1
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
2
|
Azadeh M, Good J, Gunsior M, Kulagina N, Lu Y, McNally J, Myler H, Ni YG, Pelto R, Quadrini KJ, Vrentas C, Yang L. Best Practices for Development and Validation of Enzymatic Activity Assays to Support Drug Development for Inborn Errors of Metabolism and Biomarker Assessment. AAPS J 2024; 26:97. [PMID: 39179710 DOI: 10.1208/s12248-024-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024] Open
Abstract
Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.
Collapse
Affiliation(s)
- Mitra Azadeh
- Ultragenyx Pharmaceutical, Inc., Novato, California, USA
| | | | | | - Nadia Kulagina
- Smithers Pharmaceutical Development Services, Gaithersburg, Maryland, USA
| | - Yanmei Lu
- Sangamo Therapeutics, Richmond, California, USA
| | | | | | - Yan G Ni
- Passage Bio, Inc., Philadelphia, Pennsylvania, USA
| | - Ryan Pelto
- Alexion, AstraZeneca Rare Disease, New Haven, Connecticut, USA
| | | | - Catherine Vrentas
- Pharmaceutical Product Development, a ThermoFisher Company, Richmond, Virginia, USA.
- , Richmond, Virginia, USA.
| | - Lin Yang
- Regenxbio, Rockville, Maryland, USA
| |
Collapse
|
3
|
Salari S, Lee H, Tsantrizos YS, Park J. Inhibition of human mevalonate kinase by allosteric inhibitors of farnesyl pyrophosphate synthase. FEBS Open Bio 2024; 14:1320-1339. [PMID: 38923323 PMCID: PMC11301271 DOI: 10.1002/2211-5463.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mevalonate kinase is a key regulator of the mevalonate pathway, subject to feedback inhibition by the downstream metabolite farnesyl pyrophosphate. In this study, we validated the hypothesis that monophosphonate compounds mimicking farnesyl pyrophosphate can inhibit mevalonate kinase. Exploring compounds originally synthesized as allosteric inhibitors of farnesyl pyrophosphate synthase, we discovered mevalonate kinase inhibitors with nanomolar activity. Kinetic characterization of the two most potent inhibitors demonstrated Ki values of 3.1 and 22 nm. Structural comparison suggested features of these inhibitors likely responsible for their potency. Our findings introduce the first class of nanomolar inhibitors of human mevalonate kinase, opening avenues for future research. These compounds might prove useful as molecular tools to study mevalonate pathway regulation and evaluate mevalonate kinase as a potential therapeutic target.
Collapse
Affiliation(s)
- Saman Salari
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sCanada
| | - Hiu‐Fung Lee
- Department of ChemistryMcGill UniversityMontrealCanada
| | | | - Jaeok Park
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sCanada
| |
Collapse
|
4
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Afroz S, Khatoon K, Warsi Z, Husain Z, Kumar Verma S, Ur Rahman L. Molecular cloning and heterologous expression analysis of 1-Deoxy-D-Xylulose-5-Phosphate Synthase gene in Centella asiatica L. Gene 2024; 895:148015. [PMID: 37984537 DOI: 10.1016/j.gene.2023.148015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Many genes involved in triterpenoid saponins in plants control isoprenoid flux and constitute the precursor pool, which is channeled into various downstream pathways leading to the synthesis of triterpenoid saponins in C. asiatica. Full-length 1-Deoxy-D-Xylulose-5-Phosphate-Synthase (CaDXS) gene was isolated for the study from the previously annotated Centella asiatica leaves transcriptomic data. The CaDXS gene sequence was submitted to the NCBI databases with GenBank accession number MZ997832. The full-length CaDXS gene contained a 2244 base pair open reading frame that encoded a 747 amino acid polypeptide. The predicted molecular weight (MW) and theoretical pI of DXS are 76.28 kDa and 6.86, respectively. Multiple amino acid sequence alignment of amino acids and phylogenetic studies suggest that CaDXS shares high similarities with DXS from other plants DXS belonging to different families. A phylogenetic tree was constructed using Molecular Evolutionary Genetic Analysis (MEGA) version 10.1.6. Structural analysis provided fundamental information about the three-dimensional features and physicochemical parameters of the CaDXS protein. Quantitative expression analysis showed that CaDXS transcripts were maximally expressed in leaf, followed by petiole, roots, and node tissues. CaDXS was cloned into the expression vector pET28a, expressed heterologously in DH5α bacteria, confirmed by sequencing, and subsequently characterized by protein expression and functional complementation. The study focused on understanding the protein structure, biological significance, regulatory mechanism, functional analysis, and gene characterization of the centellosides biosynthetic pathway gene DXS for the first time in the plant. It would provide new information about the metabolic pathway and its relative contribution to isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Shama Afroz
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India
| | - Kahkashan Khatoon
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Zafar Warsi
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Zakir Husain
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India
| | - Sanjeet Kumar Verma
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226022, India.
| |
Collapse
|
6
|
Yumoto Y, Endo T, Harada H, Kobayashi K, Nakabayashi T, Abe Y. High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry. Xenobiotica 2024; 54:45-56. [PMID: 38265764 DOI: 10.1080/00498254.2024.2308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
Collapse
Affiliation(s)
- Yu Yumoto
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Kaoru Kobayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Takeshi Nakabayashi
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd, Azumino, Nagano, Japan
| |
Collapse
|
7
|
Fannjiang C, Listgarten J. Is Novelty Predictable? Cold Spring Harb Perspect Biol 2024; 16:a041469. [PMID: 38052497 PMCID: PMC10835614 DOI: 10.1101/cshperspect.a041469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Machine learning-based design has gained traction in the sciences, most notably in the design of small molecules, materials, and proteins, with societal applications ranging from drug development and plastic degradation to carbon sequestration. When designing objects to achieve novel property values with machine learning, one faces a fundamental challenge: how to push past the frontier of current knowledge, distilled from the training data into the model, in a manner that rationally controls the risk of failure. If one trusts learned models too much in extrapolation, one is likely to design rubbish. In contrast, if one does not extrapolate, one cannot find novelty. Herein, we ponder how one might strike a useful balance between these two extremes. We focus in particular on designing proteins with novel property values, although much of our discussion is relevant to machine learning-based design more broadly.
Collapse
Affiliation(s)
- Clara Fannjiang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Irwin R, Harkness RW, Forman-Kay JD. A FRET-Based Assay and Computational Tools to Quantify Enzymatic Rates and Explore the Mechanisms of RNA Deadenylases in Heterogeneous Environments. Methods Mol Biol 2024; 2723:69-91. [PMID: 37824065 DOI: 10.1007/978-1-0716-3481-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We developed a medium-throughput assay that can measure the time-dependent distribution of RNA products generated as a deadenylase degrades a polyadenosine (poly(A)) RNA tract, thereby providing insight into the mechanism of deadenylation. Importantly, this assay can be performed in both homogeneous and heterogeneous environments without relying on gel electrophoresis of RNA products or coupled enzymatic reactions that indirectly report on the RNA distribution through the detection of freed adenosine monophosphate. In parallel, we have established an open-source, Python-based command-line software package, deadenylationkinetics, that can be used to numerically simulate and/or fit the datasets afforded by our assay with different deadenylation mechanisms to determine the most likely case and estimate the associated rate constants. In this chapter, we detail the implementation of our method and the quantification of poly(A) RNA binding and degradation kinetics in application to a truncated version of CNOT7 from the CCR4-NOT deadenylation complex, which serves as a model deadenylase with enhanced activity.
