1
|
Miranda GG, Gonen C, Kraft JN, Rodrigue KM, Kennedy KM. Lifespan longitudinal changes in mesocortical thickness and executive function: Role of dopaminergic genetic predisposition. Neurobiol Aging 2025; 146:58-73. [PMID: 39613505 DOI: 10.1016/j.neurobiolaging.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive aging, especially in prefrontal-parietal and fronto-striatal networks. Single nucleotide polymorphisms associated with dopamine regulation, COMTVal158Met and DRD2C957T, stand to exert influence on executive function performance via neural properties. The current study investigated whether longitudinal thinning of mesocortical regions is related to COMT and DRD2 genetic predisposition and associated with decline in executive function over four-years. N=235 healthy adults aged 20-94 years were recruited, with n=124 returning 4-years later. Latent mixed effects modeling revealed dopamine-related thinning in several frontal, parietal, and cingulate regions as well as decline in verbal fluency category switching across 4-years. Mesocortical thinning was also related to switching performance. Greater cortical thinning interacted with DA-genotype risk for lower DA-availability to predict poorer switching performance in parietal and posterior cingulate cortex. These findings lend support to the notion that early-life factors, such as genetic influence on neurotransmitter function, play a role in cognitive and brain aging and their linked association.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Chen Gonen
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Jessica N Kraft
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Karen M Rodrigue
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States
| | - Kristen M Kennedy
- Department of Psychology, School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, 1600 Viceroy Dr, Ste 800, Dallas, TX 75235 USA, United States.
| |
Collapse
|
2
|
Herzog N, Hartmann H, Janssen LK, Kanyamibwa A, Waltmann M, Kovacs P, Deserno L, Fallon S, Villringer A, Horstmann A. Working memory gating in obesity is moderated by striatal dopaminergic gene variants. eLife 2024; 13:RP93369. [PMID: 39431987 PMCID: PMC11493406 DOI: 10.7554/elife.93369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Everyday life requires an adaptive balance between distraction-resistant maintenance of information and the flexibility to update this information when needed. These opposing mechanisms are proposed to be balanced through a working memory gating mechanism. Prior research indicates that obesity may elevate the risk of working memory deficits, yet the underlying mechanisms remain elusive. Dopaminergic alterations have emerged as a potential mediator. However, current models suggest these alterations should only shift the balance in working memory tasks, not produce overall deficits. The empirical support for this notion is currently lacking, however. To address this gap, we pooled data from three studies (N = 320) where participants performed a working memory gating task. Higher BMI was associated with overall poorer working memory, irrespective of whether there was a need to maintain or update information. However, when participants, in addition to BMI level, were categorized based on certain putative dopamine-signaling characteristics (single-nucleotide polymorphisms [SNPs]; specifically, Taq1A and DARPP-32), distinct working memory gating effects emerged. These SNPs, primarily associated with striatal dopamine transmission, appear to be linked with differences in updating, specifically, among high-BMI individuals. Moreover, blood amino acid ratio, which indicates central dopamine synthesis capacity, combined with BMI shifted the balance between distractor-resistant maintenance and updating. These findings suggest that both dopamine-dependent and dopamine-independent cognitive effects exist in obesity. Understanding these effects is crucial if we aim to modify maladaptive cognitive profiles in individuals with obesity.
Collapse
Affiliation(s)
- Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- International Max Planck Research School NeuroComLeipzigGermany
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Lieneke Katharina Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Institute of Psychology, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Arsene Kanyamibwa
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Maria Waltmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical CenterLeipzigGermany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
- Department of Psychiatry and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sean Fallon
- School of Psychology, University of PlymouthPlymouthUnited Kingdom
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Banuelos C, Creswell K, Walsh C, Manuck SB, Gianaros PJ, Verstynen T. D2 dopamine receptor expression, reactivity to rewards, and reinforcement learning in a complex value-based decision-making task. Soc Cogn Affect Neurosci 2024; 19:nsae050. [PMID: 38988197 PMCID: PMC11281849 DOI: 10.1093/scan/nsae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Different dopamine (DA) subtypes have opposing dynamics at postsynaptic receptors, with the ratio of D1 to D2 receptors determining the relative sensitivity to gains and losses, respectively, during value-based learning. This effective sensitivity to different reward feedback interacts with phasic DA levels to determine the effectiveness of learning, particularly in dynamic feedback situations where the frequency and magnitude of rewards need to be integrated over time to make optimal decisions. We modeled this effect in simulations of the underlying basal ganglia pathways and then tested the predictions in individuals with a variant of the human dopamine receptor D2 (DRD2; -141C Ins/Del and Del/Del) gene that associates with lower levels of D2 receptor expression (N = 119) and compared their performance in the Iowa Gambling Task to noncarrier controls (N = 319). Ventral striatal (VS) reactivity to rewards was measured in the Cards task with fMRI. DRD2 variant carriers made less effective decisions than noncarriers, but this effect was not moderated by VS reward reactivity as is hypothesized by our model. These results suggest that the interaction between DA receptor subtypes and reactivity to rewards during learning may be more complex than originally thought.
Collapse
Affiliation(s)
- Cristina Banuelos
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kasey Creswell
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Catherine Walsh
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| |
Collapse
|
4
|
Moore SC, Vaz de Castro PAS, Yaqub D, Jose PA, Armando I. Anti-Inflammatory Effects of Peripheral Dopamine. Int J Mol Sci 2023; 24:13816. [PMID: 37762126 PMCID: PMC10530375 DOI: 10.3390/ijms241813816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Ines Armando
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.C.M.); (P.A.S.V.d.C.); (D.Y.); (P.A.J.)
| |
Collapse
|
5
|
Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): A systematic review and meta-analysis. J Affect Disord 2023; 328:312-323. [PMID: 36740143 DOI: 10.1016/j.jad.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Many studies have performed assessments of genetic variants in the D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). However, the results are inconsistent. This meta-analysis aimed to systematically summarize published data to evaluate the reliable association between the DRD2 genetic variants and the risk of PTSD and MDD. METHODS A systematic literature search was conducted using the Web of Science, PubMed, Google Scholar, Excerpta Medica Database (EMBASE), Springer, ScienceDirect, Wiley Online Library, Cochrane Central Register of Controlled Trials, Chinese Biomedical Literature Database (CBM), WANFANG Data, CQVIP, and Chinese National Knowledge Infrastructure (CNKI) databases before January 1st, 2022. RESULTS A total of 27 genetic variants in the DRD2 gene were retrieved, and 7 of them met the inclusion criteria for meta-analysis. Our meta-analysis results indicated that the rs1800497 (TaqIA) polymorphism was significantly associated with the increased risk of PTSD (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.49, 95 % CI, 1.08-2.04 Z = 2.46, P = 0.014). Subgroup analysis for ethnicity suggested that a significantly increased risk of PTSD was observed in Asians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.39, 95 % CI, 1.08-1.79, Z = 2.60, P = 0.009) and Caucasians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.87, 95 % CI 1.02-3.41, Z = 2.04, P = 0.042). Meanwhile, we detected significant association strengths between the rs1799978 and rs2075652 polymorphisms in the DRD2 gene and MDD (for rs1799978, Homozygote comparison (GG vs. AA): OR = 0.60, 95 % CI = 0.37-0.97, Z = 2.08, P = 0.038; for rs2075652, Homozygote comparison (AA vs. GG): OR = 1.82, 95 % CI = 1.32-2.50, Z = 3.67, P < 0.001). Our cumulative meta-analyses indicated a continuous trend toward association strength with PTSD and MDD. CONCLUSIONS This meta-analysis indicated that genetic variants in the DRD2 gene might potentially contribute to genetic susceptibility for PTSD and MDD. The utilization of DRD2 genetic variants as risk factors for PTSD and MDD requires further validation by large well-designed case-control studies.
Collapse
|
6
|
Noroozian M, Kormi-Nouri R, Nyberg L, Persson J. Hippocampal and motor regions contribute to memory benefits after enacted encoding: cross-sectional and longitudinal evidence. Cereb Cortex 2023; 33:3080-3097. [PMID: 35802485 DOI: 10.1093/cercor/bhac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25-80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure.
