1
|
Nedorost S, Zhang G, Fekedulegn D, Fluharty K, Wang W, Frye B, Baron E, Zug K, Yucesoy B. Weak Sensitizers May Be Associated with CD80 Polymorphisms: Implications for Systemic Contact Dermatitis. JID INNOVATIONS 2025; 5:100382. [PMID: 40519868 PMCID: PMC12167014 DOI: 10.1016/j.xjidi.2025.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 06/18/2025] Open
Abstract
Chronic irritant dermatitis predisposes to Th2 skewed allergic contact dermatitis. Chronic hand dermatitis due to wet work or childhood- onset irritant flexural dermatitis (AD) is associated with sensitization to weak or non-sensitizing antigens as defined by the local lymph node (LLN) assay. In about 15% of these patients, ingestion of allergens results in systemic contact dermatitis, defined as recall dermatitis at previous sites. In this large exploratory study, not even known associations (e.g. IL4R and AD) survived correction for tests of multiple associations. As such, we analyzed for associations using p<0.005 combined with OR >1.8 or <0.5. We found that positive patch tests to weak allergens were common with 3 polymorphisms of CD80. CD80 is a co-stimulatory molecule on several cell types including innate lymphoid group 2 cells (ILC2). ILC2 presentation may bypass education in the local lymph node, explaining the association of antigens classified as non-sensitizers in LLN assay with CD80, and the absence of symptoms of immediate type hypersensitivity in many of these patients. Food handlers with hand dermatitis and patients with atopic dermatitis should be patch tested to allergens in foods (e.g. propylene glycol, vanillin, nickel, cobalt, and chromates) and instructed on dietary restriction of these allergens.
Collapse
Affiliation(s)
- Susan Nedorost
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Desta Fekedulegn
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Kara Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Wei Wang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Bonnie Frye
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Elma Baron
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Kathryn Zug
- Department of Dermatology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Berran Yucesoy
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Colpitts SJ, Jegatheeswaran S, Oakie A, Mashhouri S, Sachewsky N, Murshed H, Mathews JA, Reid KT, Misra PS, Fung VCW, Reichman TW, Nostro MC, Verchere CB, Levings MK, Crome SQ. Cell therapy with human IL-10-producing ILC2s enhances islet function and inhibits allograft rejection. Am J Transplant 2025:S1600-6135(25)00280-1. [PMID: 40412656 DOI: 10.1016/j.ajt.2025.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Group 2 innate lymphoid cells (ILC2s) that produce IL-10 (IL-10+ILC2s) have demonstrated regulatory and tissue-protective properties in murine studies, but preclinical studies are lacking that explore the potential of human IL-10+ILC2s as a tolerance-promoting cell therapy for transplantation or autoimmunity. Here, we investigated whether human IL-10+ILC2s could enhance islet function and prevent allograft rejection in humanized mouse models of islet transplantation. In vitro, human IL-10+ILC2s did not display cytotoxicity towards allogeneic deceased-donor islets or stem cell-derived islet-like cells, and co-transplantation with IL-10+ILC2s significantly improved glucose control post-transplantation. Allogeneic IL10+ILC2s directly inhibited T cell-mediated cytotoxicity against islet-like cells in vitro, and in an antigen-specific transplant rejection model, prevented T cell-mediated rejection of deceased donor islet grafts. Effects were greater with allogeneic IL-10+ILC2s, as autologous cells did not inhibit T cell IFN-γ production or cytotoxic activity in vitro, and were not sufficient to prevent islet rejection in vivo.Collectively, these studies provide proof-of-principle that human IL-10+ILC2s have therapeutic potential for islet transplantation and type 1 diabetes, and support their use as an allogeneic regulatory cell therapy.
Collapse
Affiliation(s)
- Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Siavash Mashhouri
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Nadia Sachewsky
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Humaira Murshed
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Kyle T Reid
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Paraish S Misra
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Vivian C W Fung
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Trevor W Reichman
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Webb LM, Warner LM, Helm EY, Mooney BM, Sundaravaradan P, Matheson MK, Christopher T, Espinoza AL, Tait Wojno ED. Notch-activated basophils support intestinal CD4 + T cell fate and function during helminth infection. Mucosal Immunol 2025:S1933-0219(25)00051-0. [PMID: 40383395 DOI: 10.1016/j.mucimm.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Helminth infections affect billions of people worldwide and cause substantial morbidity. Intestinal helminth infection provokes Type 2 inflammation orchestrated by CD4+ T helper type 2 (Th2) cells. Th2 cells cooperate with group 2 innate lymphoid cells (ILC2s) to produce interleukin (IL)-4 and IL-13 that prompt an epithelial "weep and sweep" response to drive parasite clearance. Tissue-specific cues optimize CD4+ T cell responses, but the mechanisms regulating intestinal Th2 responses remain unclear. Previously, we identified that the Notch signaling pathway in basophils, rare granulocytes, drove effective parasite clearance and an optimal Th2 response during Trichuris muris infection, a mouse model of human whipworm infection. Here we report that basophil-intrinsic Notch was required for infection-elicited Th2 cytokine responses and a broader IL-4 production program across intestinal CD4+ T cell subsets. In vitro, basophils supported CD4+ T cell IL-4 production in a contact-dependent manner, independent of basophil-secreted factors and MHC class II, but dependent on autocrine IL-4 production from CD4+ T cells. In vivo, basophil-intrinsic Notch mediated basophil-Th2 cell interactions in the cecum during infection. Thus, Notch-programmed basophils act in a contact-dependent manner to optimize intestinal CD4+ T cell function during helminth infection. These findings improve our understanding of the tissue-specific mechanisms regulating intestinal CD4+ T cell responses at inflamed mucosal barriers during Type 2 immunity.
Collapse
Affiliation(s)
- Lauren M Webb
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lindsey M Warner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric Y Helm
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bridget M Mooney
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Macy K Matheson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tighe Christopher
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Elia D Tait Wojno
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Thio CLP, Shao JS, Luo CH, Chang YJ. Decoding innate lymphoid cells and innate-like lymphocytes in asthma: pathways to mechanisms and therapies. J Biomed Sci 2025; 32:48. [PMID: 40355861 PMCID: PMC12067961 DOI: 10.1186/s12929-025-01142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Asthma is a chronic inflammatory lung disease driven by a complex interplay between innate and adaptive immune components. Among these, innate lymphoid cells (ILCs) and innate-like lymphocytes have emerged as crucial players in shaping the disease phenotype. Within the ILC family, group 2 ILCs (ILC2s), in particular, contribute significantly to type 2 inflammation through their rapid production of cytokines such as IL-5 and IL-13, promoting airway eosinophilia and airway hyperreactivity. On the other hand, innate-like lymphocytes such as invariant natural killer T (iNKT) cells can play either pathogenic or protective roles in asthma, depending on the stimuli and lung microenvironment. Regulatory mechanisms, including cytokine signaling, metabolic and dietary cues, and interactions with other immune cells, play critical roles in modulating their functions. In this review, we highlight current findings on the role of ILCs and innate-like lymphocytes in asthma development and pathogenesis. We also examine the underlying mechanisms regulating their function and their interplay with other immune cells. Finally, we explore current therapies targeting these cells and their effector cytokines for asthma management.
