1
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Joulia R, Lloyd CM. Basophils: Regulators of lung inflammation over space and time. J Exp Med 2024; 221:e20241663. [PMID: 39453397 PMCID: PMC11519372 DOI: 10.1084/jem.20241663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
In this issue of JEM, Schuijs et al. (https://doi.org/10.1084/jem.20240103) highlight a novel role for basophils during allergic immune responses to house dust mites (HDM). They reveal that interleukin-33 (IL-33)-activated basophils facilitate the recruitment and extravasation of Th2 cells into the lungs during a specific time frame via their interactions with pulmonary endothelial cells.
Collapse
Affiliation(s)
- Régis Joulia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Huang L, Fu C, Liao S, Long Y. IL-33 relieves nerve injury by mediating microglial polarization in neuromyelitis optica spectrum disorders via the IL-33/ST2 pathway. IBRO Neurosci Rep 2024; 17:177-187. [PMID: 39220229 PMCID: PMC11364135 DOI: 10.1016/j.ibneur.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family. Its function in regulating microglial M1/M2 polarization in neuromyelitis optica spectrum disorder (NMOSD) is still unelucidated. To evaluate the role of IL-33 in NMOSD, we constructed NMOSD mice model by injecting purified serum IgG from AQP4-IgG seropositive NMOSD patients into experimental autoimmune encephalomyelitis (EAE) mice, and IL-33 was intraperitoneally injected into NMOSD mice 3 d before the model induction. We found that pretreatment of the NMOSD mice with IL-33 relieved brain neuron loss, and demyelination and improved the structure of axons, astrocytes, and mitochondria. In the neuronal and microglial coculture system, pretreatment with IL-33 in microglia alleviated NMOSD serum-induced inflammation and damaged morphology in cultured neurons. IL-33 transformed microglia to the M2 phenotype, and NMOSD serum promoted microglia to the M1 phenotype in cultured BV2 cells. Moreover, IL-33 influenced microglial polarity via the IL-33/ST2 pathway. IL-33 may be a novel insight useful for further developing NMOSD-targeted therapy and drug development.
Collapse
Affiliation(s)
- Lu Huang
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Guangzhou, Guangdong 510260, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Congcong Fu
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Guangzhou, Guangdong 510260, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Sha Liao
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Guangzhou, Guangdong 510260, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Youming Long
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Guangzhou, Guangdong 510260, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| |
Collapse
|
4
|
Abubaker M, Stanton JE, Mahon O, Grabrucker AM, Newport D, Mulvihill JJE. Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response. Mol Cell Biochem 2024:10.1007/s11010-024-05151-5. [PMID: 39499391 DOI: 10.1007/s11010-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Janelle E Stanton
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Olwyn Mahon
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - David Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
5
|
Zhu Y, Lu Y, Zhu Y, Ren X, Deng Q, Yang M, Liang X. ST2L promotes VEGFA-mediated angiogenesis in gastric cancer by activating TRAF6/PI3K/Akt/NF-κB pathway via IL-33. Sci Rep 2024; 14:26393. [PMID: 39488565 PMCID: PMC11531471 DOI: 10.1038/s41598-024-76763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Suppression of Tumorigenicity 2 (ST2) is a member of the interleukin-1 receptor/ Toll-like receptor superfamily, and its specific ligand is Interleukin-33 (IL-33). IL-33/ ST2 signaling has been implicated in numerous inflammatory and allergic diseases, as well as in promoting malignant behavior of tumor cells and angiogenesis. However, the precise role of ST2 in gastric cancer angiogenesis remains incompletely elucidated. We observed a significant correlation between high expression of ST2 in gastric cancer tissues and poor prognosis, along with various clinicopathological features. In vitro experiments demonstrated that the IL-33/ ST2 axis activates the PI3K/AKT/NF-κB signaling pathway through TRAF6, thereby promoting VEGFA-mediated tumor angiogenesis; meanwhile sST2 acts as a decoy receptor to regulate the IL-33/ST2L axis. Consistent findings were also observed in subcutaneous xenograft tumor models in nude mice. Furthermore, we investigated the molecular mechanism by which IL-33 promotes ST2L expression in GC cells via upregulation of transcription factors YY1 and GATA2 through intracellular signaling pathways.
Collapse
Affiliation(s)
- Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yifei Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Xiaolu Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Qinyi Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Muqing Yang
- Department of Hepatobilliary Surgical Center, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo District, Shanghai, China.
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China.
| |
Collapse
|
6
|
Alvarado-Vazquez PA, Mendez-Enriquez E, Pähn L, Dondalska A, Pazos-Castro D, Hallgren J. Mast cells contribute to T-cell accumulation in the bronchoalveolar space in mice with IL-33-induced airway inflammation. Immunology 2024; 173:590-602. [PMID: 39132816 DOI: 10.1111/imm.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Interleukin (IL)-33 released from airway epithelial cells plays a vital role in shaping type 2 immune responses by binding to the ST2 receptor present in many immune cells, including mast cells (MCs). Intranasal administration of IL-33 in mice induces type 2 lung inflammation, an increase in lung MC progenitors, and transepithelial migration of leukocytes to the bronchoalveolar space. The aim of this study was to determine the contribution of MCs in IL-33-induced lung pathology. Four daily intranasal administrations of IL-33 reduced spirometry-like lung function parameters, induced airway hyperresponsiveness, and increased leukocytes in bronchoalveolar lavage fluid (BAL) in an ST2-dependent manner. MC-deficient (Cpa3cre/+) mice, which lack MCs, had intact spirometry-like lung function but slightly reduced airway hyperresponsiveness, possibly related to reduced IL-33 or serotonin. Strikingly, Cpa3cre/+ mice exposed to IL-33 had 50% reduction in BAL T-cells, and CXCL1 and IL-33 were reduced in the lung. Intranasal IL-33 induced CXCR2 expression in T-cells in a MC-independent fashion. Furthermore, IL-33-induced lung MCs were immunopositive for CXCL1 and localized in the epithelium of wild-type mice. These results suggest that MCs are required to sustain intact lung IL-33 and CXCL1 levels in mice with IL-33-induced airway inflammation, thereby facilitating T-cell accumulation in the bronchoalveolar space.
Collapse
Affiliation(s)
| | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lisa Pähn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aleksandra Dondalska
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diego Pazos-Castro
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Smallwood D, Lockey RF, Kolliputi N. PANoptosis opens new treatment options for allergic bronchopulmonary aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100298. [PMID: 39170913 PMCID: PMC11338086 DOI: 10.1016/j.jacig.2024.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 08/23/2024]
Abstract
Background Allergic bronchopulmonary aspergillosis (ABPA) is a rare airway disorder primarily affecting patients with asthma and cystic fibrosis. Persistent airway inflammation brought on by Aspergillus fumigatus exacerbates the underlying condition and can cause significant respiratory damage. Treatments center on reducing inflammation with the use of corticosteroids and antifungals. PANoptosis is a new concept in the field of cell death and inflammation that posits the existence of cross talk and a master control system for the 3 programmed cell death (PCD) pathways, namely, apoptosis, pyroptosis, and necroptosis. This concept has revolutionized the understanding of PCD and opened new avenues for its exploration. Studies show that Aspergillus is one of the pathogens that is capable of activating PANoptosis via the Z-DNA binding protein 1 (ZBP1) pathway and plays an active role in the inflammation caused by this organism. Objective This article explores the nature of inflammation in ABPA and ways in which PCD could lead to novel treatment options. Method PubMed was used to review the literature surrounding Aspergillus infection-related inflammation and PANoptosis. Results There is evidence that apoptosis and pyroptosis protect against Aspergillus-induced inflammation, whereas necroptosis promotes inflammation. Conclusion Experimental medications, in particular, necroptosis inhibitors such as necrosulfonamide and necrostatin-1, should be studied for use in the treatment of ABPA.
Collapse
Affiliation(s)
- Dalan Smallwood
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| |
Collapse
|
8
|
Roy-Dorval A, Deagle RC, Roth F, Raybaud M, Ismailova N, Krisna SS, Aboud DGK, Stegen C, Leconte J, Berberi G, Esomojumi A, Fritz JH. Analysis of lipid uptake, storage, and fatty acid oxidation by group 2 innate lymphoid cells. Front Immunol 2024; 15:1493848. [PMID: 39497825 PMCID: PMC11532145 DOI: 10.3389/fimmu.2024.1493848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2) are critical drivers of both innate and adaptive type 2 immune responses, known to orchestrate processes involved in tissue restoration and wound healing. In addition, ILC2 have been implicated in chronic inflammatory barrier disorders in type 2 immunopathologies such as allergic rhinitis and asthma. ILC2 in the context of allergen-driven airway inflammation have recently been shown to influence local and systemic metabolism, as well as being rich in lipid-storing organelles called lipid droplets. However, mechanisms of ILC2 lipid anabolism and catabolism remain largely unknown and the impact of these metabolic processes in regulating ILC2 phenotypes and effector functions has not been extensively characterized. ILC2 phenotypes and effector functions are shaped by their metabolic status, and determining the metabolic requirements of ILC2 is critical in understanding their role in type 2 immune responses and their associated pathophysiology. We detail here a novel experimental method of implementing flow cytometry for large scale analysis of fatty acid uptake, storage of neutral lipids, and fatty acid oxidation in primary murine ILC2 with complementary morphological analysis of lipid storage using confocal microscopy. By combining flow cytometry and confocal microscopy, we can identify the metabolic lipid requirements for ILC2 functions as well as characterize the phenotype of lipid storage in ILC2. Linking lipid metabolism pathways to ILC2 phenotypes and effector functions is critical for the assessment of novel pharmaceutical strategies to regulate ILC2 functions in type 2 immunopathologies.
