1
|
Ba T, Ren Q, Gong S, Li M, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Zhang X, Chen J, Wu J, Zhou X, Li Y, Wang X, Wang F, Zhong L, Han X, Ji L. Phenotypic features, prevalence of KCNJ11-MODY in Chinese patients with early-onset diabetes and a literature review. Clin Endocrinol (Oxf) 2024; 101:466-474. [PMID: 39190464 DOI: 10.1111/cen.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE Gain-of-function (GOF) variants of KCNJ11 cause neonate diabetes and maturity-onset diabetes of the young (KCNJ11-MODY), while loss-of-function (LOF) variants lead to hyperinsulinemia hypoglycemia and subsequent diabetes. Given the limited research of KCNJ11-MODY, we aimed to analyse its phenotypic features and prevalence in Chinese patients with early-onset type 2 diabetes (EOD). DESIGN, PATIENTS AND MEASUREMENTS We performed next-generation sequencing on 679 Chinese EOD patients to screen for KCNJ11 exons variants. Bioinformatics prediction and the American College of Medical Genetics and Genomics guidelines was used to determine the pathogenicity and diagnosed KCNJ11-MODY. A literature review was conducted to investigate the phenotypic features of KCNJ11-MODY. RESULTS We identified six predicted deleterious rare variants in six EOD patients (0.88%). They were classified as uncertain significance (variant of uncertain significance [VUS]), but more common in this EOD cohort than a general Chinese population database, however, without significant difference (53/10,588, 0.50%) (p = .268). Among 80 previously reported patients with KCNJ11-MODY, 23.8% (19/80) carried 9 (32.1%) LOF variants, who had significantly older age at diagnosis, higher birthweight and higher fasting C-peptide compared to patients with GOF variants. Many patients carrying VUS were not correctly diagnosed. CONCLUSIONS Some rare variants of KCNJ11 might contribute to the development of Chinese EOD, although available evidence has not enough power to support them as cause of KCNJ11-MODY. The clinical features of LOF variants were different from GOF variants in KCNJ11-MODY patients. It is necessary to evaluate the pathogenicity of VUS through function experiments.
Collapse
Affiliation(s)
- Tianhao Ba
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Beijing Pinggu Hospital, Beijing, China
| | - Xirui Wang
- Department of Endocrinology and Metabolism, Beijing Airport Hospital, Beijing, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liyong Zhong
- Department of Endocrinology and Metabolism, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Marassi M, Morieri ML, Sanga V, Ceolotto G, Avogaro A, Fadini GP. The Elusive Nature of ABCC8-related Maturity-Onset Diabetes of the Young (ABCC8-MODY). A Review of the Literature and Case Discussion. Curr Diab Rep 2024; 24:197-206. [PMID: 38980630 PMCID: PMC11303576 DOI: 10.1007/s11892-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Maturity-onset diabetes of the young (MODY) are monogenic forms of diabetes resulting from genetic defects, usually transmitted in an autosomal dominant fashion, leading to β-cell dysfunction. Due to the lack of homogeneous clinical features and univocal diagnostic criteria, MODY is often misdiagnosed as type 1 or type 2 diabetes, hence its diagnosis relies mostly on genetic testing. Fourteen subtypes of MODY have been described to date. Here, we review ABCC8-MODY pathophysiology, genetic and clinical features, and current therapeutic options. RECENT FINDINGS ABCC8-MODY is caused by mutations in the adenosine triphosphate (ATP)-binding cassette transporter subfamily C member 8 (ABCC8) gene, involved in the regulation of insulin secretion. The complexity of ABCC8-MODY genetic picture is mirrored by a variety of clinical manifestations, encompassing a wide spectrum of disease severity. Such inconsistency of genotype-phenotype correlation has not been fully understood. A correct diagnosis is crucial for the choice of adequate treatment and outcome improvement. By targeting the defective gene product, sulfonylureas are the preferred medications in ABCC8-MODY, although efficacy vary substantially. We illustrate three case reports in whom a diagnosis of ABCC8-MODY was suspected after the identification of novel ABCC8 variants that turned out to be of unknown significance. We discuss that careful interpretation of genetic testing is needed even on the background of a suggestive clinical context. We highlight the need for further research to unravel ABCC8-MODY disease mechanisms, as well as to clarify the pathogenicity of identified ABCC8 variants and their influence on clinical presentation and response to therapy.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Mario Luca Morieri
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Giulio Ceolotto
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, Padua, 35100, Italy.