Collapse
Affiliation(s)
- Rose Irwin
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Robert W Harkness
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Boby ML, Fearon D, Ferla M, Filep M, Koekemoer L, Robinson MC, Chodera JD, Lee AA, London N, von Delft A, von Delft F, Achdout H, Aimon A, Alonzi DS, Arbon R, Aschenbrenner JC, Balcomb BH, Bar-David E, Barr H, Ben-Shmuel A, Bennett J, Bilenko VA, Borden B, Boulet P, Bowman GR, Brewitz L, Brun J, Bvnbs S, Calmiano M, Carbery A, Carney DW, Cattermole E, Chang E, Chernyshenko E, Clyde A, Coffland JE, Cohen G, Cole JC, Contini A, Cox L, Croll TI, Cvitkovic M, De Jonghe S, Dias A, Donckers K, Dotson DL, Douangamath A, Duberstein S, Dudgeon T, Dunnett LE, Eastman P, Erez N, Eyermann CJ, Fairhead M, Fate G, Fedorov O, Fernandes RS, Ferrins L, Foster R, Foster H, Fraisse L, Gabizon R, García-Sastre A, Gawriljuk VO, Gehrtz P, Gileadi C, Giroud C, Glass WG, Glen RC, Glinert I, Godoy AS, Gorichko M, Gorrie-Stone T, Griffen EJ, Haneef A, Hassell Hart S, Heer J, Henry M, Hill M, Horrell S, Huang QYJ, Huliak VD, Hurley MFD, Israely T, Jajack A, Jansen J, Jnoff E, Jochmans D, John T, Kaminow B, Kang L, Kantsadi AL, Kenny PW, Kiappes JL, Kinakh SO, Kovar B, Krojer T, La VNT, Laghnimi-Hahn S, Lefker BA, Levy H, Lithgo RM, Logvinenko IG, Lukacik P, Macdonald HB, MacLean EM, Makower LL, Malla TR, Marples PG, Matviiuk T, McCorkindale W, McGovern BL, Melamed S, Melnykov KP, Michurin O, Miesen P, Mikolajek H, Milne BF, Minh D, Morris A, Morris GM, Morwitzer MJ, Moustakas D, Mowbray CE, Nakamura AM, Neto JB, Neyts J, Nguyen L, Noske GD, Oleinikovas V, Oliva G, Overheul GJ, Owen CD, Pai R, Pan J, Paran N, Payne AM, Perry B, Pingle M, Pinjari J, Politi B, Powell A, Pšenák V, Pulido I, Puni R, Rangel VL, Reddi RN, Rees P, Reid SP, Reid L, Resnick E, Ripka EG, Robinson RP, Rodriguez-Guerra J, Rosales R, Rufa DA, Saar K, Saikatendu KS, Salah E, Schaller D, Scheen J, Schiffer CA, Schofield CJ, Shafeev M, Shaikh A, Shaqra AM, Shi J, Shurrush K, Singh S, Sittner A, Sjö P, Skyner R, Smalley A, Smeets B, Smilova MD, Solmesky LJ, Spencer J, Strain-Damerell C, Swamy V, Tamir H, Taylor JC, Tennant RE, Thompson W, Thompson A, Tomásio S, Tomlinson CWE, Tsurupa IS, Tumber A, Vakonakis I, van Rij RP, Vangeel L, Varghese FS, Vaschetto M, Vitner EB, Voelz V, Volkamer A, Walsh MA, Ward W, Weatherall C, Weiss S, White KM, Wild CF, Witt KD, Wittmann M, Wright N, Yahalom-Ronen Y, Yilmaz NK, Zaidmann D, Zhang I, Zidane H, Zitzmann N, Zvornicanin SN. Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors. Science 2023; 382:eabo7201. [PMID: 37943932 PMCID: PMC7615835 DOI: 10.1126/science.abo7201] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.
Collapse
Affiliation(s)
- Melissa L Boby
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program in Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
| | - Matteo Ferla
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK
| | - Mihajlo Filep
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - John D Chodera
- Program in Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Annette von Delft
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Hagit Achdout
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Anthony Aimon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Dominic S Alonzi
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
| | - Robert Arbon
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Jasmin C Aschenbrenner
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Blake H Balcomb
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Elad Bar-David
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Haim Barr
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - Amir Ben-Shmuel
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - James Bennett
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
- University of Oxford, Nuffield Department of Medicine, Target Discovery Institute, Oxford, OX3 7FZ, UK
| | - Vitaliy A Bilenko
- Enamine Ltd, Kyiv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | | | - Pascale Boulet
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, 1202, Switzerland
| | - Gregory R Bowman
- University of Pennsylvania, Departments of Biochemistry and Biophysics and Bioengineering, Philadelphia, PA 19083, USA
| | - Lennart Brewitz
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Juliane Brun
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
| | - Sarma Bvnbs
- Sai Life Sciences Limited, ICICI Knowledge Park, Shameerpet, Hyderabad 500 078, Telangana, India
| | | | - Anna Carbery
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- University of Oxford, Department of Statistics, Oxford OX1 3LB, UK
| | - Daniel W Carney
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Emma Cattermole
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
| | - Edcon Chang
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | | | | | | | - Galit Cohen
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - Jason C Cole
- Cambridge Crystallographic Data Centre, Cambridge, CB2 1EZ, UK
| | - Alessandro Contini
- University of Milan, Department of General and Organic Chemistry, Milan, 20133, Italy
| | - Lisa Cox
- Life Compass Consulting Ltd, Macclesfield, SK10 5UE, UK
| | - Tristan Ian Croll
- The University of Cambridge, Cambridge Institute for Medical Research, Department of Haematology, Cambridge CB2 0XY, UK
- Present address: Altos Labs, BioML group, Great Abington, CB21 6GP
| | | | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Alex Dias
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Kim Donckers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Alice Douangamath
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Shirly Duberstein
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - Tim Dudgeon
- Informatics Matters Ltd, Bicester, OX26 6JU, UK
| | - Louise E Dunnett
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter Eastman
- Stanford University, Department of Chemistry, Stanford, CA 94305, USA
| | - Noam Erez
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Charles J Eyermann
- Northeastern University, Department of Chemistry and Chemical Biology, Boston MA 02115, USA
| | - Michael Fairhead
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Gwen Fate
- Thames Pharma Partners LLC, Mystic, CT 06355, USA
| | - Oleg Fedorov
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
- University of Oxford, Nuffield Department of Medicine, Target Discovery Institute, Oxford, OX3 7FZ, UK
| | - Rafaela S Fernandes
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
| | - Lori Ferrins
- Northeastern University, Department of Chemistry and Chemical Biology, Boston MA 02115, USA
| | - Richard Foster
- University of Leeds, School of Chemistry, Leeds, LS2 9JT, UK
| | - Holly Foster
- University of Leeds, School of Chemistry, Leeds, LS2 9JT, UK
- Present address: Exscientia, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, 1202, Switzerland
| | - Ronen Gabizon
- The Weizmann Institute of Science, Department of Chemical and Structural Biology, Rehovot, 7610001, Israel
| | - Adolfo García-Sastre
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Infectious Diseases, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Department of Pathology, Molecular and Cell-Based Medicine, New York, NY 10029, USA
| | - Victor O Gawriljuk
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
- Present address: University of Groningen, Groningen Research Institute of Pharmacy, Department of Drug Design, Groningen, 9700 AV, Netherlands
| | - Paul Gehrtz
- The Weizmann Institute of Science, Department of Chemical and Structural Biology, Rehovot, 7610001, Israel
- Present address: Merck Healthcare KGaA, Darmstadt, 64293, Germany
| | - Carina Gileadi
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Charline Giroud
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
- University of Oxford, Nuffield Department of Medicine, Target Discovery Institute, Oxford, OX3 7FZ, UK
| | - William G Glass
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
- Present address: Exscientia, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Robert C Glen
- University of Cambridge, Department of Chemistry, Cambridge, CB2 1EW, UK
| | - Itai Glinert
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Andre S Godoy
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
| | - Marian Gorichko
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Tyler Gorrie-Stone
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ed J Griffen
- MedChemica Ltd, Macclesfield, Cheshire. SK11 6PU UK
| | - Amna Haneef
- Illinois Institute of Technology, Department of Biology, Chicago IL 60616 USA
| | - Storm Hassell Hart
- University of Sussex, Department of Chemistry, School of Life Sciences, Brighton, East Sussex, BN1 9QJ, UK
| | - Jag Heer
- Syngene International Limited, Headington, Oxford, OX3 7BZ, UK
| | - Michael Henry
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Michelle Hill
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
- Present address: Sir William Dunn School of Pathology, Oxford. OX1 3RE, UK
| | - Sam Horrell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Qiu Yu Judy Huang
- University of Massachusetts, Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester MA 01655, USA
| | | | | | - Tomer Israely
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | | | - Jitske Jansen
- RWTH Aachen University, Institute of Experimental Medicine and Systems Biology, Aachen, 52074, Germany
| | - Eric Jnoff
- UCB, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Tobias John
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
- Present address: AMSilk, Neuried, 82061, Germany
| | - Benjamin Kaminow
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Lulu Kang
- Illinois Institute of Technology, Department of Applied Mathematics, Chicago IL 60616 USA
| | - Anastassia L Kantsadi
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
- University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, 415 00, Greece
| | - Peter W Kenny
- Berwick-on-Sea, North Coast Road, Blanchisseuse, Saint George, Trinidad and Tobago
| | - J L Kiappes
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
- Present address: University College of London, Department of Chemistry, London WC1H 0AJ, UK
| | | | - Boris Kovar
- M2M solutions s.r.o. Žilina, 010 01, Slovakia
| | - Tobias Krojer
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
- MAX IV Laboratory, Fotongatan 2, 224 84 Lund, Sweden
| | - Van Ngoc Thuy La
- Illinois Institute of Technology, Department of Biology, Chicago IL 60616 USA
| | | | | | - Haim Levy
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Ryan M Lithgo
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Petra Lukacik
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Hannah Bruce Macdonald
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
- Present address: Charm Therapeutics, London, N1C 4AG, UK
| | - Elizabeth M MacLean
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Laetitia L Makower
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
| | - Tika R Malla
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Peter G Marples