Collapse
Affiliation(s)
- Christina Li-Ping Thio
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
| | - Jheng-Syuan Shao
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
5
|
Belmares-Ortega J, Zara Issoufou Kapran F, Denkers EY. Influence of MyD88 and αβ T cells on mesenteric lymph node innate lymphoid cell populations during Toxoplasma gondii infection. PLoS One 2025; 20:e0322116. [PMID: 40299872 PMCID: PMC12040133 DOI: 10.1371/journal.pone.0322116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
First encounter of Toxoplasma with the host immune system occurs within tissues of the intestine, including the intestinal mucosa and draining lymph nodes. In this study, we focused on the mesenteric lymph node compartment, the central hub of adaptive immune induction following orally acquired infection. We examined innate lymphoid cells (ILC) in mesenteric lymph nodes during Toxoplasma infection, determining the influence of MyD88 and the T lymphocyte compartment on ILC subset distribution, IFN-γ production, MHC class II expression and proliferation. Collectively, we observed an ILC1-dominated response that was impacted by both MyD88 and T lymphocytes. We also found a population of putative ILC that were negative for signature transcription factors associated with ILC1, 2 and 3 subsets. This study increases our understanding of ILC-mediated immunity during Toxoplasma infection and points to the complex interactions with which these cells engage T cell and MyD88-dependent immunity.
Collapse
Affiliation(s)
- Jessica Belmares-Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Fatouma Zara Issoufou Kapran
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
6
|
Liu G, Huang H, Wang Y, Han Y, Wang J, Shi M, Zhou P, Chen C, Yu Y, Liu Q, Zhou J. ILC2 instructs neural stem and progenitor cells to potentiate neurorepair after stroke. Neuron 2025:S0896-6273(25)00186-2. [PMID: 40233748 DOI: 10.1016/j.neuron.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Stroke affects approximately 1 in 6 individuals globally and is the leading cause of adult disability, which is attributed to neuronal damage and neurological impairments. The mechanisms by which the brain tissue microenvironment supports neurogenesis and neurorepair post-stroke remain to be fully elucidated. In this study, we report that group 2 innate lymphoid cells (ILC2s) accumulate within the lesion core and subventricular zone (SVZ) during brain recovery following cerebral ischemia. Mice with ILC2 deficiency display impaired neurological scoring post-stroke. Mechanistic studies reveal that brain ILC2s enhance the proliferation of neural stem and progenitor cells (NSPCs) through the secretion of amphiregulin (Areg). Adoptive transfer of ILC2s or administration of Areg markedly improves neurological outcomes post-stroke. These findings demonstrate that ILC2s and their secreted products may represent a promising therapeutic strategy for enhancing neurorepair following brain injury.
Collapse
Affiliation(s)
- Gaoyu Liu
- Department of Oncology, Laboratory of Immunity, Inflammation & Cancer, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Division of Hematology/Oncology, Department of Pediatrics, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yali Han
- Department of Neurology, Tianjin Neurological Institute, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianye Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mengxuan Shi
- Department of Neurology, Tianjin Neurological Institute, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Tianjin 300070, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Jie Zhou
- Department of Oncology, Laboratory of Immunity, Inflammation & Cancer, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
7
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
8
|
Iliakis CS, Crotta S, Wack A. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Annu Rev Immunol 2025; 43:395-422. [PMID: 40036704 DOI: 10.1146/annurev-immunol-082323-031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
Collapse
Affiliation(s)
- Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
9
|
Yu D, Gao X, Shao F, Liu Z, Liu A, Zhao M, Tang Z, Guan Y, Wang S. Antigen-presenting innate lymphoid cells induced by BCG vaccination promote a respiratory antiviral immune response through the skin‒lung axis. Cell Mol Immunol 2025; 22:390-402. [PMID: 39962263 PMCID: PMC11955553 DOI: 10.1038/s41423-025-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/30/2025] [Indexed: 04/01/2025] Open
Abstract
The route of vaccine administration is associated with various immune outcomes, and the relationship between the route of administration and broad protection against heterologous pathogens remains unclear. Here, we found that subcutaneous vaccination with Bacillus Calmette-Guérin (BCG) promotes respiratory influenza clearance and T-cell responses. Group 1 innate lymphoid cells (ILC1s) express MHCII molecules and engage in antigen processing and presentation after BCG vaccination. During influenza virus infection, ILC1s in the lungs of BCG-vaccinated mice can present influenza virus antigens and prime Th1 cells. After subcutaneous vaccination with BCG, MHCII+ ILC1s migrate from the skin to the lungs and play an antigen-presenting role in influenza infection. Both the BCG and the BCG component lipomannan can induce MHCII expression and skin-to-lung migration of ILC1s via TLR2 signaling. Our study revealed an important regulatory mechanism by which subcutaneous vaccination with BCG promotes respiratory antiviral immune responses via the skin‒lung axis.
