BDII-D (r = 0.218, q = 0.045). CONCLUSIONS Neuroanatomically-derived subgroups of BDII-D differed in their inflammation levels and ChP volume. These findings suggest an important role of elevated peripheral inflammation and larger ChP in BDII-D.
Collapse
Grants
- 81971595 National Natural Science Foundation of China
- 82271947 National Natural Science Foundation of China
- 2020HXFH005 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 Key Program of Natural Science Foundation of Sichuan Province
- 2020HXFH005 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022HXFH029 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- ZYJC21083 the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project, West China Hospital, Sichuan University
- 2022YFS0345 the Department of Science and Technology of Sichuan Provincial Government
- 2022NSFSC0047 the Key Program of Natural Science Foundation of Sichuan Province
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Paulo Lizano
- The Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- The Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Gaoju Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Sun
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yaru Zhan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingshi Mu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hongqi Xiao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Savitz J, Goeckner BD, Ford BN, Kent Teague T, Zheng H, Harezlak J, Mannix R, Tugan Muftuler L, Brett BL, McCrea MA, Meier TB. The effects of cytomegalovirus on brain structure following sport-related concussion. Brain 2023; 146:4262-4273. [PMID: 37070698 PMCID: PMC10545519 DOI: 10.1093/brain/awad126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
The neurotrophic herpes virus cytomegalovirus is a known cause of neuropathology in utero and in immunocompromised populations. Cytomegalovirus is reactivated by stress and inflammation, possibly explaining the emerging evidence linking it to subtle brain changes in the context of more minor disturbances of immune function. Even mild forms of traumatic brain injury, including sport-related concussion, are major physiological stressors that produce neuroinflammation. In theory, concussion could predispose to the reactivation of cytomegalovirus and amplify the effects of physical injury on brain structure. However, to our knowledge this hypothesis remains untested. This study evaluated the effect of cytomegalovirus serostatus on white and grey matter structure in a prospective study of athletes with concussion and matched contact-sport controls. Athletes who sustained concussion (n = 88) completed MRI at 1, 8, 15 and 45 days post-injury; matched uninjured athletes (n = 73) completed similar visits. Cytomegalovirus serostatus was determined by measuring serum IgG antibodies (n = 30 concussed athletes and n = 21 controls were seropositive). Inverse probability of treatment weighting was used to adjust for confounding factors between athletes with and without cytomegalovirus. White matter microstructure was assessed using diffusion kurtosis imaging metrics in regions previously shown to be sensitive to concussion. T1-weighted images were used to quantify mean cortical thickness and total surface area. Concussion-related symptoms, psychological distress, and serum concentration of C-reactive protein at 1 day post-injury were included as exploratory outcomes. Planned contrasts compared the effects of cytomegalovirus seropositivity in athletes with concussion and controls, separately. There was a significant effect of cytomegalovirus on axial and radial kurtosis in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion showed greater axial (P = 0.007, d = 0.44) and radial (P = 0.010, d = 0.41) kurtosis than cytomegalovirus negative athletes with concussion. Similarly, there was a significant association of cytomegalovirus with cortical thickness in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion had reduced mean cortical thickness of the right hemisphere (P = 0.009, d = 0.42) compared with cytomegalovirus negative athletes with concussion and showed a similar trend for the left hemisphere (P = 0.036, d = 0.33). There was no significant effect of cytomegalovirus on kurtosis fractional anisotropy, surface area, symptoms and C-reactive protein. The results raise the possibility that cytomegalovirus infection contributes to structural brain abnormalities in the aftermath of concussion perhaps via an amplification of concussion-associated neuroinflammation. More work is needed to identify the biological pathways underlying this process and to clarify the clinical relevance of this putative viral effect.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Gonzales EL, Jeon SJ, Han KM, Yang SJ, Kim Y, Remonde CG, Ahn TJ, Ham BJ, Shin CY. Correlation between immune-related genes and depression-like features in an animal model and in humans. Brain Behav Immun 2023; 113:29-43. [PMID: 37379963 DOI: 10.1016/j.bbi.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
A growing body of evidence suggests that immune-related genes play pivotal roles in the pathophysiology of depression. In the present study, we investigated a plausible connection between gene expression, DNA methylation, and brain structural changes in the pathophysiology of depression using a combined approach of murine and human studies. We ranked the immobility behaviors of 30 outbred Crl:CD1 (ICR) mice in the forced swim test (FST) and harvested their prefrontal cortices for RNA sequencing. Of the 24,532 analyzed genes, 141 showed significant correlations with FST immobility time, as determined through linear regression analysis with p ≤ 0.01. The identified genes were mostly involved in immune responses, especially interferon signaling pathways. Moreover, induction of virus-like neuroinflammation in the brains of two separate mouse cohorts (n = 30 each) using intracerebroventricular polyinosinic:polycytidylic acid injection resulted in increased immobility during FST and similar expression of top immobility-correlated genes. In human blood samples, candidate gene (top 5%) expression profiling using DNA methylation analysis found the interferon-related USP18 (cg25484698, p = 7.04 × 10-11, Δβ = 1.57 × 10-2; cg02518889, p = 2.92 × 10-3, Δβ = - 8.20 × 10-3) and IFI44 (cg07107453, p = 3.76 × 10-3, Δβ = - 4.94 × 10-3) genes to be differentially methylated between patients with major depressive disorder (n = 350) and healthy controls (n = 161). Furthermore, cortical thickness analyses using T1-weighted images revealed that the DNA methylation scores for USP18 were negatively correlated with the thicknesses of several cortical regions, including the prefrontal cortex. Our results reveal the important role of the interferon pathway in depression and suggest USP18 as a potential candidate target. The results of the correlation analysis between transcriptomic data and animal behavior carried out in this study provide insights that could enhance our understanding of depression in humans.