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Willam McCorkindale
- Present address: Charm Therapeutics, London, N1C 4AG, UK
- University of Cambridge, Cavendish Laboratory, Cambridge, CB3 0HE UK
| | - Briana L McGovern
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY 10029, USA
| | - Sharon Melamed
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Kostiantyn P Melnykov
- Enamine Ltd, Kyiv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | | | - Pascal Miesen
- Radboud University Medical Center, Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, Netherlands
| | - Halina Mikolajek
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Bruce F Milne
- University of Aberdeen, Department of Chemistry, Old Aberdeen, AB24 3UE Scotland, UK
- University of Coimbra, CFisUC, Department of Physics, Coimbra, 3004-516, Portugal
| | - David Minh
- Illinois Institute of Technology, Department of Chemistry, Chicago IL 60616 USA
| | | | - Garrett M Morris
- University of Oxford, Department of Statistics, Oxford OX1 3LB, UK
| | - Melody Jane Morwitzer
- University of Nebraska Medical Centre, Dept of Pathology and Microbiology, Omaha, NE 68198-5900, USA
| | | | - Charles E Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, 1202, Switzerland
| | - Aline M Nakamura
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
- Present address: Instituto Butantan, Sao Paulo, 05503-900, Brazil
| | - Jose Brandao Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | - Gabriela D Noske
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
| | - Vladas Oleinikovas
- UCB, Slough, SL1 3WE, UK
- Present address: Monte Rosa Therapeutics, Basel, CH 4057, Switzerland
| | - Glaucius Oliva
- University of Sao Paulo, Sao Carlos Institute of Physics, Sao Carlos, 13563-120, Brazil
| | - Gijs J Overheul
- Radboud University Medical Center, Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, Netherlands
| | - C David Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ruby Pai
- PostEra Inc., Cambridge, MA, 02142, USA
| | - Jin Pan
- PostEra Inc., Cambridge, MA, 02142, USA
| | - Nir Paran
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Alexander Matthew Payne
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Benjamin Perry
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, 1202, Switzerland
- Present address: Medicxi, Geneva, 1204, Switzerland
| | - Maneesh Pingle
- Sai Life Sciences Limited, ICICI Knowledge Park, Shameerpet, Hyderabad 500 078, Telangana, India
| | - Jakir Pinjari
- Sai Life Sciences Limited, ICICI Knowledge Park, Shameerpet, Hyderabad 500 078, Telangana, India
- Present address: Sun Pharma Advanced Research Company (SPARC), Baroda, India
| | - Boaz Politi
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Ailsa Powell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Iván Pulido
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Reut Puni
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Victor L Rangel
- University of São Paulo, Ribeirão Preto School of Pharmaceutical Sciences, Ribeirão Preto - SP/CEP 14040-903, Brazil
- Present address: Evotec (UK) Ltd, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Rambabu N Reddi
- The Weizmann Institute of Science, Department of Chemical and Structural Biology, Rehovot, 7610001, Israel
| | - Paul Rees
- Compass Bussiness Partners Ltd, Southcliffe, Bucks, SL9 0PD, UK
| | - St Patrick Reid
- University of Nebraska Medical Centre, Dept of Pathology and Microbiology, Omaha, NE 68198-5900, USA
| | - Lauren Reid
- MedChemica Ltd, Macclesfield, Cheshire. SK11 6PU UK
| | - Efrat Resnick
- The Weizmann Institute of Science, Department of Chemical and Structural Biology, Rehovot, 7610001, Israel
| | | | | | - Jaime Rodriguez-Guerra
- Charité - Universitätsmedizin Berlin, In silico Toxicology and Structural Bioinformatics, Berlin, 10117, Germany
| | - Romel Rosales
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY 10029, USA
| | - Dominic A Rufa
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Kadi Saar
- University of Cambridge, Cavendish Laboratory, Cambridge, CB3 0HE UK
| | | | - Eidarus Salah
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - David Schaller
- Charité - Universitätsmedizin Berlin, In silico Toxicology and Structural Bioinformatics, Berlin, 10117, Germany
| | - Jenke Scheen
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Celia A Schiffer
- University of Massachusetts, Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester MA 01655, USA
| | - Christopher J Schofield
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | | | - Aarif Shaikh
- Sai Life Sciences Limited, ICICI Knowledge Park, Shameerpet, Hyderabad 500 078, Telangana, India
| | - Ala M Shaqra
- University of Massachusetts, Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester MA 01655, USA
| | - Jiye Shi
- UCB, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
- Present address: Eli Lilly and Company, San Diego, CA 92121, USA
| | - Khriesto Shurrush
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - Sukrit Singh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Assa Sittner
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, 1202, Switzerland
| | - Rachael Skyner
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Bart Smeets
- Radboud University Medical Center, Department of pathology, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, Netherlands
| | - Mihaela D Smilova
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Leonardo J Solmesky
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - John Spencer
- University of Sussex, Department of Chemistry, School of Life Sciences, Brighton, East Sussex, BN1 9QJ, UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Vishwanath Swamy
- Sai Life Sciences Limited, ICICI Knowledge Park, Shameerpet, Hyderabad 500 078, Telangana, India
- Present address: TCG Life Sciences, Pune, India
| | - Hadas Tamir
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Jenny C Taylor
- University of Oxford, Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | | | - Warren Thompson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Andrew Thompson
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
- Present address: Walter and Eliza Hall Institute, Parkville 3052, Victoria, Australia
| | | | - Charles W E Tomlinson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | | | - Anthony Tumber
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Oxford, OX1 3TA, UK
| | - Ioannis Vakonakis
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
- Present address: Lonza Biologics, Lonza Ltd, Lonzastrasse, CH-3930 Visp, Switzerland
| | - Ronald P van Rij
- Radboud University Medical Center, Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, Netherlands
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Finny S Varghese
- Radboud University Medical Center, Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, 6525 GA, Netherlands
- Present address: uniQure Biopharma, Amsterdam, 1105 BP, Netherlands
| | | | - Einat B Vitner
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Vincent Voelz
- Temple University, Department of Chemistry, Philadelphia, PA 19122, USA
| | - Andrea Volkamer
- Charité - Universitätsmedizin Berlin, In silico Toxicology and Structural Bioinformatics, Berlin, 10117, Germany
- Present address: Saarland University, Data Driven Drug Design, Campus - E2.1, 66123 Saarbrücken, Germany
| | - Martin A Walsh
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Walter Ward
- Walter Ward Consultancy and Training, Derbyshire, SK22 4AA, UK
| | | | - Shay Weiss
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Kris M White
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, NY 10029, USA
| | - Conor Francis Wild
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Karolina D Witt
- University of Oxford, Nuffield Department of Medicine, Pandemic Sciences Institute, Oxford, Oxon, OX3 7DQ, UK
| | - Matthew Wittmann
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Nathan Wright
- University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, Oxford, OX3 7DQ, UK
| | - Yfat Yahalom-Ronen
- Israel Institute for Biological Research, Department of Infectious Diseases, Ness-Ziona, Israel
| | - Nese Kurt Yilmaz
- University of Massachusetts, Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester MA 01655, USA
| | - Daniel Zaidmann
- The Weizmann Institute of Science, Department of Chemical and Structural Biology, Rehovot, 7610001, Israel
| | - Ivy Zhang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, Computational and Systems Biology Program, New York, NY 10065, USA
| | - Hadeer Zidane
- The Weizmann Institute of Science, Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Rehovot, 7610001, Israel
| | - Nicole Zitzmann
- University of Oxford, Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK
| | - Sarah N Zvornicanin
- University of Massachusetts, Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester MA 01655, USA
| |
Collapse
|
10
|
Mora-Gamboa MPC, Ferrucho-Calle MC, Ardila-Leal LD, Rojas-Ojeda LM, Galindo JF, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. Statistical Improvement of rGILCC 1 and rPOXA 1B Laccases Activity Assay Conditions Supported by Molecular Dynamics. Molecules 2023; 28:7263. [PMID: 37959683 PMCID: PMC10648076 DOI: 10.3390/molecules28217263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are glycoproteins widely distributed in nature. Their structural conformation includes three copper sites in their catalytic center, which are responsible for facilitating substrate oxidation, leading to the generation of H2O instead of H2O2. The measurement of laccase activity (UL-1) results may vary depending on the type of laccase, buffer, redox mediators, and substrates employed. The aim was to select the best conditions for rGILCC 1 and rPOXA 1B laccases activity assay. After sequential statistical assays, the molecular dynamics proved to support this process, and we aimed to accumulate valuable insights into the potential application of these enzymes for the degradation of novel substrates with negative environmental implications. Citrate buffer treatment T2 (CB T2) (pH 3.0 ± 0.2; λ420nm, 2 mM ABTS) had the most favorable results, with 7.315 ± 0.131 UL-1 for rGILCC 1 and 5291.665 ± 45.83 UL-1 for rPOXA 1B. The use of citrate buffer increased the enzyme affinity for ABTS since lower Km values occurred for both enzymes (1.49 × 10-2 mM for rGILCC 1 and 3.72 × 10-2 mM for rPOXA 1B) compared to those obtained in acetate buffer (5.36 × 10-2 mM for rGILCC 1 and 1.72 mM for rPOXA 1B). The molecular dynamics of GILCC 1-ABTS and POXA 1B-ABTS showed stable behavior, with root mean square deviation (RMSD) values not exceeding 2.0 Å. Enzyme activities (rGILCC 1 and rPOXA 1B) and 3D model-ABTS interactions (GILCC 1-ABTS and POXA 1B-ABTS) were under the strong influence of pH, wavelength, ions, and ABTS concentration, supported by computational studies identifying the stabilizing residues and interactions. Integration of the experimental and computational approaches yielded a comprehensive understanding of enzyme-substrate interactions, offering potential applications in environmental substrate treatments.
