1
|
Su Y, Gao L, Xu EG, Peng L, Diao X, Zhang Y, Bao R. When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health. WATER RESEARCH 2025; 273:123008. [PMID: 39733528 DOI: 10.1016/j.watres.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm). Furthermore, we investigated the environmental impacts of the microplastics-microalgae aggregates (MPs-microalgae aggregates) by comparing their adsorption of Cu(II) with that of pristine MPs and evaluating the effects of hetero-aggregation on MPs aging and their toxicity to microalgae. Our results indicated that microalgal colonization occurred on the surface of MPs, possibly through electrostatic interactions, hole-filling, hydrophilic interactions, and algae-bacteria symbiosis. The hetero-aggregation led to a stronger Cu(II) adsorption by MPs-microalgae aggregates than pristine MPs due to electrostatic interactions, coordination, complexation, and ion exchange. Exposure to either MPs (pristine or aged) or Cu(II) inhibited the cell growth of C. vulgaris, while the integrated biomarker response (IBR) showed more pronounced inhibitory effects resulting from aged MPs compared to pristine MPs and an antagonistic effect on microalgae was caused by the co-exposure to MPs and Cu(II). These findings suggest that the hetero-aggregation of MPs and microalgae may alter their environmental fates and co-pollutant toxicity.
Collapse
Affiliation(s)
- Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yumeng Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Ovide BG, Barbaccia E, Lorenz C, Basran CJ, Cirino E, Syberg K, Rasmussen MH. Validating citizen science for community-driven microplastic monitoring and marine protection in Northeast Iceland's Hope Spot. MARINE POLLUTION BULLETIN 2025; 213:117638. [PMID: 39938198 DOI: 10.1016/j.marpolbul.2025.117638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Governments are increasingly monitoring meso- and microplastic (M/MP) pollution in surface waters to develop cost-effective solutions. While citizen science is widely used in programs like the EU's Marine Litter Watch and NOAA's sampling in the U.S., these efforts primarily focus on macro litter, leaving gaps in M/MP data, especially in under-sampled regions like Icelandic waters. This study addresses this gap through a citizen science initiative (2019-2023) that monitored M/MP pollution in the "Northeast Iceland Hope Spot." Fifty-eight trawl samples were collected from whale-watching and expedition vessels using a low-tech aquatic debris instrument (LADI) or a high-speed AVANI trawl. M/MP were present in 86 % of samples, with an average density of 0.02 ± 0.03 particles/m3. Concentrations varied significantly between sites (p = 0.005), peaking in Grímsey (0.070 ± 0.03 particles/m3), followed by Eyjafjörður (0.006 ± 0.04 particles/m3) and Skjálfandi Bay (0.004 ± 0.03 particles/m3). Mesoplastics comprised 44 % and microplastics 56 %, primarily polyethylene (47 %) and polypropylene (39 %)-common materials in fishing gear and household plastics. These findings suggest that local currents and fishing activities influence M/MP distribution. Comparison with previous studies validates the use of the presented citizen science methods for tracking floating M/MP in coastal waters and highlights their value in shaping marine conservation policies, particularly in vulnerable subarctic ecosystems.
Collapse
Affiliation(s)
- Belén G Ovide
- University of Iceland's Húsavík Research Center, Hafnarstétt 3, 640 Húsavík, Iceland.
| | - Eleonora Barbaccia
- Politecnico di Milano DICA Civil and Environmental Engineering Department, Piazza Leonardo da Vinci, 32, 20133 Milano, MI, Italy.
| | - Claudia Lorenz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Charla J Basran
- University of Iceland's Húsavík Research Center, Hafnarstétt 3, 640 Húsavík, Iceland.
| | - Erica Cirino
- Plastic Pollution Coalition, 4401A Connecticut Avenue NW #143, Washington, DC 20008, USA.
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Marianne H Rasmussen
- University of Iceland's Húsavík Research Center, Hafnarstétt 3, 640 Húsavík, Iceland.
| |
Collapse
|
3
|
Tatlı HH, Parmaksız A, Uztemur A, Altunışık A. Microplastic accumulation in various bird species in Turkey. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:386-396. [PMID: 39847390 DOI: 10.1093/etojnl/vgae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
Plastic pollution constitutes one of the major environmental problems of our time, and in recent years, it has emerged as a significant threat to the environment and to various organisms, including bird species. In this context, this study, which provides the first data in Türkiye, aimed to determine the level of microplastic (MP) pollution in 12 bird species (Eurasian buzzard; short-toed snake-eagle; white stork; northern long-eared owl; common barn-owl; ruddy shelduck; Eurasian eagle-owl; scarlet macaw; common pheasant; Indian peafowl; common kestrel; and gray parrot). The results indicate that MPs were detected in 50% of the specimens (n = 20), with an average of one MP/item per individual. With an average of three MPs per individual, the short-toed snake-eagle was found to be the species with the highest MP accumulation. Fibers (range: 51-534 µm) were the most common type of plastic found in the gastrointestinal tract of birds, with ethylene vinyl acetate and navy blue being the most common polymer type and color, respectively. It was also found that the abundance of MPs increased with the weight of specimens, contributing to the hypothesis that there is a correlation between the size/weight of animals and increased levels of MP accumulation. These findings highlight the impact of plastic pollution on birdlife and the need for further monitoring to assess the ecological impact of pollution.
Collapse
Affiliation(s)
- Hatice Hale Tatlı
- Biology Department, Faculty of Arts and Sciences, University of Recep Tayyip Erdogan, Merkez, Rize, Türkiye
| | - Arif Parmaksız
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Türkiye
| | - Adil Uztemur
- Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Nature Conservation and National Parks, Şanlıurfa, Türkiye
| | - Abdullah Altunışık
- Biology Department, Faculty of Arts and Sciences, University of Recep Tayyip Erdogan, Merkez, Rize, Türkiye
| |
Collapse
|
4
|
Riaz K, Yasmeen T, Attia KA, Kimiko I, Arif MS. Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. TOXICS 2025; 13:57. [PMID: 39853055 PMCID: PMC11768867 DOI: 10.3390/toxics13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025]
Abstract
Microplastics pose a serious ecological threat to agricultural soils, as they are very persistent in nature. Microplastics can enter the soil system in different ways and present different shapes and concentrations. However, little is known about how plants react to microplastics with different concentrations and shapes. To this end, we conducted a factorial pot experiment with wheat (Triticum aestivum L.) in which we mixed polystyrene (PS) in different shapes (bead, fiber and powder) with soil at concentrations of 0, 1, 3 and 5%. Although all shapes of PS significantly reduced morphological growth traits, PS in powder shape was the microplastic that reduced plant height (by 58-60%), fresh biomass (by 54-55%) and dry biomass (by 61-62%) the most, especially at the 3% and 5% concentrations compared with 0% PS. Similar negative effects were also observed for root length and fresh root weight at the 3% and 5% concentrations, regardless of shape. A concentration-dependent reduction in the leaf area index (LAI) was also observed. Interestingly, increasing the PS concentration tended to up-regulate the activity of antioxidant enzymes for all shapes, indicating potential complexity and a highly time-dependent response related to various reactive oxygen species (ROS). Importantly, PS at the 5% concentration caused a significant reduction in chlorophyll pigmentation and photosynthetic rate. For the transpiration rate, stomatal conductance and intercellular CO2 concentration, the negative effects of PS on wheat plants increased with the increase in microplastic concentration for all shapes of PS. Overall, we concluded that PS microplastics at higher concentrations are potentially more devastating to the physiological growth and biochemical attributes of wheat, as evidenced by the negative effects on photosynthetic pigments and gas exchange parameters for all shapes. We recommend further research experiments not only on translocation but also on tissue-specific retention of different sizes in crops to fully understand their impact on food safety.
Collapse
Affiliation(s)
- Komal Riaz
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishiku, Niigata 950-2181, Japan;
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| |
Collapse
|
5
|
Yang R, Wang J, Fang H, Xia J, Huang G, Huang R, Zhang H, Zhu L, Zhang L, Yuan J. High concentrations of polyethylene microplastics restrain the growth of Cinnamomum camphora seedling by reducing soil water holding capacity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117583. [PMID: 39709707 DOI: 10.1016/j.ecoenv.2024.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The accumulation of microplastics (MPs) in soils due to anthropogenic activities affects the growth and development of plants and thereby endangering the diversity and function of ecosystems. Although there is an increasing number of studies exploring the effects of MPs on plants in recent days, most of them focus on crops only. However, few studies have been conducted on woody plants that play a prominent role in ecosystems, while crucial edaphic factors which potentially restrain plant growth in MP-contaminated soils are yet to be revealed. In the current study, a 6-month pot experiment was conducted to investigate the inhibitory effect of soil polyethylene microplastics (PE-MPs) (average size of 6.5 µm) with increasing concentrations (0, 0.1 %, 0.5 %, 1 %, and 2 % w/w) on the growth of Cinnamomum camphora seedlings. The relationships between seedling growth and soil properties were also explored. The results showed that low concentrations of PE-MPs (not larger than 0.5 % in soils) did not restrain seedling growth, while the PE-MP concentrations of 1 % and 2 % decreased the net growth of ground diameter by 38.8 % (p < 0.05) and biomass by 29.6 % (p < 0.05), respectively. Similarly, the concentration of PE-MPs in soils not larger than 0.5 % showed little effect on soil physical properties, while the 1 % and 2 % MP accumulations decreased the soil capillary porosity by 8.9 % and 22.2 % (p < 0.05), respectively, thereby reducing the soil water content by 29.8 % (p < 0.05) and 34.1 % (p < 0.05) accordingly. Furthermore, high concentrations of PE-MPs (1 % and 2 %) greatly decreased soil alkali-hydrolysable nitrogen content and decreased bacterial diversity. The structural equation model clearly indicated that the inhibitory effect of soil PE-MPs with high concentrations on seedling growth was mainly derived from the decrement of soil water holding capacity. Our findings help replenish the regulation mechanism of MPs on plant growth and suggest that C. camphora is a potentially good candidate for the phytoremediation of the low-level PE-MP-contaminated soil.
