1
|
Chen S, Xu L, Wang Y, Mao B, Zhang X, Song Q, Cui F, Ma Y, Dong J, Wang K, Bi H, Liu L. RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.). MOLECULAR HORTICULTURE 2025; 5:14. [PMID: 40025622 PMCID: PMC11872316 DOI: 10.1186/s43897-024-00135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/05/2024] [Indexed: 03/04/2025]
Abstract
Cold stress adversely affects crop growth and development. Radish is an important root vegetable crop, and its taproot formation is susceptible to low temperatures. However, the molecular basis of the cold stress response has not yet been fully dissected in radish. Here, a sucrose phosphate synthase gene (RsSPS1) was identified through a genome-wide association study and transcriptome analysis. RsSPS1 was responsible for sucrose synthesis, and sucrose was shown to be involved in taproot growth, cambium activity, and cold tolerance in radish. RsSPS1 regulated cambium activity and cold stress response by modulating sucrose content. Moreover, RsWRKY40 was identified as the upstream transcription activator of RsSPS1 by binding to its promoter. RsWRKY40 functioned in cambium activity and cold tolerance by modulating RsSPS1-mediated sucrose accumulation. Furthermore, RsWRKY40 promoted the RsCBF1 and RsCBF2 expression levels, resulting in elevated cold resilience. RsWRKY40 also enhanced its own transcription, forming a positive auto-regulatory loop to regulate cold stress response in radish. Together, a transcription module of RsWRKY40 orchestrated cold stress response by integrating sucrose accumulation and the CBF-dependent pathway was uncovered. These findings would provide novel insight into the molecular mechanism underlying cold-responsive sucrose accumulation and cambium activity and facilitate the genetic improvement of cold tolerance in radish breeding programs.
Collapse
Affiliation(s)
- Sen Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Baozhen Mao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Qiyu Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Feng Cui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China
| | - Yingbo Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Kai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Hongyu Bi
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210031, PR China.
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
2
|
Mohammed SP, Yen JY, Hsu YC, Chou HY, Natarajan S, Eybishitz A. Integrative Trait Analysis for Enhancing Heat Stress Resilience in Tomato ( Solanum lycopersicum L.): A Focus on Root, Physiological, and Yield Adaptations. PLANTS (BASEL, SWITZERLAND) 2025; 14:533. [PMID: 40006792 PMCID: PMC11858947 DOI: 10.3390/plants14040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Tomato (Solanum lycopersicum L.) is an economically important crop worldwide, particularly in tropical and subtropical regions. However, production is significantly and increasingly affected by the impacts of climate change, including heat and drought stress and emerging pests and diseases. This study specifically evaluated the effects of heat stress on root and shoot morphology, photosynthesis, and yield traits in five tomato genotypes, to identify the characteristics that differentiate heat tolerance from susceptibility. Heat stress experiments were conducted in a polyhouse, one during the summer under high temperatures, with a non-stress trial during the winter under conducive natural conditions. Significant reductions in yield, root traits and photosynthesis were observed across all genotypes under heat stress. However, the genotype MG785-1 maintained a relatively higher yield (298.01 ± 25.1 g), a 37.7% reduction compared to non-stress conditions, while CLN4786F1 showed resilience with a 32.3% decrease compared to its non-stress harvest index. Root dry weight (5.91 ± 0.53 g in MG785-1) and root shoot ratio (0.19 ± 0.01 in MG785-1) were identified as key traits for heat tolerance. Physiological traits, such as photosynthetic rate (11.71 ± 1.61 µmol CO2 m-2 s-1 in MG785-1), were critical for maintaining growth under heat stress. In contrast, the heat-sensitive genotype CLN3961D exhibited a significant decline in yield and physiological performance. Root dry weight and root to shoot ratio were key indicators for heat tolerance, while the photosynthetic rate was critical for maintaining plant growth under stress. These findings underscore the importance of integrated root and physiological traits, providing valuable insights for breeding climate-resilient tomato varieties.
Collapse
Affiliation(s)
- Sharukh Pasha Mohammed
- World Vegetable Center, Shanhua, Tainan 74151, Taiwan; (S.P.M.)
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Jo-Yi Yen
- World Vegetable Center, Shanhua, Tainan 74151, Taiwan; (S.P.M.)
| | - Yun-Che Hsu
- World Vegetable Center, Shanhua, Tainan 74151, Taiwan; (S.P.M.)
| | - Hsiu-Yi Chou
- World Vegetable Center, Shanhua, Tainan 74151, Taiwan; (S.P.M.)
| | - Sritharan Natarajan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Assaf Eybishitz
- World Vegetable Center, Shanhua, Tainan 74151, Taiwan; (S.P.M.)
| |
Collapse
|
3
|
Malinowska M, Kristensen PS, Nielsen B, Fè D, Ruud AK, Lenk I, Greve M, Asp T. The value of early root development traits in breeding programs for biomass yield in perennial ryegrass (Lolium perenne L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:31. [PMID: 39836302 PMCID: PMC11750904 DOI: 10.1007/s00122-024-04797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
KEY MESSAGE Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits. Despite its importance, genetic improvements in biomass yield have been slow, mainly due to its outbreeding nature and the challenges of improving multiple traits simultaneously. This study aims to assess the potential advantages of including early root traits in the perennial ryegrass breeding process. Root traits, including total root length (TRL) and root angle (RA) were phenotyped in a greenhouse using rhizoboxes, and genetic correlations with field yield were estimated across three European locations over two years. Bivariate models estimated significant genetic correlations of 0.40 (SE = 0.14) between TRL and field yield, and a weak but positive correlation to RA of 0.15 (SE = 0.14). Heritability estimates were 0.36 for TRL, 0.39 for RA, and 0.31 for field yield across locations. Incorporating root trait data into selection criteria can improve the efficiency of breeding programs, potentially increasing genetic gain by approximately 10%. This results highlight the potential of early root traits to refine selection criteria in perennial ryegrass breeding programs, contributing to higher yield and efficiency.
Collapse
Affiliation(s)
- M Malinowska
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark.
