1
|
Wen RM, Wang HX. Effect of adipokines on bone marrow mesenchymal stem cell function. World J Stem Cells 2025; 17:106150. [DOI: 10.4252/wjsc.v17.i5.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/23/2025] [Accepted: 04/09/2025] [Indexed: 05/26/2025] Open
Abstract
During excessive adipose tissue accumulation, various adipokines such as visfatin, chemerin, vaspin, and adiponectin are released into systemic circulation, thereby influencing metabolic tissue function throughout the body. As multifunctional signaling molecules secreted by adipose tissue, adipokines play a pivotal role in metabolic regulation, inflammatory response, and tissue homeostasis. Recent studies have demonstrated that adipokines can influence skeletal system repair and regeneration by modulating bone marrow-derived mesenchymal stem cell (BMSC) proliferation, differentiation, migration, and immunomodulatory functions. However, different adipokines have distinct roles in regulating BMSC function, but their underlying molecular mechanisms are not fully understood. In this review, we systematically summarize the specific mechanisms of action and potential clinical applications of visfatin, chemerin, vaspin, and adiponectin on BMSC function in order to reveal new mechanisms of interaction between adipokines and BMSCs. The aim is to provide a theoretical basis for targeted treatment strategies for bone diseases targeting adipokines.
Collapse
Affiliation(s)
- Rui-Ming Wen
- School of Sports Health, Shenyang Sport University, Shenyang 110102, Liaoning Province, China
| | - Hai-Xia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning Province, China
| |
Collapse
|
2
|
Zhuang W, Wang Y, Xu X, Zhao J. Untargeted Metabolomics and Proteomics-Based Research of the Long-Term Exercise on Human Body. Appl Biochem Biotechnol 2025; 197:3363-3381. [PMID: 39937413 DOI: 10.1007/s12010-025-05195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Regular long-term exercise can benefit the body and reduce the risk of several diseases, such as cardiovascular disease, diabetes, and obesity. However, the proteomic and metabolomic changes, as well as the physiological responses associated with long-term exercise, remain incompletely understood. To investigate the effects of long-term exercise on the human body, 14 subjects with long-term exercise habits and 10 subjects without exercise habits were selected for this study. Morning urine samples were collected and analyzed for untargeted metabolomics and proteomics using liquid chromatography-mass spectrometry. A total of 404 differential metabolites and 394 differential proteins were screened in this research, and the analysis results indicated that long-term exercise may affect energy metabolism, amino acid synthesis and metabolism, nucleotide metabolism, steroid hormone biosynthesis, and the inflammatory response. These findings offer a more comprehensive understanding of the molecular effects of long-term exercise on the human body and provide a basis for future research exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Wenqian Zhuang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, China
| | - Yang Wang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, China
| | - Xin Xu
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, China
| | - Jingjing Zhao
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Li T, Liu Y, Cao J, Lu X, Lu Y, Wang Y, Zhang C, Wu M, Deng S, Li L, Shi M. Triphenyl phosphate induces lipid metabolism disorder and promotes obesity through PI3K/AKT signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 198:109428. [PMID: 40199182 DOI: 10.1016/j.envint.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Triphenyl phosphate (TPHP) is a widely used organic phosphate flame retardant that has been reported as a potential environmental obesogen. However, the potential impact and mechanism of action of TPHP on adipose tissue are still unclear. This study investigates the potential impact of TPHP on lipid metabolism disorders through in vivo and in vitro experiments. Male and female BALB/c mice were exposed to TPHP (0, 1, 10, and 150 mg/kg/day) for 60 days, and 3T3-L1 preadipocytes were treated with concentrations of TPHP (0, 0.1, 1, 10 μM) during differentiation. The results showed that exposure to TPHP could cause gender specific dyslipidemia, with male mice exhibiting dose-dependent increases in inguinal adipose tissue coefficient, adipocyte hypertrophy, and upregulation of adipose differentiation and adipogenesis-related genes. In contrast, female mice did not show significant changes in tissue morphology. This suggested that TPHP might promote the potential occurrence of adiposity by disrupting the lipid metabolism homeostasis of male adipose tissue. During the differentiation and maturation process of 3T3-L1 preadipocytes, exposure to TPHP led to increased lipid accumulation and disrupted lipid homeostasis by simultaneous activation adipogenesis and lipolysis. Multiple omics data showed that the activation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and fatty acid metabolism was the core mechanism of TPHP induced metabolic dysfunction. Further research showed that TPHP activated the PI3K/AKT pathway, and PI3K inhibitor (LY294002) could rescue TPHP induced lipid droplet formation and normalize the expression of adipogenic markers. These findings confirm that TPHP is a potential environmental obesogen that can disrupt the metabolic homeostasis of white adipose tissue through the PPARγ and PI3K/AKT signaling pathways, with higher susceptibility in males. This study provides compelling evidence for the obesogenic effects of TPHP and information for risk assessment of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Meifen Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Song Deng
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| |
Collapse
|
4
|
Kim MJ, Kim SW, Ha B, Kim HS, Kwon SH, Jin J, Choi YK, Park KG, Kim JG, Lee IK, Jeon JH. Persistent influence of past obesity on current adiponectin levels and mortality in patients with type 2 diabetes. Korean J Intern Med 2025; 40:299-309. [PMID: 40102712 PMCID: PMC11938665 DOI: 10.3904/kjim.2024.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND/AIMS Adiponectin, a hormone primarily produced by adipocytes, typically shows an inverse relationship with body mass index (BMI). However, some studies have reported a positive correlation between the two. Thus, this study aimed to examine the relationship between adiponectin level and BMI in diabetic patients, focusing on the impact of past obesity on current adiponectin levels. METHODS We conducted an observational study analyzing data from 323 diabetic patients at Kyungpook National University Hospital. Based on past and current BMIs, participants were categorized into never-obese (nn, n = 106), previously obese (on, n = 43), and persistently obese (oo, n = 73) groups based on a BMI threshold of 25 kg/m2. Adiponectin level and BMI were key variables. Kaplan-Meier analysis assessed their impact on all-cause mortality up to August 2023, with survival differences based on adiponectin quartiles and follow-up starting from patient enrollment (2010-2015). RESULTS The analysis revealed a significant inverse correlation between adiponectin level and past maximum BMI. The on group exhibited approximately 10% lower adiponectin levels compared to the nn group. This association remained significant after adjusting for current BMI, age, and sex, highlighting the lasting influence of previous obesity on adiponectin levels. Furthermore, survival analysis indicated that patients in the lowest adiponectin quartile had reduced survival, with a statistically significant trend (p = 0.062). CONCLUSION Findings of this study suggest that lower adiponectin levels, potentially reflecting past obesity, are associated with decreased survival in diabetic patients, underscoring a critical role of adiponectin in long-term health outcomes.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Sung-Woo Kim
- Department of Internal Medicine, Daegu Catholic University Hospital, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Bitna Ha
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Hyang Sook Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - So-Hee Kwon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jonghwa Jin
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jung Guk Kim
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu,
Korea
| |
Collapse
|
5
|
Cano-Montoya J, Bentes A, Pavez Y, Rubilar P, Lavoz C, Ehrenfeld P, Sandoval V, Martínez-Huenchullán S. Metabolic Response After a Single Maximal Exercise Session in Physically Inactive Young Adults (EASY Study): Relevancy of Adiponectin Isoforms. Biomolecules 2025; 15:314. [PMID: 40149850 PMCID: PMC11940768 DOI: 10.3390/biom15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
The metabolic response to a maximal exercise test in physically inactive adults remains poorly understood, particularly regarding the role of adiponectin, an adipokine with insulin-sensitizing and anti-inflammatory properties. Adiponectin circulates in three isoforms-low (LMW), medium (MMW), and high-molecular-weight (HMW)-with differing bioactivities. While exercise is known to influence adiponectin levels, evidence is conflicting, and few studies have explored isoform-specific changes. This study aimed to evaluate the effects of a single maximal exercise session on circulating adiponectin isoforms and their associations with metabolic and kidney function markers in physically inactive young adults. In this quasi-experimental study, twenty-one physically inactive participants (mean age 24.6 ± 2.1 years, 85.7% women) completed a progressive cycle ergometer test. Circulating levels of LMW and MMW adiponectin, metabolic outcomes (e.g., cholesterol, triglycerides, fibroblast growth factor 21 (FGF21)), and kidney function markers (e.g., creatinine, proteinuria) were assessed before and after exercise using biochemical assays and Western blotting. Comparisons between pre- and post-exercise values were made with the Wilcoxon test. Exercise increased lipid metabolism markers (total cholesterol, triglycerides, HDL) and kidney stress indicators (albuminuria, proteinuria) (p < 0.05). LMW and MMW adiponectin levels showed no significant overall changes, but LMW adiponectin positively correlated with changes in total cholesterol and FGF21, while MMW adiponectin negatively correlated with creatinine and proteinuria (p < 0.05). HMW adiponectin was undetectable by our methods. A single maximal exercise session revealed isoform-specific associations between adiponectin and metabolic or kidney stress markers, emphasizing the complex role of adiponectin in exercise-induced metabolic responses. Future research should explore mechanisms underlying these differential associations to optimize exercise interventions for metabolic health improvement.