Collapse
Affiliation(s)
- Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Jin Yang
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Yujeong Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Jin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
25
|
Perez NB, D'Eramo Melkus G, Yu G, Brown-Friday J, Anastos K, Aouizerat B. Study Protocol Using Cohort Data and Latent Variable Modeling to Guide Sampling Women With Type 2 Diabetes and Depressive Symptoms. Nurs Res 2023; 72:409-415. [PMID: 37625185 PMCID: PMC10534023 DOI: 10.1097/nnr.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Depression affects one in three women with Type 2 diabetes, and this concurrence significantly increases the risks of diabetes complications, disability, and early mortality. Depression is underrecognized because of wide variation in presentation and the lack of diagnostic biomarkers. Converging evidence suggests inflammation is a shared biological pathway in diabetes and depression. Overlapping epigenetic associations and social determinants of diabetes and depression implicate inflammatory pathways as a common thread. OBJECTIVES This article describes the protocol and methods for a pilot study aimed to examine associations between depressive symptoms, inflammation, and social determinants of health among women with Type 2 diabetes. METHODS This is an observational correlational study that leverages existing longitudinal data from the Women's Interagency HIV Study (WIHS), a multicenter cohort of HIV seropositive (66%) and HIV seronegative (33%) women, to inform purposive sampling of members from latent subgroups emergent from a prior retrospective cohort-wide analysis. Local active cohort participants from the Bronx study site are then selected for the study. The WIHS recently merged with the Multicenter Aids Cohort Study (MACS) to form the MACS/WIHS Combined Cohort Study. Latent subgroups represent distinct symptom trajectories resultant from a growth mixture model analysis of biannually collected depressive symptom data. Participants complete surveys (symptom and social determinants) and provide blood samples to analyze plasma levels and DNA methylation of genes that encode for inflammatory markers (CRP, IL-6, TNF-α). Correlation and regression analysis will be used to estimate the effect sizes between depressive symptoms and inflammatory markers, clinical indices (body mass index, hemoglobin A1C, comorbidities), and social determinants of health. RESULTS The study began in January 2022, and completed data collection is estimated by early 2023. We hypothesize that depressive symptom severity will associate with higher levels of inflammation, clinical indices (e.g., higher hemoglobin A1C), and exposure to specific social determinants of health (e.g., lower income, nutritional insecurity). DISCUSSION Study findings will provide the basis for future studies aimed at improving outcomes for women with Type 2 diabetes by informing the development and testing of precision health strategies to address and prevent depression in populations most at risk.
Collapse
|
26
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Craig F, Servidio R, Calomino ML, Candreva F, Nardi L, Palermo A, Polito A, Spina MF, Tenuta F, Costabile A. Adverse Childhood Experiences and Mental Health among Students Seeking Psychological Counseling Services. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105906. [PMID: 37239632 DOI: 10.3390/ijerph20105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Recent years have seen a marked rise in the number of students accessing University Psychological Counseling (UPC) services, and their concerns have been increasingly severe. This study aimed to examine the impact of cumulative adverse childhood experiences (ACEs) on mental health in students who had approached counseling services (N = 121) and students who had no experience with counseling services (N = 255). Participants completed an anonymous online self-report questionnaire measuring exposure to adverse childhood experiences (ACE-Q), psychological distress (General Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9), personality traits (PID-5), and coping strategies. We found that students who approached UPC services scored higher on cumulative ACEs than the non-counseling group. While ACE-Q score was a direct positive predictor of PHQ-9 (p < 0.001), it did not predict GAD-7. Moreover, the results supported the existence of a mediation effect of avoidance coping, detachment, and psychoticism on the indirect effects of ACE-Q score on PHQ-9 or GAD-7. These results underlined the importance of screening for ACEs in a UPC setting because it can help identify students at higher risk for developing mental and physical health problems and provide them with early interventions and support.
Collapse
Affiliation(s)
- Francesco Craig
- Department of Cultures, Education and Society (DICES), University of Calabria, 87036 Cosenza, Italy
| | - Rocco Servidio
- Department of Cultures, Education and Society (DICES), University of Calabria, 87036 Cosenza, Italy
| | | | - Francesca Candreva
- Psychological Counseling Services, University of Calabria, 87036 Cosenza, Italy
| | - Lucia Nardi
- Psychological Counseling Services, University of Calabria, 87036 Cosenza, Italy
| | - Adriana Palermo
- Psychological Counseling Services, University of Calabria, 87036 Cosenza, Italy
| | - Alberto Polito
- Psychological Counseling Services, University of Calabria, 87036 Cosenza, Italy
| | | | - Flaviana Tenuta
- Department of Cultures, Education and Society (DICES), University of Calabria, 87036 Cosenza, Italy
| | - Angela Costabile
- Department of Cultures, Education and Society (DICES), University of Calabria, 87036 Cosenza, Italy
| |
Collapse
|
28
|
Verschoor CP, Vlasschaert C, Rauh MJ, Paré G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: A Canadian longitudinal study of aging analysis. Aging Cell 2023:e13863. [PMID: 37139638 PMCID: PMC10352553 DOI: 10.1111/acel.13863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
A key hallmark in the age-related dysfunction of physiological systems is disruption related to the regulation of inflammation, often resulting in a chronic, low-grade inflammatory state (i.e., inflammaging). In order to understand the causes of overall system decline, methods to quantify the life-long exposure or damage related to chronic inflammation are critical. Here, we characterize a comprehensive epigenetic inflammation score (EIS) based on DNA methylation loci (CpGs) that are associated with circulating levels of C-reactive protein (CRP). In a cohort of 1446 older adults, we show that associations to age and health-related traits such as smoking history, chronic conditions, and established measures of accelerated aging were stronger for EIS than CRP, while the risk of longitudinal outcomes such as outpatient or inpatient visits and increased frailty were relatively similar. To determine whether variation in EIS actually reflects the cellular response to chronic inflammation we exposed THP1 myelo-monocytic cells to low levels of inflammatory mediators for 14 days, finding that EIS increased in response to both CRP (p = 0.011) and TNF (p = 0.068). Interestingly, a refined version of EIS based only on those CpGs that changed in vitro was more strongly associated with many of the aforementioned traits as compared to EIS. In conclusion, our study demonstrates that EIS outperforms circulating CRP with regard to its association to health-traits that are synonymous with chronic inflammation and accelerated aging, and substantiates its potential role as a clinically relevant tool for stratifying patient risk of adverse outcomes prior to treatment or following illness.