| | - P S Kristensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| | - B Nielsen
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| | - D Fè
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - A K Ruud
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - I Lenk
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - M Greve
- Research Division, DLF Seeds A/S, Store Heddinge, Denmark
| | - T Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| |
Collapse
|
4
|
Paschoal D, Cazetta L, Mendes JVO, Dias NCF, Ometto V, Carrera E, Rossi ML, Aricetti JA, Mieczkowski P, Carvalho GG, Cesarino I, da Silva SF, Ribeiro RV, Teixeira PJPL, da Silva EM, Figueira A. Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39806925 DOI: 10.1111/pce.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition. Intense stem swelling coincided with a reduction in root biomass, predominantly affecting lateral roots. RNA-seq analyses of root samples identified only a few differentially expressed genes involved in hormone metabolism, and root hormone levels were not expressively altered. Inoculation of the auxin highly-sensitive entire mutant genotype maintained the impaired root phenotype; in contrast, the low-cytokinin MT transgenic line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2) with fewer symptoms did not exhibit root growth impairment. Genes involved in cell wall, carbohydrate, and amino acid metabolism were downregulated, accompanied by lower levels of carbohydrate and amino acid in roots, suggesting a reduction in metabolite availability. 13CO2 was supplied to MT plants, and less 13C was detected in the roots of infected MT but not in those of 35S::AtCKX2 line plants, suggesting that cytokinin-mediated sugar sink establishment at the infection site may contribute to impaired root growth. Exogenous sucrose application to roots of infected MT plants partially restored root growth. We propose that the impairment of lateral root development is likely attributed to disrupted sugar signalling and photoassimilate supply by establishing a strong sugar sink at the infected stem.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Laura Cazetta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - João V O Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Nathália C F Dias
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Campinas, São Paulo, Brazil
| | - Piotr Mieczkowski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Igor Cesarino
- Instituto de Biociências, USP, São Paulo, São Paulo, Brazil
- Synthetic and System Biology Center, Inova USP, São Paulo, São Paulo, Brazil
| | - Simone F da Silva
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Rafael V Ribeiro
- Instituto de Biologia, Universidade de Campinas, Campinas, São Paulo, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
5
|
Jiang C, Wang F, Tian J, Zhang W, Xie K. Two rice cultivars recruit different rhizospheric bacteria to promote aboveground regrowth after mechanical defoliation. Microbiol Spectr 2025; 13:e0125424. [PMID: 39651854 PMCID: PMC11705949 DOI: 10.1128/spectrum.01254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Plants have evolved the ability to regrow after mechanical defoliation and environmental stresses. However, it is unclear whether and how defoliated plants exploit beneficial microbiota from the soil to promote aboveground regrowth. Here, we compared the defoliation-triggered changes in the root exudation and bacterial microbiome of two rice cultivars (Oryza sativa L ssp.), indica/xian cultivar Minghui63 and japonica/geng cultivar Nipponbare. The results show that reciprocal growth promotion existed between defoliated Minghui63 seedlings and soil bacteria. After the leaves were removed, the Minghui63 seedlings displayed approximately 1.5- and 2.1-fold higher root exudation and leaf regrowth rates, respectively, than did the Nipponbare seedlings. In field trials, Minghui63 and Nipponbare enriched taxonomically and functionally distinct bacteria in the rhizosphere and root. In particular, Minghui63 rhizosphere and root communities depleted bacteria whose functions are related to xenobiotics biodegradation and metabolism. The microbiome data implied that the bacterial family Rhodocyclaceae was specifically enriched during the regrowth of defoliated Minghui63 rice. We further isolated a Rhodocyclaceae strain, Uliginosibacterium gangwonense MDD1, from rice root. Compared with germ-free conditions, MDD1 inoculation promoted the aboveground regrowth of defoliated Minghui63 by 61% but had a weaker effect on Nipponbare plants, suggesting cultivar-specific associations between regrowth-promoting bacteria and rice. This study provides novel insight into microbiota‒root‒shoot communication, which is implicated in the belowground microbiome and aboveground regrowth in defoliated rice. These data will be helpful for microbiome engineering to increase rice resilience to defoliation and environmental stresses.IMPORTANCEAs sessile organisms, plants face a multitude of abiotic and biotic stresses which often result in defoliation. To survive, plants have evolved the ability to regrow leaves after stresses and wounding. Previous studies revealed that the rhizosphere microbiome affected plant growth and stress resilience; however, how belowground microbiota modulates the aboveground shoot regrowth is unclear. To address this question, we used rice, an important crop worldwide, to analyze the role of rhizosphere microbiota in leaf regrowth after defoliation. Our data indicate mutual growth promotion between defoliated rice and rhizosphere bacteria and such beneficial effect is cultivar specific. The microbiome analysis also led us to find a Uliginosibacterium gangwonense strain that promoted rice cv. MH63 leaf regrowth. Our findings therefore present a novel insight into plant-microbiome function and provide beneficial strains that potentially enhance rice stress resilience.
Collapse
Affiliation(s)
- Changjin Jiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jinling Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Wanyuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
6
|
Novoplansky A, Souza G, Brenner E, Bhatla S, Van Volkenburgh E. Exploring the complex information processes underlying plant behavior. PLANT SIGNALING & BEHAVIOR 2024; 19:2411913. [PMID: 39381978 PMCID: PMC11469436 DOI: 10.1080/15592324.2024.2411913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.
Collapse
Affiliation(s)
- A. Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - G.M. Souza
- Department of Botany, Institute of Biology – Section of Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - E.D. Brenner
- Department of Biology, Pace University, New York, New York, USA
| | - S.C. Bhatla
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | | |
Collapse
|
7
|
Pandey BK, George TS, Cooper HV, Sturrock CJ, Bennett T, Bennett MJ. Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae490. [PMID: 39707161 DOI: 10.1093/jxb/erae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Agricultural intensification coupled with changing climate are causing soils to become increasingly vulnerable to stresses such as drought, soil erosion, and compaction. The mechanisms by which roots detect and respond to soil stresses remain poorly understood. Recent breakthroughs show that roots release volatile and soluble hormone signals into the surrounding soil, then monitor their levels to sense soil stresses. Our review discusses how hormones can act 'outside the plant' as 'rhizocrine' signals that function to improve plant resilience to different soil stresses. We also propose a novel signalling paradigm which we term 'root RADAR' where 'rhizocrine' levels change in soil in response to environmental stresses, feeding back to roots and triggering adaptive responses.
Collapse
Affiliation(s)
- Bipin K Pandey
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Hannah V Cooper
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Craig J Sturrock
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Malcolm J Bennett
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
8
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
9
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
10
|
Kolbert Z, Barroso JB, Boscari A, Corpas FJ, Gupta KJ, Hancock JT, Lindermayr C, Palma JM, Petřivalský M, Wendehenne D, Loake GJ. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. THE NEW PHYTOLOGIST 2024; 244:786-797. [PMID: 39223868 DOI: 10.1111/nph.20085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, H6726, Szeged, Hungary
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, University of Jaén, Campus Universitario 'Las Lagunillas' s/n, E-23071, Jaén, Spain
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS 7254, 400 route des Chappes, BP 167, 06903, Sophia Antipolis, France
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | - John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Christian Lindermayr
- Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | - José Manuel Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - David Wendehenne
- Agroécologie, INRAE, Institut Agro Dijon, Univiversité de Bourgogne, 21000, Dijon, France
| | - Gary J Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
11
|
Liu SJ, Zhang H, Jin XT, Niu MX, Feng CH, Liu X, Liu C, Wang HL, Yin W, Xia X. PeFUS3 Drives Lateral Root Growth Via Auxin and ABA Signalling Under Drought Stress in Populus. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39318109 DOI: 10.1111/pce.15163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Changes in root system architecture are vital for plant adaptation to drought stress, yet the underlying molecular mechanisms of this process remain largely elusive. Here, FUSCA3 (FUS3), a B3 domain transcription factor isolated from Populus euphratica, was found to be an important gene of regulating lateral root (LR) development under drought stress. The expression of PeFUS3 was strongly induced by ABA and dehydration treatments. Overexpressing PeFUS3 in poplar 84 K (P. alba × P. glandulosa) positively regulated LR growth and enhanced drought tolerance, while the knockout lines, generated by the CRISPR/Cas9 system, displayed repressed LR growth and weakened drought tolerance. Further investigation demonstrated that PeFUS3 activated the expression of PIN2, PIN6a and AUX1, which were key genes involved in auxin transport, suggesting PeFUS3 modulated LR development under drought stress through auxin signalling. Moreover, PeFUS3 directly upregulated PePYL3 expression, and overexpressing PePYL3 poplar lines exhibited significantly increased drought resistance. In addition, PeABF2, an ABA responsive transcription factor, interacted with PeFUS3 and activated its transcription, indicating PeFUS3 was involved in ABA signalling pathway. Taken together, PeFUS3 is a key regulator, maintaining root growth of poplar by modulating the crosstalk of auxin and ABA signalling under drought stress.
