1
|
Small L, Nguyen TV, Larance M, Saunders DN, Hoy AJ, Schmitz-Peiffer C, Cooney GJ, Brandon AE. Liver proteomics identifies a disconnect between proteins associated with de novo lipogenesis and triglyceride storage. J Lipid Res 2024:100687. [PMID: 39490929 DOI: 10.1016/j.jlr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
De novo lipogenesis (DNL) has been implicated in the development and progression of liver steatosis. Hepatic DNL is strongly influenced by dietary macronutrient composition with diets high in carbohydrate increasing DNL and while diets high in fat decrease DNL. The enzymes in the core DNL pathway have been well characterised, however less is known about other liver proteins that play accessory or regulatory roles. In the current study, we associate measured rates of hepatic DNL and fat content with liver proteomic analysis in mice to identify known and unknown proteins that may have a role in DNL. Male mice were fed either a standard chow diet, a semi-purified high starch or high fat diet. Both semi-purified diets resulted in increased body weight, fat mass and liver triglyceride content compared to chow controls and hepatic DNL was increased in the high starch and decreased in high fat fed mice. Proteomic analysis identified novel proteins associated with DNL that are involved in taurine metabolism, suggesting a link between these pathways. There was no relationship between proteins that associated with DNL and those associated with liver triglyceride content. Further analysis identified proteins that are differentially regulated when comparing a non-purified chow diet to either of the semi-purified diets which provide a set of proteins that are influenced by dietary complexity. Finally, we compared the liver proteome between 4- and 30-week diet-fed mice and found remarkable similarity suggesting metabolic remodelling of the liver occurs rapidly in response to differing dietary components.
Collapse
Affiliation(s)
- Lewin Small
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| | | | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Darren N Saunders
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Carsten Schmitz-Peiffer
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia
| | - Gregory J Cooney
- Garvan Institute, Sydney, NSW, Australia; School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Amanda E Brandon
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Park JE, Han JS. ( E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone, a Major Homoisoflavonoid, Attenuates Free Fatty Acid-Induced Hepatic Steatosis by Activating AMPK and PPARα Pathways in HepG2 Cells. Nutrients 2024; 16:3475. [PMID: 39458470 PMCID: PMC11510552 DOI: 10.3390/nu16203475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC), a homoisoflavonoid isolated from Portulaca oleracea, has significant anti-adipogenesis potential; it regulates adipogenic transcription factors. However, whether HMC improves hepatic steatosis in hepatocytes remains vague. This study investigated whether HMC ameliorates hepatic steatosis in free fatty acid-treated human hepatocellular carcinoma (HepG2) cells, and if so, its mechanism of action was analyzed. METHODS Hepatic steatosis was induced by a free fatty acid mixture in HepG2 cells. Thereafter, different HMC concentrations (10, 30, and 50 µM) or fenofibrate (10 µM, a PPARα agonist, positive control) was treated in HepG2 cells. RESULTS HMC markedly decreased lipid accumulation and triglyceride content in free fatty acid-treated HepG2 cell; it (10 and 50 μM) markedly upregulated protein expressions of pAMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. HMC (10 and 50 μM) markedly inhibited the expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and stearoyl-coA desaturase 1, which are the enzymes involved in lipid synthesis. Furthermore, HMC (10 and 50 μM) markedly upregulated the protein expression of peroxisome proliferator-activated receptor alpha (PPARα) and enhanced the protein expressions of carnitine palmitoyl transferase 1 and acyl-CoA oxidase 1. CONCLUSION HMC inhibits lipid accumulation and promotes fatty acid oxidation by AMPK and PPARα pathways in free fatty acid-treated HepG2 cells, thereby attenuating hepatic steatosis.
Collapse
Affiliation(s)
- Jae-Eun Park
- Department of Hotel Baking Technology, Busan Health University, Busan 49318, Republic of Korea;
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Guo X, Li H, Zhu B, Wang X, Xu Q, Aquino E, Koo M, Li Q, Cai J, Glaser S, Wu C. HFD feeding for seven months abolishes STING disruption-driven but not female sex-based protection against hepatic steatosis and inflammation in mice. J Nutr Biochem 2024; 135:109770. [PMID: 39284534 DOI: 10.1016/j.jnutbio.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Stimulator of interferon genes (STING) is positively correlated with the degrees of liver inflammation in human metabolic dysfunction-associated steatotic liver disease (MASLD). In addition, STING disruption alleviates MASLD in mice fed a high-fat diet (HFD) for 3 months (3-m-HFD). Here we investigated the role of the duration of dietary feeding in regulating MASLD in mice and explored the involvement of STING in sex differences in MASLD. Both male and female STING-disrupted (STINGgt) and wild-type C57BL/6J mice were fed an HFD for 3 or 7 months (7-m-HFD). Additionally, female STINGgt mice upon ovariectomy (OVX) and 3-m-HFD were analyzed for MASLD. Upon 3-m-HFD, STINGgt mice exhibited decreased severity of MASLD compared to control. However, upon 7-m-HFD, STINGgt mice were comparable with wild-type mice in body weight, fat mass, and MASLD. Regarding regulating the liver RNA transcriptome, 7-m-HFD increased the expression of genes indicating proinflammatory activation of various liver cells. Interestingly, the severity of MASLD in female mice was much lighter than in male mice, regardless of STING disruption. Upon OVX, female STINGgt mice showed significantly increased severity of MASLD relative to sham control but were comparable with male STINGgt mice. Upon treatment with 17-beta estradiol (E2), hepatocytes revealed decreased fat deposition while macrophages displayed decreases in lipopolysaccharide-induced phosphorylation of Nfkb p65 and Jnk p46 independent of STING. These results suggest that 7-m-HFD, without altering female sex-based protection, abolishes STING disruption-driven protection of MASLD, likely through causing proinflammatory activation of multiple types of liver cells to offset the effect of STING disruption.
Collapse
Affiliation(s)
- Xinlei Guo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Honggui Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Bilian Zhu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Xiaoxiao Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Eduardo Aquino
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Minji Koo
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Byran, Texas, USA.
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
4
|
Westcott F, Dearlove DJ, Hodson L. Hepatic fatty acid and glucose handling in metabolic disease: Potential impact on cardiovascular disease risk. Atherosclerosis 2024; 394:117237. [PMID: 37633797 DOI: 10.1016/j.atherosclerosis.2023.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing. Although invariably associated with obesity, the importance of fat deposition in non-adipose tissue organs has yet to be fully explored. Pathological ectopic fat deposition within the liver (known as (MASLD)) has been suggested to underlie the development of T2DM and is now emerging as an independent risk factor for cardiovascular disease (CVD). The process of hepatic de novo lipogenesis (DNL), that is the synthesis of fatty acids from non-lipid precursors (e.g. glucose), has received much attention as it sits at the intersect of hepatic glucose and fatty acid handling. An upregulation of the DNL pathway has been suggested to be central in the development of metabolic diseases (including MASLD, insulin resistance, and T2DM). Here we review the evidence to determine if hepatic DNL may play a role in the development of MASLD and T2DM and therefore underlie an increased risk of CVD.
Collapse
Affiliation(s)
- Felix Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - David J Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
5
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Lundsgaard AM, Bojsen-Møller KN, Kiens B. Dietary Regulation of Hepatic Triacylglycerol Content-the Role of Eucaloric Carbohydrate Restriction with Fat or Protein Replacement. Adv Nutr 2023; 14:1359-1373. [PMID: 37591342 PMCID: PMC10721463 DOI: 10.1016/j.advnut.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Accumulation of hepatic triacylglycerol (TG) is highly associated with impaired whole-body insulin-glucose homeostasis and dyslipidemia. The summarized findings from human intervention studies investigating the effect of reduced dietary carbohydrate and increased fat intake (and in studies also increased protein) while maintaining energy intake at eucaloric requirements reveal a beneficial effect of carbohydrate reduction on hepatic TG content in obese individuals with steatosis and indices of insulin resistance. Evidence suggests that the reduction of hepatic TG content after reduced intake of carbohydrates and increased fat/protein intake in humans, results from regulation of fatty acid (FA) metabolism within the liver, with an increase in hepatic FA oxidation and ketogenesis, together with a concomitant downregulation of FA synthesis from de novo lipogenesis. The adaptations in hepatic metabolism may result from reduced intrahepatic monosaccharide and insulin availability, reduced glycolysis and increased FA availability when carbohydrate intake is reduced.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Gu W, Wang R, Chai Y, Zhang L, Chen R, Li R, Pan J, Zhu J, Sun Q, Liu C. β3 adrenergic receptor activation alleviated PM 2.5-induced hepatic lipid deposition in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168167. [PMID: 39491202 DOI: 10.1016/j.scitotenv.2023.168167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy expenditure through activation of hepatocytes is a potential approach to treat fine particulate matter (PM2.5) induced metabolic-associated fatty liver disease (MAFLD). Beta-3 adrenergic receptor (β3-AR) agonists could stimulate brown adipose tissue (BAT) energy expenditure, but it has never been investigated in MAFLD. The objective of this study is to explore the therapeutic effects of administering CL-316,243, a selective agonist of β3-AR, on hepatic lipid metabolism disturbances induced by PM2.5. Firstly, C57BL/6 N mice were intraperitoneally injected with CL-316,243 for one week. CL-316,243 significantly upregulated expression of β3-AR in the liver, accompanied with reduced serum triglyceride (TG) and free fatty acids (FFA). Next, mice were subjected to PM2.5 exposure for 4 weeks, and CL-316,243 was daily intraperitoneally injected in the fourth week of PM2.5 exposure. Exposure to PM2.5 led to a significant increase in hepatic TG and monounsaturated fatty acids (MUFAs), accompanied with elevated activity of SCD1, increased levels of TG synthesis enzymes and inhibited COX4 activity. Furthermore, the administration of CL-316,243 alleviated PM2.5-induced hepatic lipid deposition by enhancing SCD1 activity, TG lipolysis, fatty acid oxidation and TG synthesis via β3-AR/PKA/CREB/PPAR signaling pathway. Therefore, β3-AR activation may serve as a potential therapeutic approach for PM2.5 exposure-induced MAFLD.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Jing Pan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
8
|
Cook JR, Hawkins MA, Pajvani UB. Liver insulinization as a driver of triglyceride dysmetabolism. Nat Metab 2023; 5:1101-1110. [PMID: 37460842 DOI: 10.1038/s42255-023-00843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly prevalent fellow traveller with the insulin resistance that underlies type 2 diabetes mellitus. However, the mechanistic connection between MAFLD and impaired insulin action remains unclear. In this Perspective, we review data from humans to elucidate insulin's aetiological role in MAFLD. We focus particularly on the relative preservation of insulin's stimulation of triglyceride (TG) biosynthesis despite its waning ability to curb hepatic glucose production (HGP). To explain this apparent 'selective insulin resistance', we propose that hepatocellular processes that lead to TG accumulation require less insulin signal transduction, or 'insulinization,' than do those that regulate HGP. As such, mounting hyperinsulinaemia that barely compensates for aberrant HGP in insulin-resistant states more than suffices to maintain hepatic TG biosynthesis. Thus, even modestly elevated or context-inappropriate insulin levels, when sustained day and night within a heavily pro-lipogenic metabolic milieu, may translate into substantial cumulative TG biosynthesis in the insulin-resistant state.