Collapse
Affiliation(s)
- Run Yang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jinping Wang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Huanying Fang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jinwen Xia
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Guomin Huang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Rongzhen Huang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Hong Zhang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Liqin Zhu
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Lichao Zhang
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang 330099, China
| | - Jihong Yuan
- Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China.
| |
Collapse
|
6
|
Mehboob S, Anjum KM, Azmat H, Imran M. The measurement of microplastics in surface water and their impact on histopathological structures in wading birds of district Lahore. FRONTIERS IN TOXICOLOGY 2025; 6:1484724. [PMID: 39882501 PMCID: PMC11775160 DOI: 10.3389/ftox.2024.1484724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan. The highest MPs concentration was recorded in the main stream of the Ravi River, with an average concentration of 5,150 ± 7.5 particles/m3. In addition, considering the different shapes of MPs, fibers were found to be most abundant at Site I (Main Stream of River Ravi), with the highest mean concentration of 92.4 ± 0.3 particles/m3, whereas the lowest mean concentration of 29.9 ± 0.1 particles/m3 was observed. In contrast, fragments were predominant at Site II (Shahdara Drain), with the highest and lowest mean concentrations of 42.6 ± 0.3 and 21.7 ± 0.1particles/m3, respectively. Chemical analysis revealed that most fragments, fibers; and beads belonged to the polyethylene class, while sheets were categorized as polypropylene and foam as polystyrene. The large MPs with particle size ranging from 400 μm to 5 mm were most abundant at both locations. Particles smaller than 0.5 mm were the most prevalent (56%) at Site I, while Site II showed the lowest proportions for size ranges 0.5-1 mm (24%), 1-2 mm (16%), 2-3 mm (8%), 3-4 mm (5%), and 4-5 mm (3%). The frequency of occurrence (%FO; prevalence) of plastics in necropsied birds was 89.7%. A total of 120 items were analyzed: 64 fibers, 23 fragments, 10 pieces of foam, 14 pieces of sheet, and 9 beads. Of the total ingested plastic debris analyzed, the largest proportion was comprised of polyethylene, making up 46% of the samples. Birds from Site I (Main Stream of River Ravi) had 100% of their organs containing plastic items compared to those from Site II (Shahdara Drain). Quantitative and qualitative histopathological analyses were performed to examine variations in prevalence percentage, frequency, and histological alteration indices (HAI) as a consequence of MPs exposure on the health of wild species. Tissue samples from the liver and kidneys of the Red-wattled lapwing were analyzed, and comparisons were made to assess the extent of damage and degree of alteration in bird organs. The study evaluated the impacts of ingested MPs, which induced inflammatory and anatomical responses in V. indicus. Significant tissue damage was observed, including considerable inflammatory responses, evident cellular swelling in many renal tubular epithelial cells, and pyknotic nuclei, which were major causes of necrosis and apoptosis. Prevalence percentage and frequency were significantly higher at Site I compared to Site II. The highest prevalence percentages in the liver and kidneys were 90% and 85%, respectively, manifesting as degeneration of hepatocytes and necrosis in renal tubular epithelial cells in response to 0.5-1 mm sized MPs. The lowest prevalence percentage, 5%, was observed as congestion of sinusoids and hyperemia in response to 4-5 mm sized MPs. The frequency and prevalence percentages followed the order: 0.5 mm > 0.5-1 mm > 1-2 mm > 2-3 mm > 3-4 mm > 4-5 mm > 0 mm (0 mm as control).This investigation contributes to the growing documentation of MPs abundance in freshwater ecosystems and provides a baseline for future studies on MPs pollution in the Ravi River.
Collapse
Affiliation(s)
- Shaza Mehboob
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamda Azmat
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
7
|
Manfra L, Albarano L, Rotini A, Biandolino F, Prato E, Carraturo F, Chiaretti G, Faraponova O, Salamone M, Sebbio C, Siciliano A, Tornambè A, Libralato G. Can biodegradable plastics mitigate plastamination? Feedbacks from marine organisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137179. [PMID: 39827802 DOI: 10.1016/j.jhazmat.2025.137179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods. Results highlighted the toxic effects of both MPs for three consumers, but no toxicity for decomposers and primary producers. Leachates did not induce negative effects for five species tested. A dose-dependent toxic effect of both PP and PLA on different life stages of A. franciscana was observed, with more advanced stages being more sensitive to MPs in terms of mortality. Molecular analysis revealed increased mRNA levels of Heat shock proteins in A. franciscana metanauplii and adults, suggesting their role in oxidative stress response, and decreasing in juveniles, indicating potential irreversible damage. These results indicated that PLA and PP might have comparable ecotoxicological impacts, raising concerns about the effectiveness of biodegradable polymers in mitigation plastic pollution. The study also emphasizes the importance of considering different trophic levels, life stages, and feeding strategies when evaluating the toxic effects of MPs from a One Health perspective.
Collapse
Affiliation(s)
- Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy; Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy
| | - Luisa Albarano
- Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Alice Rotini
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | | | | | - Federica Carraturo
- Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Gianluca Chiaretti
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | - Olga Faraponova
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | - Michela Salamone
- Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Claudia Sebbio
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | - Antonietta Siciliano
- Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy
| | - Andrea Tornambè
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, Rome 00144, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy; Institute of Water Research (IRSA) CNR Taranto, Italy.
| |
Collapse
|
8
|
Naidu BC, Xavier KAM, Sahana MD, Landge AT, Jaiswar AK, Shukla SP, Ranjeet K, Nayak BB. Temporal variability of microplastics in shrimp (Litopenaeus vannamei), feed, water and sediments of coastal and inland culture ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178173. [PMID: 39709842 DOI: 10.1016/j.scitotenv.2024.178173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India. MPs were detected in 93.7 % of shrimp samples and all environmental matrices, with the highest abundance recorded in coastal culture ponds. The overall average MPs abundance in shrimp was 4.07 items/individual (1.24 MPs items/g). MP sizes ranged from 8 μm to 4.22 mm, with MPs smaller than 100 μm being predominant in shrimp samples, though their prevalence decreased over the culture period. Fragments and fibers were the dominant morphotypes across all matrices, with a shift towards larger MPs and an increased proportion of fibers and films over time. Micro FTIR analyses revealed polyethylene (PE) and polypropylene (PP) were the most common polymers detected, indicating their widespread environmental distribution. Feed was identified as the primary source of MPs contamination in shrimp. The presence of MPs in shrimp raises significant concerns for consumer health, food safety, and trade, as shrimp are among the most widely consumed aquatic food products. This study underscores the dynamics of MP contamination in shrimp aquaculture and highlights the urgent need for targeted strategies to mitigate contamination, ensuring consumer safety and industry sustainability.
Collapse
Affiliation(s)
- Bejawada Chanikya Naidu
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India
| | - K A Martin Xavier
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India.
| | - M D Sahana
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Asha T Landge
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Ashok Kumar Jaiswar
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Satya Prakash Shukla
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K Ranjeet
- Kerala University of Fisheries and Ocean Studies, Kochi 682506, Kerala, India
| | - Binaya Bhusan Nayak
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
9
|
Yashwanth A, Huang R, Iepure M, Mu M, Zhou W, Kunadu A, Carignan C, Yegin Y, Cho D, Oh JK, Taylor MT, Akbulut MES, Min Y. Food packaging solutions in the post-per- and polyfluoroalkyl substances (PFAS) and microplastics era: A review of functions, materials, and bio-based alternatives. Compr Rev Food Sci Food Saf 2025; 24:e70079. [PMID: 39680570 DOI: 10.1111/1541-4337.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency. However, PFAS bioaccumulate in the human body and have been linked to multiple health effects, including immune system dysfunction, cancer, and developmental problems. The detection of microplastics in various FPMs has raised significant concerns regarding their potential migration into food and subsequent ingestion. This comprehensive review examines the current landscape of FPMs, their functions, and physicochemical properties to put into perspective why there is widespread use of PFAS and microplastics in FPMs. The review then addresses the challenges posed by PFAS and microplastics, emphasizing the urgent need for sustainable and bio-based alternatives. We highlight promising advancements in sustainable and renewable materials, including plant-derived polysaccharides, proteins, and waxes, as well as recycled and upcycled materials. The integration of these sustainable materials into active packaging systems is also examined, indicating innovations in oxygen scavengers, moisture absorbers, and antimicrobial packaging. The review concludes by identifying key research gaps and future directions, including the need for comprehensive life cycle assessments and strategies to improve scalability and cost-effectiveness. As the FP industry evolves, a holistic approach considering environmental impact, functionality, and consumer acceptance will be crucial in developing truly sustainable packaging solutions.