Collapse
Affiliation(s)
- Maryam Noroozian
- Department of Psychiatry, School of Medicine, South Kargar Str., Tehran 13185/1741, Iran
| | - Reza Kormi-Nouri
- School of Law, Psychology and Social Work, Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Department of Integrative Medical Biology, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Universitetstorget 4, Umeå 901 87, Sweden
| | - Jonas Persson
- School of Law, Psychology and Social Work, Center for Lifespan Developmental Research (LEADER), Örebro University, Fakultetsgatan 1, Örebro 702 81, Sweden
- Aging Research Center (ARC), Stockholm University and Karolinska Institute, Tomtebodavägen 18A, Solna 171 65, Sweden
| |
Collapse
|
7
|
White-Matter Integrity and Working Memory: Links to Aging and Dopamine-Related Genes. eNeuro 2022; 9:ENEURO.0413-21.2022. [PMID: 35346961 PMCID: PMC9014983 DOI: 10.1523/eneuro.0413-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Working memory, a core function underlying many higher-level cognitive processes, requires cooperation of multiple brain regions. White matter refers to myelinated axons, which are critical to interregional brain communication. Past studies on the association between white-matter integrity and working memory have yielded mixed findings. Using voxelwise tract-based spatial statistics analysis, we investigated this relationship in a sample of 328 healthy adults from 25 to 80 years of age. Given the important role of dopamine (DA) in working-memory functioning and white matter, we also analyzed the effects of dopamine-related genes on them. There were associations between white-matter integrity and working memory in multiple tracts, indicating that working-memory functioning relies on global connections between different brain areas across the adult life span. Moreover, a mediation analysis suggested that white-matter integrity contributes to age-related differences in working memory. Finally, there was an effect of the COMT Val158Met polymorphism on white-matter integrity, such that Val/Val carriers had lower fractional anisotropy values than any Met carriers in the internal capsule, corona radiata, and posterior thalamic radiation. As this polymorphism has been associated with dopaminergic tone in the prefrontal cortex, this result provides evidence for a link between DA neurotransmission and white matter. Together, the results support a link between white-matter integrity and working memory, and provide evidence for its interplay with age- and DA-related genes.
Collapse
|
8
|
Hajj A, Chamoun R, Salameh P, Khoury R, Hachem R, Sacre H, Chahine G, Kattan J, Rabbaa Khabbaz L. Fatigue in breast cancer patients on chemotherapy: a cross-sectional study exploring clinical, biological, and genetic factors. BMC Cancer 2022; 22:16. [PMID: 34979978 PMCID: PMC8722263 DOI: 10.1186/s12885-021-09072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cancer-related fatigue (CRF) is one of the most common and distressing complaints reported by cancer patients during chemotherapy considerably impacting all aspects of a patient’s life (physical, psychosocial, professional, and socioeconomic). The aim of this study was to assess the severity of cancer-related fatigue in a group of breast cancer patients undergoing chemotherapy and explore the association between fatigue scores and sociodemographic, clinical, biological, psychiatric, and genetic factors. Methods A cross-sectional pilot study carried out at the oncology outpatient unit of Hôtel-Dieu de France University Hospital recruited 67 breast cancer patients undergoing chemotherapy between November 2017 and June 2019 to evaluate fatigue using the EORTC QLQ-C30 scale (European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire). Genotyping for seven gene polymorphisms (COMT, DRD2, OPRM1, CLOCK, PER2, CRY2, ABCB1) was performed using the Lightcycler® (Roche). Results The prevalence of fatigue was 46.3%. Multivariable analysis taking the fatigue score as the dependent variable showed that a higher number of cycles and a lower hemoglobin level were significantly associated with higher odds of exhibiting fatigue. Moreover, having at least one C allele for DRD2 SNP (vs. TT) was significantly associated with a 4.09 higher odds of expressing fatigue compared to TT patients. Finally, patients with at least one C allele for CLOCK SNP tended to display higher fatigue levels than TT patients. Conclusions Our study showed that anemic breast cancer patients with a high number of chemotherapy cycles and those carrying at least one C allele for DRD2 and CLOCK SNPs are at greater risk of exhibiting fatigue. Since no previous research has reported such genetic results, future studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Aline Hajj
- Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon. .,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon.
| | - Rami Chamoun
- Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Pascale Salameh
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.,Faculty of Pharmacy, Lebanese University, Beirut, Lebanon.,University of Nicosia Medical School, Nicosia, Cyprus
| | - Rita Khoury
- Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Roula Hachem
- Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Hala Sacre
- INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon
| | - Georges Chahine
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kattan
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Lydia Rabbaa Khabbaz
- Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Graham DP, Harding MJ, Nielsen DA. Pharmacogenetics of Addiction Therapy. Methods Mol Biol 2022; 2547:437-490. [PMID: 36068473 DOI: 10.1007/978-1-0716-2573-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug addiction is a serious relapsing disease that has high costs to society and to the individual addicts. Treatment of these addictions is still in its nascency, with only a few examples of successful therapies. Therapeutic response depends upon genetic, biological, social, and environmental components. A role for genetic makeup in the response to treatment has been shown for several addiction pharmacotherapies with response to treatment based on individual genetic makeup. In this chapter, we will discuss the role of genetics in pharmacotherapies, specifically for cocaine, alcohol, and opioid dependences. The continued elucidation of the role of genetics should aid in the development of new treatments and increase the efficacy of existing treatments.
Collapse
Affiliation(s)
- David P Graham
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mark J Harding
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - David A Nielsen
- Michael E. DeBakey Veterans Affairs Medical Center, and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
11
|
van Reij RRI, Salmans MMA, Eijkenboom I, van den Hoogen NJ, Joosten EAJ, Vanoevelen JM. Dopamine-neurotransmission and nociception in zebrafish: An anti-nociceptive role of dopamine receptor drd2a. Eur J Pharmacol 2021; 912:174517. [PMID: 34555394 DOI: 10.1016/j.ejphar.2021.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Dopamine (DA) is an important modulator in nociception and analgesia. Spinal DA receptors are involved in descending modulation of the nociceptive transmission. Genetic variations within DA neurotransmission have been associated with altered pain sensitivity and development of chronic pain syndromes. The variant rs6277 in dopamine receptor 2 a (drd2a) has been associated with a decreased D2 receptor availability and increased nociception. The aim of this study is to further characterize the role of DA neurotransmission in nociception and the anti-nociceptive function of drd2a. The phenotype caused by rs6277 was modelled in zebrafish larvae using morpholino's and the effect on nociception was tested using a validated behavioural assay. The anti-nociceptive role of drd2a was tested using pharmacological intervention of D2 agonist Quinpirole. The experiments demonstrate that a decrease in drd2a expression results in a pro-nociceptive behavioural phenotype (P = 0.016) after a heat stimulus. Furthermore, agonism of drd2a with agonist Quinpirole (0.2 μM) results in dose-dependent anti-nociception (P = 0.035) after a heat stimulus. From these results it is concluded that the dopamine receptor drd2a is involved in anti-nociceptive behaviour in zebrafish. The model allows further screening and testing of genetic variation and treatment involved in nociception.
Collapse
Affiliation(s)
- Roel R I van Reij
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Maud M A Salmans
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Ivo Eijkenboom
- School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands; Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Elbert A J Joosten
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Jo M Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands; GROW-school for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Aliasghari F, Mahdavi R, Barati M, Nazm SA, Yasari S, Bonyadi M, Jabbari M. Genotypes of ANKK1 and DRD2 genes and risk of metabolic syndrome and its components: A cross-sectional study on Iranian women. Obes Res Clin Pract 2021; 15:449-454. [PMID: 34420901 DOI: 10.1016/j.orcp.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
We aimed to investigate the association between polymorphism of DRD2/ANKK1 gene with MetS and its components. Women (n = 531, aged 19-50 years) from the North-west of Iran were included by cluster sampling method. Polymorphisms of ANKK1 and DRD2 genes were defined in the study population. D/D (OR: 3.16; 95%CI: 1.31-7.60) and I/D (OR: 1.76; 95%CI: 1.12-2.78) genotypes of DRD2 (rs1799732) increased risk of MetS compared to I/I genotype. The D/D genotype of DRD2 (rs1799732) increased odds of hypertriglyceridemia in the study population. T/T (OR: 6.72; 95%CI: 1.99-22.71) and C/T (OR: 4.42; 95%CI: 2.79-7.01) genotypes of ANKK1 (rs1800497) increased risk of MetS compared to C/C genotype. Also, C/T genotype increased the odds of HTN, high FBS, high TG and low HDL-C levels compared to C/C genotype. These polymorphisms can affect the MetS components via their relation to the signaling of dopaminergic pathways and eating behaviors.