Collapse
Affiliation(s)
- Audrey Roy-Dorval
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Rebecca C. Deagle
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Frederik Roth
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Mathilde Raybaud
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Sai Sakktee Krisna
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Damon G. K. Aboud
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Camille Stegen
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julien Leconte
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Gabriel Berberi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ademola Esomojumi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Wu S, Jiao J, Wang N, He N, Wu Y, Jiang H, Fang Z, Chen R, Liu Y, Liu Y, Chen L, Zheng X, Jiang J. Tregs ST2 deficiency enhances the abscopal anti-tumor response induced by microwave ablation. Int Immunopharmacol 2024; 143:113330. [PMID: 39423663 DOI: 10.1016/j.intimp.2024.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Thermal ablation (TA), including radiofrequency ablation (RFA) and Microwave ablation (MWA) could reduce tumor burden and can stimulate an immune response, but it cannot maintain a lasting immune response. The alarming cytokine IL-33 is constitutively expressed by epithelial cells, endothelial cells, and fibroblasts, but is released during tissue injury to alert the immune system. The presence of ST2+Tregs in TME may act as a barrier contributing to this phenomenon. METHODS In this study, we explored the impact of RFA on the expression of ST2 (also known as IL1RL1) in tumor-infiltrating lymphocytes (TILs). Subsequently, we constructed a Treg cell-specific deletion ST2 mouse model (Foxp3CreIl1rl1fl/fl) and evaluated the genetic phenotypes by flow cytometry. A bilateral dorsal tumor-bearing model was established in Foxp3Cre and Foxp3CreIl1rl1fl/fl mice to explore the anti-tumor effect of MWA. Finally, we used flow cytometry and single-cell transcriptome sequencing (scRNA-seq) to profile CD45+ immune cells within TME. RESULTS Our findings suggest that ablation upregulates ST2 expression in Tregs within the contralateral TME. Compared with Foxp3Cre mice, MWA significantly inhibited the growth of contralateral tumors in Foxp3CreIl1rl1fl/fl mice. Its mechanisms include reducing the proportion of Tregs, enhancing the infiltration and effector function of CD8+T cells, increasing the proportion of Effector CD8+T cells, reducing the proportion of Exhausted CD8+T cells, increasing MHC-I molecules in mDC cells and monocytes, and reducing the expression of TAM2 inhibitory molecules and chemokines. CONCLUSIONS Blocking IL-33/ST2 pathway in Tregs offers a new strategy for MWA in clinical studies of metastatic cancer.
Collapse
Affiliation(s)
- Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Nuo Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Rongzhang Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yungang Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213011 Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
10
|
Pasternak-Mnich K, Kujawa J, Agier J, Kozłowska E. Impact of photobiomodulation therapy on pro-inflammation functionality of human peripheral blood mononuclear cells - a preliminary study. Sci Rep 2024; 14:23111. [PMID: 39367102 PMCID: PMC11452683 DOI: 10.1038/s41598-024-74533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Research into the efficacy of photobiomodulation therapy (PBMT) in reducing inflammation has been ongoing for years, but standards for irradiation methodology still need to be developed. This study aimed to test whether PBMT stimulates in vitro human peripheral blood mononuclear cells (PBMCs) to synthesize pro-inflammatory cytokines, including chemokines. PBMCs were irradiated with laser radiation at two wavelengths simultaneously (λ = 808 nm in continuous emission and λ = 905 nm in pulsed emission). The laser radiation energy was dosed in one dose as a whole (5 J, 15 J, 20 J) or in a fractionated way (5 J + 15 J and 15 J + 5 J) with a frequency of 500, 1,500 and 2,000 Hz. The surface power densities were 177, 214 and 230 mW/cm2, respectively. A pro-inflammatory effect was observed at both the transcript and protein levels for IL-1β after PBMT at the energy doses 5 J and 20 J (ƒ=500 Hz) and only at the transcript level after application of PBMT at energy doses of 20 J (ƒ= 1,500; ƒ=2,000 Hz) and 5 + 15 J (ƒ=500 Hz). An increase in CCL2 and CCL3 mRNA expression was observed after PBMT at 5 + 15 J (ƒ=1,500 Hz) and 15 + 5 J (ƒ=2,000 Hz) and CCL3 concentration after application of an energy dose of 15 J (frequency of 500 Hz). Even though PBMT can induce mRNA synthesis and stimulate PBMCs to produce selected pro-inflammatory cytokines and chemokines, it is necessary to elucidate the impact of the simultaneous emission of two wavelengths on the inflammatory response mechanisms.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland.
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
11
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
12
|
Battut L, Leveque E, Valitutti S, Cenac N, Dietrich G, Espinosa E. IL-33-primed human mast cells drive IL-9 production by CD4 + effector T cells in an OX40L-dependent manner. Front Immunol 2024; 15:1470546. [PMID: 39416773 PMCID: PMC11479898 DOI: 10.3389/fimmu.2024.1470546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-33 (IL-33) is an alarmin released by epithelial cells in response to tissue damage. It activates resident immune sentinel cells, which then produce signals commonly associated with type 2 immune responses, particularly affecting infiltrating antigen-specific T cells. Given that mast cells (MCs) are a primary target of IL-33 and can shape T helper (Th) cell responses, we investigated the effect of IL-33 priming on the ability of MCs to influence Th cell cytokine production. To examine the Th cell/MC interaction, we developed human primary MC/memory CD4+ T-cell coculture systems involving both cognate and non-cognate interactions. Our results demonstrated that IL-33-primed MCs, whether as bystander cells cocultured with activated effector T cells or functioning as antigen-presenting cells, promoted IL-9 and increased IL-13 production in Th cells via an OX40L-dependent mechanism. This indicates that MCs sense IL-33-associated danger, prompting them to direct Th cells to produce the key type 2 effector cytokines IL-9 and IL-13.
Collapse
Affiliation(s)
- Louise Battut
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Edouard Leveque
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
| | - Salvatore Valitutti
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, CHU Toulouse, Toulouse, France
| | - Nicolas Cenac
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Gilles Dietrich
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Eric Espinosa
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| |
Collapse
|
13
|
Matys P, Mirończuk A, Starosz A, Grubczak K, Kochanowicz J, Kułakowska A, Kapica-Topczewska K. Expanding Role of Interleukin-1 Family Cytokines in Acute Ischemic Stroke. Int J Mol Sci 2024; 25:10515. [PMID: 39408843 PMCID: PMC11476913 DOI: 10.3390/ijms251910515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemic stroke (IS) is a critical medical condition that results in significant neurological deficits and tissue damage, affecting millions worldwide. Currently, there is a significant lack of reliable tools for assessing and predicting IS outcomes. The inflammatory response following IS may exacerbate tissue injury or provide neuroprotection. This review sought to summarize current knowledge on the IL-1 family's involvement in IS, which includes pro-inflammatory molecules, such as IL-1α, IL-1β, IL-18, and IL-36, as well as anti-inflammatory molecules, like IL-1Ra, IL-33, IL-36A, IL-37, and IL-38. The balance between these opposing inflammatory processes may serve as a biomarker for determining patient outcomes and recovery paths. Treatments targeting these cytokines or their receptors show promise, but more comprehensive research is essential to clarify their precise roles in IS development and progression.