Collapse
Affiliation(s)
- Johnattan Cano-Montoya
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| | - Amanda Bentes
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
| | - Yanara Pavez
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Paola Rubilar
- Carrera de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5090000, Chile; (Y.P.); (P.R.)
| | - Carolina Lavoz
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (A.B.); (P.E.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana Sandoval
- Carrera de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Carrera de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Valdivia 5090000, Chile;
| |
Collapse
|
6
|
López-González ÁA, Martínez-Almoyna Rifá E, Paublini Oliveira H, Martorell Sánchez C, Tárraga López PJ, Ramírez-Manent JI. Association between sociodemographic variables, healthy habits and stress with diabesity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025:500754. [PMID: 39824668 DOI: 10.1016/j.arteri.2024.500754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Diabesity is a pathological condition that combines obesity and type 2 diabetes in the same individual. Due to the current rise in both conditions, the prevalence of diabesity is increasing worldwide. Its etiology is known to be multifactorial; therefore, the aim of this study is to understand how diabesity is associated with various sociodemographic variables, healthy habits, and stress. MATERIALS AND METHODS A descriptive, cross-sectional study was conducted on 24,224 Spanish workers to evaluate the association between diabesity and various factors such as age, gender, socioeconomic status, smoking, alcohol consumption, physical activity, adherence to the Mediterranean diet, and stress. The criteria used to define diabesity included body mass index (BMI), body fat (BF), and visceral fat (VF). RESULTS All the aforementioned variables were found to be associated with diabesity. The highest odds ratios (OR) were observed for age, with values ranging from 5.57 (95% CI: 4.48-6.67) when BF was used as the diabesity criterion to 6.89 (95% CI: 5.60-8.19) when VF was the criterion. Similarly, elevated ORs were observed for male gender, with ORs of 6.77 (95% CI: 5.31-8.24) for VF and 3.34 (95% CI: 2.77-3.94) for BF. CONCLUSIONS In our study, the profile of a person at highest risk of diabesity is a man over 50 years old from a lower socioeconomic status, who is a smoker, regular alcohol consumer, sedentary, with low adherence to the Mediterranean diet, and experiencing high stress levels.
Collapse
Affiliation(s)
- Ángel Arturo López-González
- Grupo ADEMA-Salud, Instituto Universitario de Ciencias de la Salud (IUNICS), Islas Baleares, España; Facultad de Odontología, Escuela Universitaria ADEMA-UIB, Palma, Islas Baleares, España; Servicio de Salud de las Islas Baleares, Islas Baleares, España
| | - Emilio Martínez-Almoyna Rifá
- Grupo ADEMA-Salud, Instituto Universitario de Ciencias de la Salud (IUNICS), Islas Baleares, España; Facultad de Odontología, Escuela Universitaria ADEMA-UIB, Palma, Islas Baleares, España
| | - Hernán Paublini Oliveira
- Grupo ADEMA-Salud, Instituto Universitario de Ciencias de la Salud (IUNICS), Islas Baleares, España; Facultad de Odontología, Escuela Universitaria ADEMA-UIB, Palma, Islas Baleares, España
| | - Cristina Martorell Sánchez
- Grupo ADEMA-Salud, Instituto Universitario de Ciencias de la Salud (IUNICS), Islas Baleares, España; Facultad de Odontología, Escuela Universitaria ADEMA-UIB, Palma, Islas Baleares, España
| | - Pedro Juan Tárraga López
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, España; IDISCAM, Instituto de Investigación de Castilla-La Mancha, Toledo, España.
| | - José Ignacio Ramírez-Manent
- Grupo ADEMA-Salud, Instituto Universitario de Ciencias de la Salud (IUNICS), Islas Baleares, España; Servicio de Salud de las Islas Baleares, Islas Baleares, España; Facultad de Medicina, Universidad de las Islas Baleares, Palma, Islas Baleares, España
| |
Collapse
|
7
|
Virgolici B, Dobre MZ, Stefan DCA. Bridging the Gap: Supplements Strategies from Experimental Research to Clinical Applications in Sarcopenic Obesity. Curr Issues Mol Biol 2024; 46:13418-13430. [PMID: 39727928 PMCID: PMC11726983 DOI: 10.3390/cimb46120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Obesity causes fat accumulation, and sarcopenia causes loss of muscle mass and strength; together, they worsen insulin resistance and accelerate muscle decline, creating a harmful cycle. Some supplements, along with physical exercise, could be remedies for sarcopenic obesity (SO). In this review, we aim to draw a comparison between supplements studied in experimental research and those evaluated in clinical studies for SO. In experimental studies, Sea Buckthorn-in forms such as oil, freeze-dried powder or pomace-has been shown to enhance muscle cell growth, improve gut microbiota, provide hypoglycemic benefits and increase muscle mass by promoting protein synthesis. Increased consumption of Omega-3 fatty acids may play a protective role against SO in women. Melatonin may positively impact obesity and SO by reducing oxidative stress. Elevated irisin levels, such as those observed with vitamin D supplementation, could prevent muscle wasting and fat gain in SO by improving insulin sensitivity and reducing inflammation. There have been many studies highlighting the potential of vitamin D in preventing age related sarcopenia; however, the effect of vitamin D supplementation in SO is under-researched and appears less promising. Future clinical trials using natural supplements hold promise, as these provide multiple beneficial components that may work synergistically to treat SO.
Collapse
Affiliation(s)
| | - Maria-Zinaida Dobre
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.V.); (D.C.A.S.)
| | | |
Collapse
|
8
|
Suzuki A, Sato S, Nakaigawa N, Kishida T, Miyagi Y. Combination of Blood Adiponectin and Leptin Levels Is a Predictor of Biochemical Recurrence in Prostate Cancer Invading the Surrounding Adipose Tissue. Int J Mol Sci 2024; 25:8970. [PMID: 39201655 PMCID: PMC11354761 DOI: 10.3390/ijms25168970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Biochemical recurrence is a process that progresses to castration-resistant prostate cancer (CRPC) and prediction of biochemical recurrence is useful in determining early therapeutic intervention and disease treatment. Prostate cancer is surrounded by adipose tissue, which secretes adipokines, affecting cancer progression. This study aimed to investigate the correlation between blood adipokines and CRPC biochemical recurrence. We retrospectively analyzed the clinical data, including preoperative serum adipokine levels, of 99 patients with pT3a pN0 prostate cancer who underwent proctectomy between 2011 and 2019. The primary outcome was biochemical recurrence (prostate-specific antigen: PSA > 0.2). We identified 65 non-recurrences and 34 biochemical recurrences (one progressed to CRPC). The initial PSA level was significantly higher (p = 0.006), but serum adiponectin (p = 0.328) and leptin (p = 0.647) levels and their ratio (p = 0.323) were not significantly different in the biochemical recurrence group compared with the non-recurrence group. In contrast, significantly more biochemical recurrences were observed in the group with adiponectin < 6 μg/mL and Leptin < 4 ng/mL (p = 0.046), initial PSA > 15 ng/mL, clinical Gleason pattern ≥ 4, and positive resection margin. A significant difference was also observed in the multivariate analysis (hazard ratio: 4.04, 95% confidence interval: 1.21-13.5, p = 0.0232). Thus, low preoperative serum adiponectin and high leptin levels were significantly associated with biochemical recurrence in adipose tissue-invasive prostate cancer, suggesting that they may be useful predictors of biochemical recurrence. Further studies with larger cases are needed to increase the validity of this study.