Collapse
Affiliation(s)
- Shu-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Han Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ting Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meng-Xue Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Gholizadeh F, Prerostová S, Pál M, Benczúr K, Hamow KÁ, Majláth I, Kun J, Gyenesei A, Urbán P, Szalai G, Vanková R, Janda T. Elucidating light and temperature-dependent signalling pathways from shoot to root in rice plants: Implications for stress responses. PHYSIOLOGIA PLANTARUM 2024; 176:e14541. [PMID: 39293994 DOI: 10.1111/ppl.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down-regulated than up-regulated genes. Comparison between roots of the leaf-stressed plants and whole cold-treated or control plants revealed that nitrogen metabolism and nitric oxide-related signalling, as well as the phenylpropanoid-related processes, were specifically affected. Real-time PCR results focusing on the COLD1 and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Sylva Prerostová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Magda Pál
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Kinga Benczúr
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Kamirán Á Hamow
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Imre Majláth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - József Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Attila Gyenesei
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gabriella Szalai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Radomíra Vanková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Tibor Janda
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| |
Collapse
|
13
|
Feng D, Liu W, Chen K, Ning S, Gao Q, Chen J, Liu J, Sun X, Xu W. Exogenous Substances Used to Relieve Plants from Drought Stress and Their Associated Underlying Mechanisms. Int J Mol Sci 2024; 25:9249. [PMID: 39273198 PMCID: PMC11395679 DOI: 10.3390/ijms25179249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Drought stress (DS) is one of the abiotic stresses that plants encounter commonly in nature, which affects their life, reduces agricultural output, and prevents crops from growing in certain areas. To enhance plant tolerance against DS, abundant exogenous substances (ESs) have been attempted and proven to be effective in helping plants relieve DS. Understanding the effect of each ES on alleviation of plant DS and mechanisms involved in the DS relieving process has become a research focus and hotspot that has drawn much attention in the field of botany, agronomy, and ecology. With an extensive and comprehensive review and summary of hundred publications, this paper groups various ESs based on their individual effects on alleviating plant/crop DS with details of the underlying mechanisms involved in the DS-relieving process of: (1) synthesizing more osmotic adjustment substances; (2) improving antioxidant pathways; (3) promoting photosynthesis; (4) improving plant nutritional status; and (5) regulating phytohormones. Moreover, a detailed discussion and perspective are given in terms of how to meet the challenges imposed by erratic and severe droughts in the agrosystem through using promising and effective ESs in the right way and at the right time.
Collapse
Affiliation(s)
- Di Feng
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Wenxin Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ke Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510640, China
| | - Songrui Ning
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Qian Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiao Chen
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Jiao Liu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Xiaoan Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| | - Wanli Xu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumchi 830091, China
| |
Collapse
|
14
|
Zantis LJ, Adamczyk S, Velmala SM, Adamczyk B, Vijver MG, Peijnenburg W, Bosker T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173265. [PMID: 38754499 DOI: 10.1016/j.scitotenv.2024.173265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment. Yet, limited research has investigated the impacts of both conventional and biodegradable plastics on distinct plants. Moreover, comparisons among studies are difficult due to differences in experimental design. This study directly compares the effects of artificially weathered conventional polyethylene (PE) and starch-based biodegradable polybutylene adipate terephthalate (PBAT) on four food crops, including two monocots (barley, Hordeum vulgare, and wheat, Triticum aestivum L.) and two dicots (carrot, Daucus carota, and lettuce, Lactuca sativa L.). We investigated the effects of environmentally relevant low, medium, and high (0.01 %, 0.1 %, 1 % w/w) concentrations of PE and starch-PBAT blend on seed germination (acute toxicity), and subsequently on plant growth and chlorophyll through a pot-plant experiment (chronic toxicity). Germination of all species was not affected by both plastics. However, root length was reduced for lettuce and wheat seedlings. No other effects were recorded on monocots. We observed a reduction in shoot length and bud wet weight of carrot seedlings for the highest concentration of PE and starch-PBAT blend. Chronic exposure resulted in a significant decrease in shoot biomass of barley and lettuce. Additionally, a positive increase in the number of leaves of lettuce was observed for both plastics. Chlorophyll content was increased in lettuce when exposed to PE and starch-PBAT blend. Overall, adverse effects in dicots were more abundant than in monocots. Importantly, we found that the biodegradable plastic caused more commonly adverse effects on plants compared to conventional plastic, which was confirmed by a mini-review of studies directly comparing the impact of conventional and biodegradable microplastics.
Collapse
Affiliation(s)
- Laura J Zantis
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Sannakajsa M Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands.
| |
Collapse
|
15
|
Liu QQ, Xia JQ, Wu J, Han Y, Zhang GQ, Zhao PX, Xiang CB. Root-derived long-distance signals trigger ABA synthesis and enhance drought resistance in Arabidopsis. J Genet Genomics 2024; 51:749-761. [PMID: 38554784 DOI: 10.1016/j.jgg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Vascular plants have evolved intricate long-distance signaling mechanisms to cope with environmental stress, with reactive oxygen species (ROS) emerging as pivotal systemic signals in plant stress responses. However, the exact role of ROS as root-to-shoot signals in the drought response has not been determined. In this study, we reveal that compared with wild-type plants, ferric reductase defective 3 (frd3) mutants exhibit enhanced drought resistance concomitant with elevated NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) transcript levels and abscisic acid (ABA) contents in leaves as well as increased hydrogen peroxide (H2O2) levels in roots and leaves. Grafting experiments distinctly illustrate that drought resistance can be conferred by the frd3 rootstock regardless of the scion genotype, indicating that long-distance signals originating from frd3 roots promote an increase in ABA levels in leaves. Intriguingly, the drought resistance conferred by the frd3 mutant rootstock is weakened by the CAT2-overexpressing scion, suggesting that H2O2 may be involved in long-distance signaling. Moreover, the results of comparative transcriptome and proteome analyses support the drought resistance phenotype of the frd3 mutant. Taken together, our findings substantiate the notion that frd3 root-derived long-distance signals trigger ABA synthesis in leaves and enhance drought resistance, providing new evidence for root-to-shoot long-distance signaling in the drought response of plants.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yi Han
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Gui-Quan Zhang
- College of Agronomy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping-Xia Zhao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
16
|
Nguyen TH, Lopez G, Seidel SJ, Lärm L, Bauer FM, Klotzsche A, Schnepf A, Gaiser T, Hüging H, Ewert F. Multi-year aboveground data of minirhizotron facilities in Selhausen. Sci Data 2024; 11:674. [PMID: 38909019 PMCID: PMC11193711 DOI: 10.1038/s41597-024-03535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Improved understanding of crops' response to soil water stress is important to advance soil-plant system models and to support crop breeding, crop and varietal selection, and management decisions to minimize negative impacts. Studies on eco-physiological crop characteristics from leaf to canopy for different soil water conditions and crops are often carried out at controlled conditions. In-field measurements under realistic field conditions and data of plant water potential, its links with CO2 and H2O gas fluxes, and crop growth processes are rare. Here, we presented a comprehensive data set collected from leaf to canopy using sophisticated and comprehensive sensing techniques (leaf chlorophyll, stomatal conductance and photosynthesis, canopy CO2 exchange, sap flow, and canopy temperature) including detailed crop growth characteristics based on destructive methods (crop height, leaf area index, aboveground biomass, and yield). Data were acquired under field conditions with contrasting soil types, water treatments, and different cultivars of wheat and maize. The data from 2016 up to now will be made available for studying soil/water-plant relations and improving soil-plant-atmospheric continuum models.