Collapse
Affiliation(s)
- Paulina Matys
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Anna Mirończuk
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Aleksandra Starosz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| | - Katarzyna Kapica-Topczewska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (P.M.)
| |
Collapse
|
14
|
Hutchins T, Sanyal A, Esencan D, Lafyatis R, Jacobe H, Torok KS. Characterization of Endothelial Cell Subclusters in Localized Scleroderma Skin with Single-Cell RNA Sequencing Identifies NOTCH Signaling Pathway. Int J Mol Sci 2024; 25:10473. [PMID: 39408800 PMCID: PMC11477421 DOI: 10.3390/ijms251910473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease characterized by inflammation and fibrosis, leading to severe cutaneous manifestations such as skin hardening, tightness, discoloration, and other textural changes that may result in disability. While LS shares similar histopathologic features and immune-fibroblast interactions with systemic sclerosis (SSc), its molecular mechanisms remain understudied. Endothelial cells (EC) are known to play a crucial role in SSc but have not been investigated in LS. Single-cell RNA sequencing (scRNA-seq) now allows for detailed examination of this cell type in the primary organ of interest for scleroderma, the skin. In this study, we analyzed skin-isolated cells from 27 LS patients (pediatric and adult) and 17 healthy controls using scRNA-seq. Given the known role of EC damage as an initial event in SSc and the histologic and clinical skin similarities to LS, we focused primarily on endothelial cells. Our analysis identified eight endothelial subclusters within the dataset, encompassing both disease and healthy samples. Interaction analysis revealed that signaling from diseased endothelial cells was predicted to promote fibrosis through SELE interaction with FGFBP1 and other target genes. We also observed high levels of JAG in arterial endothelial cells and NOTCH in capillary endothelial cells, indicating the activation of a signaling pathway potentially responsible for epidermal abnormalities and contributing to LS pathogenesis. In summary, our scRNA-seq analysis identified potential disease-propagating endothelial cell clusters with upregulated pathways in LS skin, highlighting their importance in disease progression.
Collapse
Affiliation(s)
- Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Deren Esencan
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S. Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA; (T.H.); (A.S.); (D.E.)
| |
Collapse
|
15
|
Ulrich BJ, Zhang W, Kenworthy BT, Kharwadkar R, Olson MR, Kaplan MH. Activin A Promotes Differentiation of a Pathogenic Multicytokine IL-9-secreting CD4+ T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:823-830. [PMID: 39058312 PMCID: PMC11371476 DOI: 10.4049/jimmunol.2300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The development of Th subsets results from cellular and cytokine cues that are present in the inflammatory environment. The developing T cell integrates multiple signals from the environment that sculpt the cytokine-producing capacity of the effector T cell. Importantly, T cells can discriminate similar cytokine signals to generate distinct outcomes, and that discrimination is critical in Th subset development. IL-9-secreting Th9 cells regulate multiple immune responses, including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. In combination with IL-4, TGF-β or activin A promotes IL-9 production; yet, it is not clear if both TGF-β family members generate Th9 cells with identical phenotype and function. We observed that in contrast to TGF-β that efficiently represses Th2 cytokines in murine Th9 cultures, differentiation with activin A produced a multicytokine T cell phenotype with secretion of IL-4, IL-5, IL-13, and IL-10 in addition to IL-9. Moreover, multicytokine secreting cells are more effective at promoting allergic inflammation. These observations suggest that although TGF-β and IL-4 were identified as cytokines that stimulate optimal IL-9 production, they might not be the only cytokines that generate optimal function from IL-9-producing T cells in immunity and disease.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Blake T Kenworthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
16
|
Pyon GC, Masuda MY, Putikova A, Luo H, Gibson JB, Dao AD, Ortiz DR, Heiligenstein PL, Bonellos JJ, LeSuer WE, Pai RK, Garg S, Rank MA, Nakagawa H, Kita H, Wright BL, Doyle AD. Tissue-specific inducible IL-33 expression elicits features of eosinophilic esophagitis. J Allergy Clin Immunol 2024:S0091-6749(24)00910-2. [PMID: 39265877 DOI: 10.1016/j.jaci.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND IL-33 is a type 2 inflammatory cytokine that is elevated in the esophageal epithelium of eosinophilic esophagitis (EoE) subjects. We previously developed a mouse model of EoE dependent on constitutive overexpression of IL-33 from the esophageal epithelium (EoE33). OBJECTIVE Our objective was to develop an inducible, IL-33-dependent model of EoE and examine induction of EoE-associated pathology. METHODS We utilized a tetracycline-inducible system to express IL-33 in the esophagus by generating 2 transgenic mice. The first (iSophagus) expresses a reverse tetracycline transactivator from the esophageal epithelium. The second (TRE33) features a tetracycline response element driving expression of IL-33. When crossed, these mice generate an inducible model of EoE (iEoE33). Mice were administered doxycycline-infused chow for up to 2 weeks. Cytokines were assessed by ELISA or bead-based multiplex analysis. T cells were assessed by flow cytometry. Pathology was assessed by histology and immunohistochemistry for IL-33, eosinophil peroxidase, CD4, and Ki-67. iEoE33 was treated with steroids and crossed with IL-13-/- mice. RESULTS Doxycycline-treated iEoE33 mice demonstrated expression of IL-33 in the esophageal epithelium, and esophageal pathology including eosinophilia, CD4+ cell infiltrate, basal zone hyperplasia, and dilated intercellular spaces. These findings became pronounced on day 7 of induction, were accompanied by weight loss and esophageal thickening, and were steroid responsive and IL-13 dependent. CONCLUSION Inducible IL-33 expression in the esophageal epithelium elicited features pathognomonic of EoE. iEoE33 enables investigation of EoE disease mechanisms as well as initiation, progression, and resolution.
Collapse
Affiliation(s)
- Grace C Pyon
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Mia Y Masuda
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, Minn and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Arina Putikova
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Huijun Luo
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Jessica B Gibson
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Adelyn D Dao
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Danna R Ortiz
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Piper L Heiligenstein
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - James J Bonellos
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - William E LeSuer
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Rish K Pai
- Division of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Shipra Garg
- Division of Laboratory Medicine and Pathology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Matthew A Rank
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Hirohito Kita
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, Minn and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Alfred D Doyle
- Department of Medicine, Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, Minn and Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
17
|
Mai TT, Lam TP, Pham LHD, Nguyen KH, Nguyen QT, Le MT, Thai KM. Toward Unveiling Putative Binding Sites of Interleukin-33: Insights from Mixed-Solvent Molecular Dynamics Simulations of the Interleukin-1 Family. J Phys Chem B 2024; 128:8362-8375. [PMID: 39178050 DOI: 10.1021/acs.jpcb.4c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The interleukin (IL)-1 family is a major proinflammatory cytokine family, ranging from the well-studied IL-1s to the most recently discovered IL-33. As a new focus, IL-33 has attracted extensive research for its crucial immunoregulatory roles, leading to the development of notable monoclonal antibodies as clinical candidates. Efforts to develop small molecules disrupting IL-33/ST2 interaction remain highly desired but encounter challenges due to the shallow and featureless interfaces. The information from relative cytokines has shown that traditional binding site identification methods still struggle in mapping cryptic sites, necessitating dynamic approaches to uncover druggable pockets on IL-33. Here, we employed mixed-solvent molecular dynamics (MixMD) simulations with diverse-property probes to map the hotspots of IL-33 and identify potential binding sites. The protocol was first validated using the known binding sites of two IL-1 family members and then applied to the structure of IL-33. Our simulations revealed several binding sites and proposed side-chain rearrangements essential for the binding of a known inhibitor, aligning well with experimental NMR findings. Further microsecond-time scale simulations of this IL-33-protein complex unveiled distinct binding modes with varying occurrences. These results could facilitate future efforts in developing ligands to target challenging flexible pockets of IL-33 and IL-1 family cytokines in general.
Collapse
Affiliation(s)
- Tan Thanh Mai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thua-Phong Lam
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Long-Hung Dinh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Kim-Hung Nguyen
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Quoc-Thai Nguyen
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Research Center for Discovery and Development of Healthcare Products, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
18
|
Pang J, Shi Y, Peng D, Cui L, Xu Y, Wang W, Hu Y, Yang Y, Wang J, Qin X, Zhang Y, Meng H, Wang D, Bai G, Yuan H, Liu J, Lv Z, Li Y, Cui Y, Wang W, Huang K, Corrigan CJ, Wang W, Chen Y, Ying S. Bacterial antigens and asthma: a comparative study of common respiratory pathogenic bacteria. J Asthma 2024; 61:1089-1102. [PMID: 38478043 DOI: 10.1080/02770903.2024.2330063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.
Collapse
Affiliation(s)
- Jie Pang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yifan Shi
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dan Peng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Zhang
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Hao Meng
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Bai
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Gao H, Kosins AE, Cook-Mills JM. Mechanisms for initiation of food allergy by skin pre-disposed to atopic dermatitis. Immunol Rev 2024; 326:151-161. [PMID: 39007725 DOI: 10.1111/imr.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.