Collapse
Affiliation(s)
- Atsuto Suzuki
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan;
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan;
- Department of Pathology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan
| | - Noboru Nakaigawa
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
| | - Yohei Miyagi
- Department of Pathology, Kanagawa Cancer Center, Yokohama 241-8515, Kanagawa, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Kanagawa, Japan
| |
Collapse
|
9
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
10
|
Enríquez-Schmidt J, Mautner Molina C, Kalazich Rosales M, Muñoz M, Ruiz-Uribe M, Fuentes Leal F, Monrroy Uarac M, Cárcamo Ibaceta C, Fazakerley DJ, Larance M, Ehrenfeld P, Martínez-Huenchullán S. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery. Nutr Metab Cardiovasc Dis 2024; 34:1681-1691. [PMID: 38553359 DOI: 10.1016/j.numecd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Bariatric surgery is highly effective against obesity. Pre-surgical exercise programs are recommended to prepare the candidate physically and metabolically for surgery-related rapid weight loss. However, the ideal exercise prescription in this population is unknown. This study aimed to compare the metabolic effects of moderate-intensity constant (MICT) vs. a high-intensity interval training (HIIT) program in candidates to undergo bariatric surgery. METHODS AND RESULTS Twenty-five candidates (22 women) to undergo sleeve gastrectomy aged from 18 to 60 years old were recruited. At baseline, we measured body composition, physical activity levels, grip strength, and aerobic capacity. Further, we assessed metabolic function through glycemia and insulinemia (both fasting and after oral glucose tolerance test (OGTT)), homeostatic model assessment for insulin resistance (HOMA-IR), lipid profile, glycated haemoglobin (HbA1c), transaminases, fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), apelin, and adiponectin. Afterward, participants were randomized into MICT (n = 14) or HIIT (n = 11). Both training programs consisted of 10 sessions (2-3 times/week, 30 min per session) distributed during 4 weeks before the surgery. After this, all outcomes were measured again at the end of the training programs and 1 month after the surgery (follow-up). A mixed effect with Tukey's post-hoc analysis was performed to compare values at baseline vs. post-training vs. postsurgical follow-up. Both training programs increased aerobic capacity after training (p < 0.05), but only after MICT these changes were kept at follow-up (p < 0.05). However, only MICT decreased fat mass and increased total muscle mass and physical activity levels (p < 0.05). Metabolically, MICT decreased insulinemia after OGTT (p < 0.05), whereas HIIT increased adiponectin after training and GDF15 at follow-up (both p < 0.05). CONCLUSIONS Both MICT and HIIT conferred benefits in candidates to undergo bariatric surgery, however, several of those effects were program-specific, suggesting that exercise intensity should be considered when preparing these patients. Future studies should explore the potential benefits of prescribing MICT or HIIT in a customized fashion depending on a pretraining screening, along with possible summatory effects by combining these two exercise programs (MICT + HIIT). CLINICAL TRIAL REGISTRATION International Traditional Medicine Clinical Trial Registry, N° ISRCTN42273422.
Collapse
Affiliation(s)
- Javier Enríquez-Schmidt
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Camila Mautner Molina
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile
| | | | | | - Matias Ruiz-Uribe
- Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | | | - Manuel Monrroy Uarac
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Cárcamo Ibaceta
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; Surgery Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB5, United Kingdom
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Anatomy, Histology, and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
11
|
Liu SY, Chen LK, Jhong YT, Chen CW, Hsiao LE, Ku HC, Lee PH, Hwang GS, Juan CC. Endothelin-1 impairs skeletal muscle myogenesis and development via ETB receptors and p38 MAPK signaling pathway. Clin Sci (Lond) 2024; 138:711-723. [PMID: 38804865 DOI: 10.1042/cs20240341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Luei-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Ting Jhong
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chien-Wei Chen
- Department of Physical Education, Health, and Recreation, Teachers College, National Chiayi University, Chiayi, 621302, Taiwan
| | - Li-En Hsiao
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Huei-Chi Ku
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Pin-Hsuan Lee
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Guey-Shyang Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
12
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
13
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
15
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
16
|
Baka RD, Kuleš J, Beletić A, Farkaš V, Rešetar Maslov D, Ljubić BB, Rubić I, Mrljak V, McLaughlin M, Eckersall D, Polizopoulou Z. Quantitative serum proteome analysis using tandem mass tags in dogs with epilepsy. J Proteomics 2024; 290:105034. [PMID: 37879566 DOI: 10.1016/j.jprot.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
This study included four groups of dogs (group A: healthy controls, group B: idiopathic epilepsy receiving antiepileptic medication (AEM), group C: idiopathic epilepsy without AEM, group D: structural epilepsy). Comparative quantitative proteomic analysis of serum samples among the groups was the main target of the study. Samples were analyzed by a quantitative Tandem-Mass-Tags approach on the Q-Exactive-Plus Hybrid Quadrupole-Orbitrap mass-spectrometer. Identification and relative quantification were performed in Proteome Discoverer. Data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD041129. Eighty-one proteins with different relative adundance were identified in the four groups and 25 were master proteins (p < 0.05). Clusterin (CLU), and apolipoprotein A1 (APOA1) had higher abundance in the three groups of dogs (groups B, C, D) compared to controls. Amine oxidase (AOC3) was higher in abundance in group B compared to groups C and D, and lower in group A. Adiponectin (ADIPOQ) had higher abundance in groups C compared to group A. ADIPOQ and fibronectin (FN1) had higher abundance in group B compared to group C and D. Peroxidase activity assay was used to quantify HP abundance change, validating and correlating with proteomic analysis (r = 0.8796). SIGNIFICANCE: The proteomic analysis of serum samples from epileptic dogs indicated potential markers of epilepsy (CLU), proteins that may contribute to nerve tissue regeneration (APOA1), and contributing factors to epileptogenesis (AOC3). AEM could alter extracellular matrix proteins (FN1). Illness (epilepsy) severity could influence ADIPOQ abundance.
Collapse
Affiliation(s)
- Rania D Baka
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia; Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marκ McLaughlin
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - Zoe Polizopoulou
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
18
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Yuan Y, Liao J, Luo Z, Li D, Hou L. A cross-sectional study from NHANES found a positive association between obesity with bone mineral density among postmenopausal women. BMC Endocr Disord 2023; 23:196. [PMID: 37705039 PMCID: PMC10498604 DOI: 10.1186/s12902-023-01444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE Obesity has been demonstrated to improve bone mineral density (BMD), according to previous research. Nevertheless, there is a dearth of clarity regarding the optimal body mass index (BMI) and waist circumference (WC) for achieving the highest beneficial BMD in postmenopausal women. The objective of this study was to establish the correlation between obesity and BMD. METHODS The relationship between BMI, WC, and BMD was examined by using multivariate logistic regression models, fitting smoothing curves and utilizing the latest data from the National Health and Nutrition Examination Survey (NHANES) survey conducted between 2007 and 2018. Furthermore, the analysis of saturation effects was employed to examine the association of nonlinear connections among BMI, WC, and BMD. RESULTS The research examined information from a combination of 564 participants. A significant correlation between BMD and BMI as well as WC was observed in our findings. The enduring correlation between BMI and WC with BMD was demonstrated across subgroup analyses categorized by age and race, except among other Hispanic and other race. Furthermore, the smoothing curve fitting indicated that there existed not just a linear correlation among BMI, WC, and BMD, but also a saturation threshold in the association of these three factors. CONCLUSIONS Based on our study, we have found a strong and positive relationship between obesity and BMD. According to the results of this research, maintaining obesity at a moderate level in postmenopausal women would result in achieving an optimal equilibrium between obesity and BMD.
Collapse
Affiliation(s)
- Yu Yuan
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jiaxin Liao
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Zhiyuan Luo
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Dingshuang Li
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Lei Hou
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China.
| |
Collapse
|
20
|
Brown BC, Wang C, Kasela S, Aguet F, Nachun DC, Taylor KD, Tracy RP, Durda P, Liu Y, Johnson WC, Van Den Berg D, Gupta N, Gabriel S, Smith JD, Gerzsten R, Clish C, Wong Q, Papanicolau G, Blackwell TW, Rotter JI, Rich SS, Barr RG, Ardlie KG, Knowles DA, Lappalainen T. Multiset correlation and factor analysis enables exploration of multi-omics data. CELL GENOMICS 2023; 3:100359. [PMID: 37601969 PMCID: PMC10435377 DOI: 10.1016/j.xgen.2023.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 08/22/2023]
Abstract
Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets.