Collapse
Affiliation(s)
- Chris P Verschoor
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | | | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
29
|
Xu EP, Nguyen L, Leibenluft E, Stange JP, Linke JO. A meta-analysis on the uncinate fasciculus in depression. Psychol Med 2023; 53:2721-2731. [PMID: 37051913 PMCID: PMC10235669 DOI: 10.1017/s0033291723000107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 04/14/2023]
Abstract
Aberrant microstructure of the uncinate fasciculus (UNC), a white matter (WM) tract implicated in emotion regulation, has been hypothesized as a neurobiological mechanism of depression. However, studies testing this hypothesis have yielded inconsistent results. The present meta-analysis consolidates evidence from 44 studies comparing fractional anisotropy (FA) and radial diffusivity (RD), two metrics characterizing WM microstructure, of the UNC in individuals with depression (n = 5016) to healthy individuals (n = 18 425). We conduct meta-regressions to identify demographic and clinical characteristics that contribute to cross-study heterogeneity in UNC findings. UNC FA was reduced in individuals with depression compared to healthy individuals. UNC RD was comparable between individuals with depression and healthy individuals. Comorbid anxiety explained inter-study heterogeneity in UNC findings. Depression is associated with perturbations in UNC microstructure, specifically with respect to UNC FA and not UNC RD. The association between depression and UNC microstructure appears to be moderated by anxiety. Future work should unravel the cellular mechanisms contributing to aberrant UNC microstructure in depression; clarify the relationship between UNC microstructure, depression, and anxiety; and link UNC microstructure to psychological processes, such as emotion regulation.
Collapse
Affiliation(s)
- Ellie P. Xu
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Lynn Nguyen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Leibenluft
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan P. Stange
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Julia O. Linke
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
30
|
Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, Murphy L, Thrippleton MJ, Quigley AJ, Bastin ME, Miron VE, Whalley HC, Marioni RE, Boardman JP, Cox SR. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 2023; 110:322-338. [PMID: 36948324 DOI: 10.1016/j.bbi.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (β range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (β range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Collapse
Affiliation(s)
- Eleanor L S Conole
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jill Hall
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J Quigley
- Imaging Department, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
31
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
32
|
Breit S, Mazza E, Poletti S, Benedetti F. White matter integrity and pro-inflammatory cytokines as predictors of antidepressant response in MDD. J Psychiatr Res 2023; 159:22-32. [PMID: 36657311 DOI: 10.1016/j.jpsychires.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a multifactorial, serious and heterogeneous mental disorder that can lead to chronic recurrent symptoms, treatment resistance and suicidal behavior. MDD often involves immune dysregulation with high peripheral levels of inflammatory cytokines that might have an influence on the clinical course and treatment response. Moreover, patients with MDD show brain volume changes as well as white matter (WM) alterations that are already existing in the early stage of illness. Mounting evidence suggests that both neuroimaging markers, such as WM integrity and blood markers, such as inflammatory cytokines might serve as predictors of treatment response in MDD. However, the relationship between peripheral inflammation, WM structure and antidepressant response is not yet clearly understood. The aim of the present review is to elucidate the association between inflammation and WM integrity and its impact on the pathophysiology and progression of MDD as well as the role of possible novel biomarkers of treatment response to improve MDD prevention and treatment strategies.
Collapse
Affiliation(s)
- Sigrid Breit
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Elena Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
33
|
Liu ST, Lin SC, Chang JPC, Yang KJ, Chu CS, Yang CC, Liang CS, Sun CF, Wang SC, Satyanarayanan SK, Su KP. The Clinical Observation of Inflammation Theory for Depression: The Initiative of the Formosa Long COVID Multicenter Study (FOCuS). CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:10-18. [PMID: 36700308 PMCID: PMC9889898 DOI: 10.9758/cpn.2023.21.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 01/27/2023]
Abstract
There is growing evidence that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with increased risks of psychiatric sequelae. Depression, anxiety, cognitive impairments, sleep disturbance, and fatigue during and after the acute phase of COVID-19 are prevalent, long-lasting, and exerting negative consequences on well-being and imposing a huge burden on healthcare systems and society. This current review presented timely updates of clinical research findings, particularly focusing on the pathogenetic mechanisms underlying the neuropsychiatric sequelae, and identified potential key targets for developing effective treatment strategies for long COVID. In addition, we introduced the Formosa Long COVID Multicenter Study (FOCuS), which aims to apply the inflammation theory to the pathogenesis and the psychosocial and nutrition treatments of post-COVID depression and anxiety.