Collapse
Affiliation(s)
- Haoran Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison E Kosins
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Ifeanyi Obeagu E. Eosinophilic dialogues: a molecular exploration of sickle cell anemia severity. Ann Med Surg (Lond) 2024; 86:5252-5255. [PMID: 39239020 PMCID: PMC11374299 DOI: 10.1097/ms9.0000000000002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/30/2024] [Indexed: 09/07/2024] Open
Abstract
Sickle cell anemia (SCA) is a genetically inherited hemoglobinopathy characterized by the abnormal morphology of red blood cells, resulting in vaso-occlusive events and diverse clinical complications. Recent investigations have unveiled a novel dimension in understanding SCA severity through the lens of eosinophilic dialogues. This review article synthesizes current knowledge on the molecular intricacies of eosinophils in the context of SCA, exploring their biology, molecular markers, and interactions with other cellular components. Eosinophil-mediated inflammation and oxidative stress are dissected to elucidate their impact on the disease course. Furthermore, the review evaluates potential therapeutic interventions and outlines future directions in this burgeoning field. The term "Eosinophilic Dialogues" encapsulates the multifaceted molecular exchanges that influence SCA severity, presenting a promising avenue for targeted interventions and improved clinical outcomes. This review serves as a comprehensive resource for researchers, clinicians, and healthcare practitioners engaged in unraveling the complex pathophysiology of SCA and exploring novel therapeutic avenues.
Collapse
|
21
|
Zheng C, Wu G, Wu L, Zheng Y, Li Z. Clinical management controversy caused by a rare case of silver clip detachment and displacement after tubal silver clip sterilization. Ann Med Surg (Lond) 2024; 86:5513-5517. [PMID: 39238985 PMCID: PMC11374302 DOI: 10.1097/ms9.0000000000002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/20/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction and importance The treatment of rare long-term complications such as ectopic silver clips after tubal silver clip sterilization, still follows the principle of removing metal foreign body (MFB) in the abdominal cavity: first choice removal, which seems to be a habitual treatment method by clinical gynecologists. However, this measure has recently been greatly questioned. Case presentation A 54-year-old postmenopausal woman who had undergone tubal sterilization with a silver clip 32 years ago, presented to the emergency department (ED) with severe left upper abdominal colic, paroxysmal, accompanied by vomiting and radiating pain. Her vital signs were stable, and an emergency routine urine test showed microscopic hematuria. Preliminary consideration was given to ureteral stones, and abdominal pain was relieved after treatment. Abdominal computed tomography confirmed the previous consideration, but unexpectedly found that the left tubal sterilization metal clip disappeared and was ectopic in the perihepatic space. Clinical discussion This traditional conception of removing MFB in the abdominal cavity is often accepted by many surgeons. Based on the management measures of this case and the systematic review of the literature, we found that the detached ectopic silver clip did not cause serious long-term complications, possibly due to its good tissue receptivity and other characteristics. Conclusion Although an ectopic silver clip is an MFB in the abdominal cavity, it has been increasingly shown that removing the silver clip is not necessary because of the good receptivity of silver to human tissue and the uncertainty of long-term side effects on the human body.
Collapse
Affiliation(s)
- Chunyan Zheng
- Department of Gynecology, Longquan People's Hospital affiliated to Lishui University
| | - Guangxing Wu
- Clinical Imaging Diagnosis Center, Longquan People's Hospital affiliated to Lishui University
| | - Linli Wu
- Nursing Department, Longquan People's Hospital affiliated to Lishui University
| | - Yaqin Zheng
- Clinical Laboratory Centre of Longquan People's Hospital affiliated to Lishui University, Longuan City, Zhejiang Province, People's Republic of China
| | - Zijun Li
- Department of Gynecology, Longquan People's Hospital affiliated to Lishui University
| |
Collapse
|
22
|
Wu F, Zhang S, Zhuang R, Hu C, Zhu K. Blocking IL-33 decelerates cartilage degeneration in knee osteoarthritis through mice model. PLoS One 2024; 19:e0301199. [PMID: 39172956 PMCID: PMC11340949 DOI: 10.1371/journal.pone.0301199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/12/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a chronic inflammatory disease where pro-inflammatory cytokines, damage-associated molecular patterns and macrophages play a crucial role. However, the interaction of these mediators, the exact cause, and the treatment of knee osteoarthritis (KOA) are still unclear. Moreover, the interaction of interleukin (IL)-33, platelet-derived growth factor-BB (PDGF-BB), and matrix metalloproteinase-9 (MMP-9) with other factors in the pathogenesis of KOA has not been elaborately explored. METHOD Therefore, in this study, we analyzed the expression of IL-33, PDGF-BB, and MMP-9 in the knee cartilage tissue of model mice, murine KOA was induced by using the destabilization of the medial meniscus (DMM) model. RESULTS Compared with the sham operation control group, the expression levels of PDGF-BB, IL-33, and MMP-9 were increased significantly, and the pathological sections showed obvious cartilage damage. Additionally, we assessed the levels of IL-33 and MMP-9 expression in the knee joint of KOA model mice following intervention with PDGF-BB antibody, and we found that the expression level of MMP-9 was reduced following intervention with IL-33 antibody. When the effects of the three antibodies were compared in a mouse disease model, it was discovered that the IL-33 antibody could dramatically lower the relative expression level of MMP-9, resulting in the least amount of cartilage damage and improved protection. In conclusion, inhibiting IL-33 can significantly lower inflammatory factor levels in the knee joint, including IL-33 and MMP-9, and it can improve cartilage breakdown in osteoarthritis of the knee. CONCLUSION Overall, the results indicate that IL-33 has a therapeutic function in the treatment of knee osteoarthritis and may be a novel target for treatment of the underlying causes of KOA. Additionally, PDGF-BB might be an upstream pathway of IL-33, and KOA's MMP-9 is an downstream pathway of IL-33.
Collapse
Affiliation(s)
- Fan Wu
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Siyuan Zhang
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Rujie Zhuang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chuanxiao Hu
- Department of Neuroelectrophysiology, People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Kangxiang Zhu
- Department of Orthopaedics, Quzhou Traditional Chinese Medicine Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| |
Collapse
|
23
|
Jheng MJ, Kita H. Control of Asthma and Allergy by Regulatory T Cells. Int Arch Allergy Immunol 2024:1-15. [PMID: 39154634 DOI: 10.1159/000540407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Epithelial barriers, such as the lungs and skin, face the challenge of providing the tissues' physiological function and maintaining tolerance to the commensal microbiome and innocuous environmental factors while defending the host against infectious microbes. Asthma and allergic diseases can result from maladaptive immune responses, resulting in exaggerated and persistent type 2 immunity and tissue inflammation. SUMMARY Among the diverse populations of tissue immune cells, CD4+ regulatory T cells (Treg cells) are central to controlling immune responses and inflammation and restoring tissue homeostasis. Humans and mice that are deficient in Treg cells experience extensive inflammation in their mucosal organs and skin. During past decades, major progress has been made toward understanding the immunobiology of Treg cells and the molecular and cellular mechanisms that control their differentiation and function. It is now clear that Treg cells are not a single cell type and that they demonstrate diversity and plasticity depending on their differentiation stages and tissue environment. They could also take on a proinflammatory phenotype in certain conditions. KEY MESSAGES Treg cells perform distinct functions, including the induction of immune tolerance, suppression of inflammation, and promotion of tissue repair. Subsets of Treg cells in mucosal tissues are regulated by their differentiation stage and tissue inflammatory milieu. Treg cell dysfunction likely plays roles in persistent immune responses and tissue inflammation in asthma and allergic diseases.
Collapse
Affiliation(s)
- Min-Jhen Jheng
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
24
|
Rogovskii V. Tumor-produced immune regulatory factors as a therapeutic target in cancer treatment. Front Immunol 2024; 15:1416458. [PMID: 39206193 PMCID: PMC11349530 DOI: 10.3389/fimmu.2024.1416458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
25
|
Cascetta G, Colombo G, Eremita G, Garcia JGN, Lenti MV, Di Sabatino A, Travelli C. Pro- and anti-inflammatory cytokines: the hidden keys to autoimmune gastritis therapy. Front Pharmacol 2024; 15:1450558. [PMID: 39193325 PMCID: PMC11347309 DOI: 10.3389/fphar.2024.1450558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Autoimmune gastritis (AIG) is an autoimmune disorder characterized by the destruction of gastric parietal cells and atrophy of the oxyntic mucosa which induces intrinsic factor deficiency and hypo-achlorhydria. AIG predominantly affects the antral mucosa with AIG patients experiencing increased inflammation and a predisposition toward the development of gastric adenocarcinoma and type I neuroendocrine tumors. The exact pathogenesis of this autoimmune disorder is incompletely understood although dysregulated immunological mechanisms appear to major contributors. This review of autoimmune gastritis, an unmet medical need, summarizes current knowledge on pro- and anti-inflammatory cytokines and strategies for the discovery of novel biomarkers and potential pharmacological targets.