Collapse
Affiliation(s)
- Arcot Yashwanth
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Rundong Huang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Monica Iepure
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Minchen Mu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Wentao Zhou
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Angela Kunadu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Courtney Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Yagmur Yegin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dongik Cho
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Matthew T Taylor
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Material Science and Engineering Program, University of California, Riverside, California, USA
| |
Collapse
|
10
|
Zhang Q, Zheng S, Pei X, Zhang Y, Wang G, Zhao H. The effects of microplastics exposure on quail's hypothalamus: Neurotransmission disturbance, cytokine imbalance and ROS/TGF-β/Akt/FoxO3a signaling disruption. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110054. [PMID: 39442781 DOI: 10.1016/j.cbpc.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) have become a major focus of environmental toxicology, raising concerns about their potential adverse effects on animal organs and body systems. As these tiny particles infiltrate ecosystems, they may pose risks to the health of organisms across diverse species. In this study, we attempted to examine the neurotoxic effects of MPs exposure on avian hypothalamus by using an animal model-Japanese quail (Coturnix japonica). The quails of 7-day-old were exposed to 0.02 mg/kg, 0.4 mg/kg and 8 mg/kg polystyrene microplastic (PS-MPs) of environmental relevance for 35 days. The results showed PS-MPs exposure did damages to hypothalamic structure characterized by neuron malformation, irregular arrangement and cellular vacuolation after 5-week exposure. PS-MPs exposure also induced Nissl body reduction and dissolution in the hypothalamus. Moreover, the decrease of acetylcholinesterase (AchE) activity and increasing acetylcholine (Ach) indicated that PS-MPs exposure caused hypothalamic neurotransmission disturbance. PS-MPs exposure also led to neuroinflammation by disrupting the balance between proinflammatory and anti-inflammatory cytokines. Moreover, increasing reactive oxygen species (ROS) and malondialdehyde (MDA) generation with reducing antioxidants indicated PS-MPs led to hypothalamic oxidative stress. Additionally, RNA-Seq analysis found that both transforming growth factor-β (TGF-β) signaling and forkhead box O (FoxO) signaling were disturbed in the hypothalamus by PS-MPs exposure. Especially, the increasing ROS led to TGF-β activation and then induced hypothalamic inflammation by nuclear factor κB (NF-κB) activation. The present study concluded that oxidative stress might be an important mechanistic signaling involved in MPs neurotoxicology.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Siyuan Zheng
- Changwai Bilingual School, Changzhou, 213002, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Wang
- AP Center, Changzhou Senior High School of Jiangsu Province, Changzhou 213000, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Wang F, Sun J, Han L, Liu W, Ding Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. ENVIRONMENTAL RESEARCH 2024; 263:120064. [PMID: 39332793 DOI: 10.1016/j.envres.2024.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Soil microbiomes drive many soil processes and maintain the ecological functions of terrestrial ecosystems. Microplastics (MPs, size <5 mm) are pervasive emerging contaminants worldwide. However, how MPs affect soil microbial activity has not been well elucidated. This review article first highlights the effects of MPs on overall soil microbial activities represented by three soil enzymes, i.e., catalase, dehydrogenase, and fluorescein diacetate hydrolase (FDAse), and explores the underlying mechanisms and influencing factors. Abundant evidence confirms that MPs can change soil microbial activities. However, existing results vary greatly from inhibition to promotion and non-significance, depending on polymer type, degradability, dose, size, shape, additive, and aging degree of the target MPs, soil physicochemical and biological properties, and exposure conditions, such as exposure time, temperature, and agricultural practices (e.g., planting, fertilization, soil amendment, and pesticide application). MPs can directly affect microbial activities by acting as carbon sources, releasing additives and pollutants, and shaping microbial communities via plastisphere effects. Smaller MPs (e.g., nanoplastics, 1 to <1000 nm) can also damage microbial cells through penetration. Indirectly, MPs can change soil attributes, fertility, the toxicity of co-existing pollutants, and the performance of soil fauna and plants, thus regulating soil microbiomes and their activities. In conclusion, MPs can regulate soil microbial activities and consequently pose cascading consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yuanhong Ding
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, PR China.
| |
Collapse
|
12
|
Stefanova NA, Sotnikova YS, Osechkova AE, Karpova EV, Polovyanenko DN, Fursova AZ, Kiseleva DA, Tolstikova TG, Kolosova NG, Bagryanskaya EG. Invisible but Insidious Effects of Microplastics. Molecules 2024; 29:5776. [PMID: 39683933 DOI: 10.3390/molecules29235776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidence on the adverse health impacts of microplastics (MPs) is available, but their associated risks to the well-being of humans and long-term impacts are poorly understood. An indicator of the remote effects of MPs may be their influence on the rate of aging. To assess the effects of MPs on the aging process, we used accelerated senescence OXYS rats that develop a complex of geriatric diseases. We prepared the polyethylene terephthalate MPs (2-6 microns in size) and in OXYS and Wistar (maternal strain) rats assessed the influence of chronic administration of MPs (10 or 100 mg/kg per day from age 1.5 to 3.5 months,) on the hematological and biochemical blood parameters, spatial learning, and memory. In addition, the effects of MPs on the development of cataracts and retinopathy, similar to age-related macular degeneration (AMD), in OXYS rats were assessed. We found that in the absence of significant changes in standard clinical blood parameters, chronic MP administration negatively affected the cognitive functions of both Wistar rats and OXYS rats. Additionally, a dose of 100 mg/kg MPs contributed to cataract and AMD progression in OXYS rats. Our results suggest that MPs may increase the rate of aging and, in the long term, lifespan.
Collapse
Affiliation(s)
- Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova str., 630090 Novosibirsk, Russia
| | - Yulia S Sotnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Aleksandra E Osechkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Elena V Karpova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Dmitriy N Polovyanenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Anzhella Zh Fursova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Avenue 10, 630090 Novosibirsk, Russia
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko 130, 630087 Novosibirsk, Russia
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny 52, 630091 Novosibirsk, Russia
| | - Daria A Kiseleva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentjev Avenue 10, 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Schmidt C, Kühnel D, Materić D, Stubenrauch J, Schubert K, Luo A, Wendt-Potthoff K, Jahnke A. A multidisciplinary perspective on the role of plastic pollution in the triple planetary crisis. ENVIRONMENT INTERNATIONAL 2024; 193:109059. [PMID: 39418784 DOI: 10.1016/j.envint.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
In this perspective paper, we discuss the negative impacts of plastics and associated chemicals on the triple planetary crisis of environmental pollution, climate change and biodiversity loss from a multidisciplinary perspective. Plastics are part of the pollution crisis, threatening ecosystems and human health. They also impact climate change and accelerate biodiversity loss; in this, they aggravate the triple planetary crisis. We analyze the scientific state-of-the-art to identify critical knowledge gaps regarding the life cycle, release, fate, exposure, hazard and governance of plastics and associated chemicals, as well as links to climate change and biodiversity loss. Based on the outcome, we derive key research needs for a comprehensive hazard assessment of plastics and associated chemicals, amongst others, to address the largely missing regulation of plastic additives and in-use plastics. We offer a holistic perspective bridging disciplinary expertise from natural and social sciences to achieve effective plastic governance and risk management of plastics and associated chemicals that protect the Earth, its ecosystems and human health from the plastics crisis.
Collapse
Affiliation(s)
- Christian Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Dušan Materić
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Jessica Stubenrauch
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Anran Luo
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Katrin Wendt-Potthoff
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.
| |
Collapse
|
14
|
Huang H, Hou J, Yu C, Wei F, Xi B. Microplastics exacerbate tissue damage and promote carcinogenesis following liver infection in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117217. [PMID: 39442253 DOI: 10.1016/j.ecoenv.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Cancer is a leading cause of death worldwide, posing a substantial threat to human well-being. Microplastics (MPs) exposure can harm human health and the carcinogenicity of MP remains uncertain. In this study, we investigated carcinogenesis by MPs exposure. We observed MP significantly exacerbated hepatic injury in infectious conditions. In addition, cancer-related p53 and p21 signals are activated by MPs. Analysis of the liver transcriptomic landscape uncovered a noteworthy intensification of the carcinogenesis pathway by MPs compared with pre-infection. The transcription factor SALL2 could act as an oncogenic promoter in the promotion of cancer regulated by MPs. Further, big data analysis presents the correlation between MPs pollution and human hepatocellular carcinoma. This work revealed a toxic amplification effect of the non-bioactive MPs on the bioactive pathogens. This finding provides new insight into understanding the potential toxicity of the MPs.
Collapse
Affiliation(s)
- Haipeng Huang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengze Yu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Rosso B, Vezzaro L, Bravo B, Sambo F, Biondi S, Barbante C, Gambaro A, Corami F. From the highway to receiving water bodies: identification and simultaneous quantification of small microplastics (< 100 µm) in highway stormwater runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61845-61859. [PMID: 39441510 DOI: 10.1007/s11356-024-35302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Highway stormwater (HSW) runoff is among the environment's most important sources of microplastics. This study aimed to characterize via vibrational spectroscopy and quantify SMPs (small microplastics < 100 µm) in HSW runoff from a trafficked highway entering a facility equipped with a filtration system and in those flowing out to the receiving water body near agricultural activities. Samples of the inlet runoff (from the highway) and outlet runoff (the discharge into the environment) were collected in different periods to investigate potential seasonal and spatial differences. The sampling, methodology, and analysis were thoroughly carried out to quantify and simultaneously identify SMPs via Micro-FTIR to obtain a specific novel dataset to assess the environmental quality of highway pollution. A significant difference between inlet and outlet samples was reported; the highest abundance in inlet samples was 39813 ± 277 SMPs L.1 (SW10 IN; average length of 77 µm), while the highest one in outlet samples was 15173 ± 171 SMPs L-1 (SW10 OUT; SMPs' average length of 63 µm). Polyamide 6 (PA 6) and High-Density Polyethylene (HDPE) were predominant. Our results show that these HSW treatment plants, designed for managing regulated pollutants, can intercept SMPs, improving the quality of HSW runoff discharged into the environment.
Collapse
Affiliation(s)
- Beatrice Rosso
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Luca Vezzaro
- Department of Environmental and Resource Engineering - DTU Sustain, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana Km4, 20090, Rodano (MI), Italy
| | | | | | - Carlo Barbante
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Andrea Gambaro
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Fabiana Corami
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy.