Collapse
Affiliation(s)
- Fereshteh Aliasghari
- Department of Nutrition, Sepidan Bagherololoom Health Higher Education College, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Meisam Barati
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saba A Nazm
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Sepideh Yasari
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mortaza Bonyadi
- Animal Biology Dept., Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Masoumeh Jabbari
- Faculty of Nutrition Sciences and Food Industry, Department of Community Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
14
|
Kotowicz K, Frydecka D, Gawęda Ł, Prochwicz K, Kłosowska J, Rymaszewska J, Samochowiec A, Samochowiec J, Szczygieł K, Pawlak-Adamska E, Szmida E, Cechnicki A, Misiak B. Effects of traumatic life events, cognitive biases and variation in dopaminergic genes on psychosis proneness. Early Interv Psychiatry 2021; 15:248-255. [PMID: 31889426 DOI: 10.1111/eip.12925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023]
Abstract
AIMS Recent studies have provided evidence that interactions between variation in dopaminergic genes and stressful experiences might impact risk of psychosis. However, it remains unknown whether these interactions impact the development of subclinical symptoms, including psychotic-like experiences (PLEs). In this study, we aimed to test the effects of interactions between variation in dopaminergic genes and traumatic life events (TLEs) on a severity of PLEs. METHODS We assessed TLEs, cognitive biases, PLEs as well as the catechol-O-methyltransferase (COMT) rs4680 and the dopamine D2 receptor (DRD2) rs6277 gene polymorphisms in 445 university students at three urban areas. RESULTS There was a significant effect of the interaction between the COMT rs4680 and a history of any type of TLEs on a severity of PLEs. Among the COMT rs4680 Met allele carriers, a severity of PLEs was higher in individuals with a history of any type of TLEs. Further stratification of the sample revealed that this effect appears only in the group of participants with a high level of cognitive biases. The DRD2 rs6277 C allele was independently associated with a higher level of PLEs. CONCLUSIONS Our results indicate that decreased dopamine catabolism related to the COMT gene polymorphism might increase psychosis proneness in individuals with a history of TLEs and high levels of cognitive biases. Variation in the DRD2 gene might exert independent effects on psychosis proneness. These findings imply that there are various levels of complexity in the models of interactions between genetic and environmental factors explaining the mechanisms underlying psychosis proneness.
Collapse
Affiliation(s)
- Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Łukasz Gawęda
- Experimental Psychopathology Lab, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Kłosowska
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | | | - Agnieszka Samochowiec
- Institute of Psychology, Department of Clinical Psychology, University of Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | | | - Edyta Pawlak-Adamska
- Department of Experimental Therapy, Laboratory of Immunopathology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Jagiellonian University Medical College, Cracow, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Staes N, Guevara EE, Helsen P, Eens M, Stevens JMG. The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences. J Hum Evol 2021; 152:102949. [PMID: 33578304 DOI: 10.1016/j.jhevol.2021.102949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Humans have unique cognitive capacities that, compared with apes, are not only simply expressed as a higher level of general intelligence, but also as a quantitative difference in sociocognitive skills. Humans' closest living relatives, bonobos (Pan paniscus), and chimpanzees (Pan troglodytes), show key between-species differences in social cognition despite their close phylogenetic relatedness, with bonobos arguably showing greater similarities to humans. To better understand the evolution of these traits, we investigate the neurochemical mechanisms underlying sociocognitive skills by focusing on variation in genes encoding proteins with well-documented roles in mammalian social cognition: the receptors for vasopressin (AVPR1A), oxytocin (OXTR), serotonin (HTR1A), and dopamine (DRD2). Although these genes have been well studied in humans, little is known about variation in these genes that may underlie differences in social behavior and cognition in apes. We comparatively analyzed sequence data for 33 bonobos and 57 chimpanzees, together with orthologous sequence data for other apes. In all four genes, we describe genetic variants that alter the amino acid sequence of the respective receptors, raising the possibility that ligand binding or signal transduction may be impacted. Overall, bonobos show 57% more fixed substitutions than chimpanzees compared with the ancestral Pan lineage. Chimpanzees, show 31% more polymorphic coding variation, in line with their larger historical effective population size estimates and current wider distribution. An extensive literature review comparing allelic changes in Pan with known human behavioral variants revealed evidence of homologous evolution in bonobos and humans (OXTR rs4686301(T) and rs237897(A)), while humans and chimpanzees shared OXTR rs2228485(A), DRD2 rs6277(A), and DRD2 rs11214613(A) to the exclusion of bonobos. Our results offer the first in-depth comparison of neurochemical receptor gene variation in Pan and put forward new variants for future behavior-genotype association studies in apes, which can increase our understanding of the evolution of social cognition in modern humans.
Collapse
Affiliation(s)
- Nicky Staes
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium.
| | - Elaine E Guevara
- Evolutionary Anthropology, Duke University, 130 Science Dr, Durham, NC, 27708, USA
| | - Philippe Helsen
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018, Antwerp, Belgium
| | - Marcel Eens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jeroen M G Stevens
- Behavioral Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
16
|
Klaus K, Vaht M, Pennington K, Harro J. Interactive effects of DRD2 rs6277 polymorphism, environment and sex on impulsivity in a population-representative study. Behav Brain Res 2021; 403:113131. [PMID: 33444693 DOI: 10.1016/j.bbr.2021.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
Previous research has shown that dopaminergic dysregulation and early life stress interact to impact on aspects of impulse control. This study aimed to explore the potentially interactive effects of the rs6277 polymorphism of the dopamine D2 receptor gene (DRD2), stressful or supportive environment and sex on behavioural and self-reported measures of impulsivity, as well as alcohol use - a condition characterised by a deficit in impulse control. The sample consisted of the younger cohort (n = 583) of the longitudinal Estonian Children Personality, Behaviour and Health Study. The results showed that the CC homozygotes (suggested to have decreased striatal D2 receptor availability) who had experienced stressful life events (SLE) or maltreatment in the family prior to age 15 showed higher self-reported maladaptive impulsivity at age 15. The genotype-SLE interaction and further association with sex was also evident in the frequency of alcohol use at age 15. Lack of warmth in the family contributed to significantly higher levels of thoughtlessness and more frequent alcohol use in CC carriers at age 25, whereas family support was associated with lower thoughtlessness scores in CC males, which may suggest a protective effect of supportive family environment in this group. Together the findings suggest that DRD2 rs6277 polymorphism, in interaction with environmental factors experienced in childhood and youth may affect facets of impulsivity. Future work should aim to further clarify the sex and age-specific effects of stressful and supportive environment on the development of neuronal systems that are compromised in disorders characterised by deficits in impulse control.
Collapse
Affiliation(s)
- K Klaus
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, England, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB3 0HH, England, UK.
| | - M Vaht
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - K Pennington
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, England, UK
| | - J Harro
- Faculty of Science and Technology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| |
Collapse
|
17
|
Miranda GG, Rodrigue KM, Kennedy KM. Cortical thickness mediates the relationship between DRD2 C957T polymorphism and executive function across the adult lifespan. Brain Struct Funct 2021; 226:121-136. [PMID: 33179159 PMCID: PMC7855542 DOI: 10.1007/s00429-020-02169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Dopamine (DA) signaling is critical for optimal cognitive performance. Aging is accompanied by a change in the strength of this signaling, with a loss of striatal and extrastriatal D2 binding potential. The reduction in dopamine modulation with age negatively influences various aspects of cognition. DRD2 C957T (rs6277) impacts DA D2 receptor density and availability, with C homozygotes linked to lower striatal DA availability and reduced executive functioning (EF), but also high extrastriatal binding potential. Here, we investigated in 176 participants aged 20-94 years whether: (1) DRD2 C carriers differ from T carriers in cortical thickness or subcortical volume in areas of high concentrations of D2 receptors that receive projections from mesocortical or nigrostriatal dopaminergic pathways; (2) whether the DRD2*COMT relationship has any synergistic effects on cortical thickness; (3) whether the effect of DRD2 on brain structure depends upon age; and (4) whether DRD2-related regional thinning affects executive function performance. We show that DRD2 impacts cortical thickness in the superior parietal lobule, precuneus, and anterior cingulate (marginal after FDR correction), while statistically controlling sex, age, and COMT genotype. Specifically, C homozygotes demonstrated thinner cortices than both heterozygotes and/or T homozygotes in an age-invariant manner. Additionally, DRD2 predicted executive function performance via cortical thickness. The results highlight that genetic influences on dopamine availability impact cognitive performance via the contribution of brain structure in cortical regions influenced by DRD2.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Science, The University of Texas At Dallas, Dallas, TX, USA.
| |
Collapse
|
18
|
Maes MS, Lu JY, Tiwari AK, Freeman N, de Luca V, Müller DJ, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Remington G, Kennedy JL, Zai CC. Schizophrenia-associated gene dysbindin-1 and tardive dyskinesia. Drug Dev Res 2020; 82:678-684. [PMID: 32394511 DOI: 10.1002/ddr.21681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible movement disorder observed following long-term antipsychotic exposure. Its cause is unknown; however, a genetic component has been supported by studies of affected families. Dysbindin-1, encoded by the dystrobrevin-binding protein 1 DTNBP1 gene, has been associated with schizophrenia and is potentially involved in dopamine neurotransmission through its regulation of dopamine release and dopamine D2 receptor recycling, making it a candidate for investigation in TD. We investigated common variants across the DTNBP1 gene in our schizophrenia/patients with schizoaffective disorder of European ancestry. We found a number of DTNBP1 three-marker haplotypes to be associated with TD occurrence and TD severity (p < 0.05). These preliminary findings, if replicated in larger independent samples, would suggest that drugs targeting dysbindin-1 may be an option in the prevention and treatment of TD.