Collapse
Affiliation(s)
- Greta Cascetta
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Giorgia Colombo
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Gianmarco Eremita
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Joe G. N. Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, United States
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Olander A, Ramirez CM, Acosta VH, Medina P, Kaushik S, Jonsson VD, Sikandar SS. Pregnancy Reduces Il33+ Hybrid Progenitor Accumulation in the Aged Mammary Gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606240. [PMID: 39149387 PMCID: PMC11326159 DOI: 10.1101/2024.08.01.606240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aging increases breast cancer risk while an early first pregnancy reduces a woman's life-long risk. Several studies have explored the effect of either aging or pregnancy on mammary epithelial cells (MECs), but the combined effect of both remains unclear. Here, we interrogate the functional and transcriptomic changes at single cell resolution in the mammary gland of aged nulliparous and parous mice to discover that pregnancy normalizes age-related imbalances in lineage composition, while also inducing a differentiated cell state. Importantly, we uncover a minority population of Il33-expressing hybrid MECs with high cellular potency that accumulate in aged nulliparous mice but is significantly reduced in aged parous mice. Functionally, IL33 treatment of basal, but not luminal, epithelial cells from young mice phenocopies aged nulliparous MECs and promotes formation of organoids with Trp53 knockdown. Collectively, our study demonstrates that pregnancy blocks the age-associated loss of lineage integrity in the basal layer through a decrease in Il33+ hybrid MECs, potentially contributing to pregnancy-induced breast cancer protection.
Collapse
Affiliation(s)
- Andrew Olander
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Cynthia M Ramirez
- Department of Applied Mathematics, University of California - Santa Cruz
| | - Veronica Haro Acosta
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Paloma Medina
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| | - Sara Kaushik
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
| | - Shaheen S Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California - Santa Cruz
- Genomics Institute, University of California - Santa Cruz
- Institute for the Biology of Stem Cells, University of California - Santa Cruz
| |
Collapse
|
27
|
Fu Y, Jie J, Lei L, Liu M, Wang J, Lei L, Liu H. Exploring the destructive synergy between IL-33 and Suilysin hemolysis on blood-brain barrier stability. Microbiol Spectr 2024; 12:e0061224. [PMID: 38980021 PMCID: PMC11302228 DOI: 10.1128/spectrum.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 07/10/2024] Open
Abstract
Streptococcus suis type 2 (SS2) is a zoonotic pathogen capable of eliciting meningitis, presenting significant challenges to both the swine industry and public health. Suilysin (Sly), one of SS2 most potent virulence determinants, releases a surfeit of inflammatory agents following red blood cell lysis. Notably, while current research on Sly role in SS2-induced meningitis predominantly centers on its interaction with the blood-brain barrier (BBB), the repercussions of Sly hemolytic products on BBB function have largely been sidestepped. In this vein, our study delves into the ramifications of Sly-induced hemolysis on BBB integrity. We discern that Sly hemolytic derivatives exacerbate the permeability of Sly-induced in vitro BBB models. Within these Sly hemolytic products, Interleukin-33 (IL-33) disrupts the expression and distribution of Claudin-5 in brain microvascular endothelial cells, facilitating the release of Interleukin-6 (IL-6) and Interleukin-8 (IL-8), thereby amplifying BBB permeability. Preliminary mechanistic insights suggest that IL-33-driven expression of IL-6 and IL-8 is orchestrated by the p38-mitogen-activated protein kinase signaling, whereas matrix metalloproteinase 9 mediates IL-33-induced suppression of Claudin-5. To validate these in vitro findings, an SS2-infected mouse model was established, and upon intravenous administration of growth stimulation expressed gene 2 (ST2) antibodies, in vivo results further underscored the pivotal role of the IL-33/ST2 axis during SS2 cerebral invasion. In summation, this study pioneerly illuminates the involvement of Sly hemolytic products in SS2-mediated BBB compromise and spotlights the instrumental role and primary mechanism of IL-33 therein. These insights enrich our comprehension of SS2 meningitis pathogenesis, laying pivotal groundwork for therapeutic advancements against SS2-induced meningitis.IMPORTANCEThe treatment of meningitis caused by Streptococcus suis type 2 (SS2) has always been a clinical challenge. Elucidating the molecular mechanisms by which SS2 breaches the blood-brain barrier (BBB) is crucial for the development of meningitis therapeutics. Suilysin (Sly) is one of the most important virulence factors of SS2, which can quickly lyse red blood cells and release large amounts of damage-associated molecular patterns, such as hemoglobin, IL-33, cyclophilin A, and so on. However, the impact of these hemolytic products on the function of BBB is unknown and ignored. This study is the first to investigate the effect of Sly hemolytic products on BBB function. The data are crucial for the study of the pathogenesis of SS2 meningitis and can provide an important reference for the development of meningitis therapeutics.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jing Jie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liang Lei
- Department of Orthopaedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Mengmeng Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Junjie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
28
|
Hassan GF, Cohen LS, Alexander-Brett J. IL-33: Friend or foe in transplantation? J Heart Lung Transplant 2024; 43:1235-1240. [PMID: 38452960 PMCID: PMC11246814 DOI: 10.1016/j.healun.2024.02.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Several reports have highlighted the dichotomous nature of the Interleukin-33 (IL-33) system in cardiac and lung disease, where this cytokine can exert both protective effects and drive pro-inflammatory responses in a context-specific manner. This State-of-the-Art review focuses on preclinical mechanistic studies of the IL-33 system in development of allograft rejection in heart and lung transplantation. We address the scope of potential cellular sources of IL-33 and pathways for cellular release that may impact the study of this cytokine system in transplant models. We then highlight soluble IL-33 receptor as a biomarker in cardiac allograft rejection and detail preclinical models that collectively demonstrate a role for this cytokine in driving type-2 immune programs to protect cardiac allografts. We contrast this with investigation of IL-33 in lung transplantation, which has yielded mixed and somewhat conflicting results when comparing human studies with preclinical models, which have implicated the IL-33 system in both allograft tolerance and acceleration of chronic rejection. We summarize and interpret these results in aggregate and provide future directions for study of IL-33 in heart and lung transplantation.
Collapse
Affiliation(s)
- Ghandi F Hassan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Lucy S Cohen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Jen Alexander-Brett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
29
|
Tagé BSS, Gonzatti MB, Vieira RP, Keller AC, Bortoluci KR, Aimbire F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024; 47:1386-1402. [PMID: 38329636 DOI: 10.1007/s10753-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 μg of HDM (house dust mite) in 80 μL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-β cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.
Collapse
Affiliation(s)
- Barbara S S Tagé
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil.
| | - Michelangelo B Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Rodolfo P Vieira
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Anápolis, GO, 75083-515, Brazil
- Postgraduate Program in Bioengineering, University Brasil, São Paulo, SP, 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, 11010-150, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Karina R Bortoluci
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil
| |
Collapse
|
30
|
Alashkar Alhamwe B, Ponath V, Alhamdan F, Dörsam B, Landwehr C, Linder M, Pauck K, Miethe S, Garn H, Finkernagel F, Brichkina A, Lauth M, Tiwari DK, Buchholz M, Bachurski D, Elmshäuser S, Nist A, Stiewe T, Pogge von Strandmann L, Szymański W, Beutgen V, Graumann J, Teply-Szymanski J, Keber C, Denkert C, Jacob R, Preußer C, Pogge von Strandmann E. BAG6 restricts pancreatic cancer progression by suppressing the release of IL33-presenting extracellular vesicles and the activation of mast cells. Cell Mol Immunol 2024; 21:918-931. [PMID: 38942797 PMCID: PMC11291976 DOI: 10.1038/s41423-024-01195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024] Open
Abstract
Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Viviane Ponath
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Fahd Alhamdan
- Department of Anesthesiology, Critical Care, and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Immunology and Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Bastian Dörsam
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Clara Landwehr
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Manuel Linder
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Kim Pauck
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps-University, 35043, Marburg, Germany
| | - Florian Finkernagel
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Bioinformatics, Philipps-University, 35043, Marburg, Germany
| | - Anna Brichkina
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
- Institute of Systems Immunology, Philipps-University, 35043, Marburg, Germany
| | - Matthias Lauth
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Dinesh Kumar Tiwari
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism; Center for Tumor and Immune Biology, Philipps-University, 35043, Marburg, Germany
| | - Daniel Bachurski
- Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Andrea Nist
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology and Genomics Core Facility, Member of the German Center for Lung Research (DZL), Philipps-University, 35043, Marburg, Germany
- Institute of Lung Health, Justus Liebig University, 35392, Giessen, Germany
| | - Lisa Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Vanessa Beutgen
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics & Core Facility Translational Proteomics, Biochemical/Pharmacological Centre, Philipps-University, 35043, Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Corinna Keber
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University, 35043, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Philipps-University, 35043, Marburg, Germany.