Collapse
Affiliation(s)
- Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xintong Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aoyi Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhuozhou Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yude Guan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
10
|
Kreimeyer H, Llorente C, Schnabl B. Influence of Alcohol on the Intestinal Immune System. Alcohol Res 2025; 45:03. [PMID: 40151622 PMCID: PMC11913448 DOI: 10.35946/arcr.v45.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Alcohol misuse is associated with disruption of the microbial homeostasis (dysbiosis) and microbial overgrowth in the gut, gut barrier disruption, and translocation of microbes into the systemic circulation. It also induces changes in regulatory mechanisms of the gut, which is the largest peripheral immune organ. The gut-liver axis is important for health and disease, and alterations in the intestinal immune system contribute to alcohol-associated liver disease (ALD). Understanding these changes might help discover new targets for drugs and therapeutic approaches. SEARCH METHODS A systematic literature search was conducted in PubMed, Medline, and Embase of manuscripts published between January 2000 and November 2023 using the terms ("alcohol" or "ethanol") AND ("immune" or "immunol") AND ("intestine," "colon," or "gut"). Eligible manuscripts included studies and reviews that discussed the effects of ethanol on immune cells in the intestine. SEARCH RESULTS A total of 506 publications were found in the databases on November 20, 2023. After excluding duplicates and research not covering ALD (415 articles), 91 studies were reviewed. Also included were manuscripts covering specific immune cells in the context of ALD. DISCUSSION AND CONCLUSIONS Balancing immune tolerance vs. initiating an immune response challenges the intestinal immune system. Alcohol induces disruption of the intestinal barrier, which is accompanied by a thicker mucus layer and reduced anti-microbial peptides. This leads to longer attachment of bacteria to epithelial cells and consequently greater translocation into the circulation. Bacterial translocation activates the immune system, reducing the activity of regulatory T cells and inducing T helper 17 response via a variety of pathways. The role of innate immune cells, especially Type 3 innate lymphoid cells, and of specific B- and T-cell subsets in ALD remains elusive. Gut dysbiosis, translocation of viable bacteria and bacterial products into the circulation, and changes in the intestinal barrier have been linked to immune deficiency and infections in patients with cirrhosis. Modifying the intestinal immune system could reduce intestinal inflammation and alcohol-induced liver injury. Understanding the underlying pathophysiology can help to detect new targets for drugs and design therapeutic strategies.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, U.S. Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
11
|
Cardinale CJ, Liu Y, Kevadia A, Strong A, Watts VJ, Hakonarson H. The ulcerative colitis risk gene adenylyl cyclase 7 restrains the T-helper 2 phenotype and Class II antigen presentation. J Crohns Colitis 2025; 19:jjaf030. [PMID: 39957491 PMCID: PMC11920793 DOI: 10.1093/ecco-jcc/jjaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have shown that the most risk-conferring genetic polymorphism for ulcerative colitis (UC) outside the human leukocyte antigen locus is the amino acid substitution p.Asp439Glu in the adenylyl cyclase 7 gene (ADCY7). ADCY7 is the main isoform in the hematopoietic system and produces the second messenger cyclic AMP (cAMP) downstream of G protein-coupled receptor signaling. Our aim was to determine the contribution of this polymorphism to UC risk by analyzing its effect on ADCY7 function in cell-based assays. METHODS We characterized the p.Asp439Glu variant in cell lines using western blots, immunofluorescence, cAMP assay, and luciferase assay. We modeled this variant using siRNA knock-down in human primary CD4+ T cells and characterized them by RNA-seq, viability assay, flow cytometry, cAMP assay, and ELISA. RESULTS The p.Asp439Glu variant is deficient in protein expression but retains membrane localization. This results in a 40% reduction in cAMP synthesis and luciferase reporter expression. Knock-down of ADCY7 in T cells reduces the expression of ribosomal proteins and cAMP signaling proteins, while skewing cytokine production toward a T-helper 2 pattern and upregulating antigen presentation accompanied by increased surface expression of major histocompatibility complex Class II and CD86. CONCLUSIONS The UC risk-conferring variant, p.Asp439Glu, in ADCY7 reduces cyclic AMP signaling, leading to modifications in cytokine profile and antigen presentation. Medications that enhance cyclic AMP by direct activation of ADCY7 or by phosphodiesterase inhibition may be beneficial in this disease.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aayush Kevadia
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alanna Strong
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Olsthoorn SEM, van Krimpen A, Hendriks RW, Stadhouders R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol Rev 2025; 330:e70010. [PMID: 40016948 PMCID: PMC11868696 DOI: 10.1111/imr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Asthma is a common chronic inflammatory disease of the airways. A substantial number of patients present with severe and therapy-resistant asthma, for which the underlying biological mechanisms remain poorly understood. In most asthma patients, airway inflammation is characterized by chronic activation of type 2 immunity. CD4+ T helper 2 (Th2) cells are the canonical producers of the cytokines that fuel type 2 inflammation: interleukin (IL)-4, IL-5, IL-9, and IL-13. However, more recent findings have shown that other lymphocyte subsets, in particular group 2 innate lymphoid cells (ILC2s) and type 2 CD8+ cytotoxic T (Tc2) cells, can also produce large amounts of type 2 cytokines. Importantly, a substantial number of severe therapy-resistant asthma patients present with chronic type 2 inflammation, despite the high sensitivity of Th2 cells for suppression by corticosteroids-the mainstay drugs for asthma. Emerging evidence indicates that ILC2s and Tc2 cells are more abundant in severe asthma patients and can adopt corticosteroid-resistance states. Moreover, many severe asthma patients do not present with overt type 2 airway inflammation, implicating non-type 2 immunity as a driver of disease. In this review, we will discuss asthma pathophysiology and focus on the roles played by ILC2s, Tc2 cells, and non-type 2 lymphocytes, placing special emphasis on severe disease forms.
Collapse
Affiliation(s)
- Simone E. M. Olsthoorn
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
13
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Uemura K, Katayama KI, Nishioka T, Watanabe H, Yamada G, Inoue N, Asamura S. Dynamics of Immune Cell Infiltration and Fibroblast-Derived IL-33/ST2 Axis Induction in a Mouse Model of Post-Surgical Lymphedema. Int J Mol Sci 2025; 26:1371. [PMID: 39941140 PMCID: PMC11818732 DOI: 10.3390/ijms26031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Lymphedema is an intractable disease most commonly associated with lymph node dissection for cancer treatment and can lead to a decreased quality of life. Type 2 T helper (Th2) lymphocytes have been shown to be important in the progression of lymphedema. The activation of IL-33 and its receptor, the suppression of tumorigenicity 2 (ST2) signaling pathway, induces the differentiation of Th2 cells, but its involvement in lymphedema remains unclear. In the present study, we analyzed the dynamics of immune cell infiltration, including the IL-33/ST2 axis, in a mouse tail lymphedema model. Neutrophil infiltration was first detected in the lymphedema tissue on postoperative day (POD) 2. Macrophage infiltration increased from POD 2 to 5. The number of CD4+ T cells, including 50% Tregs, gradually increased from POD 14. The mRNA expression of ll13 and Ifng increased on POD 21. The expression of IL-33 was induced in fibroblast nuclei within dermal and subcutaneous tissues from POD 2, and the expression of the Il1rl1 gene encoding ST2 increased from POD 7. We demonstrated the infiltration process from innate to acquired immune cells through the development of a mouse tail lymphedema. The IL-33/ST2 axis was found to be induced during the transition from innate to acquired immunity.
Collapse
Affiliation(s)
- Kazuhisa Uemura
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Kei-ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Toshihiko Nishioka
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Hikaru Watanabe
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Gen Yamada
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Shinichi Asamura
- Department of Plastic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (K.U.); (T.N.); (H.W.); (G.Y.); (S.A.)