Collapse
Affiliation(s)
- Thuy Huu Nguyen
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany.
| | - Gina Lopez
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany
| | - Sabine J Seidel
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany
| | - Lena Lärm
- Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Felix Maximilian Bauer
- Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Anja Klotzsche
- Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Andrea Schnepf
- Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Thomas Gaiser
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany
| | - Hubert Hüging
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany
| | - Frank Ewert
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Katzenburgweg 5, 53115, Bonn, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Systems Analysis, Eberswalder Strasse 84, 15374, Muencheberg, Germany
| |
Collapse
|
17
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
18
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
19
|
Peláez-Vico MÁ, Zandalinas SI, Devireddy AR, Sinha R, Mittler R. Systemic stomatal responses in plants: Coordinating development, stress, and pathogen defense under a changing climate. PLANT, CELL & ENVIRONMENT 2024; 47:1171-1184. [PMID: 38164061 DOI: 10.1111/pce.14797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castelló de la Plana, Spain
| | - Amith R Devireddy
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
20
|
He W, Chai J, Xie R, Wu Y, Wang H, Wang Y, Chen Q, Wu Z, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. The Effects of a New Citrus Rootstock Citrus junos cv. Shuzhen No. 1 on Performances of Ten Hybrid Citrus Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:794. [PMID: 38592823 PMCID: PMC10976021 DOI: 10.3390/plants13060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The importance of rootstock in citrus production lies in its crucial role in determining tree growth, environmental stress tolerance, and fruit quality. Citrus junos Siebold ex Tanaka cv. Shuzhen No. 1, a recently developed rootstock, demonstrates excellent graft compatibility and abiotic stress tolerance. The objective of this study was to assess ten hybrid citrus cultivars grafted onto two C. junos rootstock selections, with the aim of determining the potential for industrial utilization of the new citrus rootstock. All graft junctions are mature and well established. Vigorous growth characterized all ten citrus cultivars on Shuzhen No. 1, with the largest tree's height reaching 280.33 cm (Wogan scion) and the widest scion's diameter being 67.52 cm (Chunjian scion). However, the scion-to-rootstock diameter ratio was the lowest at 0.62 (Chunxiang scion). C. junos rootstock selections significantly affected fruit weight (five of ten scions) and fruit color (seven of ten scions) but had negligible impact on peel thickness (nine of ten scions). Furthermore, rootstock type had a significant influence on fruit quality. In conclusion, our findings indicate strong graft compatibility between all scions and C. junos rootstocks, which can impact overall size and fruit quality. Based on these results, Shuzhen No. 1 is recommended as a valuable citrus rootstock.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yang Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (W.H.); (Y.W.); (Q.C.); (Z.W.); (M.L.); (Y.L.); (Y.Z.); (Y.L.); (Y.Z.); (H.T.)
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
21
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
22
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
23
|
Pecherina A, Dimitrieva A, Mudrilov M, Ladeynova M, Zanegina D, Brilkina A, Vodeneev V. Salt-Induced Early Changes in Photosynthesis Activity Caused by Root-to-Shoot Signaling in Potato. Int J Mol Sci 2024; 25:1229. [PMID: 38279229 PMCID: PMC10816847 DOI: 10.3390/ijms25021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.
Collapse
Affiliation(s)
- Anna Pecherina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Anastasia Dimitrieva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Daria Zanegina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| |
Collapse
|
24
|
Totsline N, Kniel KE, Sabagyanam C, Bais HP. Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent. Sci Rep 2024; 14:898. [PMID: 38195662 PMCID: PMC10776768 DOI: 10.1038/s41598-024-51573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024] Open
Abstract
As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Chandran Sabagyanam
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
25
|
Ahmed S, Patel R, Rana M, Kumar N, I I, Choudhary M, Chand S, Singh AK, Ghosh A, Singhal RK. Effect of salt, alkali and combined stresses on root system architecture and ion profiling in a diverse panel of oat ( Avena spp.). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37743054 DOI: 10.1071/fp23031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The co-occurrence of salinisation and alkalisation is quite frequent in problematic soils and poses an immediate threat to food, feed and nutritional security. In the present study, root system architectural traits (RSAs) and ion profiling were evaluated in 21 genotypes of Avena species to understand the effect of salinity-alkalinity stress. The oat genotypes were grown on germination paper and 5-day-old seedlings were transferred to a hydroponic system for up to 30days. These seedlings were subjected to seven treatments: T0 , treatment control (Hoagland solution); T1 , moderate salinity (50mM); T2 , high salinity (100mM); T3 , moderate alkalinity (15mM); T4 , high alkalinity (30mM); T5 , combined moderate salinity-alkalinity (50mM+15mM); and T6 , combined high salinity-alkalinity (100mM and 30mM) by using NaCl+Na2 SO4 (saline) and NaHCO3 +Na2 CO3 (alkaline) salts equivalently. The root traits, such as total root area (TRA), total root length (TRL), total root diameter (TRD), total root volume (TRV), root tips (RT), root segments (RS), root fork (RF) and root biomass (RB) were found to be statistically significant (P + and K+ content analysis in root and shoot tissues revealed the ion homeostasis capacity of different Avena accessions under stress treatments. Principal component analysis (PCA) covered almost 83.0% of genetic variation and revealed that the sharing of TRA, RT, RS and RF traits was significantly high. Biplot analysis showed a highly significant correlation matrix (P <0.01) between the pairs of RT and RS, TRL and RS, and RT and RF. Based on PCA ranking and relative value for stress tolerance, IG-20-1183, IG-20-894, IG-20-718 and IG-20-425 expressed tolerance to salinity (T2), IG-20-425 (alkalinity; T4) and IG-20-1183, IG-20-894 and IG-20-1004 were tolerant to salt-alkali treatment (T6). Multi-trait stability index (MTSI) analysis identified three stable oat genotypes (IG-20-714, IG-20-894 and IG-20-425) under multiple environments and these lines can be used in salinity-alkalinity affected areas after yield trials or as donor lines for combined stresses in future breeding programs.