Collapse
Affiliation(s)
- Joshua R Cook
- Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA.
| | - Meredith A Hawkins
- Diabetes Research and Training Center, Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York City, NY, USA
| | - Utpal B Pajvani
- Naomi Berrie Diabetes Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Columbia University College of Physicians & Surgeons, New York City, NY, USA
| |
Collapse
|
9
|
Semmler G, Datz C, Trauner M. Eating, diet, and nutrition for the treatment of non-alcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S244-S260. [PMID: 36517001 PMCID: PMC10029946 DOI: 10.3350/cmh.2022.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD). Summarizing our rapidly advancing understanding of how our diet influences our metabolism and focusing on specific effects on the liver, we provide a comprehensive overview of dietary concepts to counteract the increasing burden of NAFLD. Specifically, we emphasize the importance of dietary calorie restriction independently of the macronutrient composition together with adherence to a Mediterranean diet low in added fructose and processed meat that seems to exert favorable effects beyond calorie restriction. Also, we discuss intermittent fasting as a type of diet specifically tailored to decrease liver fat content and increase ketogenesis, awaiting future study results in NAFLD. Finally, personalized dietary recommendations could be powerful tools to increase the effectiveness of dietary interventions in patients with NAFLD considering the genetic background and the microbiome, among others.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
11
|
Nagarajan SR, Cross E, Sanna F, Hodson L. Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism. Proc Nutr Soc 2022; 81:1-11. [PMID: 34726148 DOI: 10.1017/s0029665121003761] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The liver is a key metabolic organ that undertakes a multitude of physiological processes over the course of a day, including intrahepatic lipid and glucose metabolism which plays a key role in the regulation of systemic lipid and glucose concentrations. It serves as an intermediary organ between exogenous (dietary) and endogenous energy supply to extrahepatic organs. Thus, perturbations in hepatic metabolism can impact widely on metabolic disease risk. For example, the accumulation of intra-hepatocellular TAG (IHTG), for which adiposity is almost invariably a causative factor may result in dysregulation of metabolic pathways. Accumulation of IHTG is likely due to an imbalance between fatty acid delivery, synthesis and removal (via oxidation or export as TAG) from the liver; insulin plays a key role in all of these processes.
Collapse
Affiliation(s)
- S R Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - E Cross
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - F Sanna
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - L Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Muñiz-González AB, Silva CJM, Patricio Silva AL, Campos D, Pestana JLT, Martínez-Guitarte JL. Suborganismal responses of the aquatic midge Chironomus riparius to polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146981. [PMID: 34088153 DOI: 10.1016/j.scitotenv.2021.146981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater riverbeds are a major repository of microplastics (MPs) from inland activities. Benthic macroinvertebrates that live in close contact with sediments seem to ingest a considerable amount of such plastic particles. The effects of MPs on life-history traits are relatively well-known, but the suborganismal mechanisms underlying such effects remain unclear. This study addressed the potential effects of low-density polyethylene (LDPE) MPs on Chironomus riparius larvae at cellular and molecular levels. Fourth instar C. riparius larvae were exposed to 0.025 and 2.5 g/kg LDPE of dry sediment (sizes: <32 and 32-45 μm; with irregular shape) under laboratory conditions for 48 h. These short-term exposures to environmental concentrations of LDPE MPs induced changes in the energy reserves (mostly by decreasing carbohydrates and increasing lipids), increased antioxidant and detoxification responses (tGSH, CAT, and GST), and induced increases in the activity of AChE (related to neurotransmission). In addition, at the gene level, exposure to MPs modified mRNA levels of InR, Dis, EcR, Dronc, Met (endocrine system), Def (immune system), PARP, ATM, NLK, and Decay (DNA repair), generating important alterations in the C. riparius development and response to unfavorable situations. This study provides new evidence of the effects of LDPE MPs at the suborganismal level, filling the gap in knowledge regarding the mechanisms underlying the toxicity of MPs and spotlighting gene expression analyses as early indicators of MP toxicity in C. riparius which were confirmed by Integrated biomarker response analyses highlighting the gene expression as sensible and useful endpoints for LPDE pollution in freshwaters. These results, coupled with previous investigations on responses at the organismal level, emphasizes the potential adverse effects of LDPE MPs on C. riparius, which may compromise freshwater benthic communities, considering its ecological role within these habitats.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain.
| | - Carlos J M Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana L Patricio Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain
| |
Collapse
|
13
|
Abstract
Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
15
|
Zinöcker MK, Svendsen K, Dankel SN. The homeoviscous adaptation to dietary lipids (HADL) model explains controversies over saturated fat, cholesterol, and cardiovascular disease risk. Am J Clin Nutr 2021; 113:277-289. [PMID: 33471045 DOI: 10.1093/ajcn/nqaa322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
SFAs play the leading role in 1 of the greatest controversies in nutrition science. Relative to PUFAs, SFAs generally increase circulating concentrations of LDL cholesterol, a risk factor for atherosclerotic cardiovascular disease (ASCVD). However, the purpose of regulatory mechanisms that control the diet-induced lipoprotein cholesterol dynamics is rarely discussed in the context of human adaptive biology. We argue that better mechanistic explanations can help resolve lingering controversies, with the potential to redefine aspects of research, clinical practice, dietary advice, public health management, and food policy. In this paper we propose a novel model, the homeoviscous adaptation to dietary lipids (HADL) model, which explains changes in lipoprotein cholesterol as adaptive homeostatic adjustments that serve to maintain cell membrane fluidity and hence optimal cell function. Due to the highly variable intake of fatty acids in humans and other omnivore species, we propose that circulating lipoproteins serve as a buffer to enable the rapid redistribution of cholesterol molecules between specific cells and tissues that is necessary with changes in dietary fatty acid supply. Hence, circulating levels of LDL cholesterol may change for nonpathological reasons. Accordingly, an SFA-induced raise in LDL cholesterol in healthy individuals could represent a normal rather than a pathologic response. These regulatory mechanisms may become disrupted secondarily to pathogenic processes in association with insulin resistance and the presence of other ASCVD risk factors, as supported by evidence showing diverging lipoprotein responses in healthy individuals as opposed to those with metabolic disorders such as insulin resistance and obesity. Corresponding with the model, we suggest alternative contributing factors to the association between elevated LDL cholesterol concentrations and ASCVD, involving dietary factors beyond SFAs, such as an increased endotoxin load from diet-gut microbiome interactions and subsequent chronic low-grade inflammation that interferes with fine-tuned signaling pathways.