| |
Collapse
|
15
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025; 638:1076-1084. [PMID: 39814891 PMCID: PMC11864983 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Tokura Y, Yunoki M, Kondo S, Otsuka M. What is "eczema"? J Dermatol 2025; 52:192-203. [PMID: 39301836 PMCID: PMC11807370 DOI: 10.1111/1346-8138.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Eczema is the most common category of inflammatory skin disorders as dermatologists see many patients with eczematous diseases in daily practice. It is characterized by the three major morphological features: multiple-pinpoint condition, polymorphism, and itch. To describe polymorphism, "eczema triangle" has been used in German/Japanese dermatology. The multiple pinpoints correspond to numerous tiny foci from which individual papules/vesicles arise. The polymorphism betrays composition of erythema, papule, seropapule, vesicle, pustule, scale, and crust, which are seen in acute eczema. Meanwhile, chronic eczema is represented by lichenification and hyperpigmentation, and possibly by hypopigmentation. In acute eczema, spongiosis is associated with overproduction of hyaluronic acid, secretion of self-protective galectin-7, and decreased expression of E-cadherin. In the upper dermis, Th1/Tc1 or Th2/Tc2, and additional Th17, Th22, and/or Tc22 infiltrate, depending on each eczematous disease. Innate lymphoid cells are also involved in the formation of eczema. In chronic eczema, periostin contributes to remodeling of inflammatory skin with dermal fibrosis, and epidermal melanogenesis and dermal pigment deposition result in hyperpigmentation. Finally, eczematous diseases are potentially associated with increased risk of comorbidities, including not only other allergic diseases but also coronary heart disease and mental problems such as depression. Although the original word for eczema is derived from old Greek "ekzein," eczema remains a major target of modern science and novel therapies.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
- Allergic Disease Research CenterChutoen General Medical CenterKakegawaJapan
| | - Marina Yunoki
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Shumpei Kondo
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| | - Masaki Otsuka
- Department of Dermatology and Skin OncologyChutoen General Medical CenterKakegawaJapan
| |
Collapse
|
17
|
Burrows K, Ngai L, Chiaranunt P, Watt J, Popple S, Forde B, Denha S, Olyntho VM, Tai SL, Cao EY, Tejeda-Garibay S, Koenig JFE, Mayer-Barber KD, Streutker CJ, Hoyer KK, Osborne LC, Liu J, O'Mahony L, Mortha A. A gut commensal protozoan determines respiratory disease outcomes by shaping pulmonary immunity. Cell 2025; 188:316-330.e12. [PMID: 39706191 PMCID: PMC11761380 DOI: 10.1016/j.cell.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
The underlying mechanisms used by the intestinal microbiota to shape disease outcomes of the host are poorly understood. Here, we show that the gut commensal protozoan, Tritrichomonas musculis (T.mu), remotely shapes the lung immune landscape to facilitate perivascular shielding of the airways by eosinophils. Lung-specific eosinophilia requires a tripartite immune network between gut-derived inflammatory group 2 innate lymphoid cells and lung-resident T cells and B cells. This network exacerbates the severity of allergic airway inflammation while hindering the systemic dissemination of pulmonary Mycobacterium tuberculosis. The identification of protozoan DNA sequences in the sputum of patients with severe allergic asthma further emphasizes the relevance of commensal protozoa in human disease. Collectively, these findings demonstrate that a commensal protozoan tunes pulmonary immunity via a gut-operated lung immune network, promoting both beneficial and detrimental disease outcomes in response to environmental airway allergens and pulmonary infections.
Collapse
Affiliation(s)
- Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sarah Popple
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Brian Forde
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Saven Denha
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vitoria M Olyntho
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Susana Tejeda-Garibay
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Joshua F E Koenig
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katrina K Hoyer
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Lisa C Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liam O'Mahony
- Department of Medicine, University College Cork, Cork, Ireland
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Aldossary H, Karkout R, Couto K, Labrie L, Fixman ED. IL-33-experienced group 2 innate lymphoid cells in the lung are poised to enhance type 2 inflammation selectively in adult female mice. Respir Res 2024; 25:427. [PMID: 39633345 PMCID: PMC11619098 DOI: 10.1186/s12931-024-03043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
While Th2 adaptive immunity has long been considered to orchestrate type 2 inflammation in the allergic lung, group 2 innate lymphoid cells (ILC2s), with the ability to produce a similar profile of type 2 cytokines, likely participate in lung inflammation in allergic asthma. ILC2s are also implicated in sex disparities in asthma, supported by data from murine models showing they are inhibited by male sex hormones. Moreover, larger numbers of ILC2s are present in the lungs of female mice and are correlated with greater type 2 inflammation. Lung ILC2s exhibit intriguing memory-like responses, though whether these differ in males and females does not appear to have been addressed. We have examined type 2 lung inflammation in adult male and female Balb/c mice following delivery of IL-33 to the lung. While the number of ILC2s was elevated equally in males and females four weeks after exposure to IL-33, ILC2s from female mice expressed higher levels of ST2, the IL-33 cognate receptor subunit, and a larger proportion of ILC2s from females expressed the IL-25 receptor (IL-25R), which has previously been linked to memory-like ILC2 responses in mice. Our data show that the subset of ILC2s expressing IL-25R, upon activation, was more likely to produce IL-5 and IL-13. Moreover, STAT6 was absolutely required for enhanced responsiveness in this model system. Altogether, our data show that enhanced type 2 inflammation in females is linked to durable changes in ILC2 subsets with the ability to respond more robustly, in a STAT6-dependent manner, upon secondary activation by innate epithelial-derived cytokines.
Collapse
Affiliation(s)
- Haya Aldossary
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Rami Karkout
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Katalina Couto
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lydia Labrie
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elizabeth D Fixman
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
19
|
Kania AK, Kokkinou E, Pearce E, Pearce E. Metabolic adaptations of ILC2 and Th2 cells in type 2 immunity. Curr Opin Immunol 2024; 91:102503. [PMID: 39520759 DOI: 10.1016/j.coi.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Type 2 immune responses play a crucial role in host defense against parasitic infections but can also promote the development of allergies and asthma. This response is orchestrated primarily by group 2 innate lymphoid cells (ILC2) and helper type 2 (Th2) cells, both of which undergo substantial metabolic reprogramming as they transition from resting to activated states. Understanding these metabolic adaptations not only provides insights into the fundamental biology of ILC2 and Th2 cells but also opens up potential therapeutic avenues for the identification of novel metabolic targets that can extend the current treatment regimens for diseases in which type 2 immune responses play pivotal roles. By integrating recent findings, this review underscores the significance of cellular metabolism in orchestrating immune functions and highlights future directions for research in this evolving field.
Collapse
Affiliation(s)
- Anna K Kania
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efthymia Kokkinou
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Sorkhdini P, Klubock-Shukla K, Sheth S, Yang D, Yang AX, Norbrun C, Introne WJ, Gochuico BR, Zhou Y. Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome. JCI Insight 2024; 9:e178381. [PMID: 39405112 PMCID: PMC11601950 DOI: 10.1172/jci.insight.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS), particularly types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on type 2 innate lymphoid cells (ILC2s) and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from patients with idiopathic pulmonary fibrosis and HPS. Using bleomycin-challenged WT and Hps1-/- mice, we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted coculture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Kiran Klubock-Shukla
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Selena Sheth
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Alina Xiaoyu Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Wendy J. Introne
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Battut L, Leveque E, Valitutti S, Cenac N, Dietrich G, Espinosa E. IL-33-primed human mast cells drive IL-9 production by CD4 + effector T cells in an OX40L-dependent manner. Front Immunol 2024; 15:1470546. [PMID: 39416773 PMCID: PMC11479898 DOI: 10.3389/fimmu.2024.1470546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Interleukin-33 (IL-33) is an alarmin released by epithelial cells in response to tissue damage. It activates resident immune sentinel cells, which then produce signals commonly associated with type 2 immune responses, particularly affecting infiltrating antigen-specific T cells. Given that mast cells (MCs) are a primary target of IL-33 and can shape T helper (Th) cell responses, we investigated the effect of IL-33 priming on the ability of MCs to influence Th cell cytokine production. To examine the Th cell/MC interaction, we developed human primary MC/memory CD4+ T-cell coculture systems involving both cognate and non-cognate interactions. Our results demonstrated that IL-33-primed MCs, whether as bystander cells cocultured with activated effector T cells or functioning as antigen-presenting cells, promoted IL-9 and increased IL-13 production in Th cells via an OX40L-dependent mechanism. This indicates that MCs sense IL-33-associated danger, prompting them to direct Th cells to produce the key type 2 effector cytokines IL-9 and IL-13.