Collapse
Affiliation(s)
- María P. C. Mora-Gamboa
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - María C. Ferrucho-Calle
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - Leidy D. Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
- Laboratorio de Biotecnología Vegetal, Grupo de Investigación en Asuntos Ambientales y Desarrollo Sostenible (MINDALA), Departamento de Ciencias Agrarias y del Ambiente, Universidad Francisco de Paula Santander, Ocaña 546552, Colombia
| | - Lina M. Rojas-Ojeda
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Johan F. Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Raúl A. Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia (M.C.F.-C.); (L.D.A.-L.)
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Balkys E. Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| |
Collapse
|
11
|
Wang G, Moitessier N, Mittermaier AK. Computational and biophysical methods for the discovery and optimization of covalent drugs. Chem Commun (Camb) 2023; 59:10866-10882. [PMID: 37609777 DOI: 10.1039/d3cc03285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Drugs that act by covalently attaching to their targets have been used to treat human diseases for over a hundred years. However, the deliberate design of covalent drugs was discouraged due to concerns of toxicity and off-target effects. Recent successes in covalent drug discovery have sparked fresh interest in this field. New screening and testing methods aimed at covalent inhibitors can play pivotal roles in facilitating the discovery process. This feature article focuses on computational and biophysical advances originating from our labs over the past decade and how these approaches have contributed to the design of prolyl oligopeptidase (POP) and SARS-CoV-2 3CLpro covalent inhibitors.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Whitefield C, Vo Y, Schwartz BD, Hepburn C, Ahmed FH, Onagi H, Banwell MG, Nelms K, Malins LR, Jackson CJ. Complex Inhibitory Mechanism of Glycomimetics with Heparanase. Biochemistry 2023. [PMID: 37368361 DOI: 10.1021/acs.biochem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heparanase (HPSE) is the only mammalian endo-β-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yen Vo
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Brett D Schwartz
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd, 38-46 South Street, Rydalmere, New South Wales 2116, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Keats Nelms
- Beta Therapeutics Pty. Ltd. Level 6, 121 Marcus Clarke Street, Canberra, Australian Capital Territory 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
13
|
Ma Y, Zhang F, Zhong Y, Huang Y, Yixizhuoma, Jia Q, Zhang S. A label-free LC/MS-based enzymatic activity assay for the detection of PDE5A inhibitors. Front Chem 2023; 11:1097027. [PMID: 36860644 PMCID: PMC9968969 DOI: 10.3389/fchem.2023.1097027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Phosphodiesterase type 5 (PDE5), a cyclic nucleotide phosphodiesterase, controls the duration of the cyclic guanosine monophosphate (cGMP) signal by hydrolyzing cGMP to GMP. Inhibiting the activity of PDE5A has proven to be an effective strategy for treating pulmonary arterial hypertension and erectile dysfunction. Current enzymatic activity assay methods for PDE5A mainly use fluorescent or isotope-labeled substrates, which are expensive and inconvenient. Here, we developed an LC/MS-based enzymatic activity assay for PDE5A without labeling, which detects the enzymatic activity of PDE5A by quantifying the substrate cGMP and product GMP at a concentration of 100 nM. The accuracy of this method was verified by a fluorescently labeled substrate. Moreover, a new inhibitor of PDE5A was identified by this method and virtual screening. It inhibited PDE5A with an IC50 value of 870 nM. Overall, the proposed strategy provides a new method for screening PDE5A inhibitors.
Collapse
Affiliation(s)
- Yufeng Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China,Department of Pharmacy, Medical College of Qinghai University, Xining, China
| | - Fengsen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China,Department of Pharmacy, Medical College of Qinghai University, Xining, China
| | - Yijing Zhong
- Department of Pharmacy, Medical College of Qinghai University, Xining, China
| | - Yongchun Huang
- Department of Pharmacy, Medical College of Qinghai University, Xining, China
| | - Yixizhuoma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China,*Correspondence: Qiangqiang Jia, ; Shoude Zhang,
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China,Department of Pharmacy, Medical College of Qinghai University, Xining, China,*Correspondence: Qiangqiang Jia, ; Shoude Zhang,
| |
Collapse
|
14
|
Halma MTJ, Wever MJA, Abeln S, Roche D, Wuite GJL. Therapeutic potential of compounds targeting SARS-CoV-2 helicase. Front Chem 2022; 10:1062352. [PMID: 36561139 PMCID: PMC9763700 DOI: 10.3389/fchem.2022.1062352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The economical and societal impact of COVID-19 has made the development of vaccines and drugs to combat SARS-CoV-2 infection a priority. While the SARS-CoV-2 spike protein has been widely explored as a drug target, the SARS-CoV-2 helicase (nsp13) does not have any approved medication. The helicase shares 99.8% similarity with its SARS-CoV-1 homolog and was shown to be essential for viral replication. This review summarizes and builds on existing research on inhibitors of SARS-CoV-1 and SARS-CoV-2 helicases. Our analysis on the toxicity and specificity of these compounds, set the road going forward for the repurposing of existing drugs and the development of new SARS-CoV-2 helicase inhibitors.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- LUMICKS B. V., Amsterdam, Netherlands
| | - Mark J. A. Wever
- DCM, University of Grenoble Alpes, Grenoble, France
- Edelris, Lyon, France
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Pavan M, Menin S, Bassani D, Sturlese M, Moro S. Qualitative Estimation of Protein-Ligand Complex Stability through Thermal Titration Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:5715-5728. [PMID: 36315402 PMCID: PMC9709921 DOI: 10.1021/acs.jcim.2c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The prediction of ligand efficacy has long been linked to thermodynamic properties such as the equilibrium dissociation constant, which considers both the association and the dissociation rates of a defined protein-ligand complex. In the last 15 years, there has been a paradigm shift, with an increased interest in the determination of kinetic properties such as the drug-target residence time since they better correlate with ligand efficacy compared to other parameters. In this article, we present thermal titration molecular dynamics (TTMD), an alternative computational method that combines a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints for the qualitative estimation of protein-ligand-binding stability. The protocol has been applied to four different pharmaceutically relevant test cases, including protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease, on a variety of ligands with different sizes, structures, and experimentally determined affinity values. In all four cases, TTMD was successfully able to distinguish between high-affinity compounds (low nanomolar range) and low-affinity ones (micromolar), proving to be a useful screening tool for the prioritization of compounds in a drug discovery campaign.
Collapse
|
16
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Miller N, Joubert E. Critical Assessment of In Vitro Screening of α-Glucosidase Inhibitors from Plants with Acarbose as a Reference Standard. PLANTA MEDICA 2022; 88:1078-1091. [PMID: 34662924 DOI: 10.1055/a-1557-7379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Postprandial hyperglycemia is treated with the oral antidiabetic drug acarbose, an intestinal α-glucosidase inhibitor. Side effects of acarbose motivated a growing number of screening studies to identify novel α-glucosidase inhibitors derived from plant extracts and other natural sources. As "gold standard", acarbose is frequently included as the reference standard to assess the potency of these candidate α-glucosidase inhibitors, with many outperforming acarbose by several orders of magnitude. The results are subsequently used to identify suitable compounds/products with strong potential for in vivo efficacy. However, most α-glucosidase inhibitor screening studies use enzyme preparations obtained from nonmammalian sources (typically Saccharomyces cerevisiae), despite strong evidence that inhibition data obtained using nonmammalian α-glucosidase may hold limited value in terms of identifying α-glucosidase inhibitors with actual in vivo hypoglycemic potential. The aim was to critically discuss the screening of novel α-glucosidase inhibitors from plant sources, emphasizing inconsistencies and pitfalls, specifically where acarbose was included as the reference standard. An assessment of the available literature emphasized the cruciality of stating the biological source of α-glucosidase in such screening studies to allow for unambiguous and rational interpretation of the data. The review also highlights the lack of a universally adopted screening assay for novel α-glucosidase inhibitors and the commercial availability of a standardized preparation of mammalian α-glucosidase.
Collapse
Affiliation(s)
- Neil Miller
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Department of Food Science, Stellenbosch University, South Africa
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| |
Collapse
|
18
|
The discovery of a non-competitive GOT1 inhibitor, hydralazine hydrochloride, via a coupling reaction-based high-throughput screening assay. Bioorg Med Chem Lett 2022; 73:128883. [PMID: 35820623 DOI: 10.1016/j.bmcl.2022.128883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Glutamate oxaloacetate transaminase 1 (GOT1) plays a key role in aberrant glutamine metabolism. GOT1 suppression can arrest tumor growth and prevent the development of cancer, indicating GOT1 as a potential anticancer target. Reported GOT1 inhibitors, on the other hand, are quite restricted. Here, we developed and optimized a coupling reaction-based high-throughput screening assay for the discovery of GOT1 inhibitors. By using this screening assay, we found that the cardiovascular drug hydralazine hydrochloride inhibited GOT1 catalytic activity, with an IC50 of 26.62 ± 7.45 μM, in a non-competitive and partial-reversible manner. In addition, we determined the binding affinity of hydralazine hydrochloride to GOT1, with a Kd of 16.54 ± 8.59 μM, using a microscale thermophoresis assay. According to structure-activity relationship analysis, the inhibitory activity of hydralazine hydrochloride is mainly derived from its hydrazine group. Furthermore, it inhibits the proliferation of cancer cells MCF-7 and MDA-MB-468 with a slight inhibitory effect compared to other tested cancer cells, highlighting GOT1 as a promising therapeutic target for the treatment of breast cancer.