Collapse
Affiliation(s)
| | - Karianne Svendsen
- Department of Nutrition, University of Oslo, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Syed-Abdul MM, Jacome-Sosa M, Hu Q, Gaballah AH, Winn NC, Lee NT, Mucinski JM, Manrique-Acevedo C, Lastra G, Anderson JM, Al Juboori A, Bartholow BD, Parks EJ. The Tailgate Study: Differing metabolic effects of a bout of excessive eating and drinking. Alcohol 2021; 90:45-55. [PMID: 33232792 DOI: 10.1016/j.alcohol.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Excess energy intake by spectators at a sporting event (i.e., a tailgate) might cause acute negative health effects. However, limited data exist regarding the effects of overeating and alcohol consumption on lipid metabolism and the potential to gain intrahepatic triacylglycerols (IHTG). We tested the hypothesis that overconsumption of food and alcohol would significantly increase both hepatic de novo lipogenesis (DNL) and IHTG. METHODS Eighteen males (mean ± SD, age: 31.4 ± 7.3 years, BMI: 32.1 ± 5.9 kg/m2) were given alcoholic drinks to elevate blood alcohol for 5 h, while highly palatable food was presented. Blood samples were collected and DNL in TG-rich lipoproteins (TRL) was measured by GC/MS, IHTG was measured via MRS (n = 15), and substrate oxidation was measured via indirect calorimetry. RESULTS Subjects consumed 5087 ± 149 kcal (191 ± 25% excess of total daily energy needs including 171 ± 24 g alcohol), which increased plasma insulin, glucose, TG, and decreased NEFA (ANOVA p ≤ 0.003 for all). Both DNL and TRL-TG increased (p < 0.001), while IHTG did not change in the group as a whole (p = 0.229). Individual subject data revealed remarkably differing responses for IHTG (nine increased, five decreased, one did not change). Despite maintaining equal breath alcohol levels, subjects with IHTG elevations exhibited higher DNL, consumed 90% less alcohol (p = 0.048), tended to consume more carbohydrates, and exhibited lower whole-body fat oxidation (not significant) compared to those whose IHTG was reduced. DISCUSSION This study demonstrates that acute excess energy intake may have differing effects on an individual's DNL and IHTG, and dietary carbohydrate may influence DNL more than alcohol.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Miriam Jacome-Sosa
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Qiong Hu
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Ayman H Gaballah
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Nhan T Lee
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Justine M Mucinski
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Guido Lastra
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Jennifer M Anderson
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Alhareth Al Juboori
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bruce D Bartholow
- The College of Arts and Science, Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
17
|
Roumans KH, Basset Sagarminaga J, Peters HP, Schrauwen P, Schrauwen-Hinderling VB. Liver fat storage pathways: methodologies and dietary effects. Curr Opin Lipidol 2021; 32:9-15. [PMID: 33234776 PMCID: PMC7810416 DOI: 10.1097/mol.0000000000000720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver is the result of an imbalance between lipid storage [from meal, de novo lipogenesis (DNL) and fatty acid (FA) uptake] and disposal (oxidation and VLDL output). Knowledge on the contribution of each of these pathways to liver fat content in humans is essential to develop tailored strategies to prevent and treat nonalcoholic fatty liver. Here, we review the techniques available to study the different storage pathways and review dietary modulation of these pathways. RECENT FINDINGS The type of carbohydrate and fat could be of importance in modulating DNL, as complex carbohydrates and omega-3 FAs have been shown to reduce DNL. No effects were found on the other pathways, however studies investigating this are scarce. SUMMARY Techniques used to assess storage pathways are predominantly stable isotope techniques, which require specific expertise and are costly. Validated biomarkers are often lacking. These methodological limitations also translate into a limited number of studies investigating to what extent storage pathways can be modulated by diet. Further research is needed to elucidate in more detail the impact that fat and carbohydrate type can have on liver fat storage pathways and content.
Collapse
Affiliation(s)
- Kay H.M. Roumans
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
| | | | | | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
| | - Vera B. Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
18
|
The Root of Polygonum multiflorum Thunb. Alleviates Non-Alcoholic Steatosis and Insulin Resistance in High Fat Diet-Fed Mice. Nutrients 2020; 12:nu12082353. [PMID: 32781739 PMCID: PMC7468938 DOI: 10.3390/nu12082353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatosis and insulin resistance are critical health problems and cause metabolic complications worldwide. In this study, we investigated the molecular mechanism of Polygonum multiflorum Thunb. (PM) against hepatic lipid accumulation and insulin resistance by using in vitro and in vivo models. PM extract significantly attenuated the accumulation of lipid droplets and hepatic triglyceride in free fatty acid (FFA)-exposed HepG2 cells. PM extract increased the AMPK and ACC phosphorylation and GLUT4 expression, whose levels were downregulated in FFA-exposed cells. PM extract also decreased precursor and mature forms of SREBP-1 in FFA-exposed cells. C57BL/6 mice fed with normal diet (ND) or high-fat diet (HFD) were administered PM extract (100 mg/kg) or vehicle orally for 16 weeks. PM extract attenuated the increases of the epididymal and perirenal fats on HFD feeding. PM extract markedly reduced hepatic lipid accumulation and fasting glucose levels, and improved glucose and insulin sensitivity in HFD-fed mice. HFD-fed mice decreased the AMPK and ACC phosphorylation and GLUT4 expression, and increased precursor and mature forms of SREBP-1; these changes were significantly restored by PM extract. In conclusion, PM extract alleviates non-alcoholic steatosis and insulin resistance through modulating the expression of proteins on lipid metabolism and glucose transport in the liver.
Collapse
|
19
|
Moore MC, Smith MS, Swift LL, Cincotta AH, Ezrokhi M, Cominos N, Zhang Y, Farmer B, Cherrington AD. Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model. Am J Physiol Endocrinol Metab 2020; 319:E133-E145. [PMID: 32459527 PMCID: PMC7468784 DOI: 10.1152/ajpendo.00479.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine mesylate treatment was examined in dogs fed a high fat diet (HFD) for 8 wk. After 4 wk on HFD, daily bromocriptine (Bromo; n = 6) or vehicle (CTR; n = 5) injections were administered. Oral glucose tolerance tests were performed before beginning HFD (OGTT1), 4 wk after HFD began (Bromo only), and after 7.5 wk on HFD (OGTT3). After 8 wk on HFD, clamp studies were performed, with infusion of somatostatin and intraportal replacement of insulin (4× basal) and glucagon (basal). From 0 to 90 min (P1), glucose was infused via peripheral vein to double the hepatic glucose load; and from 90 to 180 min (P2), glucose was infused via the hepatic portal vein at 4 mg·kg-1·min-1, with the HGL maintained at 2× basal. Bromo decreased the OGTT glucose ΔAUC0-30 and ΔAUC0-120 by 62 and 27%, respectively, P < 0.05 for both) without significantly altering the insulin response. Bromo dogs exhibited enhanced net hepatic glucose uptake (NHGU) compared with CTR (~33 and 21% greater, P1 and P2, respectively, P < 0.05). Nonhepatic glucose uptake (non-HGU) was increased ~38% in Bromo in P2 (P < 0.05). Bromo vs. CTR had higher (P < 0.05) rates of glucose infusion (36 and 30%) and non-HGU (~40 and 27%) than CTR during P1 and P2, respectively. In Bromo vs. CTR, hepatic 18:0/16:0 and 16:1/16:0 ratios tended to be elevated in triglycerides and were higher (P < 0.05) in phospholipids, consistent with a beneficial effect of bromocriptine on liver fat accumulation. Thus, bromocriptine treatment improved glucose disposal in a glucose-intolerant model, enhancing both NHGU and non-HGU.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta S Smith
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Larry L Swift
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Ben Farmer
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
20
|
Yi SY, Steffen LM, Terry JG, R Jacobs D, Duprez D, Steffen BT, Zhou X, Shikany JM, Harnack L, J Carr J. Added sugar intake is associated with pericardial adipose tissue volume. Eur J Prev Cardiol 2020; 27:2016-2023. [PMID: 32594762 DOI: 10.1177/2047487320931303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIM The purpose of this study was to determine the relationships of pericardial adipose tissue and visceral adipose tissue volume with added sugar and sugar-sweetened beverage intakes. We hypothesized that both added sugar and sugar-sweetened beverages were positively associated with pericardial adipose tissue and visceral adipose tissue volumes in black and white men and women enrolled in the prospective Coronary Artery Risk Development in Young Adults study. METHODS AND RESULTS Dietary intake was assessed by diet history at baseline, year 7 and year 20 examinations in 3070 participants aged 18-30 and generally healthy at baseline. After 25 years follow-up, participants underwent a computed tomography scan of chest and abdomen; the computed tomography scans were read, and pericardial adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue volumes were calculated. Quintiles were created for the average of baseline, year 7 and year 20 added sugar and for the average of sugar-sweetened beverages. General linear regression analysis evaluated the associations of pericardial adipose tissue and visceral adipose tissue volumes across quintiles of added sugar and across quintiles of sugar-sweetened beverage intakes adjusted for potential confounding factors. In a multivariable model, pericardial adipose tissue volume was higher across increasing quintiles of added sugar and sugar-sweetened beverage intakes (ptrend = 0.001 and ptrend < 0.001, respectively). A similar relation was observed for visceral adipose tissue (ptrend < 0.001 for both added sugar and sugar-sweetened beverages). CONCLUSIONS Long-term intakes of added sugar and sugar-sweetened beverages were associated with higher pericardial adipose tissue, visceral adipose tissue, and subcutaneous adipose tissue volumes. Because these ectopic fat depots are associated with greater risk of disease incidence, these findings support limiting intakes of added sugar and sugar-sweetened beverages.
Collapse
Affiliation(s)
- So-Yun Yi
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, USA
| | - Daniel Duprez
- Department of Medicine, University of Minnesota Medical School, USA
| | - Brian T Steffen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, USA
| | - Xia Zhou
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, USA
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, USA
| | - Lisa Harnack
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, USA
| | - John J Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center USA
| |
Collapse
|
21
|
Milutinović DV, Brkljačić J, Teofilović A, Bursać B, Nikolić M, Gligorovska L, Kovačević S, Djordjevic A, Preitner F, Tappy L, Matić G, Veličković N. Chronic Stress Potentiates High Fructose-Induced Lipogenesis in Rat Liver and Kidney. Mol Nutr Food Res 2020; 64:e1901141. [PMID: 32379936 DOI: 10.1002/mnfr.201901141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Intake of fructose-sweetened beverages and chronic stress (CS) both increase risk of cardiometabolic diseases. The aim is to investigate whether these factors synergistically perturb lipid metabolism in rat liver and kidney. METHODS AND RESULTS Fractional de novo lipogenesis (fDNL), intrahepatic- and intrarenal-triglycerides (IHTG and IRTG), de novo palmitate (DNPalm) content, FA composition, VLDL-TGs kinetics, and key metabolic gene expression at the end of the feeding and non-feeding phases in rats exposed to standard chow diet, chow diet + CS, 20% liquid high-fructose supplementation (HFr), or HFr+CS are measured. HFr induces hypertriglyceridemia, up-regulates fructose-metabolism and gluconeogenic enzymes, increases IHTG and DNPalm content in IHTG and IRTG, and augments fDNL at the end of the feeding phase. These changes are diminished after the non-feeding phase. CS does not exert such effects, but when combined with HFr, it reduces IHTG and visceral adiposity, enhances lipogenic gene expression and fDNL, and increases VLDL-DNPalm secretion. CONCLUSION Liquid high-fructose supplementation increases IHTG and VLDL-TG secretion after the feeding phase, the latter being the result of stimulated hepatic and renal DNL. Chronic stress potentiates the effects of high fructose on fDNL and export of newly synthesized VLDL-TGs, and decreases fructose-induced intrahepatic TG accumulation after the feeding phase.