Collapse
Affiliation(s)
- Shu-Tsen Liu
- Division of Child and Adolescent Psychiatry & Division of Developmental and Behavioral Pediatrics, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Sheng-Che Lin
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan,Division of Child Psychiatry, Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Kai-Jie Yang
- Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taipei, Taiwan
| | - Chia-Chun Yang
- Department of Psychiatry, Taoyuan Psychiatric Center, Taoyuan City, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Fang Sun
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion Clinic School of Medicine, Roanoke, VA, USA
| | - Shao-Cheng Wang
- Department of Psychiatry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Kuan-Pin Su
- An-Nan Hospital, China Medical University, Tainan, Taiwan,Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan,Address for correspondence: Kuan-Pin Su China Medical University, No.2 Yuh-Der Road, North District, Taichung 404332, Taiwan , E-mail: , ORCID: https://orcid.org/0000-0002-4501-2502
| |
Collapse
|
34
|
Madden RA, Atkinson K, Shen X, Green C, Hillary RF, Hawkins E, Såge E, Sandu AL, Waiter G, McNeil C, Harris M, Campbell A, Porteous D, Macfarlane JA, Murray A, Steele D, Romaniuk L, Lawrie SM, McIntosh AM, Whalley HC. Structural brain correlates of childhood trauma with replication across two large, independent community-based samples. Eur Psychiatry 2023; 66:e19. [PMID: 36697368 PMCID: PMC9970154 DOI: 10.1192/j.eurpsy.2022.2347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Childhood trauma and adversity are common across societies and have strong associations with physical and psychiatric morbidity throughout the life-course. One possible mechanism through which childhood trauma may predispose individuals to poor psychiatric outcomes is via associations with brain structure. This study aimed to elucidate the associations between childhood trauma and brain structure across two large, independent community cohorts. METHODS The two samples comprised (i) a subsample of Generation Scotland (n=1,024); and (ii) individuals from UK Biobank (n=27,202). This comprised n=28,226 for mega-analysis. MRI scans were processed using Free Surfer, providing cortical, subcortical, and global brain metrics. Regression models were used to determine associations between childhood trauma measures and brain metrics and psychiatric phenotypes. RESULTS Childhood trauma associated with lifetime depression across cohorts (OR 1.06 GS, 1.23 UKB), and related to early onset and recurrent course within both samples. There was evidence for associations between childhood trauma and structural brain metrics. This included reduced global brain volume, and reduced cortical surface area with highest effects in the frontal (β=-0.0385, SE=0.0048, p(FDR)=5.43x10-15) and parietal lobes (β=-0.0387, SE=0.005, p(FDR)=1.56x10-14). At a regional level the ventral diencephalon (VDc) displayed significant associations with childhood trauma measures across both cohorts and at mega-analysis (β=-0.0232, SE=0.0039, p(FDR)=2.91x10-8). There were also associations with reduced hippocampus, thalamus, and nucleus accumbens volumes. DISCUSSION Associations between childhood trauma and reduced global and regional brain volumes were found, across two independent UK cohorts, and at mega-analysis. This provides robust evidence for a lasting effect of childhood adversity on brain structure.
Collapse
Affiliation(s)
- Rebecca A Madden
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kimberley Atkinson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Green
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert F Hillary
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Emma Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Emma Såge
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Anca-Larisa Sandu
- School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon Waiter
- School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Mathew Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Archie Campbell
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - David Porteous
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer A Macfarlane
- Medical Sciences and Nutrition, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Alison Murray
- School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Douglas Steele
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Edmondson-Stait AJ, Shen X, Adams MJ, Barbu MC, Jones HJ, Miron VE, Allardyce J, Boardman JP, Lawrie SM, McIntosh AM, Khandaker GM, Kwong AS, Whalley HC. Early-life inflammatory markers and subsequent psychotic and depressive episodes between 10 to 28 years of age. Brain Behav Immun Health 2022; 26:100528. [PMID: 36277463 PMCID: PMC9582583 DOI: 10.1016/j.bbih.2022.100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammation is implicated in depression and psychosis, including association of childhood inflammatory markers on the subsequent risk of developing symptoms. However, it is unknown whether early-life inflammatory markers are associated with the number of depressive and psychotic symptoms from childhood to adulthood. Using the prospective Avon Longitudinal Study of Children and Parents birth cohort (N = up-to 6401), we have examined longitudinal associations of early-life inflammation [exposures: interleukin-6 (IL-6), C-reactive protein (CRP) levels at age 9y; IL-6 and CRP DNA-methylation (DNAm) scores at birth and age 7y; and IL-6 and CRP polygenic risk scores (PRSs)] with the number of depressive episodes and psychotic experiences (PEs) between ages 10-28 years. Psychiatric outcomes were assessed using the Short Mood and Feelings Questionnaire and Psychotic Like Symptoms Questionnaires, respectively. Exposure-outcome associations were tested using negative binomial models, which were adjusted for metabolic and sociodemographic factors. Serum IL-6 levels at age 9y were associated with the total number of depressive episodes between 10 and 28y in the base model (n = 4835; β = 0.066; 95%CI:0.020-0.113; pFDR = 0.041) which was weaker when adjusting for metabolic and sociodemographic factors. Weak associations were observed between inflammatory markers (serum IL-6 and CRP DNAm scores) and total number of PEs. Other inflammatory markers were not associated with depression or PEs. Early-life inflammatory markers are associated with the burden of depressive episodes and of PEs subsequently from childhood to adulthood. These findings support a potential role of early-life inflammation in the aetiology of depression and psychosis and highlight inflammation as a potential target for treatment and prevention.
Collapse
Affiliation(s)
- Amelia J. Edmondson-Stait
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Xueyi Shen
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Mark J. Adams
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Miruna C. Barbu
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Hannah J. Jones
- National Institute for Health Research Bristol Biomedical Research Centre, At University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Veronique E. Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, UK
| | | | - James P. Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, UK
| | | | | | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Alex S.F. Kwong
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | | |
Collapse
|
36
|
Aronica R, Enrico P, Squarcina L, Brambilla P, Delvecchio G. Association between Diffusion Tensor Imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci Biobehav Rev 2022; 143:104922. [PMID: 36272579 DOI: 10.1016/j.neubiorev.2022.104922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.
Collapse
Affiliation(s)
- Rosario Aronica
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy
| | - Giuseppe Delvecchio
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, 20122 Milan, Italy.