Collapse
Affiliation(s)
- Brielin C. Brown
- New York Genome Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Collin Wang
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - François Aguet
- Illumina Incorporated, San Francisco, CA, USA
- The Broad Institute of MIT and Harvard, Boston, MA, USA
| | | | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Van Den Berg
- Department of Clinical Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Namrata Gupta
- The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Stacy Gabriel
- The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Joshua D. Smith
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | - Robert Gerzsten
- Beth Israel Deaconess Medical Center, Division of Cardiovascular Medicine, Boston, MA, USA
| | - Clary Clish
- The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - George Papanicolau
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R. Graham Barr
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - David A. Knowles
- New York Genome Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Merawati D, Susanto H, Taufiq A, Pranoto A, Amelia D, Rejeki PS. Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. J Basic Clin Physiol Pharmacol 2023:jbcpp-2023-0041. [PMID: 37209011 DOI: 10.1515/jbcpp-2023-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Exercise is one of the beneficial mediators for the regulation and prevention of obesity through the role of irisin, so it potentially enhances metabolism health. This study aims to investigate the dynamic of irisin secrecy change after chronic exercise in obese females. METHODS Thirty-one female adolescents aged 20-22 years enrolled in the study and were given interventions aerobic, resistance, and a combination of aerobic and resistance training. The exercises were performed at moderate-intensity, for 35-40 min per session, and three times a week for four weeks. The measurement of irisin level, IGF-1 level, and bio-anthropometry was carried out before and after the four weeks of exercise. The bio-anthropometry measurement was carried out using seca mBCA 514, while the measurement of insulin-like growth factor 1 (IGF-1) and irisin was completed using an enzyme-linked immunosorbent assay (ELISA). The obtained data were analyzed using a one-way ANOVA test with 5 % significance. RESULTS Our results indicated higher dynamic of irisin and IGF-1 increases in the group with a combination of aerobic and resistance training exercises than the other two groups with a different exercise. Further, we also observed different dynamics of irisin and IGF-1 level increase (p<0.05). Besides, the irisin was also correlated with the IGF-1 and bio-anthropometric parameters (p<0.05). CONCLUSIONS The combination of aerobic and resistance training exercises is considered as the alternative for enhancing the dynamic of irisin and IGF-1 increase. Thus, it can be used to prevent and regulate obesity.
Collapse
Affiliation(s)
- Desiana Merawati
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dessy Amelia
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
22
|
Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int J Mol Sci 2023; 24:ijms24076154. [PMID: 37047134 PMCID: PMC10094444 DOI: 10.3390/ijms24076154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Ulloi u. 78, 1082 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
23
|
Liu X, Yang Y, Shao H, Liu S, Niu Y, Fu L. Globular adiponectin ameliorates insulin resistance in skeletal muscle by enhancing the LKB1-mediated AMPK activation via SESN2. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:34-41. [PMID: 36994173 PMCID: PMC10040333 DOI: 10.1016/j.smhs.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Adiponectin has been demonstrated to be a mediator of insulin sensitivity; however, the underlined mechanisms remain unclear. SESN2 is a stress-inducible protein that phosphorylates AMPK in different tissues. In this study, we aimed to validate the amelioration of insulin resistance by globular adiponectin (gAd) and to reveal the role of SESN2 in the improvement of glucose metabolism by gAd. We used a high-fat diet-induced wild-type and SESN2-/- C57BL/6J insulin resistance mice model to study the effects of six-week aerobic exercise or gAd administration on insulin resistance. In vitro study, C2C12 myotubes were used to determine the potential mechanism by overexpressing or inhibiting SESN2. Similar to exercise, six-week gAd administration decreased fasting glucose, triglyceride and insulin levels, reduced lipid deposition in skeletal muscle and reversed whole-body insulin resistance in mice fed on a high-fat diet. Moreover, gAd enhanced skeletal muscle glucose uptake by activating insulin signaling. However, these effects were diminished in SESN2-/- mice. We found that gAd administration increased the expression of SESN2 and Liver kinase B1 (LKB1) and increased AMPK-T172 phosphorylation in skeletal muscle of wild-type mice, while in SESN2-/- mice, LKB1 expression was also increased but the pAMPK-T172 was unchanged. At the cellular level, gAd increased cellular SESN2 and pAMPK-T172 expression. Immunoprecipitation experiment suggested that SESN2 promoted the formation of complexes of AMPK and LKB1 and hence phosphorylated AMPK. In conclusion, our results revealed that SESN2 played a critical role in gAd-induced AMPK phosphorylation, activation of insulin signaling and skeletal muscle insulin sensitization in mice with insulin resistance.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Heng Shao
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
24
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
25
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
26
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Liu S, Liu H, Liu Y, Zhang J, Liu Z, Zheng Z, Luo E. Adiponectin receptors activation performs dual effects on regulating myogenesis and adipogenesis of young and aged muscle satellite cells. Cell Prolif 2022; 56:e13370. [PMID: 36484401 PMCID: PMC9977665 DOI: 10.1111/cpr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Skeletal muscle mass and function deteriorate with ageing. Adiponectin receptors (APNrs), mainly activated by adiponectin, participate in various physiological activities and have varying signalling pathways at different ages. This study aimed to explore whether discrepant performance exists in APNr activation regulating young and aged muscle satellite cells (MUSCs) and whether age-related muscle dysfunction could be alleviated upon APNr activation. METHODS The gastrocnemius muscle phenotype was observed in male mice aged 2 and 18 months. An APNr agonist (AdipoRon) was used in vitro and in vivo to investigate the changes in cell biological behaviours and whether muscle dysfunction could be retarded after APNr activation. RESULTS Aged mice exhibited decreased muscle mass and increased fat infiltration. APNr activation inhibited C2C12 cells and young MUSCs (YMUSCs) proliferation but showed no obvious effect on aged MUSCs (AMUSCs). Moreover, APNr activation inhibited the migration of both YMUSCs and AMUSCs. Interestingly, APNr activation hampered the myogenic differentiation but advanced the adipogenic differentiation of YMUSCs, yet exact opposite results were presented in AMUSCs. It was demonstrated that Wnt and PI3K signalling pathways may mediate the phenotypic differences. Furthermore, in vivo experiments verified that APNr activation ameliorated age-related muscle atrophy and excessive fat infiltration. CONCLUSIONS APNr activation exerted dual effects on the regulation of myogenesis and adipogenesis of YMUSCs and AMUSCs and rescued age-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Shibo Liu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Hanghang Liu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Emergency DepartmentWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Maine Medical Center Research InstituteScarboroughMaineUSA
| | - Yao Liu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ju Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Zhikai Liu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Zizhuo Zheng
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - En Luo
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina,Department of Oral Maxillofacial SurgeryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
28
|
Irisin promotes the browning of white adipocytes tissue by AMPKα1 signaling pathway. Res Vet Sci 2022; 152:270-276. [DOI: 10.1016/j.rvsc.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
|
29
|
Tseng SY, Chang HY, Li YH, Chao TH. Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway. Int J Mol Sci 2022; 23:14839. [PMID: 36499166 PMCID: PMC9739574 DOI: 10.3390/ijms232314839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. We have previously shown that cilostazol has favorable effects on angiogenesis. However, there is no study to evaluate the effects of cilostazol on adiponectin. We investigated the effects of cilostazol on angiogenesis in diabetes in vitro and in vivo through adiponectin/adiponectin receptors (adipoRs) and the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured under high glucose (HG) conditions. Adiponectin concentrations in the supernatants were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment enhanced the expression of SIRT1 and upregulated the phosphorylation of AMPK in HG-treated HUVECs. By sequential knockdown of adipoRs, SIRT1, and AMPK, our data demonstrated that cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility, and capillary-like tube formation in HG-treated HUVECs through the adipoRs/SIRT1/AMPK signaling pathway. The phosphorylation of downstream signaling molecules, including acetyl-CoA carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), was downregulated when HUVECs were treated with a SIRT1 inhibitor. In streptozotocin-induced diabetic mice, cilostazol treatment could improve blood flow recovery 21-28 days after inducing hindlimb ischemia as well as increase the circulating of CD34+CD45dim cells 14-21 days after operation; moreover, these effects were significantly attenuated by the knockdown of adipoR1 but not adipoR2. The expression of SIRT1 and phosphorylation of AMPK/ACC and Akt/eNOS in ischemic muscles were significantly attenuated by the gene knockdown of adipoRs. Cilostazol improves HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in diabetic mice by upregulating the expression of adiponectin/adipoRs and its SIRT1/AMPK downstream signaling pathway.