Collapse
Affiliation(s)
- Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Marina Nikolić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Frederic Preitner
- Mouse Metabolic Facility (MEF), Center for Integrative Genomics, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Luc Tappy
- Department of Physiology, University of Lausanne, UNIL-CHUV, Rue du Bugnon 7, Lausanne, CH-1005, Switzerland
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, 11000, Serbia
| |
Collapse
|
22
|
Parry SA, Rosqvist F, Mozes FE, Cornfield T, Hutchinson M, Piche ME, Hülsmeier AJ, Hornemann T, Dyson P, Hodson L. Intrahepatic Fat and Postprandial Glycemia Increase After Consumption of a Diet Enriched in Saturated Fat Compared With Free Sugars. Diabetes Care 2020; 43:1134-1141. [PMID: 32165444 PMCID: PMC7171936 DOI: 10.2337/dc19-2331] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/25/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Debate continues regarding the influence of dietary fats and sugars on the risk of developing metabolic diseases, including insulin resistance and nonalcoholic fatty liver disease (NAFLD). We investigated the effect of two eucaloric diets, one enriched with saturated fat (SFA) and the other enriched with free sugars (SUGAR), on intrahepatic triacylglycerol (IHTAG) content, hepatic de novo lipogenesis (DNL), and whole-body postprandial metabolism in overweight males. RESEARCH DESIGN AND METHODS Sixteen overweight males were randomized to consume the SFA or SUGAR diet for 4 weeks before consuming the alternate diet after a 7-week washout period. The metabolic effects of the respective diets on IHTAG content, hepatic DNL, and whole-body metabolism were investigated using imaging techniques and metabolic substrates labeled with stable-isotope tracers. RESULTS Consumption of the SFA diet significantly increased IHTAG by mean ± SEM 39.0 ± 10.0%, while after the SUGAR diet IHTAG was virtually unchanged. Consumption of the SFA diet induced an exaggerated postprandial glucose and insulin response to a standardized test meal compared with SUGAR. Although whole-body fat oxidation, lipolysis, and DNL were similar following the two diets, consumption of the SUGAR diet resulted in significant (P < 0.05) decreases in plasma total, HDL, and non-HDL cholesterol and fasting β-hydroxybutyrate plasma concentrations. CONCLUSIONS Consumption of an SFA diet had a potent effect, increasing IHTAG together with exaggerating postprandial glycemia. The SUGAR diet did not influence IHTAG and induced minor metabolic changes. Our findings indicate that a diet enriched in SFA is more harmful to metabolic health than a diet enriched in free sugars.
Collapse
Affiliation(s)
- Siôn A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Ferenc E Mozes
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, U.K
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Matthew Hutchinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Marie-Eve Piche
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Andreas J Hülsmeier
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pamela Dyson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, U.K
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K.
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, U.K
| |
Collapse
|
23
|
Roquetto AR, Moura CS, de Almeida Santos-Junior V, Oliveira POS, Machado KIA, Carvalho GCBC, Risso EM, Amaya-Farfan J. Moderate intake of BCAA-rich protein improves glucose homeostasis in high-fat-fed mice. J Nutr Biochem 2020; 80:108332. [PMID: 32217465 DOI: 10.1016/j.jnutbio.2019.108332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
Notwithstanding the fact that dietary branched-chain amino acids (BCAAs) have been considered to be a cause of insulin resistance (IR), evidence indicates that BCAA-rich whey proteins (WPs) do not lead to IR in animals consuming high-fat (HF) diets and may instead improve glucose homeostasis. To address the role of BCAA-rich WP as dietary protein in IR and inflammatory response, we fed C57BL/6J mice either high-fat (HF) or low-fat (LF) diets formulated with moderate protein levels (13% w/w) of either WP or hydrolyzed WP (WPH) and compared them with casein (CAS) as a reference. The muscle and plasma free amino acid profiles, inflammatory parameters and glycemic homeostasis were examined. While the LF/CAS diet promoted the rise in triglycerides and inflammatory parameters, the HF/CAS induced typical IR responses and impaired biochemical parameters. No differences in plasma BCAAs were detected, but the HF/WPH diet led to a twofold increase in gastrocnemius muscle free amino acids, including BCAAs. In general, ingestion of WPH was effective at averting or attenuating the damage caused by both the LF and HF diets. No high concentrations of BCAAs in the plasma or signs of IR were found in those mice fed an HF diet along with the hydrolyzed whey proteins. It is concluded that consumption of BCAA-rich whey proteins, especially WPH, does not result in the development of IR.
Collapse
Affiliation(s)
- Aline Rissetti Roquetto
- Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Carolina Soares Moura
- Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | | | - Karla Idelça Aires Machado
- Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Eder Müller Risso
- Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Jaime Amaya-Farfan
- Food and Nutrition Program, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
24
|
Hodson L, Gunn PJ. The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 2019; 15:689-700. [PMID: 31554932 DOI: 10.1038/s41574-019-0256-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasing global public health burden. NAFLD is strongly associated with type 2 diabetes mellitus, obesity and cardiovascular disease and begins with intrahepatic triacylglycerol accumulation. Under healthy conditions, the liver regulates lipid metabolism to meet systemic energy needs in the fed and fasted states. The processes of fatty acid uptake, fatty acid synthesis and the intracellular partitioning of fatty acids into storage, oxidation and secretion pathways are tightly regulated. When one or more of these processes becomes dysregulated, excess lipid accumulation can occur. Although genetic and environmental factors have been implicated in the development of NAFLD, it remains unclear why an imbalance in these pathways begins. The regulation of fatty acid partitioning occurs at several points, including during triacylglycerol synthesis, lipid droplet formation and lipolysis. These processes are influenced by enzyme function, intake of dietary fats and sugars and whole-body metabolism, and are further affected by the presence of obesity or insulin resistance. Insight into how the liver controls fatty acid metabolism in health and how these processes might be affected in disease would offer the potential for new therapeutic treatments for NAFLD to be developed.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| | - Pippa J Gunn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
25
|
Lai HTM, de Oliveira Otto MC, Lee Y, Wu JHY, Song X, King IB, Psaty BM, Lemaitre RN, McKnight B, Siscovick DS, Mozaffarian D. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J Am Heart Assoc 2019; 8:e012881. [PMID: 31711385 PMCID: PMC6915264 DOI: 10.1161/jaha.119.012881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Synthesized fatty acids (FAs) from de novo lipogenesis may affect cardiometabolic health, but longitudinal associations between serially measured de novo lipogenesis-related fatty acid biomarkers and mortality or cardiovascular disease (CVD) are not well established. Methods and Results We investigated longitudinal associations between de novo lipogenesis-related fatty acids with all-cause mortality, cause-specific mortality, and incident CVD among 3869 older US adults, mean (SD) age 75 (5) years and free of prevalent CVD at baseline. Levels of plasma phospholipid palmitic (16:0), palmitoleic (16:1n-7), stearic (18:0), oleic acid (18:1n-9), and other risk factors were serially measured at baseline, 6 years, and 13 years. All-cause mortality, cause-specific mortality, and incident fatal and nonfatal CVD were centrally adjudicated. Risk was assessed in multivariable-adjusted Cox models with time-varying FAs and covariates. During 13 years, median follow-up (maximum 22.4 years), participants experienced 3227 deaths (1131 CVD, 2096 non-CVD) and 1753 incident CVD events. After multivariable adjustment, higher cumulative levels of 16:0, 16:1n-7, and 18:1n-9 were associated with higher all-cause mortality, with extreme-quintile hazard ratios (95% CIs) of 1.35 (1.17-1.56), 1.40 (1.21-1.62), and 1.56 (1.35-1.80), respectively, whereas higher levels of 18:0 were associated with lower mortality (hazard ratio=0.76; 95% CI=0.66-0.88). Associations were generally similar for CVD mortality versus non-CVD mortality, as well as total incident CVD. Changes in levels of 16:0 were positively, and 18:0 inversely, associated with all-cause mortality (hazard ratio=1.23, 95% CI=1.08-1.41; and hazard ratio=0.78, 95% CI=0.68-0.90). Conclusions Higher long-term levels of 16:0, 16:1n-7, and 18:1n-9 and changes in 16:0 were positively, whereas long-term levels and changes in 18:0 were inversely, associated with all-cause mortality in older adults.