Collapse
|
19
|
Shrimp JH, Janiszewski J, Chen CZ, Xu M, Wilson KM, Kales SC, Sanderson PE, Shinn P, Schneider R, Itkin Z, Guo H, Shen M, Klumpp-Thomas C, Michael SG, Zheng W, Simeonov A, Hall MD. Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. ACS Infect Dis 2022; 8:1191-1203. [PMID: 35648838 PMCID: PMC9172053 DOI: 10.1021/acsinfecdis.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.
Collapse
Affiliation(s)
- Jonathan H. Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - John Janiszewski
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Philip E. Sanderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Rick Schneider
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850
| |
Collapse
|
20
|
Mons E, Roet S, Kim RQ, Mulder MPC. A Comprehensive Guide for Assessing Covalent Inhibition in Enzymatic Assays Illustrated with Kinetic Simulations. Curr Protoc 2022; 2:e419. [PMID: 35671150 DOI: 10.1002/cpz1.419] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covalent inhibition has become more accepted in the past two decades, as illustrated by the clinical approval of several irreversible inhibitors designed to covalently modify their target. Elucidation of the structure-activity relationship and potency of such inhibitors requires a detailed kinetic evaluation. Here, we elucidate the relationship between the experimental read-out and the underlying inhibitor binding kinetics. Interactive kinetic simulation scripts are employed to highlight the effects of in vitro enzyme activity assay conditions and inhibitor binding mode, thereby showcasing which assumptions and corrections are crucial. Four stepwise protocols to assess the biochemical potency of (ir)reversible covalent enzyme inhibitors targeting a nucleophilic active site residue are included, with accompanying data analysis tailored to the covalent binding mode. Together, this will serve as a guide to make an educated decision regarding the most suitable method to assess covalent inhibition potency. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol I: Progress curve analysis of substrate association competition Basic Data Analysis Protocol 1A: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 1B: One-step irreversible covalent inhibition Basic Data Analysis Protocol 1C: Two-step reversible covalent inhibition Basic Data Analysis Protocol 1D: Two-step irreversible covalent inhibition with substrate depletion Basic Protocol II: Incubation time-dependent potency IC50 (t) Basic Data Analysis Protocol 2: Two-step irreversible covalent inhibition Basic Protocol III: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 3Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Bii: One-step irreversible covalent inhibition Basic Data Analysis Protocol 3C: Two-step reversible covalent inhibition Basic Protocol IV: Preincubation time-dependent inhibition with dilution/competition Basic Data Analysis Protocol 4: Preincubation time-dependent inhibition with dilution Basic Data Analysis Protocol 4Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 4Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Bii: One-step irreversible covalent inhibition.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.,Current: Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sander Roet
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Hoarau M, Suwanakitti N, Varatthan T, Thiabma R, Rattanajak R, Charoensetakul N, Redman EK, Khotavivattana T, Vilaivan T, Yuthavong Y, Kamchonwongpaisan S. Assay Development and Identification of the First Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113515. [PMID: 35684452 PMCID: PMC9182141 DOI: 10.3390/molecules27113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds’ binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
- Correspondence:
| | - Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Thaveechai Varatthan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Ratthiya Thiabma
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Netnapa Charoensetakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Emily K. Redman
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (E.K.R.); (T.V.)
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (E.K.R.); (T.V.)
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (N.S.); (T.V.); (R.T.); (R.R.); (N.C.); (Y.Y.); (S.K.)
| |
Collapse
|
22
|
Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. The Inhibitory Effects of New Zealand Pine Bark (Enzogenol®) on α-Amylase, α-Glucosidase, and Dipeptidyl Peptidase-4 (DPP-4) Enzymes. Nutrients 2022; 14:nu14081596. [PMID: 35458159 PMCID: PMC9029645 DOI: 10.3390/nu14081596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022] Open
Abstract
The New Zealand pine bark extract (Enzogenol®) has previously been shown to elicit acute hypoglycaemic effects in humans. The present study investigated the underlying mechanisms of Enzogenol® in reducing postprandial glucose in humans. The potential inhibitory action of Enzogenol® against digestive enzymes: α-amylase and α-glucosidase, and dipeptidyl peptidase-4 (DPP-4) enzyme was determined. Enzogenol® demonstrated the ability to inhibit all three enzymes: α-amylase enzyme activity (IC50 3.98 ± 0.11 mg/mL), α-glucosidase enzyme activity (IC50 13.02 ± 0.28 μg/mL), and DPP-4 enzyme activity (IC50 2.51 ± 0.04 mg/mL). The present findings indicate the potential for Enzogenol® to improve postprandial glycaemia by delaying carbohydrate digestion via the inhibition of digestive enzymes (α-amylase and α-glucosidase), and enhancing the incretin effect via inhibiting the dipeptidyl-peptidase-4 enzyme. The inhibitory actions of Enzogenol® on enzymes should therefore be further validated in humans for its potential use in type 2 diabetes mellitus prevention and management.
Collapse
Affiliation(s)
- Wen Xin Janice Lim
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Cheryl S. Gammon
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
| | - Pamela von Hurst
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand;
| | - Lynne Chepulis
- Waikato Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton 3216, New Zealand;
| | - Rachel A. Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0632, New Zealand
- Correspondence: ; Tel.: +64-4801-5799 (ext. 63462)
| |
Collapse
|
23
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
24
|
Zheng Z, Ren S, Geng WC, Cui X, Wu B, Wang H. Monitoring Methionine Decarboxylase by Supramolecular Tandem Assay. Chem Asian J 2022; 17:e202200106. [PMID: 35333438 DOI: 10.1002/asia.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Indexed: 11/12/2022]
Abstract
Methionine is an essential amino acid involved in many physiological and pathological processes. Methionine starvation caused by methionine decarboxylase ( MetDC) degradation becomes a promising strategy for cancer treatment. Multistep colorimetric method, the present approach to monitor the MetDC activity, possesses drawbacks of the complicated process, low accuracy, and poor anti-interference due to indirect detecting. Herein, we report a facile and easy-to-use supramolecular tandem assay (STA) with cucurbit[7]uril and acridine orange reporter pair for the direct and real-time monitoring of MetDC activity. The applicability of this strategy for measuring enzyme-kinetic parameters and screening of inhibitors are also demonstrated. The STA for MetDC activity detection not only provides a feasible method for methionine-related disease diagnosing but also opens a perspective for cancer therapy.
Collapse
Affiliation(s)
- Zhe Zheng
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, No. 1, Daxue Road, 221116, XuZhou, CHINA
| | - Siying Ren
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, CHINA
| | - Wen-Chao Geng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Key Laboratory of Systems Microbial Biotechnology, CHINA
| | - Xuexian Cui
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Bian Wu
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Hong Wang
- China University of Mining and Technology, School of Chemical Engineering & Technology, No1,Daxue Road, 221116, Xuzhou, CHINA
| |
Collapse
|
25
|
Mlynarska-Cieslak A, Chrominski M, Spiewla T, Baranowski MR, Bednarczyk M, Jemielity J, Kowalska J. Fluorinated Phosphoadenosine 5'-Phosphosulfate Analogues for Continuous Sulfotransferase Activity Monitoring and Inhibitor Screening by 19F NMR Spectroscopy. ACS Chem Biol 2022; 17:661-669. [PMID: 35196009 PMCID: PMC8938925 DOI: 10.1021/acschembio.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Sulfotransferases
(STs) are ubiquitous enzymes that participate
in a vast number of biological processes involving sulfuryl group
(SO3) transfer. 3′-phosphoadenosine 5′-phosphosulfate
(PAPS) is the universal ST cofactor, serving as the “active
sulfate” source in cells. Herein, we report the synthesis of
three fluorinated PAPS analogues that bear fluorine or trifluoromethyl
substituents at the C2 or C8 positions of adenine and their evaluation
as substitute cofactors that enable ST activity to be quantified and
real-time-monitored by fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy. Using plant AtSOT18 and human SULT1A3
as two model enzymes, we reveal that the fluorinated PAPS analogues
show complementary properties with regard to recognition by enzymes
and the working 19F NMR pH range and are attractive versatile
tools for studying STs. Finally, we developed an 19F NMR
assay for screening potential inhibitors against SULT1A3, thereby
highlighting the possible use of fluorinated PAPS analogues for the
discovery of drugs for ST-related diseases.