Collapse
Affiliation(s)
- Miriam S Maes
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Justin Y Lu
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vincenzo de Luca
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, Long Beach Veterans Administration Health Care System, University of California, Irvine, California, USA
| | - Jeffrey A Lieberman
- New York State Psychiatric Institute, Columbia University, New York City, New York, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
The influence of dopaminergic polymorphisms on selective stopping. Behav Brain Res 2020; 381:112441. [DOI: 10.1016/j.bbr.2019.112441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022]
|
20
|
Faron-Górecka A, Kuśmider M, Solich J, Górecki A, Dziedzicka-Wasylewska M. Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:279-296. [PMID: 31952689 DOI: 10.1016/bs.pmbts.2019.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human dopamine D2 receptor (D2R) gene has polymorphic variants, three of them alter its amino acid sequence: Val96Ala, Pro310Ser and Ser311Cys. Their functional role never became the object of extensive studies, even though there are some evidence that they correlate with schizophrenia. The present work reviews data indicating that these mutations play a role in dimer formation with dopamine D1 receptor (D1R), with the strongest effect observed for Ser311Cys variant. Similarly, the affinity for antipsychotic drugs of this genetic variant depends on whether it is expressed together with D1R or not. Better understanding of altered ability of genetic variants of D2R to form dimers with D1R, as well as of altered affinity for antipsychotic drugs, depending on the absence or presence of the second dopamine receptor is of great importance-since these two receptors are not always co-expressed in the same cell. It may well be that targeting new compounds toward the D1R-D2R dimers, which the most probably form under conditions of excessive dopamine release, will result in antipsychotic drugs devoid of serious side effects.
Collapse
Affiliation(s)
- Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Maciej Kuśmider
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland; Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
van Reij RR, Joosten EA, van den Hoogen NJ. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br J Anaesth 2019; 123:853-864. [DOI: 10.1016/j.bja.2019.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
|
22
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Papenberg G, Jonasson L, Karalija N, Johansson J, Köhncke Y, Salami A, Andersson M, Axelsson J, Wåhlin A, Riklund K, Lindenberger U, Lövdén M, Nyberg L, Bäckman L. Mapping the landscape of human dopamine D2/3 receptors with [ 11C]raclopride. Brain Struct Funct 2019; 224:2871-2882. [PMID: 31444615 PMCID: PMC6778542 DOI: 10.1007/s00429-019-01938-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
Abstract
The dopamine D2/3 system is fundamental for sensory, motor, emotional, and cognitive aspects of behavior. Small-scale human histopathological and animal studies show high density of D2/3 dopamine receptors (D2/3DR) in striatum, but also demonstrate the existence of such receptors across cortical and limbic regions. Assessment of D2/3DR BPND in the extrastriatal regions with [11C]raclopride has long been considered unreliable due to the relatively low density of D2/3DR outside the striatum. We describe the distribution and interregional links of D2/3DR availability measured with PET and [11C]raclopride across the human brain in a large sample (N = 176; age range 64–68 years). Structural equation modeling revealed that D2/3DR availability can be organized according to anatomical (nigrostriatal, mesolimbic, mesocortical) and functional (limbic, associative, sensorimotor) dopamine pathways. D2/3DR availability in corticolimbic functional subdivisions showed differential associations to corresponding striatal subdivisions, extending animal and pharmacological work. Our findings provide evidence on the dimensionality and organization of [11C]raclopride D2/3DR availability in the living human brain that conforms to known dopaminergic pathways.
Collapse
Affiliation(s)
- Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden.
| | - Lars Jonasson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18A, 171 65, Solna, Sweden
| |
Collapse
|
24
|
Klaus K, Butler K, Curtis F, Bridle C, Pennington K. The effect of ANKK1 Taq1A and DRD2 C957T polymorphisms on executive function: A systematic review and meta-analysis. Neurosci Biobehav Rev 2019; 100:224-236. [PMID: 30836122 DOI: 10.1016/j.neubiorev.2019.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
Abstract
Research in healthy adults suggests that C957T polymorphism of the dopamine D2 receptor encoding DRD2 and the Taq1A polymorphism of the neighbouring gene ankyrin repeat and kinase domain containing 1 (ANKK1) alter dopaminergic signalling and may influence prefrontally-mediated executive functions. A systematic review and meta-analysis was carried out on the evidence for the association of DRD2 C957T and ANKK1 Taq1A polymorphisms in performance on tasks relating to the three core domains of executive function: working memory, response inhibition and cognitive flexibility in healthy adults. CINAHL, MEDLINE, PsycARTICLES and PsychINFO databases were searched for predefined key search terms associated with the two polymorphisms and executive function. Studies were included if they investigated a healthy adult population with the mean age of 18-65 years, no psychiatric or neurological disorder and only the healthy adult arm were included in studies with any case-control design. Data from 17 independent studies were included in meta-analysis, separated by the Taq1A and C957T polymorphisms and by executive function tests: working memory (Taq1A, 6 samples, n = 1270; C957 T, 6 samples, n = 977), cognitive flexibility (C957 T, 3 samples, n = 620), and response inhibition (C957 T, 3 samples, n = 598). The meta-analyses did not establish significant associations between these gene polymorphisms of interest and any of the executive function domains. Theoretical implications and methodological considerations of these findings are discussed.
Collapse
Affiliation(s)
- Kristel Klaus
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - Kevin Butler
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK
| | - Ffion Curtis
- Lincoln Institute for Health, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Chris Bridle
- Lincoln Institute for Health, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Kyla Pennington
- School of Psychology, University of Lincoln, Brayford Wharf, Lincoln, LN5 7AT, UK.
| |
Collapse
|
25
|
Karalija N, Papenberg G, Wåhlin A, Johansson J, Andersson M, Axelsson J, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. C957T-mediated Variation in Ligand Affinity Affects the Association between 11C-raclopride Binding Potential and Cognition. J Cogn Neurosci 2019; 31:314-325. [DOI: 10.1162/jocn_a_01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with 11C-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64–68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of 11C-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that 11C-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between 11C-raclopride BP and cognitive performance. In accordance with previous findings, we show that 11C-raclopride BP was increased in T-homozygotes. Importantly, 11C-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest 11C-raclopride BP–cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and 11C-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ulman Lindenberger
- Max Planck Institute for Human Development
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research
| | | | | |
Collapse
|
26
|
Beu ND, Burns NR, Baetu I. Polymorphisms in dopaminergic genes predict proactive processes of response inhibition. Eur J Neurosci 2019; 49:1127-1148. [DOI: 10.1111/ejn.14323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nathan D. Beu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Nicholas R. Burns
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Irina Baetu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
27
|
Chan S, Bota R. Personalized TMS: role of RNA genotyping. Ment Illn 2019; 11:8-15. [PMID: 32742620 PMCID: PMC7364573 DOI: 10.1108/mij-10-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose Noninvasive brain stimulation (NIBS) such a transcranial magnetic stimulation, intermittent theta burst stimulation, transcranial direct current stimulation and electroconvulsive therapy have emerged as an efficacious and well-tolerated therapy for treatment-resistant psychiatric disorders. While novel NIBS techniques are an exciting addition to the current repertoire of neuropsychiatric therapies, their success is somewhat limited by the wide range of treatment responses seen among treated patients. Design/methodology/approach In this study, the authors will review the studies on relevant genetic polymorphisms and discuss the role of RNA genotyping in personalizing NIBS. Findings Genome studies have revealed several genetic polymorphisms that may contribute for the heterogeneity of treatment response to NIBS where the presence of certain single nucleotide polymorphisms (SNPs) are associated with responders versus nonresponders. Originality/value Historically, mental illnesses have been arguably some of the most challenging disorders to study and to treat because of the degree of biological variability across affected individuals, the role of genetic and epigenetic modifications, the diversity of clinical symptomatology and presentations and the interplay with environmental factors. In lieu of these challenges, there has been a push for personalized medicine in psychiatry that aims to optimize treatment response based on one's unique characteristics.