- Veneto Institute of Molecular Medicine, Padua, 35100, Italy.
| |
Collapse
|
3
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
4
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
5
|
Wang P, Liao H, Wang Q, Xie H, Xu B, Xiang Q, Wang H, Yang M, Liu S. Functional characterization of inactivating ABCC8 variants causing congenital hyperinsulinism. Clin Genet 2024; 105:549-554. [PMID: 38225536 DOI: 10.1111/cge.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Quyou Wang
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hanbing Xie
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bocheng Xu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qinqin Xiang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - He Wang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Mei Yang
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
6
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545631. [PMID: 37546831 PMCID: PMC10401960 DOI: 10.1101/2023.06.20.545631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and β-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.
Collapse
|
7
|
Clemente M, Cobo P, Antolín M, Campos A, Yeste D, Tomasini R, Caimari M, Masas M, García-Arumí E, Fernández-Cancio M, Baz-Redón N, Camats-Tarruella N. Genetics and Natural History of Non-pancreatectomized Patients With Congenital Hyperinsulinism Due to Variants in ABCC8. J Clin Endocrinol Metab 2023; 108:e1316-e1328. [PMID: 37216904 DOI: 10.1210/clinem/dgad280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
CONTEXT Patients with congenital hyperinsulinism due to ABCC8 variants generally present severe hypoglycemia and those who do not respond to medical treatment typically undergo pancreatectomy. Few data exist on the natural history of non-pancreatectomized patients. OBJECTIVE This work aims to describe the genetic characteristics and natural history in a cohort of non-pancreatectomized patients with congenital hyperinsulinism due to variants in the ABCC8 gene. METHODS Ambispective study of patients with congenital hyperinsulinism with pathogenic or likely pathogenic variants in ABCC8 treated in the last 48 years and who were not pancreatectomized. Continuous glucose monitoring (CGM) has been periodically performed in all patients since 2003. An oral glucose tolerance test was performed if hyperglycemia was detected in the CGM. RESULTS Eighteen non-pancreatectomized patients with ABCC8 variants were included. Seven (38.9%) patients were heterozygous, 8 (44.4%) compound heterozygous, 2 (11.1%) homozygous, and 1 patient carried 2 variants with incomplete familial segregation studies. Seventeen patients were followed up and 12 (70.6%) of them evolved to spontaneous resolution (median age 6.0 ± 4 years; range, 1-14). Five of these 12 patients (41.7%) subsequently progressed to diabetes with insufficient insulin secretion. Evolution to diabetes was more frequent in patients with biallelic variants in the ABCC8 gene. CONCLUSION The high remission rate observed in our cohort makes conservative medical treatment a reliable strategy for the management of patients with congenital hyperinsulinism due to ABCC8 variants. In addition, a periodic follow-up of glucose metabolism after remission is recommended, as a significant proportion of patients evolved to impaired glucose tolerance or diabetes (biphasic phenotype).
Collapse
Affiliation(s)
- María Clemente
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Patricia Cobo
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ariadna Campos
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Yeste
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Rosangela Tomasini
- Paediatric Endocrinology Unit, Hospital Universitari Mútua Terrassa, 08021 Terrassa, Spain
| | - María Caimari
- Paediatric Endocrinology, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Miriam Masas
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Noelia Baz-Redón
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| |
Collapse
|
8
|
Komal FNU, Olajide O. A Very Rare Case of Diabetes Mellitus Occurring in a Patient With Hyperinsulinism Hyperammonemia Syndrome. AACE Clin Case Rep 2023; 9:122-124. [PMID: 37520762 PMCID: PMC10382607 DOI: 10.1016/j.aace.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 08/01/2023] Open
Abstract
Background/Objective To illustrate an unusual case of type 2 diabetes mellitus (T2DM) developing many years after the diagnosis of hyperinsulinism hyperammonemia (HI/HA) syndrome. Case Report This article reports about a 36-year-old female with a history of congenital hyperinsulinism due to HI/HA syndrome, which was diagnosed in infancy. The patient presented with hypoglycemia and seizures as an infant and was treated with diazoxide and a low-protein diet for many years with reduction in her hypoglycemic events. She subsequently developed T2DM >30 years later. Genetic analysis was positive for a glutamate dehydrogenase 1 gene (GLUD1) alteration. She was treated with metformin and a glucagon-like peptide 1 agonist, with significant improvement in her blood glucose control and weight loss. Discussion HI/HA syndrome is a rare genetic syndrome that manifests in childhood with signs and symptoms of hypoglycemia and neurologic symptoms. This is the first case reported in the literature of a patient with HI/HA syndrome due to a GLUD1 alteration who developed T2DM much later in life. Patients with this disorder usually have recurrent hypoglycemia and require long-term medical therapy or very occasionally may have a resolution. She had class 3 obesity and evidence of insulin resistance, which likely contributed to her risk of diabetes. Conclusion This is a rare case of T2DM presenting in a patient with HI/HA syndrome. This should be considered a possible outcome in patients with this disorder, especially in the presence of obesity.