Collapse
Affiliation(s)
- Louise Battut
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Edouard Leveque
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
| | - Salvatore Valitutti
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM UMR1037, CNRS UMR5071, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, CHU Toulouse, Toulouse, France
| | - Nicolas Cenac
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Gilles Dietrich
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| | - Eric Espinosa
- Université Toulouse III – Paul Sabatier, FSI, Toulouse, France
- Inserm, U1220, Institut de Recherche en Santé Digestive (IRSD), INRAE, INP-ENVT, Toulouse, France
| |
Collapse
|
23
|
Ilangovan J, Neves JF, Santos AF. Innate lymphoid cells in immunoglobulin E-mediated food allergy. Curr Opin Allergy Clin Immunol 2024; 24:419-425. [PMID: 39132724 PMCID: PMC11356679 DOI: 10.1097/aci.0000000000001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW Recognition of the importance of innate lymphoid cells (ILCs) in the immune mechanisms of food allergy has grown in recent years. This review summarizes recent findings of ILCs in immunoglobulin E (IgE)-mediated food allergy. New research on ILCs in the context of the microbiome and other atopic diseases are also considered with respect to how they can inform understanding of the role of ILCs in food allergy. RECENT FINDINGS ILCs can mediate allergic and tolerogenic responses through multiple pathways. A novel subset of interleukin (IL)-10 producing ILC2s are associated with tolerance following immunotherapy to grass pollen, house dust mite allergy and lipid transfer protein allergy. ILC2s can drive food allergen-specific T cell responses in an antigen-specific manner. A memory subset of ILC2s has been identified through studies of other atopic diseases and is associated with effectiveness of response to therapy. SUMMARY The role of ILCs in food allergy and oral tolerance is relatively understudied compared to other diseases. ILCs can modulate immune responses through several mechanisms, and it is likely that these are of importance in the context of food allergy. Better understanding of theses pathways may help to answer fundamental questions regarding the development of food allergy and lead to novel therapeutic targets and treatment.
Collapse
Affiliation(s)
- Janarthanan Ilangovan
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Centre for Host Microbiome Interactions
| | | | - Alexandra F. Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London
- Children's Allergy Service, Guy's and St Thomas’ Hospital, London, UK
| |
Collapse
|
24
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
25
|
Ju X, Nagashima A, Dvorkin-Gheva A, Wattie J, Howie K, Whetstone C, Ranjbar M, Cusack R, Ditta R, Paré G, Satia I, O'Byrne PM, Gauvreau GM, Sehmi R. Neuromedin-U Mediates Rapid Activation of Airway Group 2 Innate Lymphoid Cells in Mild Asthma. Am J Respir Crit Care Med 2024; 210:755-765. [PMID: 38598774 DOI: 10.1164/rccm.202311-2164oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024] Open
Abstract
Rationale: In asthma, sputum group 2 innate lymphoid cells (ILC2s) are activated within 7 hours after allergen challenge. Neuroimmune interactions mediate rapid host responses at mucosal interfaces. In murine models of asthma, lung ILC2s colocalize to sensory neuronal termini expressing the neuropeptide neuromedin U (NMU), which stimulates type 2 (T2) cytokine secretion by ILC2s, with additive effects to alarmins in vitro. Objectives: To investigate the effect of the NMU/NMUR1 (NMU receptor 1) axis on early activation of ILC2s in asthma. Methods: Subjects with mild asthma (n = 8) were enrolled in a diluent-controlled allergen inhalation challenge study. Sputum ILC2 expression of NMUR1 and T2 cytokines was enumerated by flow cytometry, and airway NMU levels were assessed by ELISA. This was compared with samples from subjects with moderate to severe asthma (n = 9). Flow sort-purified and ex vivo-expanded ILC2s were used for functional assays and transcriptomic analyses. Measurements and Main Results: Significant increases in sputum ILC2s expressing NMUR1 were detected 7 hours after allergen versus diluent challenge whereby the majority of NMUR1+ ILC2s expressed IL-5/IL-13. Sputum NMUR1+ ILC2 counts were significantly greater in mild versus moderate to severe asthma, and NMUR1+ ILC2s correlated inversely with the dose of inhaled corticosteroid in the latter group. Coculturing with alarmins upregulated NMUR1 in ILC2s, which was attenuated by dexamethasone. NMU-stimulated T2 cytokine expression by ILC2s, maximal at 6 hours, was abrogated by dexamethasone or specific signaling inhibitors for mitogen-activated protein kinase 1/2 and phosphoinositol 3-kinase but not the IL-33 signaling moiety MyD88 in vitro. Conclusions: The NMU/NMUR1 axis stimulates rapid effects on ILC2s and may be an important early activator of these cells in eosinophilic inflammatory responses in asthma.
Collapse
Affiliation(s)
- Xiaotian Ju
- Respiratory Research Group, Department of Medicine, and
| | | | - Anna Dvorkin-Gheva
- The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
| | | | - Karen Howie
- Respiratory Research Group, Department of Medicine, and
| | | | - Maral Ranjbar
- Respiratory Research Group, Department of Medicine, and
| | - Ruth Cusack
- Respiratory Research Group, Department of Medicine, and
| | - Reina Ditta
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; and
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada; and
| | - Imran Satia
- Respiratory Research Group, Department of Medicine, and
- The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
| | | | | | - Roma Sehmi
- Respiratory Research Group, Department of Medicine, and
- The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Al-Aghbar MA, Espino Guarch M, van Panhuys N. IL-2 amplifies quantitative TCR signalling inputs to drive Th1 and Th2 differentiation. Immunology 2024; 173:196-208. [PMID: 38887097 DOI: 10.1111/imm.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Meritxell Espino Guarch
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Nicholas van Panhuys
- Laboratory of Immunoregulation, Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, NIH, Bethesda, Maryland, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
27
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
28
|
López DA, Griffin A, Aguilar LM, Deering-Rice C, Myers EJ, Warren KJ, Welner RS, Beaudin AE. Prenatal inflammation remodels lung immunity and function by programming ILC2 hyperactivation. Cell Rep 2024; 43:114365. [PMID: 38909363 DOI: 10.1016/j.celrep.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we examine how prenatal inflammation shapes tissue function and immunity in the lung by reprogramming tissue-resident immune cells from early development. Maternal, but not fetal, type I interferon-mediated inflammation provokes expansion and hyperactivation of group 2 innate lymphoid cells (ILC2s) seeding the developing lung. Hyperactivated ILC2s produce increased IL-5 and IL-13 and are associated with acute Th2 bias, decreased Tregs, and persistent lung eosinophilia into adulthood. ILC2 hyperactivation is recapitulated by adoptive transfer of fetal liver precursors following prenatal inflammation, indicative of developmental programming at the fetal progenitor level. Reprogrammed ILC2 hyperactivation and subsequent lung immune remodeling, including persistent eosinophilia, is concomitant with worsened histopathology and increased airway dysfunction equivalent to papain exposure, indicating increased asthma susceptibility in offspring. Our data elucidate a mechanism by which early-life inflammation results in increased asthma susceptibility in the presence of hyperactivated ILC2s that drive persistent changes to lung immunity during perinatal development.