Collapse
Affiliation(s)
- Shawna Chan
- University of California Irvine, Irvine, California, USA
| | - Robert Bota
- University of California Irvine, Irvine, California, USA
| |
Collapse
|
28
|
Gerra MC, Manfredini M, Cortese E, Antonioni MC, Leonardi C, Magnelli F, Somaini L, Jayanthi S, Cadet JL, Donnini C. Genetic and Environmental Risk Factors for Cannabis Use: Preliminary Results for the Role of Parental Care Perception. Subst Use Misuse 2019; 54:670-680. [PMID: 30663487 PMCID: PMC7643561 DOI: 10.1080/10826084.2018.1531430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vulnerability to cannabis use (CU) initiation and problematic use have been shown to be affected by both genetic and environmental factors, with still inconclusive and uncertain evidence. OBJECTIVE Aim of the present study was to investigate the possible interplay between gene polymorphisms and psychosocial conditions in CU susceptibility. METHODS Ninety-two cannabis users and ninety-three controls have been included in the study. Exclusion criteria were serious mental health disorders and severe somatic disorders, use of other drugs and alcohol abuse; control subjects were not screened to remove Reward Deficiency Syndrome (RDS) behaviors. A candidate gene association study was performed, including variants related to dopaminergic and endocannabinoids pathways. Adverse childhood experiences and quality of parental care have been retrospectively explored utilizing ACES (Adverse Children Experience Scale), CECA-q (Child Experience of Care and Abuse Questionnaire), PBI (Parental Bonding Instrument). RESULTS Our findings evidenced a significant association between rs1800497 Taq1A of ANKK1 gene and CU. Parental care was found to be protective factor, with emotional and physical neglect specifically influencing CU. Gender also played a role in CU, with males smoking more than females. However, when tested together genotypes and psychosocial variables, the significance of observed genetic differences disappeared. CONCLUSIONS Our results confirm a significant role of Taq1A polymorphism in CU vulnerability. A primary role of environmental factors in mediating genetic risk has been highlighted: parental care could be considered the main target to design early prevention programs and strategies.
Collapse
Affiliation(s)
- Maria Carla Gerra
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| | - Matteo Manfredini
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| | - Elena Cortese
- b Addiction Treatment Center, Local Health Service , Rome , Italy
| | | | - Claudio Leonardi
- b Addiction Treatment Center, Local Health Service , Rome , Italy
| | - Fernanda Magnelli
- d Addiction Treatment Centre, Local Health Service , Cosenza , Biella , Italy
| | - Lorenzo Somaini
- d Addiction Treatment Centre, Local Health Service , Cosenza , Biella , Italy
| | - Subramaniam Jayanthi
- e Molecular Neuropsychiatry Research Branch , NIDA Intramural Research Program , Baltimore , Maryland , USA
| | - Jean Lud Cadet
- e Molecular Neuropsychiatry Research Branch , NIDA Intramural Research Program , Baltimore , Maryland , USA
| | - Claudia Donnini
- a Department of Chemistry, Life Sciences and Environmental Sustainability , University of Parma , Parma , Italy
| |
Collapse
|
29
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
30
|
Klaus K, Pennington K. Dopamine and Working Memory: Genetic Variation, Stress and Implications for Mental Health. Curr Top Behav Neurosci 2019; 41:369-391. [PMID: 31502081 DOI: 10.1007/7854_2019_113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the molecular level, the neurotransmitter dopamine (DA) is a key regulatory component of executive function in the prefrontal cortex (PFC) and dysfunction in dopaminergic (DAergic) circuitry has been shown to result in impaired working memory (WM). Research has identified multiple common genetic variants suggested to impact on the DA system functionally and also behaviourally to alter WM task performance. In addition, environmental stressors impact on DAergic tone, and this may be one mechanism by which stressors confer vulnerability to the development of neuropsychiatric conditions. This chapter aims to evaluate the impact of key DAergic gene variants suggested to impact on both synaptic DA levels (COMT, DAT1, DBH, MAOA) and DA receptor function (ANKK1, DRD2, DRD4) in terms of their influence on visuospatial WM. The role of stressors and interaction with the genetic background is discussed in addition to discussion around some of the implications for precision psychiatry. This and future work in this area aim to disentangle the neural mechanisms underlying susceptibility to stress and their impact and relationship with cognitive processes known to influence mental health vulnerability.
Collapse
Affiliation(s)
- Kristel Klaus
- MRC Brain and Cognition Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
31
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
32
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Farhangdoost H. Relationship between serum homovanillic acid, DRD2 C957T (rs6277), and hDAT A559V (rs28364997) polymorphisms and developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2018; 76:37-46. [PMID: 30199750 DOI: 10.1016/j.jcomdis.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/12/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The involvement of the brain dopamine system in the pathophysiology of developmental stuttering has been previously suggested. In the present study, we aimed to investigate the relationship between developmental stuttering in children and the levels of serum homovanillic acid (HVA), dopamine D2 receptor (DRD2) C957T (rs6277), and solute carrier family 6 member 3 (SLC6A3) human dopamine transporter (hDAT) A559V (rs28364997) single-nucleotide polymorphisms. In a case-control study, serum level of HVA, DRD2 C957T, and DAT A559V were compared between 85 children who stuttered (CWS) and 85 age- and sex-matched children who did not stutter (CWNS). Although serum level of HVA was higher among the CWS (median = 25.50 ng/mL) than that in the CWNS (median = 17.40 ng/mL), the difference between the two groups was not significant (p = 0.43). No significant correlation was observed between age and the level of HVA among all the participants (r = -0.15, p = 0.06), nor was there any correlation among the CWS (r = -0.19, p = 0.14) or among the CWNS (r = -0.13, p = 0.27) according to the Spearman correlation coefficient. On the other hand, there was a significant negative correlation between age from stuttering onset and the serum level of HVA among the CWS group (r = -0.32, p = 0.01). The Spearman correlation coefficient did not indicate any significant correlation between stuttering severity and HVA in CWS (r = -0.06, p = 0.59). The mutant allele of hDAT A559V was observed neither in the CWS nor in the controls. The allele frequencies of DRD2 C957T were not significantly different between the CWS and the CWNS; however, the frequency of the TT genotype was significantly higher among the CWS (p = 0.02), which was associated with 2.25-fold susceptibility to stuttering (OR = 2.25, 95% CI = 1.03 to 4.90, p = 0.04). Our findings suggest that the serum level of HVA might be a biomarker for dopaminergic involvement in the pathogenesis of stuttering. Moreover, the present study indicates that the DRD2 C957T polymorphism might be a risk factor for the development of stuttering among Iranian Kurdish population.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
33
|
The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports (Basel) 2018; 6:sports6030088. [PMID: 30200182 PMCID: PMC6162373 DOI: 10.3390/sports6030088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
In elite sporting codes, the identification and promotion of future athletes into specialised talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways.
Collapse
|
34
|
Persson J, Stenfors C. Superior cognitive goal maintenance in carriers of genetic markers linked to reduced striatal D2 receptor density (C957T and DRD2/ANKK1-TaqIA). PLoS One 2018; 13:e0201837. [PMID: 30125286 PMCID: PMC6101371 DOI: 10.1371/journal.pone.0201837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/22/2018] [Indexed: 11/19/2022] Open
Abstract
Maintaining goal representations is a critical component of cognitive control and is required for successful performance in many daily activities. This is particularly important when goal-relevant information needs to be maintained in working memory (WM), updated in response to changing task demands or internal goal states, and protected from interference by inhibiting counter-goal behaviors. Modulation of fronto-striatal dopamine is critical for updating and maintaining goals and representations. Here we test the hypothesis that a genetic predisposition (C957T T+ and DRD2/ANKK1-TaqIA A+) for reduced striatal D2 receptor availability would facilitate goal maintenance using the AX-continuous performance task (AX-CPT), on a sample of 196 adults (25-67 y). We demonstrate that carriers of two polymorphisms that have been linked to reduced striatal D2 receptor density show increased performance on context-dependent (BX) trials, and that the effect of these polymorphisms was only significant for long ISI trials where the demand for goal maintenance is high. The current results add further knowledge to the role of D2 receptor functioning in cognitive stability and flexibility, and could have implications for understanding cognitive deficits in patients characterized by altered dopamine functioning.
Collapse
Affiliation(s)
- Jonas Persson
- Aging Research Center, Karolinska Institutet and Stockholm University, Solna, Sweden
- * E-mail:
| | - Cecilia Stenfors
- Aging Research Center, Karolinska Institutet and Stockholm University, Solna, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Della Torre OH, Paes LA, Henriques TB, de Mello MP, Celeri EHRV, Dalgalarrondo P, Guerra-Júnior G, Santos-Júnior AD. Dopamine D2 receptor gene polymorphisms and externalizing behaviors in children and adolescents. BMC MEDICAL GENETICS 2018; 19:65. [PMID: 29716536 PMCID: PMC5930428 DOI: 10.1186/s12881-018-0586-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 04/19/2018] [Indexed: 01/11/2023]
Abstract
Background Dopamine is involved in several cerebral physiological processes, and single nucleotide polymorphisms (SNP) in the dopamine D2 receptor gene (DRD2) have been associated with numerous neurological and mental disorders, including those involving alterations in cognitive and emotional processes. Methods The aim of this study was to evaluate the association between the SNPs c.957C > T (rs6277) and c.-585A > G (rs1799978) in the DRD2 gene and behavioral characteristics of children and adolescents based on an inventory of the Child Behavior Checklist (CBCL). Children and adolescents between 8 and 20 years old who were clinically followed-up were genotyped for the SNPs c.957C > T and c.-585A > G, and related to data of the CBCL/6–18 scale assessment performed with the help of caregivers. The chi-squared test was used to assess the differences in the frequencies of the C and T alleles in the polymorphism c.957C > T and of the A and G alleles in the polymorphism c.-585A > G with respect to the grouped CBCL scores at a significance level of 5%. Multiple logistic regression models were performed, to control whether sex and/or ethnicity could influence the results. Results Eighty-five patients were assessed overall, and the presence of the T allele (C/T and T/T) of DRD2 c.957C > T polymorphism was found to be significantly associated with the occurrence of defiant and oppositional problems and with attention and hyperactivity problems. There were no associations detected with polymorphism DRD2 c.-585A > G polymorphism. Both SNPs were in Hardy-Weinberg-equilibrium. Conclusions Although the findings of this study are preliminary, due to its small number of participants, the presence of T allele (C/T, T/T) in c.957C > T SNP was associated with difficulty in impulse control, self-control of emotions, and conduct adjustment, which can contribute to improving the identification of mental and behavioral phenotypes associated with gene expression.