Collapse
Affiliation(s)
- Heidi T M Lai
- Friedman School of Nutrition Science and Policy Tufts University Boston MA
| | - Marcia C de Oliveira Otto
- Department of Epidemiology Human Genetics and Environmental Sciences University of Texas Health Science Center at Houston TX
| | - Yujin Lee
- Friedman School of Nutrition Science and Policy Tufts University Boston MA
| | - Jason H Y Wu
- The George Institute for Global Health Faculty of Medicine University of New South Wales Newtown NSW Australia
| | | | - Irena B King
- Department of Internal Medicine University of New Mexico Albuquerque NM
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services University of Washington Seattle WA.,Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA.,Kaiser Permanente Washington Health Research Institute Seattle WA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA
| | | | | | | |
Collapse
|
26
|
Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, Mariani S, Lubrano C, Poggiogalle E, Migliaccio S, Donini LM, Basciani S, Cignarelli A, Conte E, Ceccarini G, Bogazzi F, Cimino L, Condorelli RA, La Vignera S, Calogero AE, Gambineri A, Vignozzi L, Prodam F, Aimaretti G, Linsalata G, Buralli S, Monzani F, Aversa A, Vettor R, Santini F, Vitti P, Gnessi L, Pagotto U, Giorgino F, Colao A, Lenzi A. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest 2019; 42:1365-1386. [PMID: 31111407 DOI: 10.1007/s40618-019-01061-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Weight loss is a milestone in the prevention of chronic diseases associated with high morbility and mortality in industrialized countries. Very-low calorie ketogenic diets (VLCKDs) are increasingly used in clinical practice for weight loss and management of obesity-related comorbidities. Despite evidence on the clinical benefits of VLCKDs is rapidly emerging, some concern still exists about their potential risks and their use in the long-term, due to paucity of clinical studies. Notably, there is an important lack of guidelines on this topic, and the use and implementation of VLCKDs occurs vastly in the absence of clear evidence-based indications. PURPOSE We describe here the biochemistry, benefits and risks of VLCKDs, and provide recommendations on the correct use of this therapeutic approach for weight loss and management of metabolic diseases at different stages of life.
Collapse
Affiliation(s)
- M Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| | - M Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - E Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166, Rome, Italy
| | - A Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - G Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - S Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - C Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E Poggiogalle
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S Migliaccio
- Section of Health Sciences, Department of Movement, Human and Health Sciences, "Foro Italico" University of Rome, Rome, Italy
| | - L M Donini
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - E Conte
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - G Ceccarini
- Endocrinology Unit, Obesity and Lipodystrophy Center, University Hospital of Pisa, Pisa, Italy
| | - F Bogazzi
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - S La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - A Gambineri
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - L Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Florence, Italy
| | - F Prodam
- Endocrinology, Department of Translational Medicine and Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - G Aimaretti
- Endocrinology, Department of Translational Medicine and Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - G Linsalata
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Buralli
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Monzani
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - R Vettor
- Department of Medicine, Internal Medicine 3, University Hospital of Padova, Padua, Italy
| | - F Santini
- Endocrinology Unit, Obesity and Lipodystrophy Center, University Hospital of Pisa, Pisa, Italy
| | - P Vitti
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - U Pagotto
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - A Colao
- Section of Endocrinology, Department of Clinical Medicine and Surgery, University "Federico II" of Naples, Naples, Italy
| | - A Lenzi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| |
Collapse
|
28
|
Jeong S, Chae J, Lee G, Shin G, Kwon YI, Oh JB, Shin DY, Lee JH. Effect of Steamed Onion (ONIRO) Consumption on Body Fat and Metabolic Profiles in Overweight Subjects: A 12-Week Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Am Coll Nutr 2019; 39:206-215. [PMID: 31368861 DOI: 10.1080/07315724.2019.1635052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The aim of the study is to investigate the effect of Jeju steamed onion (ONIRO) on body fat and metabolic profiles in overweight subjects.Methods: This randomized, double-blind, placebo-controlled clinical intervention was conducted and completed at one clinical research site. The subjects (n = 70) were randomly divided into placebo or test group and were instructed to take before each meal either the placebo or ONIRO capsule for 12 weeks. Anthropometric as well as serum and metabolic parameters, including triglycerides, cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, leptin, adiponectin, C-peptide, and aspartate aminotransferase (AST) were measured at baseline and after 12 weeks. Body composition was also measured by dual-energy x-ray absorptiometry (DEXA) and computed tomography (CT). This trial is registered under the trial registration code clinicaltrials.gov: NCT03645382 (https://register.clinicaltrials.gov).Results: Compared to the placebo, ONIRO supplementation for significantly reduced the percentage of body fat and fat mass as measured by DEXA (p = 0.028 and 0.022, respectively) with no significant effects on lean body mass. CT analyses at the L1 level showed a significant decrease in the areas of whole fat, visceral fat, and subcutaneous fat (p = 0.009, p = 0.039, p = 0.020, respectively), while CT scan of L4 resulted in a significant reduction of whole fat area and subcutaneous area (p = 0.006 and p = 0.012, respectively). The levels of triglycerides (TG) and C-peptide were significantly lower after 12 weeks of ONIRO treatment.Conclusions: These findings suggest that ONIRO supplementation reduces total body fat, notably abdominal visceral fat, with positive changes of the clinically relevant metabolic parameters serum TG and C-peptide.
Collapse
Affiliation(s)
- Sarang Jeong
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Jisuk Chae
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Gahyun Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Gurum Shin
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Young-In Kwon
- Department of Internal Medicine, Severance Hospital, Division of Endocrinology and Metabolism, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Bae Oh
- Department of Food and Nutrition, Hannam University, Daejeon, Republic of Korea
| | - Dong Yeob Shin
- Institute of Functional Foods, KunpoongBio Co. Ltd, Jeju, Republic of Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
29
|
De Silva GS, Desai K, Darwech M, Naim U, Jin X, Adak S, Harroun N, Sanchez LA, Semenkovich CF, Zayed MA. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis 2019; 287:38-45. [PMID: 31202106 DOI: 10.1016/j.atherosclerosis.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Diabetes is an independent risk factor for carotid artery stenosis (CAS). Fatty acid synthase (FAS), an essential de novo lipogenesis enzyme, has increased activity in the setting of diabetes that leads to altered lipid metabolism. Circulating FAS (cFAS) was recently observed in the blood of patients with hyperinsulinemia and cancer. We thought to evaluate the origin of cFAS and its role in diabetes-associated CAS. METHODS Patients with diabetes and no diabetes, undergoing carotid endarterectomy (CEA) for CAS, were prospectively enrolled for collection of plaque and fasting serum. FPLC was used to purify lipoprotein fractions, and ELISA was used to quantify cFAS content and activity. Immunoprecipitation (IP) was used to evaluate the affinity of cFAS to LDL-ApoB. RESULTS Patients with CAS had higher cFAS activity (p < 0.01), and patients with diabetes had higher cFAS activity than patients with no diabetes (p < 0.05). cFAS activity correlated with serum glucose (p = 0.03, r2 = 0.35), and cFAS content trended with plaque FAS content (p = 0.06, r2 = 0.69). cFAS was predominantly in LDL cholesterol fractions of patients with CAS (p < 0.001), and IP of cFAS demonstrated pulldown of ApoB. Similar to patients with diabetes, db/db mice had highest levels of serum cFAS (p < 0.01), and fasL-/- (tissue-specific liver knockdown of FAS) mice had the lowest levels of cFAS (p < 0.001). CONCLUSIONS Serum cFAS is higher in patients with diabetes and CAS, appears to originate from the liver, and is LDL cholesterol associated. We postulate that LDL may be serving as a carrier for cFAS that contributes to atheroprogression in carotid arteries of patients with diabetes.