Collapse
Affiliation(s)
- Diego A López
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aleah Griffin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Lorena Moreno Aguilar
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Elizabeth J Myers
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Kristi J Warren
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Welner
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Anna E Beaudin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Stockis J, Yip T, Moreno-Vicente J, Burton O, Samarakoon Y, Schuijs MJ, Raghunathan S, Garcia C, Luo W, Whiteside SK, Png S, Simpson C, Monk S, Sawle A, Yin K, Barbieri J, Papadopoulos P, Wong H, Rodewald HR, Vyse T, McKenzie ANJ, Cragg MS, Hoare M, Withers DR, Fehling HJ, Roychoudhuri R, Liston A, Halim TYF. Cross-talk between ILC2 and Gata3 high T regs locally constrains adaptive type 2 immunity. Sci Immunol 2024; 9:eadl1903. [PMID: 39028828 DOI: 10.1126/sciimmunol.adl1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Thomas Yip
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Oliver Burton
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Youhani Samarakoon
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martijn J Schuijs
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Celine Garcia
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Weike Luo
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sarah K Whiteside
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaun Png
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Charlotte Simpson
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stela Monk
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ashley Sawle
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kelvin Yin
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Johanna Barbieri
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Hannah Wong
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Hoare
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hans Jörg Fehling
- Institute of Immunology, University Hospital Ulm, Ulm 89081, Germany
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | |
Collapse
|
30
|
Qin M, Fang Y, Zheng Q, Peng M, Wang L, Sang X, Cao G. Tissue microenvironment induces tissue specificity of ILC2. Cell Death Discov 2024; 10:324. [PMID: 39013890 PMCID: PMC11252336 DOI: 10.1038/s41420-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Type 2 innate lymphoid cells were found to be members of the innate immune cell family, which is involved in innate and adaptive immunity to resist the invasion of foreign antigens and induce allergic reactions caused by allergens. The advancement of ILC2 research has pointed out that ILC2s have a high degree of diversity, challenging the notion of their homogeneity as a cellular population. An increasing number of studies indicate that ILC2 is a cell population with tissue specificity which can be induced by the tissue microenvironment. In addition, crosstalk between tissues can change ILC2 functions of migration and activation. Here, we emphasize that ILC2 undergoes adaptive changes under the regulation of the tissue microenvironment and distant tissues, thereby coordinating the organization's operation. In addition, ILC2 alterations induced by the tissue microenvironment are not limited to the ILC2 cell population, and ILC2 can also transdifferentiate into another class of ILC cell population (ILC1 or ILC3). In this review, we summarized the tissue-specific effects of ILC2 by tissue microenvironment and focused on the function of ILC2 in inter-tissue crosstalk. Lastly, we discussed the transdifferentiations of ILC2 caused by the abnormal change in tissue environment.
Collapse
Affiliation(s)
- Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
31
|
Trivedi S, Deering-Rice CE, Aamodt SE, Huecksteadt TP, Myers EJ, Sanders KA, Paine R, Warren KJ. Progesterone amplifies allergic inflammation and airway pathology in association with higher lung ILC2 responses. Am J Physiol Lung Cell Mol Physiol 2024; 327:L65-L78. [PMID: 38651968 PMCID: PMC11380947 DOI: 10.1152/ajplung.00207.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/02/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Perimenstrual worsening of asthma occurs in up to 40% of women with asthma, leading to increased acute exacerbations requiring clinical care. The role of sex hormones during these times remains unclear. In the current study, we used a translational approach to determine whether progesterone exacerbates allergic inflammation in the traditional chicken egg ovalbumin (OVA) model in BALB/c mice. Simultaneously, we used peripheral blood mononuclear cells (PBMC) from healthy human donors to assess the effects of progesterone on circulating group 2 innate lymphoid cells (ILC2). Briefly, lungs of ovariectomized (OVX) or sham-operated female (F-Sham) controls were implanted with a progesterone (P4, 25 mg) (OVX-P4) or placebo pellet (OVX-Placebo), followed by sensitization and challenge with ovalbumin (OVA). Progesterone increased total inflammatory histologic scores, increased hyper-responsiveness to methacholine (MCh), increased select chemokines in the bronchoalveolar lavage (BAL) and serum, and increased ILC2 and neutrophil numbers, along the airways compared with F-Sham-OVA and OVX-Placebo-OVA animals. Lung ILC2 were sorted from F-Sham-OVA, OVX-Placebo-OVA and OVX-P4-OVA treated animals and stimulated with IL-33. OVX-P4-OVA lung ILC2 were more responsive to interleukin 33 (IL-33) compared with F-Sham-OVA treated, producing more IL-13 and chemokines following IL-33 stimulation. We confirmed the expression of the progesterone receptor (PR) on human ILC2, and showed that P4 + IL-33 stimulation also increased IL-13 and chemokine production from human ILC2. We establish that murine ILC2 are capable of responding to P4 and thereby contribute to allergic inflammation in the lung. We confirmed that human ILC2 are also hyper-responsive to P4 and IL-33 and likely contribute to airway exacerbations following allergen exposures in asthmatic women with increased symptoms around the time of menstruation.NEW & NOTEWORTHY There is a strong association between female biological sex and severe asthma. We investigated the allergic immune response, lung pathology, and airway mechanics in the well-described chicken egg ovalbumin (OVA) model with steady levels of progesterone delivered throughout the treatment period. We found that progesterone enhances the activation of mouse group 2 innate lymphoid cells (ILC2). Human ILC2 are also hyper-responsive to progesterone and interleukin 33 (IL-33), and likely contribute to airway exacerbations following allergen exposures in women with asthma.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah, United States
| | - Samuel E Aamodt
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, United States
| | - Thomas P Huecksteadt
- George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Elizabeth J Myers
- Division of Neuroimmunology, Department of Neurology, University of Utah Health, Salt Lake City, Utah, United States
| | - Karl A Sanders
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, United States
- George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Robert Paine
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, United States
- George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Kristi J Warren
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, United States
- George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
32
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
33
|