Collapse
Affiliation(s)
- Osmar Henrique Della Torre
- Department of Psychiatry - Faculty of Medical Sciences (FCM), State University of Campinas (Unicamp), Campinas, SP, Brazil. .,Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz - Campinas, São Paulo, ZIP Code: 13083-887, Brazil.
| | - Lúcia Arisaka Paes
- Department of Psychiatry - Faculty of Medical Sciences (FCM), State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Taciane Barbosa Henriques
- Laboratory of Human Genetics - Center for Molecular Biology and Genetic Engineering (CBMEG), Unicamp, Campinas, SP, Brazil
| | - Maricilda Palandi de Mello
- Laboratory of Human Genetics - Center for Molecular Biology and Genetic Engineering (CBMEG), Unicamp, Campinas, SP, Brazil
| | | | - Paulo Dalgalarrondo
- Department of Psychiatry - Faculty of Medical Sciences (FCM), State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Gil Guerra-Júnior
- Growth and Development Laboratory - Center for Investigation in Pediatrics (CIPED), FCM - Unicamp, Campinas, SP, Brazil.,Department of Pediatrics - Pediatric Endocrinology Unit, FCM - Unicamp, Campinas, SP, Brazil
| | - Amilton Dos Santos-Júnior
- Department of Psychiatry - Faculty of Medical Sciences (FCM), State University of Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
36
|
Bäckström D, Eriksson Domellöf M, Granåsen G, Linder J, Mayans S, Elgh E, Zetterberg H, Blennow K, Forsgren L. Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson's disease. Acta Neurol Scand 2018; 137:91-98. [PMID: 28869277 PMCID: PMC5763317 DOI: 10.1111/ane.12812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Cognitive decline is common in Parkinson's disease (PD), but the underlying mechanisms for this complication are incompletely understood. Genotypes affecting dopamine transmission may be of importance. This study investigates whether genotypes associated with reduced prefrontal dopaminergic tone and/or reduced dopamine D2-receptor availability (Catechol-O-methyltransferase [COMT] Val158 Met genotype and DRD2 C957 T genotype) affect the development of cognitive deficits in PD. MATERIALS AND METHODS One hundred and 34 patients with idiopathic PD, participating in a regional, population-based study of incident parkinsonism, underwent genotyping. After extensive baseline investigations (including imaging and biomarker analyses), the patients were followed prospectively during 6-10 years with neuropsychological evaluations, covering six cognitive domains. Cognitive decline (defined as the incidence of either Parkinson's disease mild cognitive impairment [PD-MCI] or dementia [PDD], diagnosed according to published criteria and blinded to genotype) was studied as the primary outcome. RESULTS Both genotypes affected cognition, as shown by Cox proportional hazards models. While the COMT 158 Val/Val genotype conferred an increased risk of mild cognitive impairment in patients with normal cognition at baseline (hazard ratio: 2.13, P = .023), the DRD2 957 T/T genotype conferred an overall increased risk of PD dementia (hazard ratio: 3.22, P < .001). The poorer cognitive performance in DRD2 957 T/T carriers with PD occurred mainly in episodic memory and attention. CONCLUSIONS The results favor the hypothesis that dopamine deficiency in PD not only relate to mild cognitive deficits in frontostriatal functions, but also to a decline in memory and attention. This could indicate that dopamine deficiency impairs a wide network of brain areas.
Collapse
Affiliation(s)
- D. Bäckström
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| | | | - G. Granåsen
- Epidemiology and Global Health UnitDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - J. Linder
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| | - S. Mayans
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
| | - E. Elgh
- Department of PsychologyUmeå UniversityUmeåSweden
| | - H. Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Molecular NeuroscienceUniversity College London Institute of NeurologyQueen SquareLondonEngland
| | - K. Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and Neurochemistrythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - L. Forsgren
- Department of Pharmacology and Clinical NeuroscienceUmeå UniversityUmeåSweden
| |
Collapse
|
37
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Khazaie H, Farhangdoost H, Mehrpour M. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. BRAIN AND LANGUAGE 2017; 175:47-56. [PMID: 28992603 DOI: 10.1016/j.bandl.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Developmental stuttering is known to be a sexually dimorphic and male-biased speech motor control disorder. In the present case-control study, we investigated the relationship between developmental stuttering and steroid hormones. Serum levels of testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), oestradiol, progesterone, cortisol, and sex hormone binding globulin (SHBG), as well as the 2nd/4th digit ratio (2D:4D), an indicator of prenatal testosterone level, were compared between children who stutter (CWS) and children who do not stutter (CWNS). Moreover, two SNPs (CYP17 -34 T:C (MSP AI) and CYP19 T:C (Trp:Arg)) of cytochrome P450, which is involved in steroid metabolism pathways, were analysed between the groups. Our results showed significantly higher levels of testosterone, DHT, and oestradiol in CWS in comparison with CWNS. The severity of stuttering was positively correlated with the serum levels of testosterone, DHEA, and cortisol, whereas no association was seen between the stuttering and digit ratio, progesterone, or SHBG. The CYP17CC genotype was significantly associated with the disorder.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Whitney P, Hinson JM, Satterfield BC, Grant DA, Honn KA, Van Dongen HPA. Sleep Deprivation Diminishes Attentional Control Effectiveness and Impairs Flexible Adaptation to Changing Conditions. Sci Rep 2017; 7:16020. [PMID: 29167485 PMCID: PMC5700060 DOI: 10.1038/s41598-017-16165-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Insufficient sleep is a global public health problem resulting in catastrophic accidents, increased mortality, and hundreds of billions of dollars in lost productivity. Yet the effect of sleep deprivation (SD) on decision making and performance is often underestimated by fatigued individuals and is only beginning to be understood by scientists. The deleterious impact of SD is frequently attributed to lapses in vigilant attention, but this account fails to explain many SD-related problems, such as loss of situational awareness and perseveration. Using a laboratory study protocol, we show that SD individuals can maintain information in the focus of attention and anticipate likely correct responses, but their use of such a top-down attentional strategy is less effective at preventing errors caused by competing responses. Moreover, when the task environment requires flexibility, performance under SD suffers dramatically. The impairment in flexible shifting of attentional control we observed is distinct from lapses in vigilant attention, as corroborated by the specificity of the influence of a genetic biomarker, the dopaminergic polymorphism DRD2 C957T. Reduced effectiveness of top-down attentional control under SD, especially when conditions require flexibility, helps to explain maladaptive performance that is not readily explained by lapses in vigilant attention.
Collapse
Affiliation(s)
- Paul Whitney
- Department of Psychology, Washington State University, Pullman, WA, 99164-4820, USA
| | - John M Hinson
- Department of Psychology, Washington State University, Pullman, WA, 99164-4820, USA.
| | - Brieann C Satterfield
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99210-1495, USA
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Devon A Grant
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99210-1495, USA
| | - Kimberly A Honn
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99210-1495, USA
| | - Hans P A Van Dongen
- Department of Psychology, Washington State University, Pullman, WA, 99164-4820, USA
- Sleep and Performance Research Center and Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99210-1495, USA
| |
Collapse
|
39
|
Klaus K, Butler K, Durrant SJ, Ali M, Inglehearn CF, Hodgson TL, Gutierrez H, Pennington K. The effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress. Brain Behav 2017; 7:e00695. [PMID: 28523234 PMCID: PMC5434197 DOI: 10.1002/brb3.695] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Previous research has indicated that variation in genes encoding catechol-O-methyltransferase (COMT) and dopamine receptor D2 (DRD2) may influence cognitive function and that this may confer vulnerability to the development of mental health disorders such as schizophrenia. However, increasing evidence suggests environmental factors such as early life stress may interact with genetic variants in affecting these cognitive outcomes. This study investigated the effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress in healthy adults. METHODS One hundred and twenty-two healthy adult males (mean age 35.2 years, range 21-63) were enrolled in the study. Cognitive function was assessed using Cambridge Neuropsychological Test Automated Battery and early life stress was assessed using the Childhood Traumatic Events Scale (Pennebaker & Susman, 1988). RESULTS DRD2 C957T was significantly associated with executive function, with CC homozygotes having significantly reduced performance in spatial working memory and spatial planning. A significant genotype-trauma interaction was found in Rapid Visual Information Processing test, a measure of sustained attention, with CC carriers who had experienced early life stress exhibiting impaired performance compared to the CC carriers without early life stressful experiences. There were no significant findings for COMT Val158Met. CONCLUSIONS This study supports previous findings that DRD2 C957T significantly affects performance on executive function related tasks in healthy individuals and shows for the first time that some of these effects may be mediated through the impact of childhood traumatic events. Future work should aim to clarify further the effect of stress on neuronal systems that are known to be vulnerable in mental health disorders and more specifically what the impact of this might be on cognitive function.