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy.
| |
Collapse
|
16
|
Schiano ME, D'Auria LJ, D'Auria R, Seccia S, Rofrano G, Signorelli D, Sansone D, Caprio E, Albrizio S, Cocca M. Microplastic contamination in the agri-food chain: The case of honeybees and beehive products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174698. [PMID: 38997016 DOI: 10.1016/j.scitotenv.2024.174698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Microplastics, MPs, plastic fragments with a dimension lower than 5 mm, and microfibers, MFs, synthetic and natural/artificial fibrous fragments with a diameter lower than 50 μm, are ubiquitous pollutants identified in different environmental compartments. In this work the occurrence of MPs and MFs on honeybees, Apis mellifera, and beehive products was evaluated, using Fourier transform infrared microspectroscopy, confirming that MPs and MFs are widely present as air contaminants in all the apiary's areas (high and low urbanized areas) in Southern Italy. Results indicated that independently from the site, both honeybees and honey samples, are contaminated by MFs with non-natural color. The majority of MFs were of natural origin followed by artificial MFs and synthetic MFs. Moreover, the chemical composition of MFs isolated from honeybees reflect that used in synthetic fabrics, leading to the hypothesis that they are released from textile to air where are captured by bees. Results highlight that MFs represent a class of ubiquitous airborne anthropogenic pollutants. The identification of polytetrafluoroethylene, PTFE, MPs in honeybees confirm the recent findings that PTFE MPs are diffuse soil and air contaminants while the identification of polyethylene, PE, based MPs in honey samples, from low density urban sites, could be correlated to the large use of PE in agriculture. In the honey samples, also polycaprolactone, PCL, MPs were identified, mainly in high density urban sites, confirming that biodegradable materials could be further pollutants in the environments. The results indicate that honeybees are contaminated by MPs and MFs during their flights or picking up from the hive components, flowers, from other nest mates, from the clothes of the beekeeper, among others and some of them could be transferred to honey samples that could be also affected by soil contamination.
Collapse
Affiliation(s)
- Marica Erminia Schiano
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Jacopo D'Auria
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Roberta D'Auria
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Serenella Seccia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Rofrano
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy.
| | - Daniel Signorelli
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Donato Sansone
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università, 100 Portici, 80055 Naples, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Consortium INBB, Viale Medaglie d'Oro 305, 00136 Rome, Italy.
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials National Research Council of Italy, via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
17
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
18
|
Ji L, Wang F, Qi Y, Qiao F, Xiong X, Liu Y. Detection of pathogenic gram-negative bacteria using an antimicrobial peptides-modified bipolar electrode-electrochemiluminescence platform. Mikrochim Acta 2024; 191:648. [PMID: 39367972 DOI: 10.1007/s00604-024-06685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
Real-time, label-free detection of gram-negative bacteria with high selectivity and sensitivity is demonstrated using a bipolar electrode-electrochemiluminescence (BPE-ECL) platform. This platform utilizes anode luminescence and cathode modification of antimicrobial peptides (AMPs) to effectively capture bacteria. Magainin I, basic AMP from Xenopus skin, boasting an α-helix structure, exhibits a preferential affinity for the surface of gram-negative pathogens. The covalent attachment of the peptide's C-terminal carboxylic acid to the free amines of a previously thiolated linker ensures its secure immobilization onto the surface of the interdigitated gold-plated cathode of BPE. The AMP-modified BPE sensor, when exposed to varying concentrations of gram-negative bacteria, produces reproducible ECL intensities, allowing for the detection of peptide-bacteria interactions within the range 1 to 104 CFU mL-1. Furthermore, this AMP-modified BPE sensor demonstrates a selective capacity to detect Escherichia coli O157:H7 amidst other gram-negative strains, even at a concentration of 1-CFU mL-1. This study underscores the high selectivity of Magainin I in bacterial detection, and the AMP-modified BPE-ECL system holds significant promise for rapid detection of gram-negative bacteria in various applications. The AMP-modified BPE sensor generated reproducible ECL intensity that detected peptide-bacteria interactions in the range 1 to 104 CFU mL-1. The AMP-modified BPE sensor also selectively detected E. coli O157:H7 from other gram-negative strains at a concentration of 1-CFU mL-1. In this paper, AMP demonstrated high selectivity in bacterial detection. The AMP-modified BPE-ECL system prepared has a great potential for application in the field of rapid detection of gram-negative bacteria.
Collapse
Affiliation(s)
- Lei Ji
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fengyang Wang
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yan Qi
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Fanglin Qiao
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
19
|
Ncube N, Thatyana M, Tancu Y, Mketo N. Quantitative analysis and health risk assessment of selected heavy metals in pet food samples using ultrasound assisted hydrogen peroxide extraction followed by ICP-OES analysis. Food Chem Toxicol 2024; 192:114915. [PMID: 39127121 DOI: 10.1016/j.fct.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
There is a lack of information regarding the presence of heavy metals in feed ingredients for animals. Therefore, this study examines 10 feed samples collected from commercial pet food in South African market. The optimal working parameters for ultrasound assisted hydrogen peroxide extraction (UA-HPE) confirmed by multivariate optimization were sonication temperature at 80 °C for 60 min, sample mass of 0.1 g, and H2O2 concentration of 5 mol/L. The UA-HPE results demonstrated high accuracy of (>95%), reproducibility (≤1.9%), low method of detection limits (0.3498 and 0.49 μg/g), and strong linearity as confirmed by regression analysis. The environmental friendliness of the UA-HPE method was assessed using AGREEPrep metric tool that resulted with a score of 0.74. The concentration levels of Cd, Pb and As, ranged between 0.86 and 11.34, 4.50-11.45, and 2.61-12.5 μg/g, respectively greater than the standardized limits, whilst Cr, and Sn were below the limits of detection in all pet food. The health index calculations (HI > 1) revealed that the cat, dog, and horse feed pose health risk for animal consumption. Consequently, this study demonstrated a green, efficient, and cost-effective method for the analysis of animal feed with high accuracy.
Collapse
Affiliation(s)
- Nomatter Ncube
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Maxwell Thatyana
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa
| | - Yolanda Tancu
- Water Centre, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa
| | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Roodepoort, 1710, Johannesburg, South Africa.
| |
Collapse
|
20
|
Abraham A, Cheema S, Chaabna K, Lowenfels AB, Mamtani R. Rethinking bottled water in public health discourse. BMJ Glob Health 2024; 9:e015226. [PMID: 39322414 PMCID: PMC11429257 DOI: 10.1136/bmjgh-2024-015226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024] Open
Affiliation(s)
- Amit Abraham
- Institute for Population Health, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Karima Chaabna
- Institute for Population Health, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Albert B Lowenfels
- Department of Surgery and Department of Family Medicine, New York Medical College, Valhalla, New York, USA
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine - Qatar, Doha, Qatar
| |
Collapse
|
21
|
Wang J, Wang Y, Li Z, Wang J, Zhao H, Zhang X. Gut microbiota, a key to understanding the knowledge gaps on micro-nanoplastics-related biological effects and biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173799. [PMID: 38852863 DOI: 10.1016/j.scitotenv.2024.173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Micro-nanoplastics (MNPs) pollution as a global environmental issue has received increasing interest in recent years. MNPs can enter and accumulate in the organisms including human beings mainly via ingestion and inhalation, and large amounts of foodborne MNPs have been frequently detected in human intestinal tracts and fecal samples. MNPs regulate the structure composition and metabolic functions of gut microbiota, which may cause the imbalance of intestinal ecosystems of the hosts and further mediate the occurrence and development of various diseases. In addition, a growing number of MNPs-degrading strains have been isolated from organismal feces. MNPs-degraders colonize the plastic surfaces and form the biofilms, and the long-chain polymers of MNPs can be biologically depolymerized into short chains. In general, MNPs are gradually degraded into small molecule substances (e.g., N2, CH4, H2O, and CO2) via a series of enzymatic catalyses, mainly including biodeterioration, fragmentation, assimilation, and mineralization. In this review, we outline the current progress of MNPs effects on gut microbiota and MNPs degradation by gut microbiota, which provide a certain theoretical basis for fully understanding the knowledge gaps on MNPs-related biological effect and biodegradation.
Collapse
Affiliation(s)
- Jiping Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yutong Wang
- China University of Mining & Technology-Beijing, Beijing, China
| | - Zhenyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wang
- Xiangya Stomatological Hospital, Central South University, Changsha, China.
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
22
|
Wayman C, Fernández-Piñas F, Fernández-Valeriano R, García-Baquero GA, López-Márquez I, González-González F, Rosal R, González-Pleiter M. The potential use of birds as bioindicators of suspended atmospheric microplastics and artificial fibers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116744. [PMID: 39018735 DOI: 10.1016/j.ecoenv.2024.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) and artificial fibers (AFs) have been detected suspended tens of meters above ground level in the atmosphere, yet empirical data on them remain scarce. This study aimed to investigate the presence of MPs and AFs in the digestive and respiratory systems of two abundant bird species, the Common House Martin (Delichon urbicum) and the Common Swift (Apus apus), within the Community of Madrid, Spain. Given that these birds spend the majority of their lives airborne, engaging in activities such as mating and sleeping during flight, the research sought to assess the potential of using these bird species as bioindicators for suspended atmospheric MPs and AFs. Samples were obtained from necropsies of birds (N = 24) collected primarily between spring and summer from 2021 to 2023. Only individuals that died within the initial 24-hour period and had not been fed were selected for examination to avoid contamination. MPs and AFS were identified by micro-FTIR, characterized and quantified. Results revealed that 75 % of the sampled birds exhibited at least one MPs in their respiratory and/or digestive system. All identified MPs were fibers, with polyester (PES) being the most predominant (48 %), followed by acrylic fibers (ACR; 28 %), and polyethylene (PE; 18 %). The average concentrations in the respiratory system were 1.12 ± 0.45 MPs/specimen and 2.78 ± 1.04 AFs/specimen for Common Swift and 0.75 ± 0.30 MPs/specimen and 0.75 ± 0.36 AFs/specimen for House Martin. In the digestive system, these were 1.92 ± 0.72 MPs/specimen and 3.42 ± 0.69 AFs/specimen for Common Swift, and 1.34 ± 0.50 MPs/specimen and 1.39 ± 0.47 AFs/specimen for House Martin. Birds collected areas with high population density located in the direction of the prevailing winds showed a concentration of MPs significantly higher in the digestive system. Taken together, these findings confirmed the potential use of these birds as bioindicators for monitoring of suspended atmospheric MPs and AFs.