| |
Collapse
|
37
|
Lada G, Talbot PS, Chinoy H, Warren RB, McFarquhar M, Kleyn CE. Brain structure and connectivity in psoriasis and associations with depression and inflammation; findings from the UK biobank. Brain Behav Immun Health 2022; 26:100565. [PMID: 36471870 PMCID: PMC9719019 DOI: 10.1016/j.bbih.2022.100565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Psoriasis is a chronic systemic inflammatory skin disease, coexisting with depression in up to 25% of patients. Little is known about the drivers of comorbidity, including shared neurobiology and depression brain imaging patterns in patients. An immune-mediated crosstalk between the brain and skin has been hypothesized in psoriasis. With the aim of investigating brain structure and connectivity in psoriasis in relation to depression comorbidity, we conducted a brain imaging study including the largest psoriasis patient sample to date (to our knowledge) and the first to investigate the role of depression and systemic inflammation in brain measures. Effects of coexisting psoriatic arthritis (PsA), which represents joint involvement in psoriasis and a higher putative inflammatory state, were further explored. Methods Brain magnetic resonance imaging (MRI) data of 1,048 UK Biobank participants were used (131 comorbid patients with psoriasis and depression, age-and sex-matched to: 131 non-depressed psoriasis patients; 393 depressed controls; and 393 non-depressed controls). Interaction effects of psoriasis and depression on volume, thickness and surface of a-priori defined regions of interest (ROIs), white matter tracts and 55x55 partial correlation resting-state connectivity matrices were investigated using general linear models. Linear regression was employed to test associations of brain measures with C-reactive protein (CRP) and neutrophil counts. Results No differences in regional or global brain volumes or white matter integrity were found in patients with psoriasis compared to controls without psoriasis or PsA. Thickness in right precuneus was increased in psoriasis patients compared to controls, only when depression was present (β = 0.26, 95% CI [Confidence Intervals] 0.08, 0.44; p = 0.02). In further analysis, psoriasis patients who had PsA exhibited fronto-occipital decoupling in resting-state connectivity compared to patients without joint involvement (β = 0.39, 95% CI 0.13, 0.64; p = 0.005) and controls (β = 0.49, 95% CI 0.25, 0.74; p < 0.001), which was unrelated to depression comorbidity. Precuneus thickness and fronto-occipital connectivity were not predicted by CRP or neutrophil counts. Precuneus thickening among depressed psoriasis patients showed a marginal correlation with recurrent lifetime suicidality. Conclusions Our findings provide evidence for a combined effect of psoriasis and depression on the precuneus, which is not directly linked to systemic inflammation, and may relate to suicidality or altered somatosensory processing. The use of the UK Biobank may limit generalizability of results in populations with severe disease.
Collapse
Affiliation(s)
- Georgia Lada
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Peter S. Talbot
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Hector Chinoy
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, M13 9PL, UK
| | - Richard B. Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| | - Martyn McFarquhar
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - C. Elise Kleyn
- Dermatology Centre, Salford Royal NHS Foundation Trust, National Institute for Health Research Manchester Biomedical Research Centre, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
38
|
Huang T, Cao R, Liu P, Liu J, Yu X. The severity of depression is associated with pelvic inflammatory diseases: A cross-sectional study of the United States National Health and Nutrition Examinations from 2013 to 2018. Front Med (Lausanne) 2022; 9:926351. [PMID: 36314030 PMCID: PMC9596754 DOI: 10.3389/fmed.2022.926351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose As depression in patients with pelvic inflammatory diseases (PID) has received increasing attention in recent years, this study aims to investigate the relationship between depression severity and risk factors for pelvic inflammatory disease, and to provide new perspectives in the treatment of PID. Patients and methods Multivariate regression was used to evaluate the association between pelvic inflammatory disease and the severity of depression. Females who participated in the United States National Health and Nutrition Examination Survey (NHANES) from 2013 to 2018 were included. In addition, risk factors for PID and depression were also included in the analysis as adjustment factors. Results The risk of developing PID was associated with depressive status (odds ratio, OR 1.10, 95% confidence interval, CI 1.08–1.12), especially in people with severe depression (odds ratio, OR 6.34, 95% confidence interval, CI 3.72–10.79). Subgroup analysis showed differences in the risk of PID among people with different characteristics. Conclusion This study showed that there may be a potential positive association between depressive status and the prevalence of PID in the United States adult female population. Depression should be actively looked for in all patients with PID and treated appropriately
Collapse
Affiliation(s)
- TianJiao Huang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - RenShuang Cao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - PengFei Liu
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - JinXing Liu
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Yu
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Xiao Yu,
| |
Collapse
|
39
|
Zheng H, Teague TK, Yeh FC, Burrows K, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Paulus MP, Savitz J. C-Reactive protein and the kynurenic acid to quinolinic acid ratio are independently associated with white matter integrity in major depressive disorder. Brain Behav Immun 2022; 105:180-189. [PMID: 35853557 PMCID: PMC9983279 DOI: 10.1016/j.bbi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Kynurenic acid (KynA) and quinolinic acid (QA) are neuroactive kynurenine pathway (KP) metabolites that have neuroprotective and neurotoxic properties, respectively. At least partly as a result of immune activation, the ratio of KynA to QA in the blood is reduced in major depressive disorder (MDD) and has been reported to be positively correlated with gray matter volume in depression. This study examined whether the inflammatory mediator, C-reactive protein (CRP) and the putative neuroprotective index, KynA/QA, were associated with white matter integrity in MDD, and secondly, whether any such associations were independent of each other or whether the effect of CRP was mediated by KynA/QA. One hundred and sixty-six participants in the Tulsa 1000 study with a DSM-V diagnosis of MDD completed diffusion tensor imaging and provided a serum sample for the quantification of CRP, KynA, and QA. Correlational tractography was performed using DSI Studio to map the specific white matter pathways that correlated with CRP and KynA/QA. CRP was negatively related to KynA/QA (standardized beta coefficient, SBC = -0.35 with standard error, Std.E = 0.13, p < 0.01) after controlling for nine possible confounders, i.e., age, sex, body mass index (BMI), medication status, lifetime alcohol use, severity of depression, severity of anxiety, length of illness, and smoking status. Higher concentrations of CRP were associated with decreased white matter integrity (fractional anisotropy, FA) of the bilateral cingulum and fornix after controlling for the nine potential confounders (SBC = -0.43, Std.E = 0.13, p = 0.002). Greater serum KynA/QA was associated with increased white matter integrity of the bilateral fornix, bilateral superior thalamic radiations, corpus callosum, and bilateral cingulum bundles after controlling for the same possible confounders (SBC = 0.26, Std.E = 0.09, p = 0.005). The relationship between CRP and FA was not mediated by KynA/QA. Exploratory analyses also showed that KynA/QA but not CRP was associated with self-reported positive affect, attentiveness, and fatigue measured with the PANASX (SBCs = 0.17-0.23). Taken together, these results are consistent with the hypothesis that within a subgroup of MDD patients, a higher level of systemic inflammation alters the balance of KP metabolism but also raise the possibility that CRP and neuroactive KP metabolites represent independent molecular mechanisms underlying white matter alterations in MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA.