Collapse
Affiliation(s)
- Kristel Klaus
- School of Psychology University of Lincoln Lincoln UK
| | - Kevin Butler
- School of Psychology University of Lincoln Lincoln UK
| | | | - Manir Ali
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | - Chris F Inglehearn
- Section of Ophthalmology & Neuroscience Leeds Institute of Biomedical Sciences St James' Hospital University of Leeds Leeds UK
| | | | | | | |
Collapse
|
40
|
Richter A, Barman A, Wüstenberg T, Soch J, Schanze D, Deibele A, Behnisch G, Assmann A, Klein M, Zenker M, Seidenbecher C, Schott BH. Behavioral and Neural Manifestations of Reward Memory in Carriers of Low-Expressing versus High-Expressing Genetic Variants of the Dopamine D2 Receptor. Front Psychol 2017; 8:654. [PMID: 28507526 PMCID: PMC5410587 DOI: 10.3389/fpsyg.2017.00654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Dopamine is critically important in the neural manifestation of motivated behavior, and alterations in the human dopaminergic system have been implicated in the etiology of motivation-related psychiatric disorders, most prominently addiction. Patients with chronic addiction exhibit reduced dopamine D2 receptor (DRD2) availability in the striatum, and the DRD2 TaqIA (rs1800497) and C957T (rs6277) genetic polymorphisms have previously been linked to individual differences in striatal dopamine metabolism and clinical risk for alcohol and nicotine dependence. Here, we investigated the hypothesis that the variants of these polymorphisms would show increased reward-related memory formation, which has previously been shown to jointly engage the mesolimbic dopaminergic system and the hippocampus, as a potential intermediate phenotype for addiction memory. To this end, we performed functional magnetic resonance imaging (fMRI) in 62 young, healthy individuals genotyped for DRD2 TaqIA and C957T variants. Participants performed an incentive delay task, followed by a recognition memory task 24 h later. We observed effects of both genotypes on the overall recognition performance with carriers of low-expressing variants, namely TaqIA A1 carriers and C957T C homozygotes, showing better performance than the other genotype groups. In addition to the better memory performance, C957T C homozygotes also exhibited a response bias for cues predicting monetary reward. At the neural level, the C957T polymorphism was associated with a genotype-related modulation of right hippocampal and striatal fMRI responses predictive of subsequent recognition confidence for reward-predicting items. Our results indicate that genetic variations associated with DRD2 expression affect explicit memory, specifically for rewarded stimuli. We suggest that the relatively better memory for rewarded stimuli in carriers of low-expressing DRD2 variants may reflect an intermediate phenotype of addiction memory.
Collapse
Affiliation(s)
- Anni Richter
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany
| | - Joram Soch
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Anna Deibele
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Anne Assmann
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany
| | - Marieke Klein
- Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke UniversityMagdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry and Psychotherapy, Charité University HospitalBerlin, Germany.,Department of Neurology, University of MagdeburgMagdeburg, Germany.,Center for Behavioral Brain SciencesMagdeburg, Germany
| |
Collapse
|
41
|
Smith CT, Dang LC, Buckholtz JW, Tetreault AM, Cowan RL, Kessler RM, Zald DH. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum. Transl Psychiatry 2017; 7:e1091. [PMID: 28398340 PMCID: PMC5416688 DOI: 10.1038/tp.2017.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BPND), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BPND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BPND of the high-affinity D2 receptor tracer 18F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BPND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BPND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.
Collapse
Affiliation(s)
- C T Smith
- Department of Psychology, Vanderbilt University, Nashville, TN, USA,Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA. E-mail:
| | - L C Dang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - J W Buckholtz
- Department of Psychology, Harvard University, Cambridge, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - A M Tetreault
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - R L Cowan
- Department of Psychology, Vanderbilt University, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R M Kessler
- Department of Radiology, UAB School of Medicine, Birmingham, AL, USA
| | - D H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA,Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
42
|
The social transmission of metacontrol policies: Mechanisms underlying the interpersonal transfer of persistence and flexibility. Neurosci Biobehav Rev 2017; 81:43-58. [PMID: 28088534 DOI: 10.1016/j.neubiorev.2017.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/01/2023]
Abstract
Humans often face binary cognitive-control dilemmas, with the choice between persistence and flexibility being a crucial one. Tackling these dilemmas requires metacontrol, i.e., the control of the current cognitive-control policy. As predicted from functional, psychometric, neuroscientific, and modeling approaches, interindividual variability in metacontrol biases towards persistence or flexibility could be demonstrated in metacontrol-sensitive tasks. These biases covary systematically with genetic predispositions regarding mesofrontal and nigrostriatal dopaminergic functioning and the individualistic or collectivistic nature of the cultural background. However, there is also evidence for mood- and meditation-induced intraindividual variability (with negative mood and focused-attention meditation being associated with a bias towards persistence, and positive mood and open-monitoring meditation being associated with a bias towards flexibility), suggesting that genetic and cultural factors do not determine metacontrol settings entirely. We suggest a theoretical framework that explains how genetic predisposition and cultural learning can lead to the implementation of metacontrol defaults, which however can be shifted towards persistence or flexibility by situational factors.
Collapse
|
43
|
Lindholm P, Lamusuo S, Taiminen T, Virtanen A, Pertovaara A, Forssell H, Hagelberg N, Jääskeläinen S. The analgesic effect of therapeutic rTMS is not mediated or predicted by comorbid psychiatric or sleep disorders. Medicine (Baltimore) 2016; 95:e5231. [PMID: 27858874 PMCID: PMC5591122 DOI: 10.1097/md.0000000000005231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mechanisms underlying alleviation of neuropathic pain by repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex (M1) and right secondary somatosensory cortex (S2) are only partly known. Patients with chronic neuropathic pain often have comorbidities like depression and sleep problems. Through functional connectivity, rTMS of M1 and S2 may activate dorsolateral prefrontal cortex, the target for treating depression with rTMS. Thus, the analgesic effect of rTMS could be mediated indirectly via improvement of psychiatric comorbidities or sleep. We examined whether rTMS has an independent analgesic effect or whether its clinical benefits depend on effects on mood or sleep. We also evaluated if comorbid psychiatric or sleep disorders predict the treatment outcome. METHODS Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized controlled crossover rTMS study. Patients' psychiatric history was evaluated by a specialist in psychiatry. Intensity and interference of pain, mood, and the quality of sleep and life were evaluated at baseline and after 2 active (primary somatosensory cortex [S1]/M1 and S2) and placebo rTMS treatments. A logistic regression analysis was done to investigate predictors of treatment outcome. RESULTS The analgesic effect of the right S2 stimulation was not associated with improvement of psychiatric conditions or sleep, whereas S1/M1 stimulation improved sleep without significant analgesic effect (P = 0.013-0.046 in sleep scores). Psychiatric and sleep disorders were more common in patients than in the general population (P = 0.000-0.001 in sleep scores), but these comorbidities did not predict the rTMS treatment outcome. CONCLUSION We conclude that rTMS to the right S2 does not exert its beneficial analgesic effects in chronic neuropathic orofacial pain via indirect improvement of comorbid psychiatric or sleep disorders.
Collapse
Affiliation(s)
- Pauliina Lindholm
- Division of Clinical Neuroscience Department of Clinical Neurophysiology Department of Psychiatry, Turku University Hospital, University of Turku, Turku Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki Institute of Dentistry Pain Clinic, Turku University Hospital, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Beuk J, Beninger RJ, Paré M. Lifespan Changes in the Countermanding Performance of Young and Middle Aged Adult Rats. Front Aging Neurosci 2016; 8:190. [PMID: 27555818 PMCID: PMC4977309 DOI: 10.3389/fnagi.2016.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time (RT), stop signal response time (SSRT) and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16) were trained to respond to a visual stimulus (go signal) by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal) that was presented occasionally (25% of trials) at a variable delay. Subjects were tested in 1 h sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial RT, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent SSRT and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations.