Collapse
Affiliation(s)
- Chloe Wayman
- Department of Chemical Engineering, Universidad de Alcalá, Madrid, Alcalá de Henares E-28871, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid E-28049, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, Madrid 28049, Spain
| | - Rocío Fernández-Valeriano
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Gonzalo Anibarro García-Baquero
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Irene López-Márquez
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain
| | - Fernando González-González
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and Their Habitat (GREFA), Monte del Pilar, Majadahonda, Madrid 28220, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, University Complutense of Madrid, Madrid 28020, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, Madrid, Alcalá de Henares E-28871, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid E-28049, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, Madrid 28049, Spain.
| |
Collapse
|
23
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Gałęcka I, Całka J. Oral Exposure to Microplastics Affects the Neurochemical Plasticity of Reactive Neurons in the Porcine Jejunum. Nutrients 2024; 16:2268. [PMID: 39064711 PMCID: PMC11280339 DOI: 10.3390/nu16142268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
25
|
Ali W, Chen Y, Shah MG, Buriro RS, Sun J, Liu Z, Zou H. Ferroptosis: First evidence in premature duck ovary induced by polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173032. [PMID: 38734099 DOI: 10.1016/j.scitotenv.2024.173032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Ferroptosis is frequently observed in fibrosis and diseases related to iron metabolism disorders in various mammalian organs. However, research regarding the damage mechanism of ferroptosis in the female reproductive system of avian species remains unclear. In this study, Muscovy female ducks were divided into three groups which were given purified water, 1 mg/L polyvinyl chloride microplastics (PVC-MPs) and 10 mg/L PVC-MPs for two months respectively, to investigate the ferroptosis induced by PVC-MPs caused ovarian tissue fibrosis that lead to premature ovarian failure. The results showed that the high accumulation of PVC-MPs in ovarian tissue affected the morphology and functional activity of ovarian granulosa cells (GCs) and subsequently caused the follicular development disorders and down-regulated the immunosignaling of ovarian steroidogenesis proteins 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), CYP11A1 cytochrome (P450-11A1) and CYP17A1 cytochrome (P450-17A1) suggested impaired ovarian function. In addition, PVC-MPs significantly up-regulated positive expression of collagen fibers, significantly increased lipid peroxidation and malondialdehyde (MDA) level, along with encouraged overload of iron contents in the ovarian tissue were the characteristics of ferroptosis. Further, immunohistochemistry results confirmed that immunosignaling of ferroptosis related proteins Acyl-CoA synthetase (ACSL4), Cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) were significantly increased, but solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase (GPX4) were decreased by PVC-MPs in the ovarian tissue. In conclusion, our study demonstrates that PVC-MPs induced ferroptosis in the ovarian GCs, leading to follicle development disorders and ovarian tissue fibrosis, and ultimately contributing to various female reproductive disorders through regulating the proteins expression of ferroptosis.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Muhammad Ghiasuddin Shah
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
26
|
Glorio Patrucco S, Rivoira L, Bruzzoniti MC, Barbera S, Tassone S. Development and application of a novel extraction protocol for the monitoring of microplastic contamination in widely consumed ruminant feeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174493. [PMID: 38969126 DOI: 10.1016/j.scitotenv.2024.174493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/21/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Plastics and, in particular, microplastics (MPs) (< 5 mm) are emerging environmental pollutants responsible for interconnected risks to environmental, human, and animal health. The livestock sector is highly affected by these contaminants, with 50-60 % of the foreign bodies found in slaughtered domestic cattle being recognized as plastic-based materials. Additionally, microplastics were recently detected inside ruminant bodies and in their feces. MPs presence in ruminants could be explained by the intensive usage of plastic materials on farms, in particular to store feeds (i.e. to cover horizontal silos and to wrap hay bales). Although feed could be one of the main sources of plastics, especially of microplastics, a specific protocol to detect them in ruminant feeds is not actually present. Hence, the aim of this study was to optimize a specific protocol for the extraction, quantification, and identification of five microplastic polymers (high-density polyethylene, low-density polyethylene, polyamide fibers/particles, polyethylene terephthalate and polystyrene) from feeds typically used in ruminant diets (corn silage, hay, high protein feedstuff and total mixed ration). Several combinations of Fenton reactions and KOH digestion were tested. The final extraction protocol involved a KOH digestion (60 °C for 24 h), followed by two/three cycles of Fenton reactions. The extraction recoveries were of 100 % for high-density, low-density polyethylene, polyamide particles, and polystyrene and higher than 85 % for polyethylene terephthalate and polyamide fibers. Finally, the optimized protocol was successfully applied in the extraction of microplastics from real feed samples. All the feeds contained microplastics, particularly polyethylene, thus confirming the exposure of ruminants to MPs.
Collapse
Affiliation(s)
- Sara Glorio Patrucco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy.
| | | | - Salvatore Barbera
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Sonia Tassone
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
27
|
Krause S, Ouellet V, Allen D, Allen S, Moss K, Nel HA, Manaseki-Holland S, Lynch I. The potential of micro- and nanoplastics to exacerbate the health impacts and global burden of non-communicable diseases. Cell Rep Med 2024; 5:101581. [PMID: 38781963 PMCID: PMC11228470 DOI: 10.1016/j.xcrm.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Non-communicable diseases (NCD) constitute one of the highest burdens of disease globally and are associated with inflammatory responses in target organs. There is increasing evidence of significant human exposure to micro- and nanoplastics (MnPs). This review of environmental MnP exposure and health impacts indicates that MnP particles, directly and indirectly through their leachates, may exacerbate inflammation. Meanwhile, persistent inflammation associated with NCDs in gastrointestinal and respiratory systems potentially increases MnP uptake, thus influencing MnP access to distal organs. Consequently, a future increase in MnP exposure potentially augments the risk and severity of NCDs. There is a critical need for an integrated one-health approach to human health and environmental research for assessing the drivers of human MnP exposure and their bidirectional links with NCDs. Assessing these risks requires interdisciplinary efforts to identify and link drivers of environmental MnP exposure and organismal uptake to studies of impacted disease mechanisms and health outcomes.
Collapse
Affiliation(s)
- Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, 69622 Villeurbanne, France.
| | - Valerie Ouellet
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Deonie Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Steven Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Kerry Moss
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Holly A Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Semira Manaseki-Holland
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Sun T, Teng Y, Ji C, Li F, Shan X, Wu H. Global prevalence of microplastics in tap water systems: Abundance, characteristics, drivers and knowledge gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172662. [PMID: 38649043 DOI: 10.1016/j.scitotenv.2024.172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Tap water is a main route for human direct exposure to microplastics (MPs). This study recompiled baseline data from 34 countries to assess the current status and drivers of MP contamination in global tap water systems (TWS). It was shown that MPs were detected in 87 % of 1148 samples, suggesting the widespread occurrence of MPs in TWS. The detected concentrations of MPs spanned seven orders of magnitude and followed the linearized log-normal distribution (MSE = 0.035, R2 = 0.965), with cumulative concentrations at 5th, 50th and 95th percentiles of 0.028, 4.491 and 728.105 items/L, respectively. The morphological characteristics were further investigated, indicating that particles smaller than 50 μm dominated in global TWS, with fragment, polyester and transparent as the most common shape, composition and color of MPs, respectively. Subsequently, the SHapley Additive exPlanations (SHAP) algorithm was implemented to quantify the importance of variables affecting the MP abundance in global TWS, showing that the lower particle size limit was the most important variables. Subgroup analysis revealed that the concentration of MPs counted at the size limit of 1 μm was >20 times higher than that above 1 μm. Ultimately, current knowledge gaps and future research needs were elucidated.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
29
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
30
|
Guruge KS, Goswami P, Kanda K, Abeynayaka A, Kumagai M, Watanabe M, Tamamura-Andoh Y. Plastiome: Plastisphere-enriched mobile resistome in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134353. [PMID: 38678707 DOI: 10.1016/j.jhazmat.2024.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Aquatic microplastics (MPs) act as reservoirs for microbial communities, fostering the formation of a mobile resistome encompassing diverse antibiotic (ARGs) and biocide/metal resistance genes (BMRGs), and mobile genetic elements (MGEs). This collective genetic repertoire, referred to as the "plastiome," can potentially perpetuate environmental antimicrobial resistance (AMR). Our study examining two Japanese rivers near Tokyo revealed that waterborne MPs are primarily composed of polyethylene and polypropylene fibers and sheets of diverse origin. Clinically important genera like Exiguobacterium and Eubacterium were notably enriched on MPs. Metagenomic analysis uncovered a 3.46-fold higher enrichment of ARGs on MPs than those in water, with multidrug resistance genes (MDRGs) and BMRGs prevailing, particularly within MPs. Specific ARG and BMRG subtypes linked to resistance to vancomycin, beta-lactams, biocides, arsenic, and mercury showed selective enrichment on MPs. Network analysis revealed intense associations between host genera with ARGs, BMRGs, and MGEs on MPs, emphasizing their role in coselection. In contrast, river water exhibited weaker associations. This study underscores the complex interactions shaping the mobile plastiome in aquatic environments and emphasizes the global imperative for research to comprehend and effectively control AMR within the One Health framework.