- Core Facility Extracellular Vesicles, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
31
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
32
|
Tsuji G, Yumine A, Kawamura K, Takemura M, Kido-Nakahara M, Yamamura K, Nakahara T. Difamilast, a Topical Phosphodiesterase 4 Inhibitor, Produces Soluble ST2 via the AHR-NRF2 Axis in Human Keratinocytes. Int J Mol Sci 2024; 25:7910. [PMID: 39063153 PMCID: PMC11277015 DOI: 10.3390/ijms25147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Ayako Yumine
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| |
Collapse
|
33
|
Wu L, Zhu X, Luo C, Zhao Y, Pan S, Shi K, Chen Y, Qiu J, Shen Z, Guo J, Jie W. Mechanistic role of RND3-regulated IL33/ST2 signaling on cardiomyocyte senescence. Life Sci 2024; 348:122701. [PMID: 38724005 DOI: 10.1016/j.lfs.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Hyperinflammatory responses are pivotal in the cardiomyocyte senescence pathophysiology, with IL33 serving as a crucial pro-inflammatory mediator. Our previous findings highlighted RND3's suppressive effect on IL33 expression. This study aims to explore the role of RND3 in IL33/ST2 signaling activation and in cardiomyocyte senescence. Intramyocardial injection of exogenous IL33 reduces the ejection fraction and fractional shortening of rats, inducing the appearance of senescence-associated secretory phenotype (SASP) in myocardial tissues. Recombinant IL33 treatment of AC16 cardiomyocytes significantly upregulated expression of SASP factors like IL1α, IL6, and MCP1, and increased the p-p65/p65 ratio and proportions of SA-β-gal and γH2AX-positive cells. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) and ST2 antibody astegolimab treatments mitigated above effects. RND3 gene knockout H9C2 cardiomyocytes using CRISPR/Cas9 technology upregulated IL33, ST2L, IL1α, IL6, and MCP1 levels, decreased sST2 levels, and increased SA-β-gal and γH2AX-positive cells. A highly possibility of binding between RND3 and IL33 proteins was showed by molecular docking and co-immunoprecipitation, and loss of RND3 attenuated ubiquitination mediated degradation of IL33; what's more, a panel of ubiquitination regulatory genes closely related to RND3 were screened using qPCR array. In contrast, RND3 overexpression in rats by injection of AAV9-CMV-RND3 particles inhibited IL33, ST2L, IL1α, IL6, and MCP1 expression in cardiac tissues, decreased serum IL33 levels, and increased sST2 levels. These results suggest that RND3 expression in cardiomyocytes modulates cell senescence by inhibiting the IL33/ST2/NF-κB signaling pathway, underscoring its potential as a therapeutic target in cardiovascular senescence.
Collapse
Affiliation(s)
- Linxu Wu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China; Public Research Center of Hainan Medical University, Haikou 571199, P.R. China
| | - Xinglin Zhu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Cai Luo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yangyang Zhao
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Shanshan Pan
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Yan Chen
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Jianmin Qiu
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, P.R. China.
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P.R. China.
| |
Collapse
|
34
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Ertel A, Anderegg U, Franz S, Saalbach A. Dermal White Adipose Tissue-Derived Il-33 Regulates Il-4/13 Expression in Myeloid Cells during Inflammation. J Invest Dermatol 2024:S0022-202X(24)01862-1. [PMID: 38909842 DOI: 10.1016/j.jid.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
Collapse
Affiliation(s)
- Anastasia Ertel
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
36
|
Jamwal A, Colomb F, McSorley HJ, Higgins MK. Structural basis for IL-33 recognition and its antagonism by the helminth effector protein HpARI2. Nat Commun 2024; 15:5226. [PMID: 38890291 PMCID: PMC11189471 DOI: 10.1038/s41467-024-49550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
IL-33 plays a significant role in inflammation, allergy, and host defence against parasitic helminths. The model gastrointestinal nematode Heligmosomoides polygyrus bakeri secretes the Alarmin Release Inhibitor HpARI2, an effector protein that suppresses protective immune responses and asthma in its host by inhibiting IL-33 signalling. Here we reveal the structure of HpARI2 bound to mouse IL-33. HpARI2 contains three CCP-like domains, and we show that it contacts IL-33 primarily through the second and third of these. A large loop which emerges from CCP3 directly contacts IL-33 and structural comparison shows that this overlaps with the binding site on IL-33 for its receptor, ST2, preventing formation of a signalling complex. Truncations of HpARI2 which lack the large loop from CCP3 are not able to block IL-33-mediated signalling in a cell-based assay and in an in vivo female mouse model of asthma. This shows that direct competition between HpARI2 and ST2 is responsible for suppression of IL-33-dependent responses.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Florent Colomb
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
37
|
Lawrence DA, Jadhav A, Mondal TK, Carson K, Lee WT, Hogan AH, Herbst KW, Michelow IC, Brimacombe M, Salazar JC. Inflammatory and Autoimmune Aspects of Multisystem Inflammatory Syndrome in Children (MIS-C): A Prospective Cohort Study. Viruses 2024; 16:950. [PMID: 38932242 PMCID: PMC11209514 DOI: 10.3390/v16060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. Our objective was to identify selected immune molecules that could explain, in part, why certain SARS-CoV-2-infected children developed MIS-C. We hypothesized that type-2 helper T cell-mediated inflammation can elicit autoantibodies, which may account for some of the differences observed between the moderate-severe COVID-19 (COVID+) and MIS-C cohort. We enumerated blood leukocytes and measured levels of selected serum cytokines, chemokines, antibodies to COVID-19 antigens, and autoantibodies in children presenting to an academic medical center in Connecticut, United States. The neutrophil/lymphocyte and eosinophil/lymphocyte ratios were significantly higher in those in the MIS-C versus COVID+ cohort. IgM and IgA, but not IgG antibodies to SARS-CoV-2 receptor binding domain were significantly higher in the MIS-C cohort than the COVID+ cohort. The serum levels of certain type-2 cytokines (interleukin (IL)-4, IL-5, IL-6, IL-8, IL-10, IL-13, and IL-33) were significantly higher in children with MIS-C compared to the COVID+ and SARS-CoV-2-negative cohorts. IgG autoantibodies to brain antigens and pentraxin were higher in children with MIS-C compared to SARS-CoV-19-negative controls, and children with MIS-C had higher levels of IgG anti-contactin-associated protein-like 2 (caspr2) compared to the COVID+ and SARS-CoV-19-negative controls. We speculate that autoimmune responses in certain COVID-19 patients may induce pathophysiological changes that lead to MIS-C. The triggers of autoimmunity and factors accounting for type-2 inflammation require further investigation.
Collapse
Affiliation(s)
- David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Aishwarya Jadhav
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Tapan K. Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - Kyle Carson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
| | - William T. Lee
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; (A.J.); (T.K.M.); (K.C.); (W.T.L.)
- School of Public Health, University at Albany, Rensselaer, NY 12144, USA
| | - Alexander H. Hogan
- Division of Hospital Medicine, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
| | - Katherine W. Herbst
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Ian C. Michelow
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | - Michael Brimacombe
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT 06106, USA
| | - Juan C. Salazar
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (I.C.M.); (M.B.); (J.C.S.)
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT 06106, USA;
| | | |
Collapse
|
38
|
Ruan J, Tian Q, Li S, Zhou X, Sun Q, Wang Y, Xiao Y, Li M, Chang K, Yi X. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial-mesenchymal transition by phosphorylating β-catenin. Cell Commun Signal 2024; 22:318. [PMID: 38858740 PMCID: PMC11163813 DOI: 10.1186/s12964-024-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/β-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS We observed that ectopic milieu, characterized by ROS, TGF-β1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/β-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or β-catenin with siRNA, and β-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/β-catenin signaling. CONCLUSION Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/β-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.
Collapse
Affiliation(s)
- Jingyao Ruan
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qi Tian
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Siting Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Xiaoyu Zhou
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Qianzhi Sun
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yuning Wang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China
| | - Yinping Xiao
- Department of Pathology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kaikai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Xiaofang Yi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, 419# Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
39
|
Abdurrahman G, Pospich R, Steil L, Gesell Salazar M, Izquierdo González JJ, Normann N, Mrochen D, Scharf C, Völker U, Werfel T, Bröker BM, Roesner LM, Gómez-Gascón L. The extracellular serine protease from Staphylococcus epidermidis elicits a type 2-biased immune response in atopic dermatitis patients. Front Immunol 2024; 15:1352704. [PMID: 38895118 PMCID: PMC11183529 DOI: 10.3389/fimmu.2024.1352704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/21/2024] Open
Abstract
Background Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.