| |
Collapse
|
40
|
Langhein M, Seitz-Holland J, Lyall AE, Pasternak O, Chunga N, Cetin-Karayumak S, Kubicki A, Mulert C, Espinoza RT, Narr KL, Kubicki M. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment - A pilot study. J Affect Disord 2022; 314:78-85. [PMID: 35779673 PMCID: PMC11186306 DOI: 10.1016/j.jad.2022.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD. METHODS Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion. We utilized MANCOVAs and ANCOVAs to compare tissue-specific fractional anisotropy (FAT) and free-water (FW) of the forceps and cingulum, and the ratio of pro-inflammatory interleukin(IL)-8/anti-inflammatory IL-10 between individuals with MDD and 15 healthy controls at baseline. Next, we compared all baseline measures between ketamine responders (6) and non-responders (4) and analyzed changes in imaging and blood data after ketamine infusion. RESULTS The MDD group exhibited an increased IL-8/IL-10 ratio compared to controls at baseline (p = .040), which positively correlated with average FW across regions of interest (p = .013). Ketamine responders demonstrated higher baseline FAT in the left cingulum than non-responders (p = .023). Ketamine infusion did not influence WM microstructure but decreased the IL-8/IL-10 ratio (p = .043). LIMITATIONS The small sample size and short follow-up period limit the conclusion regarding the longer-term effects of ketamine in MDD. CONCLUSIONS This pilot study provides evidence for the role of inflammation in MDD by illustrating an association between peripheral inflammation and WM microstructure. Additionally, we demonstrate that free-water diffusion-weighted imaging might be a valuable tool to determine which individuals with MDD benefit from the anti-inflammatory mediated effects of ketamine treatment.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Chunga
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Christoph Mulert
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Cappozzo A, McCrory C, Robinson O, Freni Sterrantino A, Sacerdote C, Krogh V, Panico S, Tumino R, Iacoviello L, Ricceri F, Sieri S, Chiodini P, McKay GJ, McKnight AJ, Kee F, Young IS, McGuinness B, Crimmins EM, Arpawong TE, Kenny RA, O'Halloran A, Polidoro S, Solinas G, Vineis P, Ieva F, Fiorito G. A blood DNA methylation biomarker for predicting short-term risk of cardiovascular events. Clin Epigenetics 2022; 14:121. [PMID: 36175966 PMCID: PMC9521011 DOI: 10.1186/s13148-022-01341-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence highlights the epidemiological value of blood DNA methylation (DNAm) as surrogate biomarker for exposure to risk factors for non-communicable diseases (NCD). DNAm surrogate of exposures predicts diseases and longevity better than self-reported or measured exposures in many cases. Consequently, disease prediction models based on blood DNAm surrogates may outperform current state-of-the-art prediction models. This study aims to develop novel DNAm surrogates for cardiovascular diseases (CVD) risk factors and develop a composite biomarker predictive of CVD risk. We compared the prediction performance of our newly developed risk score with the state-of-the-art DNAm risk scores for cardiovascular diseases, the 'next-generation' epigenetic clock DNAmGrimAge, and the prediction model based on traditional risk factors SCORE2. RESULTS Using data from the EPIC Italy cohort, we derived novel DNAm surrogates for BMI, blood pressure, fasting glucose and insulin, cholesterol, triglycerides, and coagulation biomarkers. We validated them in four independent data sets from Europe and the USA. Further, we derived a DNAmCVDscore predictive of the time-to-CVD event as a combination of several DNAm surrogates. ROC curve analyses show that DNAmCVDscore outperforms previously developed DNAm scores for CVD risk and SCORE2 for short-term CVD risk. Interestingly, the performance of DNAmGrimAge and DNAmCVDscore was comparable (slightly lower for DNAmGrimAge, although the differences were not statistically significant). CONCLUSIONS We described novel DNAm surrogates for CVD risk factors useful for future molecular epidemiology research, and we described a blood DNAm-based composite biomarker, DNAmCVDscore, predictive of short-term cardiovascular events. Our results highlight the usefulness of DNAm surrogate biomarkers of risk factors in epigenetic epidemiology to identify high-risk populations. In addition, we provide further evidence on the effectiveness of prediction models based on DNAm surrogates and discuss methodological aspects for further improvements. Finally, our results encourage testing this approach for other NCD diseases by training and developing DNAm surrogates for disease-specific risk factors and exposures.
Collapse
Affiliation(s)
- Andrea Cappozzo
- MOX - Laboratory for Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Cathal McCrory
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Oliver Robinson
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Anna Freni Sterrantino
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- The Alan Turing Institute, London, UK
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Turin, Italy
| | - Vittorio Krogh
- Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosario Tumino
- Association for Epidemiology Research, AIRE ONLYS, Ragusa, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), Turin, Italy
| | - Fulvio Ricceri
- Epidemiology Unit, Regional Health Service TO3, Grugliasco, Italy
- Department of Clinical and Biological Sciences, Centre for Biostatistics, Epidemiology, and Public Health (C-BEPH), University of Turin, Turin, Italy
| | - Sabina Sieri
- Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Chiodini
- Department of Mental, Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Gareth J McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Frank Kee
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ian S Young
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Rose Anne Kenny
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | - Aisling O'Halloran
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland
| | | | - Giuliana Solinas
- Laboratory Biostatistics, Department of Biomedical Sciences, University of Sassari, Via Padre Manzella 4, Sassari, Italy
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Francesca Ieva
- MOX - Laboratory for Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milan, Italy
- CHDS - Health Data Science Center, Human Technopole, Milan, Italy
| | - Giovanni Fiorito
- Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
- Laboratory Biostatistics, Department of Biomedical Sciences, University of Sassari, Via Padre Manzella 4, Sassari, Italy.