Collapse
Affiliation(s)
- Keerthi S Guruge
- Hygiene Management Group, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Prasun Goswami
- Hygiene Management Group, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Kazuki Kanda
- Hygiene Management Group, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Amila Abeynayaka
- Pirika Inc., 1 Chome-7-2, Ebisu, Shibuya City, Tokyo 150-6018, Japan; Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Masahiko Kumagai
- Bioinformatics Team, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Mafumi Watanabe
- Hygiene Management Group, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yukino Tamamura-Andoh
- Enteric Pathogen Group, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
31
|
Xu S, Zhao R, Sun J, Sun Y, Xu G, Wang F. Microplastics change soil properties, plant performance, and bacterial communities in salt-affected soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134333. [PMID: 38643581 DOI: 10.1016/j.jhazmat.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.
Collapse
Affiliation(s)
- Shuang Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Rong Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| |
Collapse
|
32
|
Sharma S, Bhardwaj A, Thakur M, Saini A. Understanding microplastic pollution of marine ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41402-41445. [PMID: 37442935 DOI: 10.1007/s11356-023-28314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Microplastics are emerging as prominent pollutants across the globe. Oceans are becoming major sinks for these pollutants, and their presence is widespread in coastal regions, oceanic surface waters, water column, and sediments. Studies have revealed that microplastics cause serious threats to the marine ecosystem as well as human beings. In the past few years, many research efforts have focused on studying different aspects relating to microplastic pollution of the oceans. This review summarizes sources, migration routes, and ill effects of marine microplastic pollution along with various conventional as well as advanced methods for microplastics analysis and control. However, various knowledge gaps in detection and analysis require attention in order to understand the sources and transport of microplastics, which is critical to deploying mitigation strategies at appropriate locations. Advanced removal methods and an integrated approach are necessary, including government policies and stringent regulations to control the release of plastics.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Aprajita Bhardwaj
- Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Monika Thakur
- Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh, India
| | - Anita Saini
- Department of Microbiology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, Himachal Pradesh, India.
| |
Collapse
|
33
|
Zhang X, Zheng W, Shao W, Yu W, Yang Y, Qin F, Zhou W, Gong C, Hu X. Environmental concentrations of microplastic-induced gut microbiota and metabolite disruption in silkworm, Bombyx mori. CHEMOSPHERE 2024; 358:142126. [PMID: 38677612 DOI: 10.1016/j.chemosphere.2024.142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) existing extensively in various ecosystems can be ingested by marine organisms and enter the food chain, resulting the health risks from the presence of MPs in aquatic and terrestrial ecosystems. In the present study, an ideal model for Lepidoptera, the silkworm, Bombyx mori, was exposed to environmental concentrations (0.125 μg, 0.25 μg or 0.5 μg/diet) of MPs for 5 days, and the global changes in gut microbes and metabolites were subsequently examined via 16S rDNA sequencing and GC‒MS-based metabolomics. The results showed that MPs exposure did not seriously threaten survival but may regulate signaling pathways involved in development and cocoon production. MPs exposure induced gut microbiota perturbation according to the indices of α-diversity and β-diversity, and the functional prediction of the altered microbiome and associated metabolites demonstrated the potential roles of the altered microbiome following MPs exposure in the metabolic and physiological states of silkworm. The metabolites markedly altered following MPs exposure may play vital biological roles in energy metabolism, lipid metabolism, xenobiotic detoxification and the immune system by directly or indirectly affecting the physiological state of silkworms. These findings contribute to assessing the health risks of MPs exposure in model insects and provide novel insight into the toxicity mechanism of MPs.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenwen Zheng
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjing Shao
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenbin Yu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu Yang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fenju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
34
|
Wang Y, Gao C, Niu W, Han S, Qin M, Tian Z, Zuo W, Xia X, Wang H, Li Y. Polystyrene microplastics promote intestinal colonization of Aeromonas veronii through inducing intestinal microbiota dysbiosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133976. [PMID: 38461664 DOI: 10.1016/j.jhazmat.2024.133976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The premise that pathogen colonized microplastics (MPs) can promote the spread of pathogens has been widely recognized, however, their role in the colonization of pathogens in a host intestine has not been fully elucidated. Here, we investigated the effect of polystyrene MPs (PS-MPs) on the colonization levels of Aeromonas veronii, a typical aquatic pathogen, in the loach (Misgurnus anguillicaudatus) intestine. Multiple types of MPs were observed to promote the intestinal colonization of A. veronii, among which PS-MPs exhibited the most significant stimulating effect (67.18% increase in A. veronii colonization). PS-MPs inflicted serious damage to the intestinal tracts of loaches and induced intestinal microbiota dysbiosis. The abundance of certain intestinal bacteria with resistance against A. veronii colonization decreased, with Lactococcus sp. showing the strongest colonization resistance (73.64% decline in A. veronii colonization). Fecal microbiota transplantation was performed, which revealed that PS-MPs induced intestinal microbiota dysbiosis was responsible for the increased colonization of A. veronii in the intestine. It was determined that PS-MPs reshaped the intestinal microbiota community to attenuate the colonization resistance against A. veronii colonization, resulting in an elevated intestinal colonization levels of A. veronii.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Chao Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Wenfang Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Shuo Han
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Mengyuan Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China
| | - Zhuo Tian
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wenjing Zuo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China; Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, Xinxiang 453007, China.
| |
Collapse
|
35
|
Pietrelli L, Dodaro G, Pelosi I, Menegoni P, Battisti C, Coccia C, Scalici M. Microplastic in an apex predator: evidence from Barn owl (Tyto alba) pellets in two sites with different levels of anthropization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33155-33162. [PMID: 38733443 DOI: 10.1007/s11356-024-33637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Plastic pollution in terrestrial and freshwater environments and its accumulation along food chains has been poorly studied in birds. The Barn owl (Tyto alba) is an opportunistic and nocturnal apex predator feeding mostly on small mammals. In this note, we reported evidence of microplastics (MPs) contamination in Barn owl pellets collected, for the first time, in two sites with different levels of anthropization (low: natural landscape mosaic vs. high extensive croplands). The following polymers have been recorded: polyvinylchloride (PVC), polyethylene (PE), expanded polyester (EPS), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester (PL), viscose, and starch-based biopolymer. We found significant higher MPs frequency in the most anthropized site. Our results suggest that pellet' analysis may represent a cost-effective method for monitoring MP contamination along food chains in terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Giuseppe Dodaro
- Sustainable Development Foundation, Via Garigliano 61a, 00198, Rome, Italia
| | - Ilaria Pelosi
- Department of Sciences, University of Rome Tre, Rome, Italy
| | | | - Corrado Battisti
- "Torre Flavia" LTER (Long Term Ecological Research) Station, Città Metropolitana Di Roma, Servizio Aree protette - Parchi Regionali - Via Ribotta, 41 - 00144, Rome, Italy.
| | - Cristina Coccia
- Department of Sciences, University of Rome Tre, Rome, Italy
- National Biodiversity Future Center (NBFC), Università Di Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Rome Tre, Rome, Italy
- National Biodiversity Future Center (NBFC), Università Di Palermo, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
36
|
Zhao X, Gao P, Zhao Z, Wu Y, Sun H, Liu C. Microplastics release from face masks: Characteristics, influential factors, and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171090. [PMID: 38387585 DOI: 10.1016/j.scitotenv.2024.171090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Since the COVID-19 pandemic, face masks have been used popularly and disposed of improperly, leading to the generation of a large amount of microplastics. The objective of this review is to provide a comprehensive insight into the characteristics of mask-derived microplastics, the influential factors of microplastics release, and the potential risks of these microplastics to the environment and organisms. Mask-derived microplastics were predominantly transparent fibers, with a length of <1 mm. The release of microplastics from masks is mainly influenced by mask types, use habits, and weathering conditions. Under the same conditions, surgical masks release more microplastics than other types of masks. Long-term wearing of masks and the disinfection for reuse can promote the release of microplastics. Environmental media, UV irradiation, temperature, pH value, and mechanical shear can also influence the microplastics release. The risks of mask-derived microplastics to human health via inhalation cannot be neglected. Future studies should pay more attention to the release of microplastics from the masks with alternative materials and under more weathering conditions.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziqing Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
37
|
Erasmus JH, Truter M, Smit NJ, Nachev M, Sures B, Wepener V. Element contamination of the Orange-Vaal River basin, South Africa: a One Health approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29886-29901. [PMID: 38589590 PMCID: PMC11058963 DOI: 10.1007/s11356-024-32932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Numerous low-income groups and rural communities depend on fish as an inexpensive protein source worldwide, especially in developing countries. These communities are constantly exposed to various pollutants when they frequently consume polluted fish. The largest river basin in South Africa is the Orange-Vaal River basin, and several anthropogenic impacts, especially gold mining activities and industrial and urban effluents, affect this basin. The Department of Environment, Forestry and Fisheries in South Africa has approved the much-anticipated National Freshwater (Inland) Wild Capture Fisheries Policy in 2021. The aims of this study were (1) to analyze element concentrations in the widely distributed Clarias gariepinus from six sites from the Orange-Vaal River basin and (2) to determine the carcinogenic and non-carcinogenic human health risks associated with fish consumption. The bioaccumulation of eight potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) was assessed in C. gariepinus from sites with different anthropogenic sources. The human health risks were determined to assess the potential risks posed by consuming contaminated C. gariepinus from these sites. Carcinogenic health risks were associated with fish consumption, where it ranged between 21 and 75 out of 10,000 people having the probability to develop cancer from As exposure. The cancer risk between the sites ranged between 1 and 7 out of 10,000 people to developing cancer from Cr exposure. A high probability of adverse non-carcinogenic health risks is expected if the hazard quotient (HQ) is higher than one. The HQ in C. gariepinus from the six sites ranged between 1.5 and 5.6 for As, while for Hg, it was between 1.8 and 5.1. These results highlight the need for monitoring programs of toxic pollutants in major river systems and impoundments in South Africa, especially with the new fisheries policy, as there are possible human health risks associated with the consumption of contaminated fish.