Collapse
Affiliation(s)
- Gayan S De Silva
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Kshitij Desai
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Malik Darwech
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Uzma Naim
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Xiaohua Jin
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Sangeeta Adak
- Washington University School of Medicine, Department of Internal Medicine, Division of Endocrinology, Lipid, and Metabolism, St. Louis, MO, USA
| | - Nikolai Harroun
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Luis A Sanchez
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Internal Medicine, Division of Endocrinology, Lipid, and Metabolism, St. Louis, MO, USA
| | - Mohamed A Zayed
- (a)Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
30
|
Rosqvist F, McNeil CA, Pramfalk C, Parry SA, Low WS, Cornfield T, Fielding BA, Hodson L. Fasting hepatic de novo lipogenesis is not reliably assessed using circulating fatty acid markers. Am J Clin Nutr 2019; 109:260-268. [PMID: 30721918 PMCID: PMC6367991 DOI: 10.1093/ajcn/nqy304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background Observational studies often infer hepatic de novo lipogenesis (DNL) by measuring circulating fatty acid (FA) markers; however, it remains to be elucidated whether these markers accurately reflect hepatic DNL. Objectives We investigated associations between fasting hepatic DNL and proposed FA markers of DNL in subjects consuming their habitual diet. Methods Fasting hepatic DNL was assessed using 2H2O (deuterated water) in 149 nondiabetic men and women and measuring the synthesis of very low-density lipoprotein triglyceride (VLDL-TG) palmitate. FA markers of blood lipid fractions were determined by gas chromatography. Results Neither the lipogenic index (16:0/18:2n-6) nor the SCD index (16:1n-7/16:0) in VLDL-TG was associated with isotopically assessed DNL (r = 0.13, P = 0.1 and r = -0.08, P = 0.35, respectively). The relative abundances (mol%) of 14:0, 16:0, and 18:0 in VLDL-TG were weakly (r ≤ 0.35) associated with DNL, whereas the abundances of 16:1n-7, 18:1n-7, and 18:1n-9 were not associated. When the cohort was split by median DNL, only the abundances of 14:0 and 18:0 in VLDL-TG could discriminate between subjects having high (11.5%) and low (3.8%) fasting hepatic DNL. Based on a subgroup, FA markers in total plasma TG, plasma cholesteryl esters, plasma phospholipids, and red blood cell phospholipids were generally not associated with DNL. Conclusions The usefulness of circulating FAs as markers of hepatic DNL in healthy individuals consuming their habitual diet is limited due to their inability to discriminate clearly between individuals with low and high fasting hepatic DNL.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Catriona A McNeil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sion A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Wee Suan Low
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Barbara A Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
31
|
Hellerstein M. Measure for measure? Am J Clin Nutr 2019; 109:247-248. [PMID: 30721927 DOI: 10.1093/ajcn/nqy365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marc Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California at Berkeley, Berkeley, CA; and Department of Medicine, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Beysen C, Ruddy M, Stoch A, Mixson L, Rosko K, Riiff T, Turner SM, Hellerstein MK, Murphy EJ. Dose-dependent quantitative effects of acute fructose administration on hepatic de novo lipogenesis in healthy humans. Am J Physiol Endocrinol Metab 2018; 315:E126-E132. [PMID: 29558206 DOI: 10.1152/ajpendo.00470.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fructose feeding increases hepatic de novo lipogenesis (DNL) and is associated with nonalcoholic fatty liver disease. Little is known, however, about individual variation in susceptibility to fructose stimulation of DNL. In this three-period crossover study, 17 healthy male subjects were enrolled to evaluate the within- and between-subject variability of acute fructose feeding on hepatic fractional DNL. During each assessment, [1-13C1]acetate was infused to measure DNL in the fasting state and during fructose feeding. Subjects randomly received a high dose of fructose (10 mg·kg fat-free mass-1·min-1) on two occasions and a low dose (5 mg·kg fat-free mass-1·min-1) on another. Fructose solutions were administered orally every 30 min for 9.5 h. Ten subjects completed all three study periods. DNL was assessed as the fractional contribution of newly synthesized palmitate into very-low-density lipoprotein triglycerides using mass isotopomer distribution analysis. Mean fasting DNL was 5.3 ± 2.8%, with significant within- and between-subject variability. DNL increased dose dependently during fructose feeding to 15 ± 2% for low- and 29 ± 2% for high-dose fructose. The DNL response to high-dose fructose was very reproducible within an individual ( r = 0.93, P < 0.001) and independent of fasting DNL. However, it was variable between individuals and significantly correlated to influx of unlabeled acetyl-CoA ( r = 0.7, P < 0.001). Unlike fasting DNL, fructose-stimulated DNL is a robust and reproducible measure of hepatic lipogenic activity for a given individual and may be a useful indicator of metabolic disease susceptibility and treatment response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marc K Hellerstein
- KineMed, Emeryville, California
- Department of Nutritional Sciences, University of California Berkeley , Berkeley, California
| | - Elizabeth J Murphy
- KineMed, Emeryville, California
- Department of Medicine, University of California San Francisco, California
- Division of Endocrinology, Zuckerberg San Francisco General, San Francisco, California
| |
Collapse
|
33
|
Jung S, Son H, Hwang CE, Cho KM, Park SW, Kim HJ. Ganoderma lucidum Ameliorates Non-Alcoholic Steatosis by Upregulating Energy Metabolizing Enzymes in the Liver. J Clin Med 2018; 7:jcm7060152. [PMID: 29914094 PMCID: PMC6025418 DOI: 10.3390/jcm7060152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic steatosis is a common health problem worldwide due to altered food habits and life styles, and it is intimately linked with various metabolic disorders. In the present study, we investigated the molecular mechanism of Ganoderma lucidum (GL) against the development of non-alcoholic steatosis using in vivo and in vitro settings. C57BL/6 mice fed with normal diet (ND) or high fat diet (HFD) were administered GL extract or vehicle for 16 weeks. HFD feeding increased serum alanine aminotransferase level and hepatic lipid droplet, but these increases were significantly attenuated by GL. GL inhibited the increases in epididymal and perirenal adipose tissue weights and serum cholesterol and LDL levels in HFD-fed mice. Fasting blood glucose levels were elevated in HFD-fed mice compared to ND-fed mice, and glucose and insulin sensitivities were deteriorated. These changes were markedly improved by GL. GL restored the reduction of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in the liver of HFD-fed mice, and increased AMPK and ACC phosphorylation in HepG2 and 3T3-L1 cells. GL induced GLUT4 protein expression in 3T3-L1 cells. Finally, GL attenuated lipid accumulation induced by free fatty acid in HepG2 cells. Taken together, our results indicate that GL has a potential to improve non-alcoholic steatosis and the associated complicated disorders via the induction of energy metabolizing enzymes.
Collapse
Affiliation(s)
- Soonwoong Jung
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Hyeonwi Son
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Chung Eun Hwang
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Kye Man Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Sang Won Park
- Bio Anti-aging Medical Research Center, Department of Pharmacology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Hyun Joon Kim
- Bio Anti-Aging Medical Research Center, Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| |
Collapse
|
34
|
Sarkar J, Dwivedi G, Chen Q, Sheu IE, Paich M, Chelini CM, D'Alessandro PM, Burns SP. A long-term mechanistic computational model of physiological factors driving the onset of type 2 diabetes in an individual. PLoS One 2018; 13:e0192472. [PMID: 29444133 PMCID: PMC5812629 DOI: 10.1371/journal.pone.0192472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
A computational model of the physiological mechanisms driving an individual's health towards onset of type 2 diabetes (T2D) is described, calibrated and validated using data from the Diabetes Prevention Program (DPP). The objective of this model is to quantify the factors that can be used for prevention of T2D. The model is energy and mass balanced and continuously simulates trajectories of variables including body weight components, fasting plasma glucose, insulin, and glycosylated hemoglobin among others on the time-scale of years. Modeled mechanisms include dynamic representations of intracellular insulin resistance, pancreatic beta-cell insulin production, oxidation of macronutrients, ketogenesis, effects of inflammation and reactive oxygen species, and conversion between stored and activated metabolic species, with body-weight connected to mass and energy balance. The model was calibrated to 331 placebo and 315 lifestyle-intervention DPP subjects, and one year forecasts of all individuals were generated. Predicted population mean errors were less than or of the same magnitude as clinical measurement error; mean forecast errors for weight and HbA1c were ~5%, supporting predictive capabilities of the model. Validation of lifestyle-intervention prediction is demonstrated by synthetically imposing diet and physical activity changes on DPP placebo subjects. Using subject level parameters, comparisons were made between exogenous and endogenous characteristics of subjects who progressed toward T2D (HbA1c > 6.5) over the course of the DPP study to those who did not. The comparison revealed significant differences in diets and pancreatic sensitivity to hyperglycemia but not in propensity to develop insulin resistance. A computational experiment was performed to explore relative contributions of exogenous versus endogenous factors between these groups. Translational uses to applications in public health and personalized healthcare are discussed.
Collapse
Affiliation(s)
- Joydeep Sarkar
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Gaurav Dwivedi
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Qian Chen
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Iris E. Sheu
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Mark Paich
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Colleen M. Chelini
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | | | - Samuel P. Burns
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| |
Collapse
|
35
|
Drummen M, Tischmann L, Gatta-Cherifi B, Adam T, Westerterp-Plantenga M. Dietary Protein and Energy Balance in Relation to Obesity and Co-morbidities. Front Endocrinol (Lausanne) 2018; 9:443. [PMID: 30127768 PMCID: PMC6087750 DOI: 10.3389/fendo.2018.00443] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Dietary protein is effective for body-weight management, in that it promotes satiety, energy expenditure, and changes body-composition in favor of fat-free body mass. With respect to body-weight management, the effects of diets varying in protein differ according to energy balance. During energy restriction, sustaining protein intake at the level of requirement appears to be sufficient to aid body weight loss and fat loss. An additional increase of protein intake does not induce a larger loss of body weight, but can be effective to maintain a larger amount of fat-free mass. Protein induced satiety is likely a combined expression with direct and indirect effects of elevated plasma amino acid and anorexigenic hormone concentrations, increased diet-induced thermogenesis, and ketogenic state, all feed-back on the central nervous system. The decline in energy expenditure and sleeping metabolic rate as a result of body weight loss is less on a high-protein than on a medium-protein diet. In addition, higher rates of energy expenditure have been observed as acute responses to energy-balanced high-protein diets. In energy balance, high protein diets may be beneficial to prevent the development of a positive energy balance, whereas low-protein diets may facilitate this. High protein-low carbohydrate diets may be favorable for the control of intrahepatic triglyceride IHTG in healthy humans, likely as a result of combined effects involving changes in protein and carbohydrate intake. Body weight loss and subsequent weight maintenance usually shows favorable effects in relation to insulin sensitivity, although some risks may be present. Promotion of insulin sensitivity beyond its effect on body-weight loss and subsequent body-weight maintenance seems unlikely. In conclusion, higher-protein diets may reduce overweight and obesity, yet whether high-protein diets, beyond their effect on body-weight management, contribute to prevention of increases in non-alcoholic fatty liver disease NAFLD, type 2 diabetes and cardiovascular diseases is inconclusive.
Collapse
Affiliation(s)
- Mathijs Drummen
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Lea Tischmann
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Blandine Gatta-Cherifi
- Department of Endocrinology, Diabetology and Nutrition, Universite de Bordeaux, Bordeaux, France
| | - Tanja Adam
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
| | - Margriet Westerterp-Plantenga
- Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht UMC+, Maastricht University, Maastricht, Netherlands
- *Correspondence: Margriet Westerterp-Plantenga
| |
Collapse
|
36
|
Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly-Y M, Carling D. Liver-Specific Activation of AMPK Prevents Steatosis on a High-Fructose Diet. Cell Rep 2017; 18:3043-3051. [PMID: 28355557 PMCID: PMC5382239 DOI: 10.1016/j.celrep.2017.03.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/02/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
AMP-activated protein kinase (AMPK) plays a key role in integrating metabolic pathways in response to energy demand. We identified a mutation in the γ1 subunit (γ1D316A) that leads to activation of AMPK. We generated mice with this mutation to study the effect of chronic liver-specific activation of AMPK in vivo. Primary hepatocytes isolated from these mice have reduced gluconeogenesis and fatty acid synthesis, but there is no effect on fatty acid oxidation compared to cells from wild-type mice. Liver-specific activation of AMPK decreases lipogenesis in vivo and completely protects against hepatic steatosis when mice are fed a high-fructose diet. Our findings demonstrate that liver-specific activation of AMPK is sufficient to protect against hepatic triglyceride accumulation, a hallmark of non-alcoholic fatty liver disease (NAFLD). These results emphasize the clinical relevance of activating AMPK in the liver to combat NAFLD and potentially other associated complications (e.g., cirrhosis and hepatocellular carcinoma).