Collapse
Affiliation(s)
- Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Rebecca Pospich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Leif Steil
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Nicole Normann
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Mrochen
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Lennart M. Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lidia Gómez-Gascón
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Clausen H, Friberg E, Lannering K, Koivu A, Sairanen M, Mellander M, Liuba P. Newborn Screening for High-Risk Congenital Heart Disease by Dried Blood Spot Biomarker Analysis. JAMA Netw Open 2024; 7:e2418097. [PMID: 38913376 PMCID: PMC11197454 DOI: 10.1001/jamanetworkopen.2024.18097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/20/2024] [Indexed: 06/25/2024] Open
Abstract
Importance Congenital heart disease (CHD) is the most common human organ malformation, affecting approximately 1 of 125 newborns globally. Objectives Assessing the performance of 2 diagnostic tests using minimal amounts of dried blood spots (DBS) to identify high-risk CHD compared with controls in a Swedish cohort of neonates. Design, Setting, and Participants This diagnostic study took place in Sweden between 2019 and 2023 and enrolled full-term babies born between 2005 and 2023. All cases were identified through centralized pediatric cardiothoracic surgical services in Lund and Gothenburg, Sweden. Controls were followed up for 1 year to ensure no late presentations of high-risk CHD occurred. Cases were verified through surgical records and echocardiography. Exposure High-risk CHD, defined as cases requiring cardiac surgical management during infancy due to evolving signs of heart failure or types in which the postnatal circulation depends on patency of the arterial duct. Using 3-μL DBS samples, automated quantitative tests for NT-proBNP and interleukin 1 receptor-like 1 (IL-1 RL1; formerly known as soluble ST2) were compared against established CHD screening methods. Main Outcomes and Measures Performance of DBS tests to detect high-risk CHD using receiver operating characteristic curves; Bland-Altman and Pearson correlation analyses to compare IL-1 RL1 DBS with plasma blood levels. Results A total of 313 newborns were included (mean [SD] gestational age, 39.4 [1.3] weeks; 181 [57.8%] male). Mean (SD) birthweight was 3495 (483) grams. Analyzed DBS samples included 217 CHD cases and 96 controls. Among the CHD cases, 188 participants (89.3%) were high-risk types, of which 73 (38.8%) were suspected prenatally. Of the 188 high-risk cases, 94 (50.0%) passed pulse oximetry screening and 36 (19.1%) were initially discharged after birth without diagnoses. Combining NT-proBNP and IL-1 RL1 tests performed well in comparison with existing screening methods and enabled additional identification of asymptomatic babies with receiver operating characteristic area under the curve 0.95 (95% CI, 0.93-0.98). Conclusions and relevance In this diagnostic study, NT-proBNP and IL-1 RL1 DBS assays identified high-risk CHD in a timely manner, including in asymptomatic newborns, and improved overall screening performance in this cohort from Sweden. Prospective evaluation of this novel approach is warranted.
Collapse
Affiliation(s)
- Henning Clausen
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| | - Elin Friberg
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| | - Katarina Lannering
- Medical Faculty, Gothenburg University, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Aki Koivu
- Revvity, Diagnostics Research & Development, Turku, Finland
| | - Mikko Sairanen
- Revvity, Diagnostics Research & Development, Turku, Finland
| | - Mats Mellander
- Medical Faculty, Gothenburg University, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petru Liuba
- Medical Faculty, Lund University, Sweden
- Children’s Heart Centre, Skane’s University Hospital, Lund, Sweden
| |
Collapse
|
41
|
Schmitt P, Duval A, Camus M, Lefrançais E, Roga S, Dedieu C, Ortega N, Bellard E, Mirey E, Mouton-Barbosa E, Burlet-Schiltz O, Gonzalez-de-Peredo A, Cayrol C, Girard JP. TL1A is an epithelial alarmin that cooperates with IL-33 for initiation of allergic airway inflammation. J Exp Med 2024; 221:e20231236. [PMID: 38597952 PMCID: PMC11010340 DOI: 10.1084/jem.20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelium-derived cytokines or alarmins, such as interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP), are major players in type 2 immunity and asthma. Here, we demonstrate that TNF-like ligand 1A (TL1A) is an epithelial alarmin, constitutively expressed in alveolar epithelium at steady state in both mice and humans, which cooperates with IL-33 for early induction of IL-9high ILC2s during the initiation of allergic airway inflammation. Upon synergistic activation by IL-33 and TL1A, lung ILC2s acquire a transient IL-9highGATA3low "ILC9" phenotype and produce prodigious amounts of IL-9. A combination of large-scale proteomic analyses, lung intravital microscopy, and adoptive transfer of ILC9 cells revealed that high IL-9 expression distinguishes a multicytokine-producing state-of-activated ILC2s with an increased capacity to initiate IL-5-dependent allergic airway inflammation. Similar to IL-33 and TSLP, TL1A is expressed in airway basal cells in healthy and asthmatic human lungs. Together, these results indicate that TL1A is an epithelium-derived cytokine and an important cofactor of IL-33 in the airways.
Collapse
Affiliation(s)
- Pauline Schmitt
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anais Duval
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emma Lefrançais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Stéphane Roga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Cécile Dedieu
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Ortega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emilie Mirey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
42
|
Sozzani S, Sozio F, Del Prete A. Chemerin is a key player in antimicrobial defense in skin. Cell Mol Immunol 2024; 21:638-640. [PMID: 38755456 PMCID: PMC11143294 DOI: 10.1038/s41423-024-01159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy.
| | - Francesca Sozio
- Department of Surgery, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
43
|
Kang JY, Choi MR, Kim YM. Nasal instillation of povidone-iodine ameliorates ongoing mucosal inflammation in a pre-sensitized murine model of Der p1-induced allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1046-1057. [PMID: 38078671 DOI: 10.1002/alr.23308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 06/04/2024]
Abstract
BACKGROUND Interleukin (IL)-33, when cleaved into smaller fragments by proteases, becomes hyperactive, contributing to allergic inflammation. Povidone-iodine (PVP-I) is an iodine-based compound that exhibits antimicrobial properties and inhibits proteases. This study aimed to investigate whether PVP-I treatment inhibits IL-33 cleavage, improves allergic rhinitis (AR) symptoms, and suppresses allergic inflammation in a mouse model. METHODS In vitro experiments using full-length recombinant human IL-33 and allergens, including house dust mites or Dermatophagoides pteronyssinus 1, were conducted using western blotting. Fifty BALB/c mice were divided into five groups: control (CON), AR with phosphate-buffered saline treatment (AR), PVP-I treatment (AR + PVP), trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane (E64) treatment (AR + E64), and dexamethasone treatment (AR + Dexa). Nasal symptom scores, including rubbing and sneezing, were measured. The cytokine levels in the nasal lavage fluid (NLF) and the concentration of immunoglobulins in the blood serum were assessed. Nasal mucosa from each group was used for reverse transcriptase-polymerase chain reaction (RT-PCR) and histological analyses were conducted. RESULTS PVP-I treatment reduced nasal symptoms, suppressed allergic inflammation, and decreased the levels of IL-33, IL-5, and IL-13 in the NLF and total immunoglobulin E (IgE) and specific IgE in the serum. Histopathological analysis revealed a reduction in the number of eosinophils and goblet cells in the nasal mucosa of the AR + PVP group when compared to the AR group. RT-PCR and immunofluorescence staining confirmed the downregulation of genes and proteins associated with allergic inflammation. CONCLUSIONS These findings suggest that nasal irrigation with PVP-I may be a promising therapeutic option for managing AR by inhibiting IL-33 activation and suppressing allergic inflammation.
Collapse
Affiliation(s)
- Jae-Yoon Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Mi-Ra Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Yong Min Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, College of Medicine, Daejeon, South Korea
| |
Collapse
|
44
|
Li Y, Zhang H, Pandya H, Miao L, Reid F, Jimenez E, Sadiq MW, Moate R, Lei A, Zhou XH, Kell C, Ding J, Zhang G, Zhao L, Ge X. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Study to Evaluate the Pharmacokinetics, Immunogenicity, Safety, and Tolerability After Subcutaneous Administration of Tozorakimab in Healthy Chinese Participants. Clin Pharmacol Drug Dev 2024; 13:665-671. [PMID: 38523487 DOI: 10.1002/cpdd.1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
Tozorakimab is a high-affinity human immunoglobulin G1 monoclonal antibody that neutralizes interleukin (IL)-33, an IL-1 family cytokine. This phase 1, single-center, randomized, double-blind, placebo-controlled, single ascending dose study (NCT05070312) evaluated tozorakimab in a healthy Chinese population. Outcomes included the characterization of the pharmacokinetic (PK) profile and immunogenicity of tozorakimab. Safety outcomes included treatment-emergent adverse events (TEAEs) and clinical laboratory, electrocardiogram, and vital sign parameters. Healthy, non-smoking, male, and female Chinese participants aged 18-45 years with a body mass index 19-24 kg/m2 were enrolled. In total, 36 participants across 2 cohorts of 18 participants were randomized 2:1 to receive a single subcutaneous dose of tozorakimab (300 mg [2 mL] or 600 mg [4 mL]) or matching placebo (2 or 4 mL). Tozorakimab showed dose-dependent serum PK concentrations with an approximate monophasic distribution in serum over time and a maximum observed peak concentration of 20.1 and 33.7 μg/mL in the 300- and 600-mg cohorts, respectively. No treatment-emergent anti-drug antibodies for tozorakimab were observed in any of the participants. There were no clinically relevant trends in the occurrence of TEAEs across the treatment groups. There were no clinically relevant trends over time in clinical laboratory (hematology, clinical chemistry, and urinalysis), electrocardiogram, or vital sign parameters in any treatment group. Overall, tozorakimab demonstrated dose-dependent systemic exposure in healthy Chinese participants and was well tolerated, with no safety concerns identified in this study.