Collapse
Affiliation(s)
- Johannes Hendrik Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Marliese Truter
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| | - Nico Jacobus Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141, Essen, Germany
| | - Bernd Sures
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
38
|
Afzal A, Mahreen N. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Front Pharmacol 2024; 15:1375137. [PMID: 38567355 PMCID: PMC10985271 DOI: 10.3389/fphar.2024.1375137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metals, common environmental pollutants with widespread distribution hazards and several health problems linked to them are distinguished from other toxic compounds by their bioaccumulation in living organisms. They pollute the food chain and threaten the health of animals. Biologically, heavy metals exhibit both beneficial and harmful effects. Certain essential heavy metals such as Co, Mn, Se, Zn, and Mg play crucial roles in vital physiological processes in trace amounts, while others like As, Pb, Hg, Cd, and Cu are widely recognized for their toxic properties. Regardless of their physiological functions, an excess intake of all heavy metals beyond the tolerance limit can lead to toxicity. Animals face exposure to heavy metals through contaminated feed and water, primarily as a result of anthropogenic environmental pollution. After ingestion heavy metals persist in the body for an extended duration and the nature of exposure dictates whether they induce acute or chronic, clinical or subclinical, or subtle toxicities. The toxic effects of metals lead to disruption of cellular homeostasis through the generation of free radicals that develop oxidative stress. In cases of acute heavy metal poisoning, characteristic clinical symptoms may arise, potentially culminating in the death of animals with corresponding necropsy findings. Chronic toxicities manifest as a decline in overall body condition scoring and a decrease in the production potential of animals. Elevated heavy metal levels in consumable animal products raise public health concerns. Timely diagnosis, targeted antidotes, and management strategies can significantly mitigate heavy metal impact on livestock health, productivity, and reproductive performance.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| | - Naima Mahreen
- National Institute for Biotechnology and Genetics Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
39
|
Wang W, Yao S, Zhao Z, Liu Z, Li QX, Yan H, Liu X. Degradation and potential metabolism pathway of polystyrene by bacteria from landfill site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123202. [PMID: 38128711 DOI: 10.1016/j.envpol.2023.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Microplastics pollution has garnered significant attention in recent years. The unique cross-linked structure of polystyrene microplastics makes them difficult to biodegrade. In this study, we investigated the microbial community in landfill soil that has the ability to degrade polystyrene, as well as two isolated strains, named Lysinibacillus sp. PS-L and Pseudomonas sp. PS-P. The maximum weight loss of polystyrene film and microplastic in 30 days is 2.25% and 6.99% respectively. The water contact angle of polystyrene film decreased by a maximum of 35.70% during biodegradation. The increase in hydrophilicity is attributed to the oxidation reaction and formation of hydroxyl groups during the degradation of polystyrene. The carbon and oxygen element contents of polystyrene decreased and increased by a maximum of 3.81% and 0.79% respectively. The peak intensity changes at wavelengths of 3285-3648 cm-1 and 1652 cm-1 in Fourier transform infrared spectroscopy confirmed the formation of hydroxyl and carbonyl groups. Furthermore, quantitative PCR revealed the gene expression levels of alkane monooxygenase and alcohol dehydrogenase were upregulated by 8.8-fold and 8.5-fold respectively in PS biodegradation. Additionally, genome annotation of Pseudomonas sp. PS-P identified nine genes associated with polystyrene metabolism. These findings highlight Pseudomonas sp. PS-P as a potential candidate strain for polystyrene degradation enzymes or genes. Thus, they lay the groundwork for understanding the potential metabolic mechanisms and pathways involved in polystyrene degradation.
Collapse
Affiliation(s)
- Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shunyu Yao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zhimin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
40
|
Gałęcka I, Szyryńska N, Całka J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024; 21:5. [PMID: 38321545 PMCID: PMC10845528 DOI: 10.1186/s12989-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
41
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
42
|
Corte Pause F, Urli S, Crociati M, Stradaioli G, Baufeld A. Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health. Animals (Basel) 2024; 14:350. [PMID: 38275809 PMCID: PMC10812800 DOI: 10.3390/ani14020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Plastic pollution is a global diffuse threat, especially considering its fragmentation into microplastics (MPs) and nanoplastics (NPs). Since the contamination of the aquatic environment is already well studied, most studies have now focused on the soil. Moreover, the number of studies on the exposure routes and toxic effects of MNPs in humans is continuously increasing. Although MNPs can cause inflammation, cytotoxicity, genotoxicity and immune toxicity in livestock animals, which can accumulate ingested/inhaled plastic particles and transfer them to humans through the food chain, research on this topic is still lacking. In considering farm animals as the missing link between soil/plant contamination and human health effects, this paper aims to describe their importance as carriers and vectors of MNP contamination. As research on this topic is in its early stages, there is no standard method to quantify the amount and the characteristics of MNPs in different matrices. Therefore, the creation of a common database where researchers can report data on MNP characteristics and quantification methods could be helpful for both method standardization and the future training of an AI tool for predicting the most abundant/dangerous polymer(s), thus supporting policy decisions to reduce plastic pollution and perfectly fitting with One Health principles.
Collapse
Affiliation(s)
- Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
43
|
Chen H, Wan L, Qiu Y, Qiu F, Wen C, Mao Y, He Z. Microplastics exposure induced and exacerbated the development of systemic lupus erythematosus in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168586. [PMID: 37981148 DOI: 10.1016/j.scitotenv.2023.168586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Environmental exposure may function as a contributing risk factor in the development of systemic lupus erythematosus (SLE). Recently, the global issue of microplastics (MPs) pollution has garnered increasing concern, yet its potential impact on SLE remains unexplored. This study seeks to elucidate the ramifications of MPs exposure on lupus manifestations in spontaneous lupus MRL/lpr mice and normal C57L/6 mice. MPs exposure demonstrated the capacity to induce lupus-like symptoms in C57BL/6 mice and exacerbate lupus symptoms in MRL/lpr mice. This was manifested by MPs triggering abnormal elevation of spleen DN T, plasma cells, serum anti-dsDNA, ANA, IL-6, and TNF-α, coupled with a reduction in spleen CD4+/CD8+ cell ratio, and impairment in renal pathology. Moreover, a 4D-DIA quantitative proteomic analysis was employed to unveil substantial alterations in renal proteins attributed to MPs exposure. The findings indicated that the KEGG pathways significantly enriched by MPs-associated different proteins in C57BL/6 mice were closely aligned with the enriched KEGG pathways associated with lupus. Unlike C57BL/6 mice, there were no significantly enriched KEGG pathways identified among the MPs-associated different proteins in MRL/lpr mice. In addition, proteins related to the SLE pathway illuminated that MPs exposure induced renal damage through activation of MHCII and histone H3, culminating in the production of MAC in both C57BL/6 and MRL/lpr mice. However, a specific elevation in cathepsin and elastase caused by MPs was observed in C57BL/6 mice but not in MRL/lpr mice. This study represents a significant stride in bridging the existing knowledge gap pertaining to the intricate relationship between MPs exposure and the development of SLE.
Collapse
Affiliation(s)
- Huinan Chen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Wan
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiwu Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fuhai Qiu
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengping Wen
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhixing He
- Research Institute of Chinese Medical Clinical Foundation and Immunology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
44
|
Zhang Q, Zhang Y, Jing L, Zhao H. Microplastics induced inflammation in the spleen of developmental Japanese quail (Coturnix japonica) via ROS-mediated p38 MAPK and TNF signaling pathway activation 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122891. [PMID: 37951530 DOI: 10.1016/j.envpol.2023.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) have been found in virtually every environment on earth and become a source of pollution around the world. The toxicology of microplastics on immunity is an emerging area of research, and more studies are needed to fully understand the effects of microplastics exposure on animal health. Therefore, we tried to determine the immunotoxic effects of microplastics on avian spleen by using an animal model- Japanese quail (Coturnix japonica). One-week chicks were exposed to environmentally relevant concentrations of 0.02 mg/kg, 0.4 mg/kg and 8 mg/kg polystyrene microplastics in the feed for 5 weeks. The results demonstrated that microplastics induced microstructural injuries featured by cell disarrangement and vacuolation indicating splenic inflammation. Ultrastructural damages including membrane lysis and mitochondrial vacuolation also suggested inflammatory responses in the spleen by microplastics exposure. Meanwhile, increasing reactive oxygen species (ROS) and Malondialdehyde (MDA) while the inactivation of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) indicated oxidative stress in the spleen. Moreover, the increasing level of proinflammatory cytokines including Tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6) and decreasing level of anti-inflammatory cytokine interleukin-10 (IL-10) implied splenic inflammation. Furthermore, transcriptomic analysis showed that microplastics induced inflammatory responses in the spleen through p38 mitogen-activated protein kinases (p38 MAPK) pathway activation and tumor necrosis factor (TNF) signaling stimulation. The signaling stimulation also aggravated cell apoptosis in the spleen. The present study may benefit to understand potential mechanisms of developmental immunotoxicology of microplastics.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
45
|
Jain R, Gaur A, Suravajhala R, Chauhan U, Pant M, Tripathi V, Pant G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167098. [PMID: 37717754 DOI: 10.1016/j.scitotenv.2023.167098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Microplastics are ubiquitous environmental pollutants with the potential for adverse impacts on ecosystems and human health. These particles originate from the fragmentation of larger plastic items, shedding from synthetic fibers, tire abrasions, and direct release from personal care products and industrial processes. Once released into the environment, microplastics can disrupt ecosystems, accumulate in organisms, cause physical harm, and carry chemical pollutants that pose risks to both wildlife and human health. There is an urgent need to comprehensively explore the multifaceted issue of microplastic pollution and understand microbial degradation to reduce environmental pollution caused by microplastics. This paper presents a comprehensive exploration of microplastics, including their types, composition, advantages, and disadvantages, as well as the journey and evolution of microplastic pollution. The impact of microplastics on the microbiome and microbial communities is elucidated, highlighting the intricate interactions between microplastics and microbial ecosystems. Furthermore, the microbial degradation of microplastics is discussed, including the identification, characterization, and culturing methods of microplastic-degrading microorganisms. Mechanisms of microplastic degradation and the involvement of microbial enzymes are elucidated to shed light on potential biotechnological applications. Strategies for reducing microplastic pollution are presented, encompassing policy recommendations and the importance of enhanced waste management practices. Finally, the paper addresses future challenges and prospects in the field, emphasizing the need for international collaboration, research advancements, and public engagement. Overall, this study underscores the urgent need for concerted efforts to mitigate microplastic pollution and offers valuable insights for researchers, policymakers, and stakeholders involved in environmental preservation.