Collapse
Affiliation(s)
- Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
30
|
Haidari F, Elahikhah M, Shariful Islam SM, Mohammadshahi M, Shahbazian H, Aghamohammadi V. Effects of milk protein concentrate supplementation on metabolic parameters, adipocytokines and body composition in obese women under weight-loss diet: study protocol for a randomised controlled trial. BMJ Open 2022; 12:e064727. [PMID: 36202586 PMCID: PMC9540842 DOI: 10.1136/bmjopen-2022-064727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Obesity impairs metabolic function and increases the risk of cardiovascular disease and type 2 diabetes mellitus. Evidence suggests that high-protein diets help to increase weight loss and protect against weight gain. Milk protein concentrate (MPC) is a dairy product with a high protein content with a ratio of casein and whey protein similar to skim milk. This trial aims to evaluate the effect of MPC supplementation in obese women under a weight-loss diet. METHODS AND ANALYSIS We will conduct a 2-month open-label, parallel-group, randomised controlled trial to determine the effect of MPC supplementation on levels of glycaemic and lipid profile, leptin, adiponectin, appetite, waist circumference, body mass index and body composition in 44 premenopausal obese women on a weight-loss diet. ETHICS AND DISSEMINATION This protocol, approved by the Medical Ethics Committee of Ahvaz University of Medical Sciences, is in accordance with the Declaration of Helsinki (approval number: IR.AJUMS.REC.1399.795). The trial results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER Iranian Registry of Clinical Trials (IRCT20201223049804N1).
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Elahikhah
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Majid Mohammadshahi
- Department of Nutrition, Nutrition and Metabolic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hajieh Shahbazian
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
31
|
Zhang Z, Zhang Z, Pei L, Zhang X, Li B, Meng Y, Zhou X. How high-fat diet affects bone in mice: A systematic review and meta-analysis. Obes Rev 2022; 23:e13493. [PMID: 35822276 DOI: 10.1111/obr.13493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
High-fat diet (HFD) feeding for mice is commonly used to model obesity. However, conflicting results have been reported on the relationship between HFD and bone mass. In this systematic review and meta-analysis, we synthesized data from 80 articles to determine the alterations in cortical and trabecular bone mass of femur, tibia, and vertebrae in C57BL/6 mice after HFD. Overall, we detected decreased trabecular bone mass as well as deteriorated architecture, in femur and tibia of HFD treated mice. The vertebral trabecula was also impaired, possibly due to its reshaping into a more fragmentized pattern. In addition, pooled cortical thickness declined in femur, tibia, and vertebrae. Combined with changes in other cortical parameters, HFD could lead to a larger femoral bone marrow cavity, and a thinner and more fragile cortex. Moreover, we conducted subgroup analyses to explore the influence of mice's sex and age as well as HFD's ingredients and intervention period. Based on our data, male mice or mice aged 6-12 weeks old are relatively susceptible to HFD. HFD with > 50% of energy from fats and intervention time of 10 weeks to 5 months are more likely to induce skeletal alterations. Altogether, these findings supported HFD as an appropriate model for obesity-associated bone loss and can guide future studies.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhou Zhang
- College of Letters & Science, University of California Berkeley, Berkeley, California, USA
| | - Boyuan Li
- Fountain Valley School of Colorado, Colorado Springs, Colorado, USA
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, People's Republic of China
| |
Collapse
|
32
|
Liu Y, Xu M, Le Y, Wang W, Li Y, Li X, Wang C. Sex-dependent effect of triphenyl phosphate on hepatic energy metabolism at the intersection of diet pattern in pubertal mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113850. [PMID: 36068767 DOI: 10.1016/j.ecoenv.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Triphenyl phosphate (TPhP) is mostly residual in fat-rich foodstuff and ingestion is the main route for adolescents' exposure. As a typical metabolic disruptor, however, sex-specific effect of TPhP-high fat diet (HFD) co-exposure in adolescent remains unknown. This study revealed that HFD exacerbated systematic inflammation and insulin insensitivity in female mice at pubertal stage after exposure to 25 mg/kg TPhP or above. Notably, the pattern of sexual selective metabolic disruption caused by TPhP was irrespective of diet after examined mice both in HFD and normal diet feeding. Female mice favored the energy storage in forms of D-glucose 6-phosphate, D-fructose 6-phosphate and triglyceride. That was further supported by mRNA levels of key enzymes in glycolysis, gluconeogenesis, and lipid metabolism. Contrastingly, the elevation of the corresponding genes ensuing by the depleted metabolites were observed in males. In mechanistic investigation, we observed a declination of serum estrogen, a master of energy homeostasis, in both sexes, irrespective of diet. However, only male mice displayed estrogen-hypothalamus negative feedback, supporting by the upregulation of gonadotropin-releasing hormone. Rather than the well-recognized estrogen receptor α, hepatic G protein-coupled estrogen receptor manifested sexual dichotomy, which desensitized to estrogenic response only in females. Collectively, this study posited that females were more susceptible to store energy under TPhP-HFD than males during pubertal partially through estrogenic pathway.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Yi Li
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China
| | - Xiaowen Li
- Cangzhou Medical College, Cangzhou, Hebei, People's Republic of China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
33
|
Su L, Pan Y, Chen H. The Harm of Metabolically Healthy Obese and the Effect of Exercise on Their Health Promotion. Front Physiol 2022; 13:924649. [PMID: 35910571 PMCID: PMC9329531 DOI: 10.3389/fphys.2022.924649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and obesity-related diseases [type 2 diabetes, cardiovascular disease (CVD), and cancer] are becoming more common, which is a major public health concern. Metabolically healthy obesity (MHO) has become a type of obesity, accounting for a large proportion of obese people. MHO is still harmful to health. It was discovered that MHO screening criteria could not well reflect health hazards, whereas visceral fat, adiponectin pathway, oxidative stress, chronic inflammation, and histological indicators at the microlevel could clearly distinguish MHO from health control, and the biological pathways involved in these micro indicators were related to MHO pathogenesis. This review reveals that MHO’s micro metabolic abnormality is the initial cause of the increase of disease risk in the future. Exploring the biological pathway of MHO is important in order to develop an effective mechanism-based preventive and treatment intervention strategy. Exercise can correct the abnormal micro metabolic pathway of MHO, regulate metabolic homeostasis, and enhance metabolic flexibility. It is a supplementary or possible alternative to the traditional healthcare prevention/treatment strategy as well as an important strategy for reducing MHO-related health hazards.
Collapse
Affiliation(s)
- Liqiang Su
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Yihe Pan
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
- *Correspondence: Haichun Chen,
| |
Collapse
|
34
|
Gouliopoulos N, Siasos G, Bouratzis N, Oikonomou E, Kollia C, Konsola T, Oikonomou D, Rouvas A, Kassi E, Tousoulis D, Moschos MM. Polymorphism analysis of ADIPOQ gene in Greek patients with diabetic retinopathy. Ophthalmic Genet 2022; 43:326-331. [PMID: 34895017 DOI: 10.1080/13816810.2021.2015787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/13/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Several genetic polymorphisms have been identified as risk factors for diabetic retinopathy (DR) onset. The purpose of our study was to determine whether ADIPOQ rs1501299 and rs2241766 gene polymorphisms are associated with DR in a cohort of Greek diabetic patients. MATERIALS AND METHODS 218 patients with type-2 diabetes mellitus (T2DM) were included in the study; 109 suffered from DR and 109 not. All the participants underwent a complete ophthalmological examination, while clinical and demographic data were assessed. Furthermore, they were genotyped for G276T (rs1501299) and T45G (rs2241766) single nucleotide polymorphisms of ADIPOQ gene. RESULTS Between the studied groups, no significant differences were detected regarding the demographic and clinical data (p > .05 for all), except for hemoglobin A1c levels and frequency of insulin treatment (higher in DR patients). We detected that the frequency of rs1501299 GT genotype was significantly elevated in DR patients (53% vs. 34%, p = .004) and was associated with a higher risk of developing retinopathy (OR 2.31, 95% CI 1.30-4.11). Furthermore, we demonstrated that the rs1501299 GT genotype was significantly and independently associated with increased odds for DR development in diabetic subjects (OR 2.68, 95% CI 1.38-5.21, p = .004), regardless of the impact of other known risk factors. CONCLUSIONS We documented that rs1501299 GT genotype could be recognized as an independent risk factor of retinopathy in T2DM Greek patients, while no role for rs2241766 polymorphism was identified. Further research in different ethnic groups will clarify the exact association of these polymorphisms with the risk of DR development.