Wang Y, Quan Y, He J, Chen S, Dong Z. SLAM-family receptors promote resolution of ILC2-mediated inflammation. Nat Commun 2024; 15:5056. [PMID: 38871792 DOI: 10.1038/s41467-024-49466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice. SFR deficiency exacerbates ILC2-driven eosinophil infiltration in the lung, and results in a significant increase in IL-13 production by ILC2s exclusively in mediastinal lymph nodes (MLN), leading to increased dendritic cell (DC) and TH2 cell numbers. In MLNs, we observe more frequent interaction between ILC2s and bystander T cells, with T cell-expressed SFRs (especially SLAMF3 and SLAMF5) acting as self-ligands to suppress IL-13 production by ILC2s. Mechanistically, homotypic engagement of SFRs at the interface between ILC2s and T cells delivers inhibitory signaling primarily mediated by SHIP-1. This prevents activation of NF-κB, driven by IL-7 and IL-33, two major drivers of ILC2-mediated type 2 immunity. Thus, our study shows that an ILC2-DC-TH2 regulatory axis may promote the resolution of pulmonary type 2 immune responses, and highlights SLAMF3/SLAMF5 as potential therapeutic targets for ameliorating type 2 immunity.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yuhe Quan
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Junming He
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
34
|
Meng X, Wang Y, Li Z, Yang F, Wang J. Knowledge mapping of links between dendritic cells and allergic diseases: A bibliometric analysis (2004-2023). Heliyon 2024; 10:e30315. [PMID: 38765036 PMCID: PMC11096944 DOI: 10.1016/j.heliyon.2024.e30315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
In this study, bibliometric analysis was carried out to comprehend the global research trends, hotspots, scientific frontiers, and output characteristics of the links between dendritic cells (DCs) and allergic diseases from 2004 to 2023. Publications and their recorded information were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer and Citespace were used to visualize the hotspots and trends of research area. ChemBio 3D, Autodock tools, and Discovery Studio were used to visualize the molecular docking results of hotspots. A total of 4861 articles were retrieved. The number of publications (Np) was in a high and stable state. Years 2011 and 2017 were two peaks in Np. The largest contributor in terms of publications, scholars, and affiliations was the USA. The paper published in NATURE MEDICINE (IF: 82.9) and written by Trompette, A in 2006 had the highest global citation score (GCS). Keywords, such as "asthma," "t-cells," "inflammation," "expression," "atopic dermatitis," "food allergy," "gut microbiota," "murine model," and "cytokines related to immunity" appeared the most frequently. Most of the binding free energy of the key active components of Saposhnikovia divaricata docked with toll-like receptor proteins well. This bibliometric study aimed to help better comprehend the present state and make decisions from a macro viewpoint.
Collapse
Affiliation(s)
- Xianghe Meng
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuqing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ji Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
35
|
Kosanovich JL, Eichinger KM, Lipp MA, Gidwani SV, Brahmbhatt D, Yondola MA, Chi DH, Perkins TN, Empey KM. Lung ILC2s are activated in BALB/c mice born to immunized mothers despite complete protection against respiratory syncytial virus. Front Immunol 2024; 15:1374818. [PMID: 38827738 PMCID: PMC11140082 DOI: 10.3389/fimmu.2024.1374818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
Activated lung ILC2s produce large quantities of IL-5 and IL-13 that contribute to eosinophilic inflammation and mucus production following respiratory syncytial virus infection (RSV). The current understanding of ILC2 activation during RSV infection, is that ILC2s are activated by alarmins, including IL-33, released from airway epithelial cells in response to viral-mediated damage. Thus, high levels of RSV neutralizing maternal antibody generated from maternal immunization would be expected to reduce IL-33 production and mitigate ILC2 activation. Here we report that lung ILC2s from mice born to RSV-immunized dams become activated despite undetectable RSV replication. We also report, for the first time, expression of activating and inhibitory Fcgamma receptors on ILC2s that are differentially expressed in offspring born to immunized versus unimmunized dams. Alternatively, ex vivo IL-33-mediated activation of ILC2s was mitigated following the addition of antibody: antigen immune complexes. Further studies are needed to confirm the role of Fcgamma receptor ligation by immune complexes as an alternative mechanism of ILC2 regulation in RSV-associated eosinophilic lung inflammation.
Collapse
Affiliation(s)
- Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Katherine M. Eichinger
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madeline A. Lipp
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | - David H. Chi
- Division of Pediatric Otolaryngology, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Ito T, Ishida Y, Zhang Y, Guichard V, Zhang W, Han R, Guckian K, Chun J, Que J, Smith A, Urban JF, Huang Y. ILC2s navigate tissue redistribution during infection using stage-specific S1P receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592576. [PMID: 38798480 PMCID: PMC11118432 DOI: 10.1101/2024.05.12.592576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.
Collapse
|
37
|
Ortega-Rodriguez AC, Guerra de Blas PDC, Ramírez-Torres R, Martínez-Shio EB, Monsiváis-Urenda AE. Quantitative Analysis of Innate Lymphoid Cells in Patients with ST-Segment Elevation Myocardial Infarction. Immunol Invest 2024; 53:586-603. [PMID: 38700235 DOI: 10.1080/08820139.2024.2316052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the principal causes of death in Mexico and worldwide. AMI triggers an acute inflammatory process that induces the activation of different populations of the innate immune system. Innate lymphoid cells (ILCs) are an innate immunity, highly pleiotropic population, which have been observed to participate in tissue repair and polarization of the adaptive immune response. OBJECTIVE We aimed to analyze the levels of subsets of ILCs in patients with ST-segment elevation myocardial infarction (STEMI), immediately 3 and 6 months post-AMI, and analyze their correlation with clinical parameters. RESULTS We evaluated 29 STEMI patients and 15 healthy controls and analyzed the different subsets of circulating ILCs, immediately 3 and 6 months post-AMI. We observed higher levels of circulating ILCs in STEMI patients compared to control subjects and a significant correlation between ILC levels and cardiac function. We also found increased production of the cytokines interleukin 5 (IL-5) and interleukin 17A (IL-17A), produced by ILC2 cells and by ILC3 cells, respectively, in the STEMI patients. CONCLUSION This study shows new evidence of the role of ILCs in the pathophysiology of AMI and their possible involvement in the maintenance of cardiac function.
Collapse
Affiliation(s)
- Alma Celeste Ortega-Rodriguez
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Paola Del Carmen Guerra de Blas
- Coordinating Center, The Mexican Emerging Infectious Diseases Clinical Research Network (LaRed), Mexico City, Mexico
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Mexico City, Mexico
| | - Ricardo Ramírez-Torres
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elena B Martínez-Shio
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adriana E Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
38
|
Palomares F, Pérez-Sánchez N, Nieto N, Núñez R, Cañas JA, Martín-Astorga MDC, Cruz-Amaya A, Torres MJ, Eguíluz-Gracia I, Mayorga C, Gómez F. Group 2 innate lymphoid cells are key in lipid transfer protein allergy pathogenesis. Front Immunol 2024; 15:1385101. [PMID: 38725998 PMCID: PMC11079275 DOI: 10.3389/fimmu.2024.1385101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Background Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Nazaret Nieto
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - José Antonio Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Ibon Eguíluz-Gracia
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Francisca Gómez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| |
Collapse
|
39
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
40
|
Jou E. Clinical and basic science aspects of innate lymphoid cells as novel immunotherapeutic targets in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:1-60. [PMID: 39461748 DOI: 10.1016/bs.pmbts.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.