Collapse
Affiliation(s)
- Angela Woods
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Jennet R Williams
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Phillip J Muckett
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Faith V Mayer
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Maria Liljevald
- Drug Safety and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| |
Collapse
|
37
|
The effect of preload/meal energy density on energy intake in a subsequent meal: A systematic review and meta-analysis. Eat Behav 2017; 26:6-15. [PMID: 28131006 DOI: 10.1016/j.eatbeh.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To conduct a systematic review and meta-analysis of the effects of preload/meal energy density on energy intake in a subsequent meal(s). METHODS Multiple databases were searched for studies published through December 2016 on the effects of preload/meal energy density on energy intake in a subsequent meal(s). We extracted information on mean energy intake in a subsequent meal(s) and on variables that could contribute to between-subject heterogeneity. RESULTS Forty and Thirty nine eligible studies were identified for our systematic review and meta-analysis, respectively. The meta-analysis showed that preload/meal energy density did not affect energy intake in a subsequent meal(s) (95% CI:-21.21, 21.29). As heterogeneity was remarkable among studies, we stratified the studies by intervention type into "meal" or "preload" classifications. In the "preload" subgroup, studies used either fixed energy or fixed weight preloads. The results reveal that in comparison to a high energy-dense (HED) preload, consuming a low energy-dense (LED) preload with same weight resulted in higher energy intake in a subsequent meal (95% CI: 9.72, 56.19). On the other hand, decreased energy intake was observed after consuming an LED preload compared to after consumption of an HED preload with same energy content (95% CI: -138.71, -57.33). In the "meal" subgroup, studies were categorized by different subsequent meal (i.e., "afternoon or evening", "lunch" and "dinner or post-dinner"). Meta-analysis showed that an LED meal resulted in more energy intake only in afternoon or evening meals (95% CI: 14.82, 31.22). CONCLUSION In summary, the current analysis revealed that we can restrict the energy intake by consuming an LED preload. Moreover, consuming an LED preload could favorably affect preload+meal energy intake.
Collapse
|
38
|
Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M, Previs S, Milstein S, Fitzgerald K, Kelley DE, Horton JD. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab 2017; 26:394-406.e6. [PMID: 28768177 PMCID: PMC5603267 DOI: 10.1016/j.cmet.2017.07.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/16/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022]
Abstract
Inhibiting lipogenesis prevents hepatic steatosis in rodents with insulin resistance. To determine if reducing lipogenesis functions similarly in humans, we developed MK-4074, a liver-specific inhibitor of acetyl-CoA carboxylase (ACC1) and (ACC2), enzymes that produce malonyl-CoA for fatty acid synthesis. MK-4074 administered to subjects with hepatic steatosis for 1 month lowered lipogenesis, increased ketones, and reduced liver triglycerides by 36%. Unexpectedly, MK-4074 increased plasma triglycerides by 200%. To further investigate, mice that lack ACC1 and ACC2 in hepatocytes (ACC dLKO) were generated. Deletion of ACCs decreased polyunsaturated fatty acid (PUFA) concentrations in liver due to reduced malonyl-CoA, which is required for elongation of essential fatty acids. PUFA deficiency induced SREBP-1c, which increased GPAT1 expression and VLDL secretion. PUFA supplementation or siRNA-mediated knockdown of GPAT1 normalized plasma triglycerides. Thus, inhibiting lipogenesis in humans reduced hepatic steatosis, but inhibiting ACC resulted in hypertriglyceridemia due to activation of SREBP-1c and increased VLDL secretion.
Collapse
Affiliation(s)
- Chai-Wan Kim
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Carol Addy
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jun Kusunoki
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Norma N Anderson
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Stanislaw Deja
- Advanced Imaging Research Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Fu
- Advanced Imaging Research Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Advanced Imaging Research Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cai Li
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Marcie Ruddy
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | - Steve Previs
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Stuart Milstein
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - Kevin Fitzgerald
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA
| | - David E Kelley
- MRL, 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jay D Horton
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
39
|
Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation. Acta Pharmacol Sin 2017; 38:998-1008. [PMID: 28344322 DOI: 10.1038/aps.2016.175] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is not completely understood, the increased influx of free fatty acids (FFAs) into the liver and the FFA-induced hepatic endoplasmic reticulum (ER) stress are two crucial pathogenic processes in the initiation and development of NAFLD. In this study we investigated the effects of astragaloside IV (AS-IV), a bioactive compound purified from Astragali Radix, on FFA-induced lipid accumulation in hepatocytes and elucidated the underlying mechanisms. Human HepG2 cells and primary murine hepatocytes were exposed to FFAs (1 mmol/L, oleate/palmitate, 2:1 ratio) with or without AS-IV for 24 h. Exposure to FFAs induced marked lipid accumulation in hepatocytes, whereas co-treatment with AS-IV (100 μg/mL) significantly attenuated this phenomenon. Notably, AS-IV (50-200 μg/mL) concentration-dependently enhanced the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and SREBP-1c, inhibited the accumulation and nuclear translocation of mature SREBP-1 and subsequently decreased the mRNA levels of lipogenic genes including acc1, fas and scd1. AS-IV treatment also concentration-dependently attenuated FFA-induced hepatic ER stress evidenced by the reduction of the key markers, GRP78, CHOP and p-PERK. Pretreated the cells with the AMPK inhibitor compound C (20 μmol/L) greatly diminished these beneficial effects of AS-IV. Our results demonstrate that AS-IV attenuates FFA-induced ER stress and lipid accumulation in an AMPK-dependent manner in hepatocytes, which supports its use as promising therapeutics for hepatic steatosis.
Collapse
|
40
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
41
|
Cazzo E, Pareja JC, Chaim EA. Nonalcoholic fatty liver disease and bariatric surgery: a comprehensive review. SAO PAULO MED J 2017; 135:277-295. [PMID: 28562737 PMCID: PMC10019840 DOI: 10.1590/1516-3180.2016.0306311216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 02/06/2023] Open
Abstract
CONTEXT AND OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) has been increasingly diagnosed worldwide and is now recognized as a source of public health concern. It comprises a wide spectrum of histological features that range from simple steatosis to severe forms of fibrosis, steatohepatitis and even cirrhosis. The impact of bariatric surgery on the course of NAFLD in individuals with obesity has been extensively studied. DESIGN AND SETTING: Narrative review; public university hospital. METHODS: A comprehensive review was conducted based on an online search on the electronic databases MEDLINE and LILACS using the MeSH terms "fatty liver" and "bariatric surgery". RESULTS: The exact mechanisms that lead to improvement in NAFLD following bariatric surgery are not completely understood. Since Roux-en-Y gastric bypass (RYGB) is the bariatric surgical procedure most performed worldwide, it is also the one from which the effects on NAFLD have been most studied, although there is also consistent evidence regarding the effects from gastric banding, sleeve gastrectomy and biliopancreatic diversions. CONCLUSION: According to the currently available evidence, bariatric surgery leads to significant improvement in NAFLD. Further research, especially by means of randomized controlled trials enrolling larger cohorts of individuals, is needed to determine the optimal procedure for this group of subjects.
Collapse
Affiliation(s)
- Everton Cazzo
- MD, MSc, PhD. Assistant Professor, Department of Surgery, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - José Carlos Pareja
- MD, PhD. Associate Professor, Department of Surgery, Universidade Estadual de Campinas (UNICAMP), Campinas (SP), Brazil.
| | - Elinton Adami Chaim
- MD, MSc, PhD. Full Professor, Department of Surgery, Universidade Estadual de Campinas (UNICAMP), Campinas, (SP), Brazil.
| |
Collapse
|
42
|
Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017; 9:nu9040385. [PMID: 28420091 PMCID: PMC5409724 DOI: 10.3390/nu9040385] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
The rapid increase in metabolic diseases, which occurred in the last three decades in both industrialized and developing countries, has been related to the rise in sugar-added foods and sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be ingested with high temperature processed foods, but also endogenously formed as a consequence of a high dietary sugar intake. Animal models of high sugar consumption, in particular fructose, have reported AGE accumulation in different tissues in association with peripheral insulin resistance and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid and effective glycating agents when compared to other sugars has prompted the investigation of the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as sweetener has been ascribed by many experimental and observational studies for the enhancement of lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and mitochondrial metabolism. Moreover, emerging evidence also in humans suggest that this impact of dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver, skeletal and cardiac muscle, and the brain, affecting not only metabolic control, but global health. Indeed, the most recent reports on the effects of high sugar consumption and diet-derived AGEs on human health reviewed here suggest the need to limit the dietary sources of AGEs, including added sugars, to prevent the development of metabolic diseases and related comorbidities.