Collapse
Affiliation(s)
- Nikolaos Gouliopoulos
- 2nd Department of Ophthalmology, University of Athens Medical School, Athens, Greece
- 1st Department of Ophthalmology, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, University of Athens Medical School, Athens, Greece
| | - Nikolaos Bouratzis
- 2 Department of Ophthalmology, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1 Department of Cardiology, University of Athens Medical School, Athens, Greece
| | - Christina Kollia
- 1 Department of Cardiology, University of Athens Medical School, Athens, Greece
| | - Theodosia Konsola
- 1 Department of Cardiology, University of Athens Medical School, Athens, Greece
| | - Dimitra Oikonomou
- 2 Department of Ophthalmology, University of Athens Medical School, Athens, Greece
| | - Alexandros Rouvas
- 2 Department of Ophthalmology, University of Athens Medical School, Athens, Greece
| | - Eva Kassi
- 1st Department of Propaedeutic and Internal Medicine, Division of Diabetes, University of Athens Medical School, Athens, Greece
| | - Dimitrios Tousoulis
- 1 Department of Cardiology, University of Athens Medical School, Athens, Greece
| | - Marilita M Moschos
- 1 Department of Ophthalmology, University of Athens Medical School, Athens, Greece
| |
Collapse
|
35
|
Maciel JIHN, Zazula MF, Rodrigues DFS, De Toni Boaro C, Boaretto ML, de Andrade BZ, Schneider SCS, Naliwaiko K, Torrejais MM, Costa RM, de Fátima Chasko Ribeiro L, Bertolini GRF. Whole-Body Vibration Promotes Skeletal Muscle Restructuring and Reduced Obesogenic Effect of MSG in Wistar Rats. Appl Biochem Biotechnol 2022; 194:3594-3608. [PMID: 35460454 DOI: 10.1007/s12010-022-03923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
The negative changes of obesity to the locomotor system are a major concern in the current scenario, where obesity and metabolic syndrome are recurrent in Western societies. A physical exercise is an important tool as a way to rehabilitate obesity, highlighting whole-body vibration, as it is an easy-access modality with few restrictions. In this sense, we sought to evaluate the effect of whole-body vibration on the extensor digitorum longus muscle on a monosodium glutamate-induced obesity model. The main findings of the present study are related to the ability of the treatment with vibration to reduce the obesogenic characteristics and slow down the dyslipidemic condition of the animals. Likewise, the vibration promoted by the vibrating platform was essential in the recovery of the muscle structure, as well as the recovery of the muscle's oxidative capacity, initially compromised by obesity.
Collapse
Affiliation(s)
- Jhyslayne Ignácia Hoff Nunes Maciel
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | | | - Mariana Laís Boaretto
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | | | - Sara Cristina Sagae Schneider
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil
| | - Katya Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Paraná, Brasil
| | | | - Rose Meire Costa
- Laboratório de Biologia Estrutural e Funcional, Unioeste, Cascavel, Paraná, Brasil
| | | | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo das Lesões e Recursos Fisioterapêuticos, Universidade Estadual do Oeste do Paraná (Unioeste), Universitária St, 2069, Zip code: 85819110 , Paraná, Cascavel, Brasil.
| |
Collapse
|
36
|
Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, de Braud F, Vernieri C. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther Adv Med Oncol 2022; 14:17588359221079123. [PMID: 35281350 PMCID: PMC8908398 DOI: 10.1177/17588359221079123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Human Epidermal growth factor Receptor 2 (HER2) overexpression or HER2 gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies. Retrospective clinical analyses indicate that overweight and obesity can negatively affect the prognosis of patients with early-stage HER2+ BC. This association could be mediated by the interplay between overweight/obesity, alterations in systemic glucose and lipid metabolism, increased systemic inflammatory status, and the stimulation of proliferation pathways resulting in the stimulation of HER2+ BC cell growth and resistance to anti-HER2 therapies. By contrast, in the context of advanced disease, a few high-quality studies, which were included in a meta-analysis, showed an association between high body mass index (BMI) and better clinical outcomes, possibly reflecting the negative prognostic role of malnourishment and cachexia in this setting. Of note, overweight and obesity are modifiable factors. Therefore, uncovering their prognostic role in patients with early-stage or advanced HER2+ BC could have clinical relevance in terms of defining subsets of patients requiring more or less aggressive pharmacological treatments, as well as of designing clinical trials to investigate the therapeutic impact of lifestyle interventions aimed at modifying body weight and composition. In this review, we summarize and discuss the available preclinical evidence supporting the role of adiposity in modulating HER2+ BC aggressiveness and resistance to therapies, as well as clinical studies reporting on the prognostic role of BMI in patients with early-stage or advanced HER2+ BC.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Zambelli
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Santamaria
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Emma Zattarin
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
37
|
Zheng Y, Hu Q, Wu J. Adiponectin ameliorates placental injury in gestational diabetes mice by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity. Endocrine 2022; 75:781-793. [PMID: 34859390 DOI: 10.1007/s12020-021-02933-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE In gestational diabetes (GDM), abnormalities occur not only in glucose metabolism, but also in lipid metabolism. Adiponectin (ADPN) plays an important role in the regulation of lipid metabolism. In this paper, the role and mechanism of ADPN in GDM are discussed. METHODS GDM model was formed in pregnant mice induced by high-fat diet and streptozotocin, and blood glucose level was detected after ADPN treatment. The levels of TG, TC, HDL-C, and LDL-C in blood lipid of mice were detected by biochemical apparatus. HE staining was used to detect the placenta damage in mice. The expression of oxidative stress-related indexes in placental tissues was also detected by ELISA. Placental iron deposition was detected by Prussian blue staining. Redox capacity of placental tissue was detected by ELISA. Western blot was used to detect the expression of ferroptosis-related proteins in placental tissues. The expression of ADPN in placenta and peripheral blood was detected by ELISA, and the expression of ADPNR, downstream CPT-1, and GLUT4 of placenta were detected by RT-qPCR and western blot. Subsequently, trophoblast cells were induced by palmitic acid and glucose, and the cell activity was detected by CCK-8. The results in animal experiments were verified in cell experiments by RT-qPCR, western blot, and fluorescence labeling of iron ions. Finally, ADPN and CPT-1 inhibitor PM were given to trophoblast cells to further explore the mechanism. RESULTS ADPN inhibited blood glucose and lipid levels in GDM mice. ADPN inhibited oxidation/peroxide imbalance-induced ferroptosis in placental tissues of GDM mice. ADPN inhibited the expression of CPT-1 and GLUT4 in placental tissues of GDM mice. This result was also confirmed in cell experiments, and this process may be achieved by regulating CPT-1. CONCLUSIONS ADPN ameliorated placental injury in GDM by correcting fatty acid oxidation/peroxide imbalance-induced ferroptosis via restoration of CPT-1 activity.
Collapse
Affiliation(s)
- Yifang Zheng
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030002, China
| | - Qiaosheng Hu
- Department of Nutrition, Lianshui County People's Hospital, Lianshui, Jiangsu, 223400, China
| | - Jieli Wu
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
38
|
Pinto G, Militello R, Amoresano A, Modesti PA, Modesti A, Luti S. Relationships between Sex and Adaptation to Physical Exercise in Young Athletes: A Pilot Study. Healthcare (Basel) 2022; 10:healthcare10020358. [PMID: 35206972 PMCID: PMC8871996 DOI: 10.3390/healthcare10020358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to compare the redox, hormonal, metabolic, and lipid profiles of female and male basketball players during the seasonal training period, compared to their relative sedentary controls. 20 basketball players (10 female and 10 male) and 20 sedentary controls (10 female and 10 male) were enrolled in the study. Oxidative stress, adiponectin level, and metabolic profile were determined. Male and female athletes showed an increased antioxidant capacity (27% for males; 21% for females) and lactate level (389% for males; 460% for females) and reduced salivary cortisol (25% for males; 51% for females) compared to the sedentary controls. Moreover, a peculiar metabolite (in particular, amino acids and urea), hormonal, and lipidic profile were highlighted in the two groups of athletes. Female and male adaptations to training have several common traits, such as antioxidant potential enhancement, lactate increase, and activation of detoxifying processes, such as the urea cycle and arachidonic pathways as a response to inflammation. Moreover, we found different lipid and amino acid utilization related to sex. Deeper investigation could help coaches in developing training programs based on the athletes’ sex in order to reduce the drop-out rate of sporting activity by girls and fight the gender stereotypes in sport that also have repercussions in social fields.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Rosamaria Militello
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (R.M.); (A.M.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB, Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (R.M.); (A.M.)