Collapse
Affiliation(s)
- Shahid Ahmed
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Richa Patel
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Maneet Rana
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Neeraj Kumar
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Indu I
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Mukesh Choudhary
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Subhash Chand
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Amit Kumar Singh
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Avijit Ghosh
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| | - Rajesh Kumar Singhal
- ICAR-IGFRI (Indian Council of Agricultural Research-Indian Grassland and Fodder Research Institute), Jhansi, Uttar Pradesh 284003, India
| |
Collapse
|
26
|
Houmani H, Corpas FJ. Can nutrients act as signals under abiotic stress? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108313. [PMID: 38171136 DOI: 10.1016/j.plaphy.2023.108313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plant cells are in constant communication to coordinate development processes and environmental reactions. Under stressful conditions, such communication allows the plant cells to adjust their activities and development. This is due to intercellular signaling events which involve several components. In plant development, cell-to-cell signaling is ensured by mobile signals hormones, hydrogen peroxide (H2O2), nitric oxide (NO), or hydrogen sulfide (H2S), as well as several transcription factors and small RNAs. Mineral nutrients, including macro and microelements, are determinant factors for plant growth and development and are, currently, recognized as potential signal molecules. This review aims to highlight the role of nutrients, particularly calcium, potassium, magnesium, nitrogen, phosphorus, and iron as signaling components with special attention to the mechanism of response against stress conditions.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain; Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
27
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
28
|
de Freitas Pereira M, Cohen D, Auer L, Aubry N, Bogeat-Triboulot MB, Buré C, Engle NL, Jolivet Y, Kohler A, Novák O, Pavlović I, Priault P, Tschaplinski TJ, Hummel I, Vaultier MN, Veneault-Fourrey C. Ectomycorrhizal symbiosis prepares its host locally and systemically for abiotic cue signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1784-1803. [PMID: 37715981 DOI: 10.1111/tpj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade. We submitted ectomycorrhizal or non-ectomycorrhizal P. trichocarpa cuttings to short-term cessation of watering or ozone fumigation to focus on signaling networks before the onset of any physiological damage. Poplar gene expression, metabolite levels, and hormone levels were measured in several organs (roots, leaves, mycorrhizas) and integrated into networks. We discriminated the signal responses modified or maintained by ectomycorrhization. Ectomycorrhizas buffered hormonal changes in response to short-term environmental variations systemically prepared the root system for further fungal colonization and alleviated part of the root abscisic acid (ABA) signaling. The presence of ectomycorrhizas in the roots also modified the leaf multi-omics landscape and ozone responses, most likely through rewiring of the molecular drivers of photosynthesis and the calcium signaling pathway. In conclusion, P. trichocarpa-L. bicolor symbiosis results in a systemic remodeling of the host's signaling networks in response to abiotic changes. In addition, ectomycorrhizal, hormonal, metabolic, and transcriptomic blueprints are maintained in response to abiotic cues, suggesting that ectomycorrhizas are less responsive than non-mycorrhizal roots to abiotic challenges.
Collapse
Affiliation(s)
| | - David Cohen
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Nathalie Aubry
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Cyril Buré
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Nancy L Engle
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | - Timothy J Tschaplinski
- Plant Systems Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Irène Hummel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, F-54000, Nancy, France
| | | | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Laboratory of Excellence ARBRE, UMR Interactions Arbres/Microorganismes, F-54000, Nancy, France
| |
Collapse
|
29
|
Reyes-Hernández BJ, Maizel A. Tunable recurrent priming of lateral roots in Arabidopsis: More than just a clock? CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102479. [PMID: 37857036 DOI: 10.1016/j.pbi.2023.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Lateral root (LR) formation in Arabidopsis is a continuous, repetitive, post-embryonic process regulated by a series of coordinated events and tuned by the environment. It shapes the root system, enabling plants to efficiently explore soil resources and adapt to changing environmental conditions. Although the auxin-regulated modules responsible for LR morphogenesis and emergence are well documented, less is known about the initial priming. Priming is characterised by recurring peaks of auxin signalling, which, once memorised, earmark cells to form the new LR. We review the recent experimental and modelling approaches to understand the molecular processes underlying the recurring LR formation. We argue that the intermittent priming of LR results from interweaving the pattern of auxin flow and root growth together with an oscillatory auxin-modulated transcriptional mechanism and illustrate its long-range sugar-mediated tuning by light.
Collapse
Affiliation(s)
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Tran KN, Pantha P, Wang G, Kumar N, Wijesinghege C, Oh DH, Wimalagunasekara S, Duppen N, Li H, Hong H, Johnson JC, Kelt R, Matherne MG, Nguyen TT, Garcia JR, Clement A, Tran D, Crain C, Adhikari P, Zhang Y, Foroozani M, Sessa G, Larkin JC, Smith AP, Longstreth D, Finnegan P, Testerink C, Barak S, Dassanayake M. Balancing growth amidst salt stress - lifestyle perspectives from the extremophyte model Schrenkiella parvula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:921-941. [PMID: 37609706 DOI: 10.1111/tpj.16396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2023] [Indexed: 08/24/2023]
Abstract
Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.
Collapse
Affiliation(s)
- Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Narender Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Chathura Wijesinghege
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Samadhi Wimalagunasekara
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Nick Duppen
- Albert Katz International School for Desert Studies, Ben-Gurion University of the Negev, Sde Boqer Campus, Beersheba, 8499000, Israel
| | - Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Hyewon Hong
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, 61801, USA
| | - John C Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Ross Kelt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Megan G Matherne
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Thu T Nguyen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Jason R Garcia
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Ashley Clement
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - David Tran
- Department of Biochemistry & Department of Psychology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Colt Crain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
- Louisiana School for Math, Science and the Arts, Natchitoches, Louisiana, 71457, USA
| | - Prava Adhikari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - David Longstreth
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Patrick Finnegan
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boqer Campus, Beersheba, 8499000, Israel
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
31
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
32
|
Fu M, Liao J, Liu X, Li M, Zhang S. Artificial warming affects sugar signals and flavonoid accumulation to improve female willows' growth faster than males. TREE PHYSIOLOGY 2023; 43:1584-1602. [PMID: 37384415 DOI: 10.1093/treephys/tpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Increasing global warming is severely affecting tree growth and development. However, research on the sex-specific responses of dioecious trees to warming is scarce. Here, male and female Salix paraplesia were selected for artificial warming (an increase of 4 °C relative to ambient temperature) to investigate the effects on morphological, physiological, biochemical and molecular responses. The results showed that warming significantly promoted the growth of female and male S. paraplesia, but females grew faster than males. Warming affected photosynthesis, chloroplast structures, peroxidase activity, proline, flavonoids, nonstructural carbohydrates (NSCs) and phenolic contents in both sexes. Interestingly, warming increased flavonoid accumulation in female roots and male leaves but inhibited it in female leaves and male roots. The transcriptome and proteome results indicated that differentially expressed genes and proteins were significantly enriched in sucrose and starch metabolism and flavonoid biosynthesis pathways. The integrative analysis of transcriptomic, proteomic, biochemical and physiological data revealed that warming changed the expression of SpAMY, SpBGL, SpEGLC and SpAGPase genes, resulting in the reduction of NSCs and starch and the activation of sugar signaling, particularly SpSnRK1s, in female roots and male leaves. These sugar signals subsequently altered the expression of SpHCTs, SpLAR and SpDFR in the flavonoid biosynthetic pathway, ultimately leading to the differential accumulation of flavonoids in female and male S. paraplesia. Therefore, warming causes sexually differential responses of S. paraplesia, with females performing better than males.