Collapse
Affiliation(s)
- Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mikolaj Chrominski
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Tomasz Spiewla
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R. Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcelina Bednarczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
26
|
Morsby J, Thimes RL, Olson JE, McGarraugh HH, Payne JN, Camden JP, Smith BD. Enzyme Sensing Using 2-Mercaptopyridine-Carbonitrile Reporters and Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:6419-6426. [PMID: 35224403 PMCID: PMC8867545 DOI: 10.1021/acsomega.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The high sensitivity and functional group selectivity of surface-enhanced Raman scattering (SERS) make it an attractive method for enzyme sensing, but there is currently a severe lack of enzyme substrates that release SERS reporter molecules with favorable detection properties. We find that 2-mercaptopyridine-3-carbonitrile ( o-MPN) and 2-mercaptopyridine-5-carbonitrile ( p-MPN) are highly effective as SERS reporter molecules that can be captured by silver or gold nanoparticles to give intense SERS spectra, each with a distinctive nitrile peak at 2230 cm-1. p-MPN is a more sensitive reporter and can be detected at low nanomolar concentrations. An assay validation study synthesized two novel substrate molecules, Glc-o-MPN and Glc-p-MPN, and showed that they can be cleaved efficiently by β-glucosidase (K m = 228 and 162 μM, respectively), an enzyme with broad industrial and biomedical utility. Moreover, SERS detection of the released reporters ( o-MPN or p-MPN) enabled sensing of β-glucosidase activity and β-glucosidase inhibition. Comparative experiments using a crude almond flour extract showed that the presence of β-glucosidase activity could be confirmed by SERS detection in a much shorter time period (>10 time shorter) than by UV-vis absorption detection. It is likely that a wide range of enzyme assays and diagnostic tests can be developed using 2-mercaptopyridine-carbonitriles as SERS reporter molecules.
Collapse
Affiliation(s)
- Janeala
J. Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jacob E. Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jason N. Payne
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, Unites States
| |
Collapse
|
27
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
28
|
Lam L, Ilies MA. Evaluation of the Impact of Esterases and Lipases from the Circulatory System against Substrates of Different Lipophilicity. Int J Mol Sci 2022; 23:ijms23031262. [PMID: 35163184 PMCID: PMC8836011 DOI: 10.3390/ijms23031262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Esterases and lipases can process amphiphilic esters used as drugs and prodrugs and impact their pharmacokinetics and biodistribution. These hydrolases can also process ester components of drug delivery systems (DDSs), thus triggering DDSs destabilization with premature cargo release. In this study we tested and optimized assays that allowed us to quantify and compare individual esterase contributions to the degradation of substrates of increased lipophilicity and to establish limitations in terms of substrates that can be processed by a specific esterase/lipase. We have studied the impact of carbonic anhydrase; phospholipases A1, A2, C and D; lipoprotein lipase; and standard lipase on the hydrolysis of 4-nitrophenyl acetate, 4-nitrophenyl palmitate, DGGR and POPC liposomes, drawing structure–property relationships. We found that the enzymatic activity of these proteins was highly dependent on the lipophilicity of the substrate used to assess them, as expected. The activity observed for classical esterases was diminished when lipophilicity of the substrate increased, while activity observed for lipases generally increased, following the interfacial activation model, and was highly dependent on the type of lipase and its structure. The assays developed allowed us to determine the most sensitive methods for quantifying enzymatic activity against substrates of particular types and lipophilicity.
Collapse
Affiliation(s)
- Leslie Lam
- College of Science and Technology, Temple University, 1803 N. Broad Street, Philadelphia, PA 19122, USA;
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N Broad Street, Philadelphia, PA 19140, USA
- Lewis Katz School of Medicine, Alzheimer’s Center (ACT), Temple University, Philadelphia, PA 19140, USA
- Correspondence: ; Tel.: +1-215-707-1749
| |
Collapse
|
29
|
High-resolution inhibition profiling and ligand fishing for screening of nucleoside hydrolase ligands in Moringa oleifera Lamarck. J Pharm Biomed Anal 2022; 211:114614. [DOI: 10.1016/j.jpba.2022.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/21/2022]
|
30
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
31
|
Cederkvist H, Kolan SS, Wik JA, Sener Z, Skålhegg BS. Identification and characterization of a novel glutaminase inhibitor. FEBS Open Bio 2021; 12:163-174. [PMID: 34698439 PMCID: PMC8727943 DOI: 10.1002/2211-5463.13319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/20/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
In humans, there are two forms of glutaminase (GLS), designated GLS1 and GLS2. These enzymes catalyse the conversion of glutamine to glutamate. GLS1 exists as two isozymes: kidney glutaminase (KGA) and glutaminase C (GAC). Several GLS inhibitors have been identified, of which DON (6‐diazo‐5‐oxonorleucine), BPTES (bis‐2‐(5‐phenylacetamido‐1, 3, 4‐thiadiazol‐2‐yl) ethyl sulphide), 968 (5‐(3‐Bromo‐4‐(dimethylamino)phenyl)‐2,2‐dimethyl‐2,3,5,6‐tetrahydrobenzo[a]phenanthridin‐4(1H)‐one) and CB839 (Telaglenastat) are the most widely used. However, these inhibitors have variable efficacy, specificity and bioavailability in research and clinical settings, implying the need for novel and improved GLS inhibitors. Based on this need, a diverse library of 28,000 compounds from Enamine was screened for inhibition of recombinant, purified GAC. From this library, one inhibitor designated compound 19 (C19) was identified with kinetic features revealing allosteric inhibition of GAC in the µm range. Moreover, C19 inhibits anti‐CD3/CD28‐induced CD4+ T‐cell proliferation and cytokine production with similar or greater potency as compared to BPTES. Taken together, our data suggest that C19 has the potential to modulate GLS1 activity and alter metabolic activity of T cells.
Collapse
Affiliation(s)
- Henning Cederkvist
- Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Shrikant S Kolan
- Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jonas Aakre Wik
- Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway.,Department of Pathology, Oslo University Hospital-Rikshospitalet, Norway
| | - Zeynep Sener
- Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Bjørn Steen Skålhegg
- Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
32
|
Hellendahl KF, Fehlau M, Hans S, Neubauer P, Kurreck A. Semi-Automated High-Throughput Substrate Screening Assay for Nucleoside Kinases. Int J Mol Sci 2021; 22:11558. [PMID: 34768989 PMCID: PMC8584170 DOI: 10.3390/ijms222111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Maryke Fehlau
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Sebastian Hans
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
33
|
Yang X, Fan D, Troha AH, Ahn HM, Qian K, Liang B, Du Y, Fu H, Ivanov AA. Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorg Med Chem 2021; 45:116324. [PMID: 34333394 DOI: 10.1016/j.bmc.2021.116324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
The transcription master regulator MYC plays an essential role in regulating major cellular programs and is a well-established therapeutic target in cancer. However, MYC targeting for drug discovery is challenging. New therapeutic approaches to control MYC-dependent malignancy are urgently needed. The mitogen-activated protein kinase kinase 3 (MKK3) binds and activates MYC in different cell types, and disruption of MKK3-MYC protein-protein interaction may provide a new strategy to target MYC-driven programs. However, there is no perturbagen available to interrogate and control this signaling arm. In this study, we assessed the drugability of the MKK3-MYC complex and discovered the first chemical tool to regulate MKK3-mediated MYC activation. We have designed a short 44-residue inhibitory peptide and developed a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay to discover the first small molecule MKK3-MYC PPI inhibitor. We have optimized and miniaturized the assay into an ultra-high-throughput screening (uHTS) 1536-well plate format. The pilot screen of ~6,000 compounds of a bioactive chemical library followed by multiple secondary and orthogonal assays revealed a quinoline derivative SGI-1027 as a potent inhibitor of MKK3-MYC PPI. We have shown that SGI-1027 disrupts the MKK3-MYC complex in cells and in vitro and inhibits MYC transcriptional activity in colon and breast cancer cells. In contrast, SGI-1027 does not inhibit MKK3 kinase activity and does not interfere with well-known MKK3-p38 and MYC-MAX complexes. Together, our studies demonstrate the drugability of MKK3-MYC PPI, provide the first chemical tool to interrogate its biological functions, and establish a new uHTS assay to enable future discovery of potent and selective inhibitors to regulate this oncogenic complex.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Aidan Henry Troha
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology Emory University, Atlanta, GA, USA.
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Bozelli JC, Yune J, Takahashi D, Sakane F, Epand RM. Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB J 2021; 35:e21602. [PMID: 33977628 DOI: 10.1096/fj.202100264r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
35
|
Vilela AFL, Narciso Dos Reis VE, Cardoso CL. Co-Immobilized Capillary Enzyme Reactor Based on Beta-Secretase1 and Acetylcholinesterase: A Model for Dual-Ligand Screening. Front Chem 2021; 9:708374. [PMID: 34307303 PMCID: PMC8295500 DOI: 10.3389/fchem.2021.708374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual enzymatic system assay involving liquid chromatography-mass spectrometry (LC–MS) to screen AChE and BACE1 ligands. A fused silica capillary (30 cm × 0.1 mm i.d. × 0.362 mm e.d.) was used as solid support. The co-immobilization procedure encompassed two steps and random immobilization. The resulting huAChE+BACE1-ICER/MS was characterized by using acetylcholine (ACh) and JMV2236 as substrates. The best conditions for the dual enzymatic system assay were evaluated and compared to the conditions of the individual enzymatic system assays. Analysis was performed in series for each enzyme. The kinetic parameters (KMapp) and inhibition assays were evaluated. To validate the system, galantamine and a β-secretase inhibitor were employed as standard inhibitors, which confirmed that the developed screening assay was able to identify reference ligands and to provide quantitative parameters. The combination of these two enzymes in a single on-line system allowed possible multi-target inhibitors to be screened and identified. The innovative huAChE+BACE1-ICER/MS dual enzymatic system reported herein proved to be a reliable tool to identify and to characterize hit ligands for AChE and BACE1 in an enzymatic competitive environment. This innovative system assay involved lower costs; measured the product from enzymatic hydrolysis directly by MS; enabled immediate recovery of the enzymatic activity; showed specificity, selectivity, and sensitivity; and mimicked the cellular process.