Collapse
Affiliation(s)
- Jonathan Beuk
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | - Richard J Beninger
- Centre for Neuroscience Studies, Queen's UniversityKingston, ON, Canada; Department of Psychology, Queen's UniversityKingston, ON, Canada
| | - Martin Paré
- Centre for Neuroscience Studies, Queen's UniversityKingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's UniversityKingston, ON, Canada
| |
Collapse
|
45
|
Borg J, Cervenka S, Kuja-Halkola R, Matheson GJ, Jönsson EG, Lichtenstein P, Henningsson S, Ichimiya T, Larsson H, Stenkrona P, Halldin C, Farde L. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain. Mol Psychiatry 2016; 21:1077-84. [PMID: 26821979 DOI: 10.1038/mp.2015.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/10/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about the regulation of receptor and transporter density levels. This lack of knowledge obscures interpretation of differences in protein availability reported in psychiatric patients. In this study, we used positron emission tomography (PET) in a twin design to estimate the relative contribution of genetic and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding and a major contribution of environmental factors (pairwise shared and unique individual; 0.70-0.75) on neocortical 5-HT1A receptor binding. Our findings indicate that individual variation in neuroreceptor availability in the adult brain is the end point of a nature-nurture interplay, and call for increased efforts to identify not only the genetic but also the environmental factors that influence neurotransmission in health and disease.
Collapse
Affiliation(s)
- J Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - R Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - G J Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - E G Jönsson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, Psychiatry Section, University of Oslo, Oslo, Norway
| | - P Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - S Henningsson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
| | - T Ichimiya
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - H Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - C Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,AstraZeneca Translational Science Center at Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Goto A, Kotani H, Miyazaki M, Yamada K, Ishikawa K, Shimoyama Y, Niwa T, Hasegawa Y, Noda Y. Genotype frequencies for polymorphisms related to chemotherapy-induced nausea and vomiting in a Japanese population. J Pharm Health Care Sci 2016; 2:16. [PMID: 27446594 PMCID: PMC4955237 DOI: 10.1186/s40780-016-0049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background Genotype frequencies for chemotherapy-induced nausea and vomiting (CINV)-related polymorphisms have not yet been reported for Japanese subjects. Methods We analyzed 10 genotype frequencies for following polymorphisms associated with the development of CINV: serotonin 5-HT3 receptors (HTR3); neurokinin-1 receptors (Tachykinin-1 receptors, TACR1); dopamine D2 receptors (DRD2); and catechol-O-methyltransferase (COMT). Results All polymorphisms were successfully genotyped in 200 Japanese subjects and were in Hardy-Weinberg equilibrium. Almost all genotype frequencies were similar to those in the HapMap database or in the previous reports, while frequencies for the Y192H polymorphism in TACR1 were different in Japanese subjects from those in a previous report. Conclusions The present study revealed genotype frequencies for polymorphisms, which were related to the appearance of CINV in Japanese subjects. Individual therapy based on genotype variations for each race is needed to allow cancer patients to undergo chemotherapy more safely and to understand etiology of CINV.
Collapse
Affiliation(s)
- Aya Goto
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku Nagoya, 468-8503 Japan
| | - Haruka Kotani
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku Nagoya, 468-8503 Japan
| | - Masayuki Miyazaki
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku Nagoya, 468-8503 Japan ; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku Nagoya, 466-8550 Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku Nagoya, 466-8550 Japan
| | - Kazuhiro Ishikawa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku Nagoya, 466-8550 Japan
| | - Yasuhiko Shimoyama
- Aichi Health Promotion Foundation, 1-18-4, Shimizu, Kita-ku, Nagoya, 462-0844 Japan
| | - Toshimitsu Niwa
- Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938 Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku Nagoya, 466-8550 Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku Nagoya, 468-8503 Japan ; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
47
|
Colzato LS, Steenbergen L, Sellaro R, Stock AK, Arning L, Beste C. Effects of l-Tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex 2016; 82:217-224. [PMID: 27403851 DOI: 10.1016/j.cortex.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 11/19/2022]
Abstract
l-Tyrosine (TYR), the precursor of dopamine (DA), has been shown to enhance facets of cognitive control in situations with high cognitive demands. However some previous outcomes were mixed: some studies reported significant improvements, while other did not. Given that TYR increases DA level in the brain, we investigated, in a double-blind, randomized, placebo-controlled design, whether the C957T genotypes of a functional synonymous polymorphism in the human dopamine D2 receptor (DRD2) gene (rs6277) contribute to individual differences in the reactivity to TYR administration and whether this factor predicts the magnitude of TYR-induced performance differences on inhibiting behavioral responses in a stop-signal task and working memory (WM) updating in a N-back task. Our findings show that T/T homozygotes (i.e., individuals potentially associated with lower striatal DA level) showed larger beneficial effects of TYR supplementation than C/C homozygotes (i.e., individuals potentially associated with higher striatal DA level), suggesting that genetically determined differences in DA function may explain inter-individual differences in response to TYR supplementation. These findings reinforce the idea that genetic predisposition modulates the effect of TYR in its role as cognitive enhancer.
Collapse
Affiliation(s)
- Lorenza S Colzato
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Laura Steenbergen
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Roberta Sellaro
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany; Experimental Neurobiology, National Institute of Mental Healthy, Klecany, Czech Republic
| |
Collapse
|
48
|
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frías NS, Koller JM, Black KJ, Moerlein SM, Perlmutter JS, Barch DM, Hershey T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016; 70:418-31. [PMID: 27241797 DOI: 10.1002/syn.21916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N-[(11) C]methyl)benperidol ([(11) C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1-), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1- was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [(11) C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Latisha Love-Gregory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110
| | - Nadia S Corral-Frías
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110
| | - Stephen M Moerlein
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Biochemistry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Joel S Perlmutter
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
49
|
Gluskin BS, Mickey BJ. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 2016; 6:e747. [PMID: 26926883 PMCID: PMC4872447 DOI: 10.1038/tp.2016.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.
Collapse
Affiliation(s)
- B S Gluskin
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - B J Mickey
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
50
|
Duan Z, He M, Zhang J, Chen K, Li B, Wang J. Assessment of functional tag single nucleotide polymorphisms within the DRD2 gene as risk factors for post-traumatic stress disorder in the Han Chinese population. J Affect Disord 2015; 188:210-7. [PMID: 26363619 DOI: 10.1016/j.jad.2015.08.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Gene variations related to the dopaminergic pathway have been implicated in a number of neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). Dopamine D2 receptor (DRD2) has been shown to significantly contribute to neuropsychiatric disorders and may specifically contribute to predisposition to PTSD. This study aimed to evaluate the association of polymorphisms within the entire DRD2 gene with PTSD in a case-control study. MATERIALS AND METHODS A total of 834 unrelated Han Chinese adults, including 497 healthy volunteers and 337 patients with PTSD, were used in this study. Fifteen tag single-nucleotide polymorphisms (tSNPs) were selected spanning the entire DRD2 gene through the construction of haplotype bins. Genotypes were gathered using an improved multiplex ligation detection reaction (iMLDR) technique. Allelic frequencies and clinical characteristics were compared in two independent Han Chinese populations. Moreover, the functionality of the rs2075652 and rs7131056 polymorphisms were assessed by measuring transcriptional enhancer activities. RESULTS Fifteen tag SNPs were identified in the Han Chinese population and all were common SNPs. Among 15 tSNPs, two of them (rs2075652 and rs7131056) significantly associated with PTSD. PTSD individuals were more likely to carry the rs2075652A and rs7131056A allele compared to the controls (P<0.05). The haplotype GTGATCGCGCAGGCG, had a risk effect on PTSD occurrence (OR=1.75, 95% CI: 1.24-2.48, P=0.002). Additionally, the rs2075652 polymorphism contained intronic enhancer activities. CONCLUSIONS The rs2075652 and rs7131056 polymorphisms, and the haplotype GTGATCGCGCAGGCG within the DRD2 gene, may be potential markers to predict susceptibility to PTSD.
Collapse
Affiliation(s)
- Zhaoxia Duan
- Department 6 of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Daping, Chongqing 400042, China.
| | - Mei He
- Department of Clinical Psychology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jieyuan Zhang
- Department 6 of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Daping, Chongqing 400042, China
| | - Kuijun Chen
- Department 6 of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Daping, Chongqing 400042, China
| | - Bingcang Li
- Department 6 of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Daping, Chongqing 400042, China
| | - Jianmin Wang
- Department 6 of Research Institute of Surgery, Daping Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Daping, Chongqing 400042, China
| |
Collapse
|