Collapse
|
43
|
Semiane N, Foufelle F, Ferré P, Hainault I, Ameddah S, Mallek A, Khalkhal A, Dahmani Y. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. C R Biol 2017; 340:25-36. [DOI: 10.1016/j.crvi.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
44
|
Banini BA, Sanyal AJ. Nonalcoholic Fatty Liver Disease: Epidemiology, Pathogenesis, Natural History, Diagnosis, and Current Treatment Options. ACTA ACUST UNITED AC 2016; 8:75-84. [PMID: 28670148 DOI: 10.4137/cmt.s18885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the rise and has become a major etiology for chronic liver disease. It is frequently associated with obesity, insulin resistance, hypertension, and dyslipidemia and is considered the hepatic manifestation of metabolic syndrome. In this review, we present a summary of the epidemiology and pathogenesis of NAFLD, and discuss the clinical evaluation and stratification of NAFLD patients into low, intermediate, and high risk with respect to liver-related outcomes. While diet and exercise are the cornerstone of treatment in all patients, the low rate of adherence and inadequacy of these recommendations necessitate pharmacologic intervention, especially in intermediate- and high-risk patients. We discuss vitamin E and pioglitazone which are often used as first-line therapy by many practitioners, with pentoxifylline and liraglutide as backup agents. Several drugs are in advanced-phase clinical trials and will likely change the landscape for management of NAFLD in the very near future.
Collapse
Affiliation(s)
- Bubu A Banini
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
45
|
Lin PJ, Borer KT. Third Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance. PLoS One 2016; 11:e0165378. [PMID: 27798656 PMCID: PMC5087910 DOI: 10.1371/journal.pone.0165378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/06/2016] [Indexed: 12/28/2022] Open
Abstract
Background Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Methods Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). Results The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Conclusions Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to 30% compared to no such changes after three 60%-carbohydrate meals, an effect that was independent of pre-meal exercise. The parallel timing and magnitude of postprandial insulin and GIP changes suggest their dependence on a delayed intestinal adaptation to a low-carbohydrate diet. Pre-meal exercise exacerbated glucose intolerance with both diets most likely due to impairment of insulin signaling by pre-meal elevation of FFAs.
Collapse
Affiliation(s)
- Po-Ju Lin
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katarina T. Borer
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Velasquez-Mieyer P, Neira CP, Nieto R, Cowan PA. Review: Obesity and cardiometabolic syndrome in children. Ther Adv Cardiovasc Dis 2016; 1:61-81. [DOI: 10.1177/1753944707082800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cardiometabolic syndrome is highly prevalent among overweight youth. The risk of developing the cardiometabolic syndrome is likely triggered or exacerbated by concurrent obesity, unhealthy lifestyle/eating habits, and hormonal changes (puberty). Current screening recommendations include measurement of blood pressure, fasting insulin and glucose, and total cholesterol. However, limiting assessments to these measures underestimates cardiometabolic risk in overweight youth, particularly minorities. Early identification of cardiometabolic risk in its incipient stages may justify early and more aggressive intervention to prevent progression and complications. This review provides rationale for additional assessments to determine cardiometabolic risk in overweight youth and recommends treatment options.
Collapse
Affiliation(s)
- Pedro Velasquez-Mieyer
- Dept. of Pediatrics LeBonheur Children's Medical Center 50 North Dunlap Memphis, TN 38103
| | | | - Ramfis Nieto
- Department of Physiology, Universidad Centro-Occidental “Lisandro Alvarado” (UCLA). Barquisimeto, Venezuela
| | - Patricia A. Cowan
- Department of Nursing, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
47
|
Pramfalk C, Pavlides M, Banerjee R, McNeil CA, Neubauer S, Karpe F, Hodson L. Fasting Plasma Insulin Concentrations Are Associated With Changes in Hepatic Fatty Acid Synthesis and Partitioning Prior to Changes in Liver Fat Content in Healthy Adults. Diabetes 2016; 65:1858-67. [PMID: 27207513 DOI: 10.2337/db16-0236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022]
Abstract
Resistance to the action of insulin affects fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver, and triglyceride export from the liver. To understand the metabolic consequences of hepatic fatty acid synthesis, partitioning, oxidation, and net liver fat content in the fasted and postprandial states, we used stable-isotope tracer methodologies to study healthy men and women with varying degrees of insulin resistance before and after consumption of a mixed meal. Subjects were classified as being normoinsulinemic (NI) (fasting plasma insulin <11.2 mU/L, n = 18) or hyperinsulinemic (HI) (fasting plasma insulin >11.2 mU/L, n = 19). Liver fat content was similar between HI and NI individuals, despite HI subjects having marginally more visceral fat. However, de novo lipogenesis was higher and fatty acid oxidation was lower in HI individuals compared with NI subjects. These data suggest that metabolic pathways promoting fat accumulation are enhanced in HI but, paradoxically, without any significant effect on liver fat content when observed in healthy people. This is likely to be explained by increased triglyceride secretion as observed by hypertriglyceridemia.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Michael Pavlides
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, U.K. Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, U.K
| | - Rajarshi Banerjee
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, U.K
| | - Catriona A McNeil
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, U.K
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K. National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, U.K
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K.
| |
Collapse
|
48
|
Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73:1969-87. [PMID: 26894897 PMCID: PMC11108381 DOI: 10.1007/s00018-016-2161-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease and a risk factor for cirrhosis and hepatocellular carcinoma. The pathological features of NASH include steatosis, hepatocyte injury, inflammation, and various degrees of fibrosis. Steatosis reflects disordered lipid metabolism. Insulin resistance and excessive fatty acid influx to the liver are two important contributing factors. Steatosis is also likely associated with lipotoxicity and cellular stresses such as oxidative stress and endoplasmic reticulum stress, which result in hepatocyte injury. Inflammation and fibrosis are frequently triggered by various signals such as proinflammatory cytokines and chemokines, released by injuried hepatocytes and activated Kupffer cells. Although much progress has been made, the pathogenesis of NASH is not fully elucidated. The purpose of this review is to discuss the current understanding of NASH pathogenesis, mainly focusing on factors contributing to steatosis, hepatocyte injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Tavleen Bhatia
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| |
Collapse
|
49
|
Sweet Taste Receptor TAS1R2 Polymorphism (Val191Val) Is Associated with a Higher Carbohydrate Intake and Hypertriglyceridemia among the Population of West Mexico. Nutrients 2016; 8:101. [PMID: 26907331 PMCID: PMC4772063 DOI: 10.3390/nu8020101] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
Some high-carbohydrate diets may lead to obesity and multiple metabolic disorders, including hypertriglyceridemia (HTG). This lipid abnormality is considered an important risk factor for cardiovascular disease and type 2 diabetes. The sweet taste receptor TAS1R2 polymorphism (Ile191Val) has been reported to be associated with carbohydrate intake. The aim of this study was to analyze the association of the TAS1R2 gene polymorphism with carbohydrate intake and HTG among the population of West Mexico. In a cross-sectional study, 441 unrelated subjects were analyzed for TAS1R2 genotypes (Ile/Ile, Ile/Val and Val/Val) by an allelic discrimination assay. Biochemical tests and a three-day food record were assessed. The Val/Val genotype carriers had a higher intake of total carbohydrates, fiber and servings of cereals and vegetables than the other genotype carriers. The Val/Val genotype conferred a higher risk for HTG than the Ile/Val and Ile/Ile genotypes (OR = 3.26, 95%CI 1.35–7.86, p = 0.006 and OR = 2.61, 95%CI 1.12–6.07, p = 0.02, respectively). Furthermore, the Val/Val genotype was associated with approximately 30% higher triglycerides compared with Ile/Val and Ile/Ile genotypes (β = 44.09, 95%CI 9.94–78.25, p = 0.01 and β = 45.7, 95%CI 10.85–80.54, p = 0.01, respectively). In conclusion, the Val/Val genotype of TAS1R2 was associated with a higher carbohydrate intake and HTG.
Collapse
|
50
|
Lima MLRP, Leite LHR, Gioda CR, Leme FOP, Couto CA, Coimbra CC, Leite VHR, Ferrari TCA. A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet. J Diabetes Res 2016; 2016:9127076. [PMID: 26788524 PMCID: PMC4691608 DOI: 10.1155/2016/9127076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not fully understood, and experimental models are an alternative to study this issue. We investigated the effects of a simple carbohydrate-rich diet on the development of obesity-related NAFLD and the impact of physical training on the metabolic abnormalities associated with this disorder. Sixty Wistar rats were randomly separated into experimental and control groups, which were fed with sucrose-enriched (18% simple carbohydrates) and standard diet, respectively. At the end of each experimental period (5, 10, 20, and 30 weeks), 6 animals from each group were sacrificed for blood tests and liver histology and immunohistochemistry. From weeks 25 to 30, 6 animals from each group underwent physical training. The experimental group animals developed obesity and NAFLD, characterized histopathologically by steatosis and hepatocellular ballooning, clinically by increased thoracic circumference and body mass index associated with hyperleptinemia, and metabolically by hyperglycemia, hyperinsulinemia, hypertriglyceridemia, increased levels of very low-density lipoprotein- (VLDL-) cholesterol, depletion of the antioxidants liver enzymes superoxide dismutase and catalase, and increased hepatic levels of malondialdehyde, an oxidative stress marker. Rats that underwent physical training showed increased high-density lipoprotein- (HDL-) cholesterol levels. In conclusion, a sucrose-rich diet induced obesity, insulin resistance, oxidative stress, and NAFLD in rats.
Collapse
Affiliation(s)
- Maria Luíza R. P. Lima
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, 30130-100 Belo Horizonte, MG, Brazil
| | - Laura H. R. Leite
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Carolina R. Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Fabíola O. P. Leme
- Departamento de Veterinária Clínica e Cirúrgica, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Claudia A. Couto
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, 30130-100 Belo Horizonte, MG, Brazil
| | - Cândido C. Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Virginia H. R. Leite
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, MG, Brazil
| | - Teresa Cristina A. Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, 30130-100 Belo Horizonte, MG, Brazil
- *Teresa Cristina A. Ferrari:
| |
Collapse
|