Collapse
Affiliation(s)
- Yunfei Li
- Clinical Pharmacologist, R&D China, AstraZeneca, Shanghai, China
| | - Hua Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Soochow City, Jiangsu Province, China
| | - Hitesh Pandya
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Soochow City, Jiangsu Province, China
| | - Fred Reid
- Clinical Development, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eulalia Jimenez
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Barcelona, Spain
| | - Muhammad Waqas Sadiq
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rachel Moate
- Early Biostatistics and Statistical Innovation, Data Science and AI, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Alejhandra Lei
- Global Patient Safety BioPharma, Chief Medical Office, R&D, AstraZeneca, Barcelona, Spain
| | - Xiao-Hong Zhou
- Global Patient Safety BioPharma, Chief Medical Office, R&D, AstraZeneca, Gothenburg, Sweden
| | - Chris Kell
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Junjie Ding
- Clinical Pharmacology, R&D China, AstraZeneca, Shanghai, China
| | | | - Lina Zhao
- Clinical Development, Research, Respiratory and Immunology, R&D China, AstraZeneca, Shanghai, China
| | - Xiaoyun Ge
- Clinical Safety, R&D China, AstraZeneca, Shanghai, China
| |
Collapse
|
45
|
Hofherr A, Liarte Marin E, Musial B, Seth A, Slidel T, Conway J, Baker D, Hansen PB, Challis B, Bartesaghi S, Bhat M, Pecoits-Filho R, Tu X, Selvarajah V, Woollard K, Heerspink HJ. Inhibition of Interleukin-33 to Reduce Glomerular Endothelial Inflammation in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1876-1891. [PMID: 38899206 PMCID: PMC11184260 DOI: 10.1016/j.ekir.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Inflammation is a significant contributor to cardiorenal morbidity and mortality in diabetic kidney disease (DKD). The pathophysiological mechanisms linking systemic, subacute inflammation and local, kidney injury-initiated immune maladaptation is partially understood. Methods Here, we explored the expression of proinflammatory cytokines in patients with DKD; investigated mouse models of type 1 and type 2 diabetes (T2D); evaluated glomerular signaling in vitro; performed post hoc analyses of systemic and urinary markers of inflammation; and initiated a phase 2b clinical study (FRONTIER-1; NCT04170543). Results Transcriptomic profiling of kidney biopsies from patients with DKD revealed significant glomerular upregulation of interleukin-33 (IL-33). Inhibition of IL-33 signaling reduced glomerular damage and albuminuria in the uninephrectomized db/db mouse model (T2D/DKD). On a cellular level, inhibiting IL-33 improved glomerular endothelial health by decreasing cellular inflammation and reducing release of proinflammatory cytokines. Therefore, FRONTIER-1 was designed to test the safety and efficacy of the IL-33-targeted monoclonal antibody tozorakimab in patients with DKD. So far, 578 patients are enrolled in FRONTIER-1. The baseline inflammation status of participants (N > 146) was assessed in blood and urine. Comparison to independent reference cohorts (N > 200) validated the distribution of urinary tumor necrosis factor receptor 1 (TNFR1) and C-C motif chemokine ligand 2 (CCL2). Treatment with dapagliflozin for 6 weeks did not alter these biomarkers significantly. Conclusion We show that blocking the IL-33 pathway may mitigate glomerular endothelial inflammation in DKD. The findings from the FRONTIER-1 study will provide valuable insights into the therapeutic potential of IL-33 inhibition in DKD.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elena Liarte Marin
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Asha Seth
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tim Slidel
- Bioinformatics, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Conway
- Bioinformatics, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - David Baker
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Pernille B.L. Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Bhat
- Translational Science and Experimental Medicine, Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roberto Pecoits-Filho
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
- School of Medicine, Pontificia Universidade de Catolica do Parana, Curitiba, Brazil
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Xiao Tu
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Viknesh Selvarajah
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hiddo J.L. Heerspink
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
47
|
Sun K, Wu C, Kong Q, Hu J, Shi L, Pi Y, Suolitiken D, Cui T, Chen L, He X, Song Z, Wu L, Wang J, Wang Z. Lymphocytes in Patients with Chronic Active Epstein-Barr Virus Disease Exhibited Elevated PD-1/PD-L1 Expression and a Prevailing Th2 Immune Response. Mediterr J Hematol Infect Dis 2024; 16:e2024037. [PMID: 38882461 PMCID: PMC11178049 DOI: 10.4084/mjhid.2024.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background And Objectives Chronic active Epstein-Barr virus disease (CAEBV) is a proliferative disease of EBV+ T or natural killer (NK) cells with an unclear pathogenesis. This study aimed to examine the frequency and exhaustion levels of lymphocyte subsets in patients with CAEBV to further investigate the pathogenesis. Methods Using flow cytometry, we detected the frequency, expression levels of programmed cell death 1 (PD-1) and programmed death ligand 1 (PD-L1), and EBV infection status of peripheral T subsets and NK cells in patients with CAEBV and healthy individuals. Results 24 patients and 15 healthy individuals were enrolled in this study. Patients showed notably higher expression levels of PD-1 and PD-L1 in peripheral T subsets and NK cells compared to healthy individuals (P < 0.05). EBV+ lymphocytes exhibited significantly higher PD-L1 expression levels than EBV- lymphocytes. Additionally, the frequency of effector memory T (Tem) cells was significantly increased in patients, and the PD-L1 expression level was positively correlated with the EBV load. Besides, helper T cell 2 (Th2) immune bias, also favoring EBV amplification, was found in patients, including increased Th2 cell frequency, enhanced response capacity, and elevated serum levels of associated cytokines. The distribution and PD-1 expression levels of peripheral T subsets returned to normal in patients who responded to PD-1 blockade therapy. Conclusions The up-regulation of the PD-1/PD-L1 pathway of peripheral T and NK cells and Th2 immune predominance jointly promoted EBV replication and the development of CAEBV. PD-1 blockade therapy reduced the PD-1 expression level of lymphocytes and helped normalize the distribution of the T subsets.
Collapse
Affiliation(s)
- Kang Sun
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaofan Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Kong
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junxia Hu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yubo Pi
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dina Suolitiken
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Cui
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Leilei Chen
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodan He
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengyang Song
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Wu
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingshi Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Escoubas CC, Molofsky AV. Microglia as integrators of brain-associated molecular patterns. Trends Immunol 2024; 45:358-370. [PMID: 38658221 DOI: 10.1016/j.it.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Microglia are brain-resident macrophages that play key roles in brain development and experience dependent plasticity. In this review we discuss recent findings regarding the molecular mechanisms through which mammalian microglia sense the unique molecular patterns of the homeostatic brain. We propose that microglial function is acutely controlled in response to 'brain-associated molecular patterns' (BAMPs) that function as indicators of neuronal activity and neural circuit remodeling. A further layer of regulation comes from instructive cytokine cues that define unique microglial functional states. A systematic investigation of the receptors and signaling pathways that mediate these two regulatory axes may begin to define a functional code for microglia-neuron interactions.
Collapse
Affiliation(s)
- Caroline C Escoubas
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Departments of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Masuda MY, Pyon GC, Luo H, LeSuer WE, Putikova A, Dao A, Ortiz DR, Schulze AR, Fritz N, Kobayashi T, Iijima K, Klein-Szanto AJ, Shimonosono M, Flashner S, Morimoto M, Pai RK, Rank MA, Nakagawa H, Kita H, Wright BL, Doyle AD. Epithelial overexpression of IL-33 induces eosinophilic esophagitis dependent on IL-13. J Allergy Clin Immunol 2024; 153:1355-1368. [PMID: 38310974 PMCID: PMC11070306 DOI: 10.1016/j.jaci.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.
Collapse
Affiliation(s)
- Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Grace C Pyon
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Huijun Luo
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - William E LeSuer
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Arina Putikova
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Adelyn Dao
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Danna R Ortiz
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Aliviya R Schulze
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Nicholas Fritz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Koji Iijima
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | | | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Masaki Morimoto
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Rish K Pai
- Division of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic, Rochester, and Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
50
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|