| |
Collapse
|
42
|
Kiltschewskij DJ, Reay WR, Cairns MJ. Evidence of genetic overlap and causal relationships between blood-based biochemical traits and human cortical anatomy. Transl Psychiatry 2022; 12:373. [PMID: 36075890 PMCID: PMC9458732 DOI: 10.1038/s41398-022-02141-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Psychiatric disorders such as schizophrenia are commonly associated with structural brain alterations affecting the cortex. Recent genetic evidence suggests circulating metabolites and other biochemical traits play a causal role in many psychiatric disorders which could be mediated by changes in the cerebral cortex. Here, we leveraged publicly available genome-wide association study data to explore shared genetic architecture and evidence for causal relationships between a panel of 50 biochemical traits and measures of cortical thickness and surface area. Linkage disequilibrium score regression identified 191 genetically correlated biochemical-cortical trait pairings, with consistent representation of blood cell counts and other biomarkers such as C-reactive protein (CRP), haemoglobin and calcium. Spatially organised patterns of genetic correlation were additionally uncovered upon clustering of region-specific correlation profiles. Interestingly, by employing latent causal variable models, we found strong evidence suggesting CRP and vitamin D exert causal effects on region-specific cortical thickness, with univariable and multivariable Mendelian randomization further supporting a negative causal relationship between serum CRP levels and thickness of the lingual region. Our findings suggest a subset of biochemical traits exhibit shared genetic architecture and potentially causal relationships with cortical structure in functionally distinct regions, which may contribute to alteration of cortical structure in psychiatric disorders.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
43
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
45
|
Gadd DA, Hillary RF, McCartney DL, Shi L, Stolicyn A, Robertson NA, Walker RM, McGeachan RI, Campbell A, Xueyi S, Barbu MC, Green C, Morris SW, Harris MA, Backhouse EV, Wardlaw JM, Steele JD, Oyarzún DA, Muniz-Terrera G, Ritchie C, Nevado-Holgado A, Chandra T, Hayward C, Evans KL, Porteous DJ, Cox SR, Whalley HC, McIntosh AM, Marioni RE. Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health. Nat Commun 2022; 13:4670. [PMID: 35945220 PMCID: PMC9363452 DOI: 10.1038/s41467-022-32319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Characterising associations between the methylome, proteome and phenome may provide insight into biological pathways governing brain health. Here, we report an integrated DNA methylation and phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association studies of 4058 plasma proteins are performed (N = 774), identifying 2928 CpG-protein associations after adjustment for multiple testing. These are independent of known genetic protein quantitative trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein are then performed in relation to 15 neurological traits (N = 1,065), identifying 405 associations between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain health. The epigenetic and proteomic markers we identify are pertinent to understanding and stratifying brain health.
Collapse
Affiliation(s)
- Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Neil A Robertson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Shen Xueyi
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Claire Green
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Ellen V Backhouse
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH3 3JF, UK
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK
| | - Graciela Muniz-Terrera
- Centre for Clinical Brain Sciences, Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | | | - Tamir Chandra
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon R Cox
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
46
|
Thng G, Shen X, Stolicyn A, Harris MA, Adams MJ, Barbu MC, Kwong ASF, Frangou S, Lawrie SM, McIntosh AM, Romaniuk L, Whalley HC. Comparing personalized brain-based and genetic risk scores for major depressive disorder in large population samples of adults and adolescents. Eur Psychiatry 2022; 65:e44. [PMID: 35899848 PMCID: PMC9393914 DOI: 10.1192/j.eurpsy.2022.2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a polygenic disorder associated with brain alterations but until recently, there have been no brain-based metrics to quantify individual-level variation in brain morphology. Here, we evaluated and compared the performance of a new brain-based 'Regional Vulnerability Index' (RVI) with polygenic risk scores (PRS), in the context of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702, age = 59 ± 10) and with subclinical depressive symptoms in a longitudinal adolescent sample (baseline N = 3,825, age = 10 ± 1; 2-year follow-up N = 2,081, age = 12 ± 1). METHODS MDD-RVIs quantify the correlation of the individual's corresponding brain metric with the expected pattern for MDD derived in an independent sample. Using the same methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity, fractional anisotropy, and multimodal) were computed. RESULTS In adults, MDD-RVIs (based on white matter and multimodal measures) were more strongly associated with MDD (β = 0.099-0.281, PFDR = 0.001-0.043) than MDD-PRS (β = 0.056-0.152, PFDR = 0.140-0.140). In adolescents, depressive symptoms were associated with MDD-PRS at baseline and follow-up (β = 0.084-0.086, p = 1.38 × 10-4-4.77 × 10-4) but not with any MDD-RVIs (β < 0.05, p > 0.05). CONCLUSIONS Our results potentially indicate the ability of brain-based risk scores to capture a broader range of risk exposures than genetic risk scores in adults and are also useful in helping us to understand the temporal origins of depression-related brain features. Longitudinal data, specific to the developmental period and on white matter measures, will be useful in informing risk for subsequent psychiatric illness.
Collapse
Affiliation(s)
- Gladi Thng
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Mathew A. Harris
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Miruna C. Barbu
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Alex S. F. Kwong
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Chen L, Zeng X, Zhou S, Gu Z, Pan J. Correlation Between Serum High-Sensitivity C-Reactive Protein, Tumor Necrosis Factor-Alpha, Serum Interleukin-6 and White Matter Integrity Before and After the Treatment of Drug-Naïve Patients With Major Depressive Disorder. Front Neurosci 2022; 16:948637. [PMID: 35911989 PMCID: PMC9326236 DOI: 10.3389/fnins.2022.948637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies have noticed that systemic inflammation may alter the integrity of white matter. However, how the levels of serum cytokine affect the integrity of white matter in major depressive disorder (MDD) patients are unclear. Our study aimed to investigate the association between the inflammatory cytokine levels and white matter microstructure in drug-naïve patients with MDD pre- and post-treatment. Method In total, 29 MDD patients and 25 healthy controls (HC) were included in this study. Diffusion tensor imaging (DTI) was conducted in all subjects at baseline, and the MDD patients were reassessed after venlafaxine treatment, using a tract-based spatial statistics (TBSS) analysis. Morning serum interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) concentrations in MDD patients were also measured pre- and post-treatment. Results Significantly reduced fractional anisotropy (FA) values were found in the bilateral superior fronto-occipital fasciculus (SFO), posterior limb of the internal capsule (IC-PL), and fornix compared with the HC, and FA values in these regions in MDD patients have risen to normal levels except the bilateral SFO after treatment. The FA value of the left IC-PL was inversely correlated with the peripheral hs-CRP levels in both pre- and post-treatment MDD patients. Conclusion Our results suggested that the white matter integrity in the left IC-PL was significantly inversely correlated with the peripheral hs-CRP levels in both pre- and post-treatment MDD patients.