Collapse
Affiliation(s)
- Mingyue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jun Liao
- College of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
33
|
Mondal S, Chakraborty D. Root growth and physiological responses in wheat to topsoil and subsoil compaction with or without artificial vertical macropores. Heliyon 2023; 9:e18834. [PMID: 37576250 PMCID: PMC10415892 DOI: 10.1016/j.heliyon.2023.e18834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
The process of soil compaction can cause various stresses on roots, ultimately limiting their growth and development within the soil. Understanding this phenomenon in real-world conditions can be challenging since the growth of roots is influenced by the soil environment. To investigate this issue, four experiments were conducted to examine the impact of topsoil (two in pots: with clay loam and sandy loam soils under two soil water regimes) and subsoil (in rhizobox: one with clay loam soil and the other with sandy loam soil, containing artificial vertical macropores) compaction on the relationship between edaphic factors and the physiological response of wheat roots. The topsoil compaction reduced root length, volume, and weight by 30-50% and the root diameter by ∼15% compared to the non-compact soil. The effect was reduced in the soil with higher clay content (clay loam), especially under the limited soil water condition. Plant physiological responses were adversely affected by compaction with a reduction in plant height. The transpiration rate was highly impacted (21-47% reduction) with the build-up of intercellular CO2 content in leaves (13-31%), especially with limited water applications. Root growth was severely restricted (>60%) in the compact subsoil layer, although the surface area and volume of roots increased in the overlying non-compact layer. Naturally occurring or artificial vertical macropores acted as escape channels, facilitating the roots to pass through the compact subsoil and grow abundantly in the loose soil below. However, plants in field conditions encounter a mix of loose and compact soil zones. By studying how roots respond to this soil heterogeneity, we can develop strategies to reduce the negative effects of soil compaction.
Collapse
Affiliation(s)
| | - Debashis Chakraborty
- Division of Agricultural Physics, ICAR Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
34
|
Alotaibi M, El-Hendawy S, Mohammed N, Alsamin B, Al-Suhaibani N, Refay Y. Effects of Salicylic Acid and Macro- and Micronutrients through Foliar and Soil Applications on the Agronomic Performance, Physiological Attributes, and Water Productivity of Wheat under Normal and Limited Irrigation in Dry Climatic Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2389. [PMID: 37376014 DOI: 10.3390/plants12122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Ensuring food security with severe shortages of freshwater and drastic changes in climatic conditions in arid countries requires the urgent development of feasible and user-friendly strategies. Relatively little is known regarding the impacts of the co-application (Co-A) of salicylic acid (SA), macronutrients (Mac), and micronutrients (Mic) through foliar (F) and soil (S) application strategies on field crops under arid and semiarid climatic conditions. A two-year field experiment was designed to compare the impacts of seven (Co-A) treatments of this strategy, including a control, FSA + Mic, FSA + Mac, SSA + FMic, SSA + FSA + Mic, SSA + Mic + FSA, and SSA + Mic + FMac + Mic on the agronomic performance, physiological attributes, and water productivity (WP) of wheat under normal (NI) and limited (LMI) irrigation conditions. The results reveal that the LMI treatment caused a significant reduction in various traits related to the growth (plant height, tiller and green leaf numbers, leaf area index, and shoot dry weight), physiology (relative water content and chlorophyll pigments), and yield components (spike length, grain weight and grain numbers per spike, thousand-grain weight, and harvest index) of wheat by 11.4-47.8%, 21.8-39.8%, and 16.4-42.3%, respectively, while WP increased by 13.3% compared to the NI treatment. The different Co-A treatments have shown a 0.2-23.7%, 3.6-26.7%, 2.3-21.6%, and 12.2-25.0% increase in various traits related to growth, physiology, yield, and WP, respectively, in comparison to the control treatment. The SSA+ FSA + Mic was determined as the best treatment that achieved the best results for all studied traits under both irrigation conditions, followed by FSA + Mic and SSA + Mic + FSA under LMI in addition to FSA + Mac under NI conditions. It can be concluded that the Co-A of essential plant nutrients along with SA accomplished a feasible, profitable, and easy-to-use strategy to attenuate the negative impacts of deficit irrigation stress, along with the further improvement in the growth and production of wheat under NI conditions.
Collapse
Affiliation(s)
- Majed Alotaibi
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nabil Mohammed
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Bazel Alsamin
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nasser Al-Suhaibani
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yahya Refay
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
35
|
Mulaudzi T, Sias G, Nkuna M, Ndou N, Hendricks K, Ikebudu V, Koo AJ, Ajayi RF, Iwuoha E. Seed Priming with MeJa Prevents Salt-Induced Growth Inhibition and Oxidative Damage in Sorghum bicolor by Inducing the Expression of Jasmonic Acid Biosynthesis Genes. Int J Mol Sci 2023; 24:10368. [PMID: 37373514 DOI: 10.3390/ijms241210368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Gershwin Sias
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Kaylin Hendricks
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vivian Ikebudu
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rachel F Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
36
|
García MJ, Romera FJ, Zhang W, Pérez-Vicente R. Editorial: Role of shoot-derived signals in root responses to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1220592. [PMID: 37384356 PMCID: PMC10299730 DOI: 10.3389/fpls.2023.1220592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Affiliation(s)
- María José García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis (C-4), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
37
|
Li H, Duijts K, Pasini C, van Santen JE, Lamers J, de Zeeuw T, Verstappen F, Wang N, Zeeman SC, Santelia D, Zhang Y, Testerink C. Effective root responses to salinity stress include maintained cell expansion and carbon allocation. THE NEW PHYTOLOGIST 2023; 238:1942-1956. [PMID: 36908088 DOI: 10.1111/nph.18873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Acclimation of root growth is vital for plants to survive salt stress. Halophytes are great examples of plants that thrive even under severe salinity, but their salt tolerance mechanisms, especially those mediated by root responses, are still largely unknown. We compared root growth responses of the halophyte Schrenkiella parvula with its glycophytic relative species Arabidopsis thaliana under salt stress and performed transcriptomic analysis of S. parvula roots to identify possible gene regulatory networks underlying their physiological responses. Schrenkiella parvula roots do not avoid salt and experience less growth inhibition under salt stress. Salt-induced abscisic acid levels were higher in S. parvula roots compared with Arabidopsis. Root transcriptomic analysis of S. parvula revealed the induction of sugar transporters and genes regulating cell expansion and suberization under salt stress. 14 C-labeled carbon partitioning analyses showed that S. parvula continued allocating carbon to roots from shoots under salt stress while carbon barely allocated to Arabidopsis roots. Further physiological investigation revealed that S. parvula roots maintained root cell expansion and enhanced suberization under severe salt stress. In summary, roots of S. parvula deploy multiple physiological and developmental adjustments under salt stress to maintain growth, providing new avenues to improve salt tolerance of plants using root-specific strategies.