Collapse
Affiliation(s)
- Eric Jou
- Department of Oncology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom; Kellogg College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
41
|
Zaiss DMW, Pearce EJ, Artis D, McKenzie ANJ, Klose CSN. Cooperation of ILC2s and T H2 cells in the expulsion of intestinal helminth parasites. Nat Rev Immunol 2024; 24:294-302. [PMID: 37798539 DOI: 10.1038/s41577-023-00942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Type 2 immune responses form a critical defence against enteric worm infections. In recent years, mouse models have revealed shared and unique functions for group 2 innate lymphoid cells and T helper 2 cells in type 2 immune response to intestinal helminths. Both cell types use similar innate effector functions at the site of infection, whereas each population has distinct roles during different stages of infection. In this Perspective, we review the underlying mechanisms used by group 2 innate lymphoid cells and T helper 2 cells to cooperate with each other and suggest an overarching model of the interplay between these cell types over the course of a helminth infection.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Immune Medicine, University Regensburg, Regensburg, Germany.
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Edward J Pearce
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Tran KL, Wisner EL, Jeha GM, Wall LA. Development of IgE-mediated food allergies in children with history of food protein-induced allergic proctocolitis: a series of five cases. FRONTIERS IN ALLERGY 2024; 5:1354106. [PMID: 38650862 PMCID: PMC11033684 DOI: 10.3389/falgy.2024.1354106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Food protein-induced allergic proctocolitis (FPIAP) is a non-IgE-mediated allergic condition that presents with hematochezia in otherwise healthy infants. It is most commonly induced by cow's milk protein via breast milk or formula. The prognosis for FPIAP is generally considered favorable with most infants achieving symptomatic resolution after diet modification. Most infants go on to tolerate the offending foods by 1-3 years of age. Over 8 years at our institution, five patients were identified and noted to have FPIAP to cow's milk during infancy with subsequent development of IgE-mediated allergic reaction to cow's milk and other foods. All five cases developed other atopic disorders (atopic dermatitis in four cases). IgE-mediated cow's milk allergy has persisted beyond the preschool years in at least two patients (currently 8 and 16 years old). For three of the patients, the IgE-mediated reaction to cow's milk was severe with development of anaphylaxis or angioedema. In addition, three patients experienced anaphylaxis or angioedema to allergens other than milk. While FPIAP is a non-IgE-mediated process traditionally thought not to progress past the first year of life, some infants with FPIAP develop severe, persistent IgE-mediated cow's milk allergy. To our knowledge, this is the first detailed clinical description of such patients.
Collapse
Affiliation(s)
- Kim L. Tran
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Elizabeth L. Wisner
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Allergy and Immunology, Children’s Hospital of New Orleans, New Orleans, LA, United States
| | - George M. Jeha
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - Luke A. Wall
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Allergy and Immunology, Children’s Hospital of New Orleans, New Orleans, LA, United States
| |
Collapse
|
43
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
44
|
Fol M, Karpik W, Zablotni A, Kulesza J, Kulesza E, Godkowicz M, Druszczynska M. Innate Lymphoid Cells and Their Role in the Immune Response to Infections. Cells 2024; 13:335. [PMID: 38391948 PMCID: PMC10886880 DOI: 10.3390/cells13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Over the past decade, a group of lymphocyte-like cells called innate lymphoid cells (ILCs) has gained considerable attention due to their crucial role in regulating immunity and tissue homeostasis. ILCs, lacking antigen-specific receptors, are a group of functionally differentiated effector cells that act as tissue-resident sentinels against infections. Numerous studies have elucidated the characteristics of ILC subgroups, but the mechanisms controlling protective or pathological responses to pathogens still need to be better understood. This review summarizes the functions of ILCs in the immunology of infections caused by different intracellular and extracellular pathogens and discusses their possible therapeutic potential.
Collapse
Affiliation(s)
- Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Agnieszka Zablotni
- Department of Bacterial Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| |
Collapse
|
45
|
Nevo S, Frenkel N, Kadouri N, Gome T, Rosenthal N, Givony T, Avin A, Peligero Cruz C, Kedmi M, Lindzen M, Ben Dor S, Damari G, Porat Z, Haffner-Krausz R, Keren-Shaul H, Yarden Y, Munitz A, Leshkowitz D, Goldfarb Y, Abramson J. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci Immunol 2024; 9:eabq6930. [PMID: 38215193 DOI: 10.1126/sciimmunol.abq6930] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Frenkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Rosenthal
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Avin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Peligero Cruz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Merav Kedmi
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben Dor
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Munitz
- Department of Microbiology and Clinical Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Park S, Kim J, Shin JH. Intercellular Transfer of Immune Regulatory Molecules Via Trogocytosis. Results Probl Cell Differ 2024; 73:131-146. [PMID: 39242377 DOI: 10.1007/978-3-031-62036-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.
Collapse
Affiliation(s)
- Soyeon Park
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jeonghyun Kim
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jae Hun Shin
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, South Korea.
| |
Collapse
|
47
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
48
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
49
|
Kral M, van der Vorst EP, Surnov A, Weber C, Döring Y. ILC2-mediated immune crosstalk in chronic (vascular) inflammation. Front Immunol 2023; 14:1326440. [PMID: 38179045 PMCID: PMC10765502 DOI: 10.3389/fimmu.2023.1326440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Alexey Surnov
- Type 1 Diabetes Immunology (TDI), Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR) Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Xu H, Yi X, Cui Z, Li H, Zhu L, Zhang L, Chen J, Fan X, Zhou P, Li MJ, Yu Y, Liu Q, Huang D, Yao Z, Zhou J. Maternal antibiotic exposure enhances ILC2 activation in neonates via downregulation of IFN1 signaling. Nat Commun 2023; 14:8332. [PMID: 38097561 PMCID: PMC10721923 DOI: 10.1038/s41467-023-43903-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Microbiota have an important function in shaping and priming neonatal immunity, although the cellular and molecular mechanisms underlying these effects remain obscure. Here we report that prenatal antibiotic exposure causes significant elevation of group 2 innate lymphoid cells (ILC2s) in neonatal lungs, in both cell numbers and functionality. Downregulation of type 1 interferon signaling in ILC2s due to diminished production of microbiota-derived butyrate represents the underlying mechanism. Mice lacking butyrate receptor GPR41 (Gpr41-/-) or type 1 interferon receptor IFNAR1 (Ifnar1-/-) recapitulate the phenotype of neonatal ILC2s upon maternal antibiotic exposure. Furthermore, prenatal antibiotic exposure induces epigenetic changes in ILC2s and has a long-lasting deteriorative effect on allergic airway inflammation in adult offspring. Prenatal supplementation of butyrate ameliorates airway inflammation in adult mice born to antibiotic-exposed dams. These observations demonstrate an essential role for the microbiota in the control of type 2 innate immunity at the neonatal stage, which suggests a therapeutic window for treating asthma in early life.
Collapse
Affiliation(s)
- Haixu Xu
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaohai Cui
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Li
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Zhu
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lijuan Zhang
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - JiaLe Chen
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xutong Fan
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Pan Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dandan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Zhi Yao
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jie Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|