Collapse
Affiliation(s)
- Liping Chen
- Department of Psychiatry, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiangling Zeng
- Department of Radiology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou, China
| | - Sijia Zhou
- Department of Psychiatry, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Zhiwen Gu
- Department of Psychiatry, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, China
- *Correspondence: Jiyang Pan,
| |
Collapse
|
48
|
Han KM, Choi KW, Kim A, Kang W, Kang Y, Tae WS, Han MR, Ham BJ. Association of DNA Methylation of the NLRP3 Gene with Changes in Cortical Thickness in Major Depressive Disorder. Int J Mol Sci 2022; 23:ijms23105768. [PMID: 35628578 PMCID: PMC9143533 DOI: 10.3390/ijms23105768] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The Nod-like receptor pyrin containing 3 (NLRP3) inflammasome has been reported to be a convergent point linking the peripheral immune response induced by psychological stress and neuroinflammatory processes in the brain. We aimed to identify differences in the methylation profiles of the NLRP3 gene between major depressive disorder (MDD) patients and healthy controls (HCs). We also investigated the correlation of the methylation score of loci in NLRP3 with cortical thickness in the MDD group using magnetic resonance imaging (MRI) data. A total of 220 patients with MDD and 82 HCs were included in the study, and genome-wide DNA methylation profiling of the NLRP3 gene was performed. Among the total sample, 88 patients with MDD and 74 HCs underwent T1-weighted structural MRI and were included in the neuroimaging–methylation analysis. We identified five significant differentially methylated positions (DMPs) in NLRP3. In the MDD group, the methylation scores of cg18793688 and cg09418290 showed significant positive or negative correlations with cortical thickness in the occipital, parietal, temporal, and frontal regions, which showed significant differences in cortical thickness between the MDD and HC groups. Our findings suggest that NLRP3 DNA methylation may predispose to depression-related brain structural changes by increasing NLRP3 inflammasome-related neuroinflammatory processes in MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea; (K.-M.H.); (K.W.C.)
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea; (K.-M.H.); (K.W.C.)
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea; (A.K.); (W.K.); (Y.K.)
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea; (A.K.); (W.K.); (Y.K.)
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea; (A.K.); (W.K.); (Y.K.)
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University College of Medicine, Seoul 02841, Korea;
| | - Mi-Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: (M.-R.H.); (B.-J.H.)
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea; (K.-M.H.); (K.W.C.)
- Correspondence: (M.-R.H.); (B.-J.H.)
| |
Collapse
|
49
|
Tayab MA, Islam MN, Chowdhury KAA, Tasnim FM. Targeting neuroinflammation by polyphenols: A promising therapeutic approach against inflammation-associated depression. Pharmacotherapy 2022; 147:112668. [DOI: 10.1016/j.biopha.2022.112668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
|
50
|
Plank AC, Maschke J, Rohleder N, Fasching PA, Beckmann MW, Kornhuber J, Eichler A, Moll GH, Kratz O. Comparison of C-Reactive Protein in Dried Blood Spots and Saliva of Healthy Adolescents. Front Immunol 2022; 12:795580. [PMID: 34975902 PMCID: PMC8716383 DOI: 10.3389/fimmu.2021.795580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background/Aim Determining C-reactive protein (CRP) by non-invasive methods is of great interest for research addressing inflammation in young people. However, direct comparisons of such methods applied in children and adolescents are lacking so far. This study aimed to evaluate the association between CRP measured in dried blood spots (DBS CRP) and in saliva (sCRP), two less invasive alternatives to venipuncture, in 12- to 14-year-old adolescents. To evaluate the validity of both measurements in the context of biobehavioral studies, the potential of DBS CRP and sCRP to discriminate between defined BMI subgroups was assessed. Materials and Methods CRP levels in DBS and saliva collected from 87 healthy adolescents (M = 13.25 years, SD = 0.30, 51.7% females) were determined using high sensitive CRP ELISA for serum and salivary CRP ELISA, respectively. Characteristics and correlation of both measurements were assessed for the total sample and for three subgroups classified by BMI percentile ranges (A: ≤ 25; B: 26–74; C: ≥ 75). Results In the total sample, DBS CRP and sCRP were significantly associated (r = 0.59, p < 0.001). Splitting the sample into BMI-dependent subgroups revealed similarly strong associations of DBS CRP with sCRP for all three groups (A: r = 0.51; B: r = 0.61; C: r = 0.53). However, comparing the mean CRP values per BMI subgroup, one-way ANOVA reported significant differences for DBS CRP, but not for sCRP mean values. Conclusions The significant correlation of DBS CRP with sCRP was independent of the investigated BMI range groups, yet BMI-dependent distinction was only provided by DBS CRP mean values. Overall, our results suggest that DBS CRP is likely to reflect systemic inflammation more precisely. Salivary CRP can be alternatively determined in studies with adolescents when conditions require it, given the oral health status is assessed. Considering that DBS CRP and sCRP share only 35% of common variance, further studies should examine their specific validity.
Collapse
Affiliation(s)
- Anne-Christine Plank
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Maschke
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Rohleder
- Department of Psychology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gunther H Moll
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|