Collapse
Affiliation(s)
- Hongfei Li
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Kilian Duijts
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Carlo Pasini
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Joyce E van Santen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Thijs de Zeeuw
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Francel Verstappen
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Nan Wang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
38
|
Wang F, Wang Y, Ying L, Lu H, Liu Y, Liu Y, Xu J, Wu Y, Mo X, Wu Z, Mao C. Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1164441. [PMID: 37223782 PMCID: PMC10200874 DOI: 10.3389/fpls.2023.1164441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two primary components of fertilizers for crop production. Coordinated acquisition and utilization of N and P are crucial for plants to achieve nutrient balance and optimal growth in a changing rhizospheric nutrient environment. However, little is known about how N and P signaling pathways are integrated. We performed transcriptomic analyses and physiological experiments to explore gene expression profiles and physiological homeostasis in the response of rice (Oryza sativa) to N and P deficiency. We revealed that N and P shortage inhibit rice growth and uptake of other nutrients. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) suggested that N and Pi deficiency stimulate specific different physiological reactions and also some same physiological processes in rice. We established the transcriptional regulatory network between N and P signaling pathways based on all DEGs. We determined that the transcript levels of 763 core genes changed under both N or P starvation conditions. Among these core genes, we focused on the transcription factor gene NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) and show that its encoded protein is a positive regulator of P homeostasis and a negative regulator of N acquisition in rice. NIGT1 promoted Pi uptake but inhibited N absorption, induced the expression of Pi responsive genes PT2 and SPX1 and repressed the N responsive genes NLP1 and NRT2.1. These results provide new clues about the mechanisms underlying the interaction between plant N and P starvation responses.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Luying Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yijian Liu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| |
Collapse
|
39
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
40
|
Tran TLC, Callahan DL, Islam MT, Wang Y, Arioli T, Cahill D. Comparative metabolomic profiling of Arabidopsis thaliana roots and leaves reveals complex response mechanisms induced by a seaweed extract. FRONTIERS IN PLANT SCIENCE 2023; 14:1114172. [PMID: 36968386 PMCID: PMC10035662 DOI: 10.3389/fpls.2023.1114172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Seaweed extracts are a prominent class of biostimulants that enhance plant health and tolerance to biotic and abiotic stresses due to their unique bioactive components. However, the mechanisms of action of biostimulants are still unknown. Here, we have used a metabolomic approach, a UHPLC-MS method, to uncover the mechanisms induced following application to Arabidopsis thaliana of a seaweed extract derived from Durvillaea potatorum and Ascophyllum nodosum. We have identified, following the application of the extract, key metabolites and systemic responses in roots and leaves across 3 timepoints (0, 3, 5 days). Significant alterations in metabolite accumulation or reduction were found for those belonging to broad groups of compounds such as lipids, amino acids, and phytohormones; and secondary metabolites such as phenylpropanoids, glucosinolates, and organic acids. Strong accumulations of TCA cycle and N-containing and defensive metabolites such as glucosinolates were also found revealing the enhancement of carbon and nitrogen metabolism and defence systems. Our study has demonstrated that application of seaweed extract dramatically altered the metabolomic profiles of Arabidopsis and revealed differences in roots and leaves that varied across the timepoints tested. We also show clear evidence of systemic responses that were initiated in the roots and resulted in metabolic alterations in the leaves. Collectively, our results suggest that this seaweed extract promotes plant growth and activates defence systems by altering various physiological processes at the individual metabolite level.
Collapse
Affiliation(s)
- Thi Linh Chi Tran
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Damien L. Callahan
- School of Life and Environmental Sciences, Centre for Cellular and Molecular Biology, Deakin University, Burwood, VIC, Australia
| | - Md Tohidul Islam
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Yichao Wang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Tony Arioli
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Seasol International R&D Department, Bayswater, VIC, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
41
|
Wang Y, Zhao H, Xu L, Zhang H, Xing H, Fu Y, Zhu L. PUB30-mediated downregulation of the HB24-SWEET11 module is involved in root growth inhibition under salt stress by attenuating sucrose supply in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:1667-1683. [PMID: 36444526 DOI: 10.1111/nph.18635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
One of the strategies that plants adopt to cope with an unfavorable environment is to sacrifice their growth for tolerance. Although moderate salt stress can induce root growth inhibition, the molecular mechanisms regulating this process have yet to be elucidated. Here, we found that overexpression of a zinc finger-homeodomain family transcription factor, HOMEOBOX PROTEIN 24 (HB24), led to longer primary roots than in the wild-type in the presence of 125 mM NaCl, whereas this phenotype was reversed for the hb24 loss-of-function mutant, indicating a negative impact of HB24 on salt-induced root growth inhibition. We then found that salt stress triggered the degradation of HB24 via the ubiquitin-proteasome pathway, as mediated by a plant U-box type E3 ubiquitin ligase 30 (PUB30) that directly targets HB24. We verified that HB24 is able to directly bind to the promoters of Sugars Will Eventually be Exported Transporter 11/12 (SWEET11/12) to regulate their expression in roots. Through genetic and biochemical assays, we further demonstrated that the HB24-SWEET11 module plays a negative role in salt-induced root growth inhibition. Therefore, we propose that under salt stress, PUB30 mediates HB24's degradation, thereby downregulating the expression of SWEET11, resulting in reduced sucrose supply and root growth inhibition.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liyuan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hantao Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongjie Xing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
42
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
43
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
44
|
Guo J, Li S, Brestic M, Li N, Zhang P, Liu L, Li X. Modulations in protein phosphorylation explain the physiological responses of barley (Hordeum vulgare) to nanoplastics and ZnO nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130196. [PMID: 36272376 DOI: 10.1016/j.jhazmat.2022.130196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To address the knowledge gap on the effects of the co-existence of nanomaterials on plant growth, barley (Hordeum vulgare L.) plants were irrigated with zinc oxide nanoparticles (0.5 g L-1), nanoplastics (1 g L-1), and the combination of these two nanomaterials for 10 days. The co-existence of nanoplastics and ZnO nanoparticles increased H2O2 concentration by 12.76% and 38.30%, compared with the ZnO nanoparticles and nanoplastics exposure. The concentration of abscisic acid (ABA) in plants under the co-existence of nanoplastics and ZnO nanoparticles was 29.53% and 10.42% higher than that in ZnO nanoparticles treated plants and nanoplastics treated plants. The global analysis of phosphoproteomics identified 132 phosphorylated proteins and 173 phosphorylation sites in barley leaves exposed to the nanomaterial combination, which were related to photosynthesis, carbon fixation, nitrogen metabolism, and arginine and proline metabolisms. Further physiological analysis indicated that the combination of ZnO nanoparticles and nanoplastics caused larger damage to the systems of antioxidant and carbohydrate metabolisms as exemplified by decreased activities of apoplastic peroxidases (25.10%-48.60%), glutathione reductase (91.07%-94.94%), and sucrose synthase (53.59%-61.19%) in roots and increased cell wall invertase activity (12.97%-17.61%) in leaves, compared with the single nanomaterial treatments. These results indicate that the modulations in protein phosphorylation were closely related to the physiological responses to nanomaterial exposure, suggesting that the co-existence of nanomaterials may lead to greater impacts than single ones.