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (R.M.); (A.M.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, 50019 Sesto Fiorentino, Italy
- Correspondence:
| |
Collapse
|
39
|
Lendeckel F, Zylla S, Markus MRP, Ewert R, Gläser S, Völzke H, Albrecht D, Friedrich N, Nauck M, Felix SB, Dörr M, Bahls M. Association of Cardiopulmonary Exercise Capacity and Adipokines in the General Population. Int J Sports Med 2022; 43:616-624. [PMID: 35114706 DOI: 10.1055/a-1699-2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adipokines and cardiorespiratory fitness (CRF) are associated with the (patho)physiology of cardiometabolic diseases. Whether CRF and adipokines are related is unclear. We investigated associations of CRF with leptin, adiponectin, chemerin, resistin and vaspin. Data from the population-based Study of Health in Pomerania was used (n=1,479; median age 49 years; 51% women). Cardiopulmonary exercise testing was used to measure CRF. Circulating adipokine concentrations were measured by enzyme-linked immunosorbent assay. The association between CRF and adipokines was assessed using multivariable sex-specific quantile regression models. Higher maximum oxygen uptake was significantly associated with lower leptin (men:-0.11 ng/ml; 95%-confidence interval [CI]:-0.18 to-0.03 ng/ml; p<0.005; women:-0.17 ng/ml; 95%-CI:-0.33 to-0.02 ng/ml; p<0.05) and chemerin (men:-0.26 ng/ml; 95%-CI:-0.52 to-0.01 ng/ml; p<0.05; women:-0.41 ng/ml; 95%-CI:-0.82 to-0.01 ng/ml; p<0.05) as well as higher adiponectin concentrations (men: 0.06 µg/ml; 95%-CI: 0.02 to 0.11 µg/ml; p<0.05; women: 0.03 µg/ml; 95%-CI:-0.05 to 0.10 µg/ml; p=0.48). We found that CRF was inversely associated with leptin and chemerin in both sexes and positively associated with adiponectin only in men.
Collapse
Affiliation(s)
- Frederik Lendeckel
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Stephanie Zylla
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sven Gläser
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Clinic for Internal Medicine, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Henry Völzke
- Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany.,Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany
| | - Diana Albrecht
- Institute of Community Medicine, Universitatsmedizin Greifswald, Greifswald, Germany.,Leibniz Institute Greifswald, Leibniz Institute for Plasma Science and Technology eV, Greifswald, Germany
| | - Nele Friedrich
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Marcus Dörr
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| | - Martin Bahls
- Department for Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany.,Partner-site Greifswald, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Greifswald, Germany
| |
Collapse
|
40
|
Shinohara I, Kataoka T, Mifune Y, Inui A, Sakata R, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Matsushita T, Kuroda R. Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle. Sci Rep 2022; 12:1557. [PMID: 35091650 PMCID: PMC8799651 DOI: 10.1038/s41598-022-05608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Tendon rupture and nerve injury cause fatty infiltration of the skeletal muscle, and the adipokines secreted from the infiltrated adipocytes are known to contribute to chronic inflammation. Therefore, in this study, we evaluated the effects of the adipokines on chronic inflammation using a rat sciatic nerve-crushed injury model. In vitro and in vivo experiments showed that the expression of adiponectin was decreased (0.3-fold) and the expression of Il6 (~ 3.8-fold) and Tnf (~ 6.2-fold) was increased in the nerve-crushed group compared to that in the control group. It was also observed that the administration of an adiponectin receptor agonist decreased the levels of Il6 (0.38-fold) and Tnf (0.28-fold) and improved cellular viability (~ 1.9-fold) in vitro. Additionally, in the fatty infiltrated skeletal muscle, low adiponectin levels were found to be associated with chronic inflammation. Therefore, the local administration of adiponectin receptor agonists would prevent chronic inflammation.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| |
Collapse
|
41
|
Gao L, Cheng H, Yan Y, Liu J, Shan X, Wang X, Mi J. The associations of muscle mass with glucose and lipid metabolism are influenced by body fat accumulation in children and adolescents. Front Endocrinol (Lausanne) 2022; 13:976998. [PMID: 36187103 PMCID: PMC9520779 DOI: 10.3389/fendo.2022.976998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To evaluate the prevalence of hyperglycemia and dyslipidemia among different body composition and investigate the associations of body composition indicators, especially the muscle mass, with glucose and lipids metabolism in children and adolescents. METHODS This nationwide cross-sectional study included 8,905 children and adolescents aged 6 to 18 years. All participants underwent dual-energy x-ray absorptiometry and their blood-concentrated glucose and lipids (including TC, TG, LDL-C and HDL-c) were measured. Mixed model, hierarchical analysis, and piecewise regression were used to study the effect of body composition indicators, especially the muscle mass, on glucose and lipids metabolism. RESULTS The greatest prevalence of high total cholesterol (TC, 6.9% and 6.9%) and high triglyceride (22.3% and 6.6%) was found in both boys and girls with high muscle mass and high fat mass, and girls with high muscle mass and high fat mass also had the highest prevalence of hyperglycemia (7.1%). After fat stratification, higher muscle mass was associated with lower odds of hyperglycemia (OR = 0.62; 95%CI: 0.46,0.84; P = 0.002) and muscle mass was inversely associated with TC (β = -0.07; 95%CI: -0.12,-0.03; P < 0.001) in boys with normal fat mass, but high muscle mass was not significantly associated with hyperglycemia and TC in high-fat-mass group (P = 0.368 and 0.372). CONCLUSIONS The body composition phenotype of high muscle and high fat mass have the highest prevalence of dysglycemia and dyslipidemia. Higher muscle mass was associated with a lower risk of hyperglycemia and TC levels in individuals only with normal fat mass.
Collapse
Affiliation(s)
- Liwang Gao
- Center for Non-communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Yinkun Yan
- Center for Non-communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Junting Liu
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xinying Shan
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xi Wang
- Center for Non-communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Mi
- Center for Non-communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Jie Mi,
| |
Collapse
|
42
|
Fang P, Ge R, She Y, Zhao J, Yan J, Yu X, Jin Y, Shang W, Zhang Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res Rev 2022; 73:101509. [PMID: 34752956 DOI: 10.1016/j.arr.2021.101509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China.
| | - Ran Ge
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
43
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
44
|
Zuo Q, Band S, Kesavadas M, Madak Erdogan Z. Obesity and Postmenopausal Hormone Receptor-positive Breast Cancer: Epidemiology and Mechanisms. Endocrinology 2021; 162:6370080. [PMID: 34519778 DOI: 10.1210/endocr/bqab195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Obesity is a potential risk for several cancers, including postmenopausal, hormone dependent breast cancers. In this review, we summarize recent studies on the impact of obesity on postmenopausal women's health and discuss several mechanisms that were proposed to increase the risk of breast carcinogenesis.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Shoham Band
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Mrinali Kesavadas
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
45
|
Gong Y, Wang Y, Zhang Y, Wang L, Wan L, Zu Y, Li C, Wang X, Cui ZK. Paracrine Effects of Recombinant Human Adiponectin Promote Bone Regeneration. Front Cell Dev Biol 2021; 9:762335. [PMID: 34790669 PMCID: PMC8591230 DOI: 10.3389/fcell.2021.762335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Bone regeneration is a delicate physiological process. Non-union and delayed fracture healing remains a great challenge in clinical practice nowadays. Bone and fat hold a close relationship to remain balanced through hormones and cytokines. Adiponectin is a well-known protein to maintain the hemostasis, which may be an interesting target for fracture healing. Herein, we provided a facile and efficient method to obtain high-purity and high-yield recombinant human adiponectin (ADPN). The biocompatibility and the pharmaceutical behaviors were evaluated in Sprague–Dawley rats. The paracrine effects of adiponectin on bone fracture healing were investigated with a rat tibia fracture model via intrabone injection. Significantly accelerated bone healing was observed in the medulla injection group, indicating the paracrine effects of adiponectin could be potentially utilized for clinical treatments. The underlying mechanism was primarily assessed, and the expression of osteogenic markers, including bone morphogenic protein 2, alkaline phosphatase, and osteocalcin, along with adiponectin receptor 1 (AdipoR1), was markedly increased at the fracture site. The increased bone healing of ADPN treatment may result from both enhanced osteogenic proliferation as well as differentiation. Cell experiments confirmed that the expression of osteogenesis markers increased significantly in ADPN treatment groups, while it decreased when the expression of AdipoR1 was knocked down by siRNA. Our study provided a feasible and efficacious way for bone fracture treatment with local administration of ADPN, which could be rapidly translated into the clinics.