Collapse
Affiliation(s)
- Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vitor Eduardo Narciso Dos Reis
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Park S, Seo S, Lee NS, Yoon YH, Yang H. Sensitive electrochemical immunosensor using a bienzymatic system consisting of β-galactosidase and glucose dehydrogenase. Analyst 2021; 146:3880-3887. [PMID: 33983348 DOI: 10.1039/d1an00562f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bienzymatic systems are often used with electrochemical affinity biosensors to achieve high signal levels and/or low background levels. It is important to select two enzymes whose reactions do not exhibit mutual interference but have similar optimal conditions. Here, we report a sensitive electrochemical immunosensor based on a bienzymatic system consisting of β-galactosidase (Gal, a hydrolase enzyme) and flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH, a redox enzyme). Both enzymes showed high activities at neutral pH, the reactions catalyzed by them did not exhibit mutual interference, and the electrochemical-enzymatic redox cycling based on FAD-GDH coupled with enzymatic amplification by Gal enabled high signal amplification. Among the three amino-hydroxy-naphthalenes and 4-aminophenol (potential Gal products), 4-amino-1-naphthol showed the highest signal amplification. Glucose, as an electro-inactive, stable reducing agent for redox cycling, helped in achieving low background levels. Our bienzymatic system could detect parathyroid hormone at a detection limit of ∼0.2 pg mL-1, implying that it can be used for highly sensitive electrochemical detection of parathyroid hormone and other biomarkers in human serum.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Seungah Seo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | | | | | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
37
|
Vafaei S, Allabush F, Tabaei SR, Male L, Dafforn TR, Tucker JHR, Mendes PM. Förster Resonance Energy Transfer Nanoplatform Based on Recognition-Induced Fusion/Fission of DNA Mixed Micelles for Nucleic Acid Sensing. ACS NANO 2021; 15:8517-8524. [PMID: 33961404 PMCID: PMC8158853 DOI: 10.1021/acsnano.1c00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
The dynamic nature of micellar nanostructures is employed to form a self-assembled Förster resonance energy transfer (FRET) nanoplatform for enhanced sensing of DNA. The platform consists of lipid oligonucleotide FRET probes incorporated into micellar scaffolds, where single recognition events result in fusion and fission of DNA mixed micelles, triggering the fluorescence response of multiple rather than a single FRET pair. In comparison to conventional FRET substrates where a single donor interacts with a single acceptor, the micellar multiplex FRET system showed ∼20- and ∼3-fold enhancements in the limit of detection and FRET efficiency, respectively. This supramolecular signal amplification approach could potentially be used to improve FRET-based diagnostic assays of nucleic acid and non-DNA based targets.
Collapse
Affiliation(s)
- Setareh Vafaei
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Francia Allabush
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Seyed R. Tabaei
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Louise Male
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy R. Dafforn
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James H. R. Tucker
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paula M. Mendes
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
38
|
L-Cysteine as an Irreversible Inhibitor of the Peroxidase-Mimic Catalytic Activity of 2-Dimensional Ni-Based Nanozymes. NANOMATERIALS 2021; 11:nano11051285. [PMID: 34068259 PMCID: PMC8153149 DOI: 10.3390/nano11051285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
The ability to modulate the catalytic activity of inorganic nanozymes is of high interest. In particular, understanding the interactions of inhibitor molecules with nanozymes can bring them one step closer to the natural enzymes and has thus started to attract intense interest. To date, a few reversible inhibitors of the nanozyme activity have been reported. However, there are no reports of irreversible inhibitor molecules that can permanently inhibit the activity of nanozymes. In the current work, we show the ability of L-cysteine to act as an irreversible inhibitor to permanently block the nanozyme activity of 2-dimensional (2D) NiO nanosheets. Determination of the steady state kinetic parameters allowed us to obtain mechanistic insights into the catalytic inhibition process. Further, based on the irreversible catalytic inhibition capability of L-cysteine, we demonstrate a highly specific sensor for the detection of this biologically important molecule.
Collapse
|
39
|
Talibov VO, Fabini E, FitzGerald EA, Tedesco D, Cederfeldt D, Talu MJ, Rachman MM, Mihalic F, Manoni E, Naldi M, Sanese P, Forte G, Lepore Signorile M, Barril X, Simone C, Bartolini M, Dobritzsch D, Del Rio A, Danielson UH. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. Chembiochem 2021; 22:1597-1608. [PMID: 33400854 PMCID: PMC8248052 DOI: 10.1002/cbic.202000736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/30/2020] [Indexed: 12/15/2022]
Abstract
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.
Collapse
Affiliation(s)
- Vladimir O. Talibov
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Edoardo Fabini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Edward A. FitzGerald
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Beactica Therapeutics ABVirdings allé 2754 50UppsalaSweden
| | - Daniele Tedesco
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Daniela Cederfeldt
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Martin J. Talu
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Moira M. Rachman
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
| | - Filip Mihalic
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Elisabetta Manoni
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Marina Naldi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Centre for Applied Biomedical ResearchAlma Mater Studiorum University of BolognaVia Zamboni, 33Bologna40126Italy
| | - Paola Sanese
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Giovanna Forte
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)Passeig Lluis Companys 2308010BarcelonaSpain
| | - Cristiano Simone
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO)University of Bari Aldo Moro70124BariItaly
| | - Manuela Bartolini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
| | - Doreen Dobritzsch
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Alberto Del Rio
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
- Innovamol Consulting SrlVia Giardini 470/H41124ModenaItaly
| | - U. Helena Danielson
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Science for Life LaboratoryUppsala UniversityUppsala752 37Sweden
| |
Collapse
|
40
|
Chen Y. Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1778-1787. [PMID: 33885636 DOI: 10.1039/d1ay00245g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug discovery is a complex process in which many challenges need to be overcome, from the discovery of a drug candidate to ensuring the efficacy and safety of the candidate in humans. Modern analytical methods allow tens of thousands of drug candidates to be screened for their inhibition of specific enzymes or receptors. In recent years, fluorescent probes have been used for the detection and diagnosis of human pathogens as well as high-throughput screening. This review focuses on recent progress in organic small-molecule based enzyme-activated fluorescent probes for screening of inhibitors from natural products. The contents include the construction of fluorescent probes, working mechanism and the process of inhibitor screening. The progress suggests that fluorescent probes are a vital and rapidly growing technology for inhibitor screening of enzymes, in particular, inhibitor screening in situ.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Rembeza E, Engqvist MKM. Adaptation of a Microfluidic qPCR System for Enzyme Kinetic Studies. ACS OMEGA 2021; 6:1985-1990. [PMID: 33521438 PMCID: PMC7841792 DOI: 10.1021/acsomega.0c04918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 05/11/2023]
Abstract
Microfluidic platforms offer a drastic increase in throughput while minimizing sample usage and hands-on time, which make them important tools for large-scale biological studies. A range of such systems have been developed for enzyme activity studies, although their complexity largely hinders their application to the wider scientific community. Here, we present adaptation of an easy-to-use commercial microfluidic qPCR system for performing enzyme kinetic studies. We demonstrate the functionality of the Fluidigm Biomark HD system (the Fluidigm system) by determining the kinetic properties of three oxidases in a resorufin-based fluorescence assay. The results obtained in the microfluidic system proved reproducible and comparable to the ones obtained in a standard microplate-based assay. With a wide range of easy-to-use, off-the-shelf components, the microfluidic system presents itself as a simple and customizable platform for high-throughput enzyme activity studies.
Collapse
|
42
|
Plant H, Murray D, Semple H, Davies G, Sinclair I, Holdgate GA. The Use of Acoustic Mist Ionization Mass Spectrometry for High-Throughput Screening. Methods Mol Biol 2021; 2263:217-230. [PMID: 33877600 DOI: 10.1007/978-1-0716-1197-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is clear from the analysis of the distribution of approved drug targets that enzymes continue to be a major target class for the pharmaceutical industry. The application of high-throughput screens designed to monitor the activity of these enzyme targets, and the ability of test compounds to modulate this activity, is still the predominant hit finding approach in the industry. The widespread use of enzyme activity-based screens has led to the development of several useful guidelines for the development and validation of robust and reliable assays. Key learnings for the development, validation, and implementation of acoustic mist ionization mass spectrometry for high-throughput enzyme assays are described.