Collapse
Affiliation(s)
- Rajul Jain
- Bioclues.org, India, Vivekananda Nagar, Kukatpally, 500072 Hyderabad, Telangana, India.
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Renuka Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, 690525, Kerala, India.
| | - Uttra Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Manu Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248002, India.
| |
Collapse
|
46
|
Tan Y, Dai J, Xiao S, Tang Z, Zhang J, Wu S, Wu X, Deng Y. Occurrence of microplastic pollution in rivers globally: Driving factors of distribution and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165979. [PMID: 37543313 DOI: 10.1016/j.scitotenv.2023.165979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Microplastics, as global emerging pollutants, have received significant attention worldwide due to their ubiquitous presence in the rivers. However, there is still a lack of clarity on the occurrence, driving factors, and ecological risks of microplastics in rivers worldwide. In this study, a global microplastic dataset based on 862 water samples and 445 sediment samples obtained from 63 articles was constructed, which revealed the temporal and spatial distribution of abundance and morphological characteristics of microplastics in rivers across the globe. In global rivers, the abundance of MPs in both water and sediment spans across 10 and 4 orders of magnitude, respectively. The MP comprehensive diversity index based on the physical morphological characteristics of MPs indicated a significant positive correlation between the pollution sources of MPs in different environmental media. Based on the data was aligned to the full-scale MPs, a novel framework was provided to evaluate the ecological risk of MPs and the interaction effects between the influencing factors driving the distribution characteristics of MPs in rivers around the world. The results obtained demonstrated a wide variation in the key driving factors affecting the distribution of microplastics in different environmental media (water and sediment) in rivers globally. The diversity indices of the morphological characteristics of MPs in densely populated areas of lower-middle income countries in Asia were significantly higher, implying that the sources of microplastics in these regions are more complex and extensive. More than half of the rivers are exposed to potential ecological risks of MPs; however, microplastics may pose only immediate risks to aquatic species in Burigang River, Bangladesh. This can provide valuable insights for formulating more effective scientific strategies for the management of MP pollution in rivers.
Collapse
Affiliation(s)
- Yanping Tan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangyu Dai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Shuwen Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhiqiang Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China.
| |
Collapse
|
47
|
Cavazzoli S, Ferrentino R, Scopetani C, Monperrus M, Andreottola G. Analysis of micro- and nanoplastics in wastewater treatment plants: key steps and environmental risk considerations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1483. [PMID: 37971551 PMCID: PMC10654204 DOI: 10.1007/s10661-023-12030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The analysis of micro- and nanoplastics (MNPs) in the environment is a critical objective due to their ubiquitous presence in natural habitats, as well as their occurrence in various food, beverage, and organism matrices. MNPs pose significant concerns due to their direct toxicological effects and their potential to serve as carriers for hazardous organic/inorganic contaminants and pathogens, thereby posing risks to both human health and ecosystem integrity. Understanding the fate of MNPs within wastewater treatment plants (WWTPs) holds paramount importance, as these facilities can be significant sources of MNP emissions. Additionally, during wastewater purification processes, MNPs can accumulate contaminants and pathogens, potentially transferring them into receiving water bodies. Hence, establishing a robust analytical framework encompassing sampling, extraction, and instrumental analysis is indispensable for monitoring MNP pollution and assessing associated risks. This comprehensive review critically evaluates the strengths and limitations of commonly employed methods for studying MNPs in wastewater, sludge, and analogous environmental samples. Furthermore, this paper proposes potential solutions to address identified methodological shortcomings. Lastly, a dedicated section investigates the association of plastic particles with chemicals and pathogens, alongside the analytical techniques employed to study such interactions. The insights generated from this work can be valuable reference material for both the scientific research community and environmental monitoring and management authorities.
Collapse
Affiliation(s)
- Simone Cavazzoli
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano, 77 - 38123, Trento (TN), Italy.
| | - Roberta Ferrentino
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano, 77 - 38123, Trento (TN), Italy
| | - Costanza Scopetani
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu, 73 - 15140, Lahti, Finland
- Department of Chemistry 'Ugo Schiff' (DICUS), University of Florence, Via Della Lastruccia, 13 - 50019, Sesto Fiorentino (FI), Italy
| | - Mathilde Monperrus
- UMR 5254, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, 64600, Anglet, France
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Via Mesiano, 77 - 38123, Trento (TN), Italy
| |
Collapse
|
48
|
Zuri G, Karanasiou A, Lacorte S. Human biomonitoring of microplastics and health implications: A review. ENVIRONMENTAL RESEARCH 2023; 237:116966. [PMID: 37634692 DOI: 10.1016/j.envres.2023.116966] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Microplastics (MPs) are plastic particles (<5 mm) ubiquitous in water, soil, and air, indicating that humans can be exposed to MPs through ingestion of water and food, and inhalation. OBJECTIVE This review provides an overview of the current human biomonitoring data available to evaluate human exposure and health impact of MPs. METHOD We compiled 91 relevant studies on MPs in human matrices and MPs toxicological endpoints to provide evidence on MPs distribution in the different tissues and the implications this can have from a health perspective. RESULTS Human exposure to MPs has been corroborated by the detection of MPs in different human biological samples including blood, urine, stool, lung tissue, breast milk, semen and placenta. Although humans have clearance mechanisms protecting them from potentially harmful substances, health risks associated to MPs exposure include the onset of inflammation, oxidative stress, and DNA damage, potentially leading to cardiovascular and respiratory diseases, as well as cancer, as suggested by in vitro and in vivo studies. CONCLUSION Based on compiled data, MPs have been recurrently identified in different human tissues and fluids, suggesting that humans are exposed to MPs through inhalation and ingestion. Despite differences in MPs concentrations appear in exposed and non-exposed people, accumulation and distribution pathways and potential human health hazards is still at an infant stage. Human biomonitoring data enables the assessment of human exposure to MPs and associated risks, and this information can contribute to draw management actions and guidelines to minimize MP release to the environment, and thus, reduce human uptake.
Collapse
Affiliation(s)
- Giuseppina Zuri
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Angeliki Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sílvia Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
49
|
Griffin CD, Tominiko C, Medeiros MCI, Walguarnery JW. Microplastic pollution differentially affects development of disease-vectoring Aedes and Culex mosquitoes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115639. [PMID: 37924798 DOI: 10.1016/j.ecoenv.2023.115639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Plastic in the form of microplastic particles (MPs) is now recognized as a major pollutant of unknown consequences in aquatic habitats. Mosquitoes, with aquatic eggs, larvae, and pupae, are likely to encounter microplastic, particularly those species that are abundant in close proximity to human development, including those that vector human and animal disease. We examined the effects of polyethylene MPs, the most common microplastic documented in environmental samples, on the development and survival of the mosquitoes Aedes albopictus and Culex quinquefasciatus. In laboratory egg-laying and larval development container environments similar to those used by both species in the field, a mix of 1-53 µm MPs at concentrations of 60, 600, and 6000 MP ml-1 increased early instar larval mortality in both species relative to control treatments. A significant difference was found in the response of each species to microplastic at the lowest microplastic concentration tested, with Cx. quinquefasciatus survival equivalent to that in control conditions but with Ae. albopictus larvae mortality elevated to 37% within 48 h. These results differ from those of previous studies in which larvae were only exposed to MPs during the last aquatic instar stage and from which it was concluded that microplastic was ontogenically transferred without negatively affecting development. Increasing plastic pollutant concentrations could therefore act as selective pressures on aquatic larvae and ultimately influence outcomes of ecological interactions among mosquito vector populations.
Collapse
Affiliation(s)
- Chasen D Griffin
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Christine Tominiko
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; College of Agriculture and Natural Resource Management, University of Hawai]i at Hilo, 200W. Kāwili St., Hilo, HI 96720, USA
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Center for Microbiome Analysis Through Island Knowledge and Investigation, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Justin W Walguarnery
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
50
|
Silva MG, Oliveira MM, Peixoto F. Assessing micro and nanoplastics toxicity using rodent models: Investigating potential mitochondrial implications. Toxicology 2023; 499:153656. [PMID: 37879514 DOI: 10.1016/j.tox.2023.153656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.
Collapse
Affiliation(s)
- Mónica G Silva
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
| | - Maria Manuel Oliveira
- Chemistry Research Centre (CQ-VR), Chemistry Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Chemistry Research Centre (CQ-VR), Biology and Environment Department University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|