Collapse
Affiliation(s)
- Yanping Gong
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yang Wang
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Liangchen Wang
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lijuan Wan
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuan Zu
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunlin Li
- Department of Endocrinology, The Second Medical Center, National Clinical Research Center for Geriatric Disease, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Wang
- Institute of Orthopedics, The First Medical Center, The People's Liberation Army General Hospital, Beijing, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| |
Collapse
|
46
|
Rafaqat S, Rafaqat S, Rafaqat S. Pathophysiological role of major adipokines in Atrial Fibrillation. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2021. [DOI: 10.1186/s42444-021-00048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The adipokines, secreted from adipose tissue or body fats, are also called adipocytokines which are cytokines, cell signaling proteins or cell–cell communication. However, AF is a common cardiac arrhythmia in which the heart beats so fast by abnormal beating and is a serious public health disease associated with increased heart failure, systemic thromboembolism, and death. Adipokines are cardiovascular disease (CVD) mediators or biomarkers that affect the heart as well as blood vessels, by increasing the cardiac contractility and action potential duration, which result in the extent of left ventricular and atrial remodeling.
Main body
Google Scholar, PubMed, and science direct were used to review the literature. Many keywords were used for searching the literature such as Adipokines, Leptin, Apelin, Adiponectin, Omentin-1, Chemerin, CTRP3, TNF-α, IL-6, IL-10, and AF. According to the literature, much more data are available for numerous adipokines, but this review article only has taken few major adipokines which played their major role in Atrial Fibrillation. The review article did not limit the time frame.
Conclusion
In conclusion, adipokines play a significant role in the development and progress of atrial fibrillation. Also, there are major adipokines such as adiponectin, apelin, C1q/TNF-Related Protein 3 (CTRP3), Chemerin, Omentin-1, interleukin-6, Leptin, TNF-α, resistin, and interleukin-10, which played their pathophysiological role in atrial fibrillation by causing cardiac hypertrophy, increasing the cardiac contractility and action potential duration, atrial fibrosis, electrical and structural remodeling of atrial tissue.
Collapse
|
47
|
Effect of Microgravity Environment on Gut Microbiome and Angiogenesis. Life (Basel) 2021; 11:life11101008. [PMID: 34685381 PMCID: PMC8541308 DOI: 10.3390/life11101008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity environments are known to cause a plethora of stressors to astronauts. Recently, it has become apparent that gut microbiome composition of astronauts is altered following space travel, and this is of significance given the important role of the gut microbiome in human health. Other changes observed in astronauts comprise reduced muscle strength and bone fragility, visual impairment, endothelial dysfunction, metabolic changes, behavior changes due to fatigue or stress and effects on mental well-being. However, the effects of microgravity on angiogenesis, as well as the connection with the gut microbiome are incompletely understood. Here, the potential association of angiogenesis with visual impairment, skeletal muscle and gut microbiome is proposed and explored. Furthermore, metabolites that are effectors of angiogenesis are deliberated upon along with their connection with gut bacterial metabolites. Targeting and modulating the gut microbiome may potentially have a profound influence on astronaut health, given its impact on overall human health, which is thus warranted given the likelihood of increased human activity in the solar system, and the determination to travel to Mars in future missions.
Collapse
|
48
|
Nikooyeh B, Neyestani TR. Can vitamin D be considered an adiponectin secretagogue? A systematic review and meta-analysis. J Steroid Biochem Mol Biol 2021; 212:105925. [PMID: 34089834 DOI: 10.1016/j.jsbmb.2021.105925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022]
Abstract
There is some evidence for ameliorating effect of vitamin D on glycemic and lipidemic status which are likely to be mediated through other molecules including adiponectin. However, the overall results have been controversial. This study was conducted to evaluate the effect of vitamin D supplementation on serum adiponectin concentration. MEDLINE, PubMed, Embase, Cochrane Library, and Google Scholar were searched and 402 studies were found in a preliminary search. After screening of titles and abstracts nine studies were selected. Pooled data showed no significant effect on adiponectin concentrations (mean difference (MD) 0.37, 95 % CI: -0.1 to 0.87). However, there was a significant effect in a subgroup of participants who had diabetes (MD: 0.03, 95 % CI: 0.00 to 0.05, p = 0.029). The treatment effect on adiponectin concentrations was significant in those trials that used supplementation on a daily basis (MD: 0.03, 95 % CI: 0.00 to 0.05, p = 0.028) and vitamin D plus calcium (MD: 0.04, 95 % CI: 0.01 to 0.07, p = 0.014). The meta-regression revealed a significant association between BMI and age of participants at baseline and the treatment effect (B, -0.144, 95 % CI: -0.276 to -0.011, p = 0.033 and B, -0.043, 95 % CI: -0.075 to -0.012, p = 0.006). The results of this meta-analysis study indicates that vitamin D may be considered an adiponectin secretagogue in subjects with diabetes and this effect may be potentiated if vitamin D intake is on daily basis and in combination with calcium but can be weakened by increasing BMI.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Lopez-Yus M, Lopez-Perez R, Garcia-Sobreviela MP, Del Moral-Bergos R, Lorente-Cebrian S, Arbones-Mainar JM. Adiponectin overexpression in C2C12 myocytes increases lipid oxidation and myofiber transition. J Physiol Biochem 2021; 78:517-525. [PMID: 34423393 DOI: 10.1007/s13105-021-00836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Metabolic syndrome and obesity have detrimental effects on the metabolic function of the skeletal muscle. Mounting evidence indicates that patients with those conditions may present an increased ratio of glycolytic to oxidative fibers associated with a decrease in oxidative capacity. In this regard, adiponectin, a hormone mainly secreted by adipocytes that regulates glucose and lipid metabolism, has emerged as a myokine that could play an important role in this process. We aimed to investigate whether adiponectin overexpression in skeletal muscle might be a local protective mechanism, favoring fatty acid utilization. To that end, we generated an in vitro model of myocytes with upregulated endogenous adiponectin using a lentiviral carrier. We demonstrated that the adiponectin-transduced myocytes were able to produce and secrete fully functional adiponectin complexes. Adiponectin overexpression remarkably upregulated the mRNA level of myogenic regulatory factors as well as genes implicated in lipolysis (HSL, ATGL) and cellular and mitochondrial fatty acid transport (LPL, CD36, CPT1B). This was accompanied by increased isoproterenol-induced lipolysis and β-oxidation and reduced lipogenesis, whereas insulin-stimulated glucose uptake was unaltered in transduced myocytes. Lastly, the relative expression of the more glycolytic myofibers (MyHC IIb) compared to the more oxidative ones (MyHC I) was notably reduced. Our results showed that the released adiponectin acted in an autocrine/paracrine manner, increasing lipid oxidation in myocytes and leading to a transition of myofibers from the glycolytic to the oxidative type. In conclusion, muscle adiponectin overexpression might be a way to relieve muscle diseases caused by oxidative muscle fiber deficiency.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Rebeca Lopez-Perez
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal Y Forense, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de La Salud (IACS), Instituto de Investigación Sanitaria (IIS)-Aragón, Isabel la Católica, 1-3, 50009, Zaragoza, Spain. .,CIBER Fisiopatología Obesidad Y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
50
|
Isaac AR, Lima-Filho RAS, Lourenco MV. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021; 197:108744. [PMID: 34363812 DOI: 10.1016/j.neuropharm.2021.108744] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial actions of physical exercise in the brain. However, the intricate mechanisms connecting peripherally released molecules to brain function are not fully understood. Accumulating findings further indicates that impaired skeletal muscle homeostasis impacts brain metabolism and physiology. Here we review recent findings that suggest that muscle-borne signals are essential for brain physiology and discuss perspectives on how these signals vary in response to exercise or muscle diseases. Understanding the complex interactions between skeletal muscle and brain may result in more effective therapeutic strategies to expand healthspan and to prevent brain disease.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|