Collapse
Affiliation(s)
| | - Omolola Olajide
- Address correspondence to Dr Omolola Olajide, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232.
| |
Collapse
|
9
|
Grier AE, McGill JB, Lord SM, Speake C, Greenbaum C, Chamberlain CE, German MS, Anderson MS, Hirsch IB. ABCC8-Related Monogenic Diabetes Presenting Like Type 1 Diabetes in an Adolescent. AACE Clin Case Rep 2023; 9:101-103. [PMID: 37520758 PMCID: PMC10382606 DOI: 10.1016/j.aace.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 08/01/2023] Open
Abstract
Background Identifying cases of diabetes caused by single gene mutations between the more common type 1 diabetes (T1D) and type 2 diabetes (T2D) is a difficult but important task. We report the diagnosis of ATP-binding cassette transporter sub-family C member 8 (ABCC8)-related monogenic diabetes in a 35-year-old woman with a protective human leukocyte antigen (HLA) allele who was originally diagnosed with T1D at 18 years of age. Case Report Patient A presented with polyuria, polydipsia, and hypertension at the age of 18 years and was found to have a blood glucose > 500 mg/dL (70-199 mg/dL) and an HbA1C (hemoglobin A1C) >14% (4%-5.6%). She had an unmeasurable C-peptide but no urine ketones. She was diagnosed with T1D and started on insulin therapy. Antibody testing was negative. She required low doses of insulin and later had persistence of low but detectable C-peptide. At the age of 35 years, she was found to have a protective HLA allele, and genetic testing revealed a pathogenic mutation in the ABCC8 gene. The patient was then successfully transitioned to sulfonylurea therapy. Discussion Monogenic diabetes diagnosed in adolescence typically presents with mild to moderate hyperglycemia, positive family history and, in some cases, other organ findings or dysfunction. The patient in this report presented with very high blood glucose, prompting the diagnosis of T1D. When she was found to have a protective HLA allele, further investigation revealed the mutation in the sulfonylurea receptor gene, ABCC8. Conclusion Patients suspected of having T1D but with atypical clinical characteristics such as negative autoantibodies, low insulin requirements, and persistence of C-peptide should undergo genetic testing for monogenic diabetes.
Collapse
Affiliation(s)
- Alexandra E. Grier
- Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, Missouri
| | - Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra M. Lord
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Cate Speake
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Carla Greenbaum
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Chester E. Chamberlain
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California
| | - Michael S. German
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California
| | - Mark S. Anderson
- Department of Medicine, Diabetes Center, University of California, San Francisco, California
| | - Irl B. Hirsch
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
10
|
Evin F, Işık E, Onay H, Özen S, Darcan Ş, Gökşen D. ABCC8-related maturity-onset diabetes of the young: switching from insulin to sulphonylurea therapy: how long do we need for a good metabolic control? J Pediatr Endocrinol Metab 2023:jpem-2022-0642. [PMID: 37071846 DOI: 10.1515/jpem-2022-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Activating variants of the ABCC8 gene cause neonatal diabetes or maturity-onset diabetes of the young (MODY). We report three cases of MODY type 12 caused by variants in the ABCC8 encoding sulphonylurea receptor 1, and the experience of switching from insulin therapy to sulphonylurea therapy. CASE PRESENTATIONS We describe a 12.5-year-old girl with permanent neonatal diabetes mellitus, and two diabetes mellitus cases with variants in the ABCC8 gene. Two of these cases were successfully switched from subcutaneous insulin to oral glibenclamide, with a marked improvement in glycemic control. In permanent neonatal diabetes case, glibenclamide dose was progressively increased to achieve a full dose (2 mg/kg/day) in 9 days. Nine months after starting oral sulphonylurea therapy, her blood glucose control dramatically improved and insulin therapy was discontinued. CONCLUSIONS We conclude that patients with ABCC8 gene variants can successfully switch from insulin to sulphonylureas.