Collapse
Affiliation(s)
- Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Na Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Peng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China; Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
45
|
Sacco Botto C, Matić S, Moine A, Chitarra W, Nerva L, D’Errico C, Pagliarani C, Noris E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int J Mol Sci 2023; 24:2893. [PMID: 36769211 PMCID: PMC9918285 DOI: 10.3390/ijms24032893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.
Collapse
Affiliation(s)
- Camilla Sacco Botto
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| |
Collapse
|
46
|
Sun X, Zheng HX, Li S, Gao Y, Dang Y, Chen Z, Wu F, Wang X, Xie Q, Sui N. MicroRNAs balance growth and salt stress responses in sweet sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:677-697. [PMID: 36534087 DOI: 10.1111/tpj.16065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, China University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
47
|
Subramani M, Urrea CA, Habib R, Bhide K, Thimmapuram J, Kalavacharla V. Comparative Transcriptome Analysis of Tolerant and Sensitive Genotypes of Common Bean ( Phaseolus vulgaris L.) in Response to Terminal Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010210. [PMID: 36616341 PMCID: PMC9824821 DOI: 10.3390/plants12010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 06/10/2023]
Abstract
We conducted a genome-wide transcriptomic analysis of three drought tolerant and sensitive genotypes of common bean to examine their transcriptional responses to terminal drought stress. We then conducted pairwise comparisons between the root and leaf transcriptomes from the resulting tissue based on combined transcriptomic data from the tolerant and sensitive genotypes. Our transcriptomic data revealed that 491 (6.4%) DEGs (differentially expressed genes) were upregulated in tolerant genotypes, whereas they were downregulated in sensitive genotypes; likewise, 396 (5.1%) DEGs upregulated in sensitive genotypes were downregulated in tolerant genotypes. Several transcription factors, heat shock proteins, and chaperones were identified in the study. Several DEGs in drought DB (data Base) overlapped between genotypes. The GO (gene ontology) terms for biological processes showed upregulation of DEGs in tolerant genotypes for sulfate and drug transmembrane transport when compared to sensitive genotypes. A GO term for cellular components enriched with upregulated DEGs for the apoplast in tolerant genotypes. These results substantiated the temporal pattern of root growth (elongation and initiation of root growth), and ABA-mediated drought response in tolerant genotypes. KEGG (kyoto encyclopedia of genes and genomes) analysis revealed an upregulation of MAPK (mitogen activated protein kinase) signaling pathways and plant hormone signaling pathways in tolerant genotypes. As a result of this study, it will be possible to uncover the molecular mechanisms of drought tolerance in response to terminal drought stress in the field. Further, genome-wide transcriptomic analysis of both tolerant and sensitive genotypes will assist us in identifying potential genes that may contribute to improving drought tolerance in the common bean.
Collapse
Affiliation(s)
- Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA
| | - Carlos A. Urrea
- Panhandle Research and Extension Center, University of Nebraska, 4502 Avenue I, Scottsbluff, NE 69361, USA
| | - Rasheed Habib
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN 47907, USA
| | | | - Venu Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture, Science and Technology (CAST), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
48
|
Zheng H, Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:5. [PMID: 36656365 DOI: 10.1007/s00122-023-04292-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
SbMYBHv33 negatively regulated biomass accumulation and salt tolerance in sorghum and Arabidopsis by regulating reactive oxygen species accumulation and ion levels. Salt stress is one of the main types of environmental stress leading to a reduction in crop yield worldwide. Plants have also evolved a variety of corresponding regulatory pathways to resist environmental stress damage. This study aimed to identify a SbMYBHv33 transcription factor that downregulates in salt, drought, and abscisic acid (ABA) in the salt-tolerant inbred line sorghum M-81E. The findings revealed that overexpression of SbMYBHv33 in sorghum significantly reduced sorghum biomass accumulation at the seedling stage and also salinity tolerance. Meanwhile, a heterologous transformation of Arabidopsis with SbMYBHv33 produced a similar phenotype. The loss of function of the Arabidopsis homolog of SbMYBHv33 resulted in longer roots and increased salt tolerance. Under normal conditions, SbMYBHV33 overexpression promoted the expression of ABA pathway genes in sorghum and inhibited growth. Under salt stress conditions, the gene expression of SbMYBHV33 decreased in the overexpressed lines, and the promotion of these genes in the ABA pathway was attenuated. This might be an important reason for the difference in growth and stress resistance between SbMYBHv33-overexpressed sorghum and ectopic expression Arabidopsis. Hence, SbMYBHv33 is an important component of sorghum growth and development and the regulation of salt stress response, and it could negatively regulate salt tolerance and biomass accumulation in sorghum.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
49
|
Wang H, Han X, Fu X, Sun X, Chen H, Wei X, Cui S, Liu Y, Guo W, Li X, Xing J, Zhang Y. Overexpression of TaLBD16-4D alters plant architecture and heading date in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:911993. [PMID: 36212357 PMCID: PMC9533090 DOI: 10.3389/fpls.2022.911993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Lateral organ boundaries domain (LBD) proteins, a class of plant-specific transcription factors with a special domain of lateral organ boundaries (LOB), play essential roles in plant growth and development. However, there is little known about the functions of these genes in wheat to date. Our previous study demonstrated that TaLBD16-4D is conducive to increasing lateral root number in wheat. In the present work, we further examined important agronomical traits of the aerial part of transgenic wheat overexpressing TaLBD16-4D. Interestingly, it was revealed that overexpressing TaLBD16-4D could lead to early heading and multiple alterations of plant architecture, including decreased plant height, increased flag leaf size and stem diameter, reduced spike length and tillering number, improved spike density and grain width, and decreased grain length. Moreover, auxin-responsive experiments demonstrated that the expression of TaLBD16-4D in wild-type (WT) wheat plants showed a significant upregulation through 2,4-D treatment. TaLBD16-4D-overexpression lines displayed a hyposensitivity to 2,4-D treatment and reduced shoot gravitropic response. The expressions of a set of auxin-responsive genes were markedly different between WT and transgenic plants. In addition, overexpressing TaLBD16-4D affected the transcript levels of flowering-related genes (TaGI, TaCO1, TaHd1, TaVRN1, TaVRN2, and TaFT1). Notably, the expression of TaGI, TaCO1, TaHd1, TaVRN1, and TaFT1 displayed significant upregulation under IAA treatment. Collectively, our observations indicated that overexpressing TaLBD16-4D could affect aerial architecture and heading time possibly though participating in the auxin pathway.
Collapse
Affiliation(s)
- Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaofeng Fu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xinling Sun
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Hailong Chen
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Xirui Wei
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Shubin Cui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yiguo Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|