Collapse
Affiliation(s)
- Helen Plant
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK.
| | - David Murray
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Hannah Semple
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Gareth Davies
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Ian Sinclair
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK
| | - Geoffrey A Holdgate
- Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, UK
| |
Collapse
|
43
|
Srinivasan B. Explicit Treatment of Non-Michaelis-Menten and Atypical Kinetics in Early Drug Discovery*. ChemMedChem 2020; 16:899-918. [PMID: 33231926 DOI: 10.1002/cmdc.202000791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Biological systems are highly regulated. They are also highly resistant to sudden perturbations enabling them to maintain the dynamic equilibrium essential to sustain life. This robustness is conferred by regulatory mechanisms that influence the activity of enzymes/proteins within their cellular context to adapt to changing environmental conditions. However, the initial rules governing the study of enzyme kinetics were mostly tested and implemented for cytosolic enzyme systems that were easy to isolate and/or recombinantly express. Moreover, these enzymes lacked complex regulatory modalities. Now, with academic labs and pharmaceutical companies turning their attention to more-complex systems (for instance, multiprotein complexes, oligomeric assemblies, membrane proteins and post-translationally modified proteins), the initial axioms defined by Michaelis-Menten (MM) kinetics are rendered inadequate, and the development of a new kind of kinetic analysis to study these systems is required. This review strives to present an overview of enzyme kinetic mechanisms that are atypical and, oftentimes, do not conform to the classical MM kinetics. Further, it presents initial ideas on the design and analysis of experiments in early drug-discovery for such systems, to enable effective screening and characterisation of small-molecule inhibitors with desirable physiological outcomes.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling Discovery Sciences, R&D, AstraZeneca, 310, Milton Rd, Milton CB4 0WG, Cambridge, UK
| |
Collapse
|
44
|
Prati L, Bigatti M, Donckele EJ, Neri D, Samain F. On-DNA hit validation methodologies for ligands identified from DNA-encoded chemical libraries. Biochem Biophys Res Commun 2020; 533:235-240. [DOI: 10.1016/j.bbrc.2020.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/16/2023]
|
45
|
Patel M, Patel D, Datta S, Singh U. An immunochemistry-based screen for chemical inhibitors of DNA-protein interactions and its application to human CGGBP1. BMC Cancer 2020; 20:1016. [PMID: 33081720 PMCID: PMC7576722 DOI: 10.1186/s12885-020-07526-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inhibition of DNA-binding of proteins by small-molecule chemicals holds immense potential in manipulating the activities of DNA-binding proteins. Such a chemical inhibition of DNA-binding of proteins can be used to modulate processes such as replication, transcription, DNA repair and maintenance of epigenetic states. This prospect is currently challenged with the absence of robust and generic protocols to identify DNA-protein interactions. Additionally, much of the current approaches to designing inhibitors requires structural information of the target proteins. METHODS We have developed a simple dot blot and immunodetection-based assay to screen chemical libraries for inhibitors of DNA-protein interactions. The assay has been applied to a library of 1685 FDA-approved chemicals to discover inhibitors of CGGBP1, a multifunctional DNA-binding protein with no known structure. Additional in vitro and in cellulo assays have been performed to verify and supplement the findings of the screen. RESULTS Our primary screen has identified multiple inhibitors of direct or indirect interactions between CGGBP1 and genomic DNA. Of these, one inhibitor, Givinostat, was found to inhibit direct DNA-binding of CGGBP1 in the secondary screen using purified recombinant protein as the target. DNA and chromatin immunoprecipitation assays reinforced the findings of the screen that Givinostat inhibits CGGBP1-DNA binding. CONCLUSIONS The assay we have described successfully identifies verifiable inhibitors of DNA-binding of protein; in this example, the human CGGBP1. This assay is customizable for a wide range of targets for which primary antibodies are available. It works with different sources of the target protein, cell lysates or purified recombinant preparations and does not require special equipment, DNA modifications or protein structural data. This assay is scalable and highly adaptable with the potential to discover inhibitors of transcription factors with implications in cancer biology.
Collapse
Affiliation(s)
- Manthan Patel
- HoMeCell Lab, Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Divyesh Patel
- HoMeCell Lab, Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Subhamoy Datta
- HoMeCell Lab, Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Umashankar Singh
- HoMeCell Lab, Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
46
|
Butler SJ, Jolliffe KA. Anion Receptors for the Discrimination of ATP and ADP in Biological Media. Chempluschem 2020; 86:59-70. [DOI: 10.1002/cplu.202000567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Stephen J. Butler
- Department of Chemistry Loughborough University Loughborough LE11 3TU United Kingdom
| | | |
Collapse
|
47
|
D'Costa AS, Bordenave N. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics. Food Chem 2020; 341:128256. [PMID: 33035827 DOI: 10.1016/j.foodchem.2020.128256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 02/02/2023]
Abstract
In this study, kinetics of binding between α-amylase and green tea flavonoids were investigated by fluorescence quenching (FQ). Their effect on α-amylase inhibition was evaluated. Whereas epicatechin (EC) and epigallocatechin (EGC) exhibited slow binding kinetics (in the order of minutes), epicatechin gallate (ECG) and epigallocatechin gallate (ECGC) exhibited very rapid binding (in the order of seconds) with Human Salivary α-amylase (HSA) and Porcine Pancreatic α-amylase (PPA). EGCG reached maximum inhibition of HSA and PPA with short incubation time whereas maximum inhibition of HSA and PPA by EC was reached only after 45 to 60 min of incubation. Similar results with ECG and EGC, but not in line with FQ kinetics, highlighted possible interferences of starch-flavonoid interaction in the binding and inhibition process. These results suggest that incubation times of enzymes and flavonoids shall be evaluated prior to enzyme inhibition testing in order to ensure consistent and reliable results.
Collapse
Affiliation(s)
- A S D'Costa
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada
| | - N Bordenave
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada.
| |
Collapse
|
48
|
Pinto MF, Figueiredo F, Silva A, Pombinho AR, Pereira PJB, Macedo-Ribeiro S, Rocha F, Martins PM. Major Improvements in Robustness and Efficiency during the Screening of Novel Enzyme Effectors by the 3-Point Kinetics Assay. SLAS DISCOVERY 2020; 26:373-382. [PMID: 32981414 DOI: 10.1177/2472555220958386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António R Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Pedro M Martins
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
49
|
Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules. Nucleic Acids Res 2020; 48:e101. [PMID: 32797156 PMCID: PMC7515716 DOI: 10.1093/nar/gkaa673] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Recent efforts in biological engineering have made detection of nucleic acids in samples more rapid, inexpensive and sensitive using CRISPR-based approaches. We expand one of these Cas13a-based methods to detect small molecules in a one-batch assay. Using SHERLOCK-based profiling of in vitrotranscription (SPRINT), in vitro transcribed RNA sequence-specifically triggers the RNase activity of Cas13a. This event activates its non-specific RNase activity, which enables cleavage of an RNA oligonucleotide labeled with a quencher/fluorophore pair and thereby de-quenches the fluorophore. This fluorogenic output can be measured to assess transcriptional output. The use of riboswitches or proteins to regulate transcription via specific effector molecules is leveraged as a coupled assay that transforms effector concentration into fluorescence intensity. In this way, we quantified eight different compounds, including cofactors, nucleotides, metabolites of amino acids, tetracycline and monatomic ions in samples. In this manner, hundreds of reactions can be easily quantified in a few hours. This increased throughput also enables detailed characterization of transcriptional regulators, synthetic compounds that inhibit transcription, or other coupled enzymatic reactions. These SPRINT reactions are easily adaptable to portable formats and could therefore be used for the detection of analytes in the field or at point-of-care situations.
Collapse
Affiliation(s)
- Roman S Iwasaki
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
50
|
Papaneophytou C, Zervou ME, Theofanous A. Optimization of a Colorimetric Assay to Determine Lactate Dehydrogenase B Activity Using Design of Experiments. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 26:383-399. [PMID: 32935604 DOI: 10.1177/2472555220956589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lactate dehydrogenase B (LDH-B) is overexpressed in lung and breast cancer, and it has been considered as a potential target to treat these types of cancer. Herein, we propose a straightforward incomplete factorial (IF) design composed of 12 combinations of two reaction buffers, three pH values, three salt (NaCl) concentrations, and three incubation times, which we called IF-BPST (Buffer/pH/Salt/Time), for the optimization of a colorimetric LDH-B assay in a final volume of 100 µL using 96-well plates. The assay is based on the absorbance change at ~570 nm and the color change of the reaction mixture due to the release of NADH that reacts with nitroblue tetrazolium (NBT) and phenazine methosulfate (PMS), resulting in the formation of a blue-purple formazan. The results obtained using the IF-BPST were comparable with those obtained by response surface methodology. Our work revealed that the NBT/PMS assay with some modifications can be used to measure the activity of LDH-B and other dehydrogenases in a high-throughput screening format at the early stages of drug discovery. LDH-B containing lysates cannot be assayed directly, however, due to the sensitivity of the method toward detergents. Thus, we suggest precipitating the proteins in the lysates to remove the interfering detergents, and then to dissolve the protein pellet in a suitable buffer and carry out the assay.
Collapse
Affiliation(s)
- Christos Papaneophytou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Maria-Elli Zervou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Anastasis Theofanous
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|