Collapse
Affiliation(s)
- Ferda Evin
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, İzmir, Türkiye
| | - Esra Işık
- Faculty of Medicine, Department of Pediatric Genetics, Ege University, İzmir, Türkiye
| | - Hüseyin Onay
- Multigen Genetic Diseases Diagnosis Center, Izmir, Türkiye
| | - Samim Özen
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, İzmir, Türkiye
| | - Şükran Darcan
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, İzmir, Türkiye
| | - Damla Gökşen
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, İzmir, Türkiye
| |
Collapse
|
11
|
Liu MT, Yang HX. Neonatal hyperinsulinism with an ABCC8 mutation: A case report. World J Clin Cases 2023; 11:2254-2259. [PMID: 37122528 PMCID: PMC10131030 DOI: 10.12998/wjcc.v11.i10.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Neonatal hyperinsulinism can result from perinatal stress, genetic disorders, or syndromes, which can lead to persistent or intractable hypoglycemia in newborns. Mutations in the ABCC8 gene result in abnormal functioning of potassium channel proteins in pancreatic β-cells, leading to an overproduction of insulin and congenital hyperinsulinemia.
CASE SUMMARY We report a case of a high-birth-weight infant with postnatal hypoglycemia and hyperinsulinemia, whose mother had pregestational diabetes mellitus with poor glycemic control and whose sister had a similar history at birth. Whole-exome sequencing revealed a new mutation in the ABCC8 gene in exon 8 (c.1257T>G), which also occurred in his sister and mother; thus, the patient was diagnosed with neonatal hyperinsulinism with an ABCC8 mutation. With oral diazoxide treatment, the child’s blood glucose returned to normal, and the pediatrician gradually discontinued treatment because of the child’s good growth and development.
CONCLUSION We report a new mutation locus in the ABCC8 gene. This mutation locus warrants attention for genetic disorders and long-term prognoses of hypoglycemic children.
Collapse
Affiliation(s)
- Meng-Tong Liu
- Department of Gynecology and Obstetrics, Peking University First Hospital, Beijing 100034, China
| | - Hui-Xia Yang
- Department of Gynecology and Obstetrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
12
|
Hermann FM, Kjærgaard MF, Tian C, Tiemann U, Jackson A, Olsen LR, Kraft M, Carlsson PO, Elfving IM, Kettunen JLT, Tuomi T, Novak I, Semb H. An insulin hypersecretion phenotype precedes pancreatic β cell failure in MODY3 patient-specific cells. Cell Stem Cell 2023; 30:38-51.e8. [PMID: 36563694 DOI: 10.1016/j.stem.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
MODY3 is a monogenic hereditary form of diabetes caused by mutations in the transcription factor HNF1A. The patients progressively develop hyperglycemia due to perturbed insulin secretion, but the pathogenesis is unknown. Using patient-specific hiPSCs, we recapitulate the insulin secretion sensitivity to the membrane depolarizing agent sulfonylurea commonly observed in MODY3 patients. Unexpectedly, MODY3 patient-specific HNF1A+/R272C β cells hypersecrete insulin both in vitro and in vivo after transplantation into mice. Consistently, we identified a trend of increased birth weight in human HNF1A mutation carriers compared with healthy siblings. Reduced expression of potassium channels, specifically the KATP channel, in MODY3 β cells, increased calcium signaling, and rescue of the insulin hypersecretion phenotype by pharmacological targeting ATP-sensitive potassium channels or low-voltage-activated calcium channels suggest that more efficient membrane depolarization underlies the hypersecretion of insulin in MODY3 β cells. Our findings identify a pathogenic mechanism leading to β cell failure in MODY3.
Collapse
Affiliation(s)
- Florian M Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Maya Friis Kjærgaard
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Chenglei Tian
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany
| | - Ulf Tiemann
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Abigail Jackson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Kraft
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jarno L T Kettunen
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhalsan Research Center, Helsinki, Finland; Institute for Molecular Medicine Finland, University of Finland, Helsinki, Finland; Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, München, Germany.
| |
Collapse
|
13
|
Krawczyk S, Urbanska K, Biel N, Bielak MJ, Tarkowska A, Piekarski R, Prokurat AI, Pacholska M, Ben-Skowronek I. Congenital Hyperinsulinaemic Hypoglycaemia-A Review and Case Presentation. J Clin Med 2022; 11:jcm11206020. [PMID: 36294341 PMCID: PMC9604599 DOI: 10.3390/jcm11206020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is the most common cause of persistent hypoglycaemia in infants and children with incidence estimated at 1 per 50,000 live births. Congenital hyperinsulinism (CHI) is symptomatic mostly in early infancy and the neonatal period. Symptoms range from ones that are unspecific, such as poor feeding, lethargy, irritability, apnoea and hypothermia, to more serious symptoms, such as seizures and coma. During clinical examination, newborns present cardiomyopathy and hepatomegaly. The diagnosis of CHI is based on plasma glucose levels <54 mg/dL with detectable serum insulin and C-peptide, accompanied by suppressed or low serum ketone bodies and free fatty acids. The gold standard in determining the form of HH is fluorine-18-dihydroxyphenyloalanine PET ((18)F-DOPA PET). The first-line treatment of CHI is diazoxide, although patients with homozygous or compound heterozygous recessive mutations responsible for diffuse forms of CHI remain resistant to this therapy. The second-line drug is the somatostatin analogue octreotide. Other therapeutic options include lanreotide, glucagon, acarbose, sirolimus and everolimus. Surgery is required in cases unresponsive to pharmacological treatment. Focal lesionectomy or near-total pancreatectomy is performed in focal and diffuse forms of CHI, respectively. To prove how difficult the diagnosis and management of CHI is, we present a case of a patient admitted to our hospital.
Collapse
Affiliation(s)
- Sylwia Krawczyk
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karolina Urbanska
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Natalia Biel
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michal Jakub Bielak
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Robert Piekarski
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Igor Prokurat
- Department of Paediatric Surgery, Regional Children’s Hospital in Bydgoszcz, 85-667 Bydgoszcz, Poland
| | - Malgorzata Pacholska
- Department of Paediatric Surgery, Regional Children’s Hospital in Bydgoszcz, 85-667 Bydgoszcz, Poland
| | - Iwona Ben-Skowronek
- Department of Paediatric Endocrinology and Diabetology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
14
|
Colclough K, Patel K. How do I diagnose Maturity Onset Diabetes of the Young in my patients? Clin Endocrinol (Oxf) 2022; 97:436-447. [PMID: 35445424 PMCID: PMC9544561 DOI: 10.1111/cen.14744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes diagnosed in young individuals that lack the typical features of type 1 and type 2 diabetes. The genetic subtype of MODY determines the most effective treatment and this is the driver for MODY genetic testing in diabetes populations. Despite the obvious clinical and health economic benefits, MODY is significantly underdiagnosed with the majority of patients being inappropriately managed as having type 1 or type 2 diabetes. Low detection rates result from the difficulty in identifying patients with a likely diagnosis of MODY from the high background population of young onset type 1 and type 2 diabetes, compounded by the lack of MODY awareness and education in diabetes care physicians. MODY diagnosis can be improved through (1) access to education and training, (2) the use of sensitive and specific selection criteria based on accurate prediction models and biomarkers to identify patients for testing, (3) the development and mainstream implementation of simple criteria-based selection pathways applicable across a range of healthcare settings and ethnicities to select the most appropriate patients for genetic testing and (4) the correct use of next generation sequencing technology to provide accurate and comprehensive testing of all known MODY and monogenic diabetes genes. The creation and public sharing of educational materials, clinical and scientific best practice guidelines and genetic variants will help identify the missing patients so they can benefit from the more effective clinical care that a genetic diagnosis brings.
Collapse
Affiliation(s)
- Kevin Colclough
- Exeter Genomics LaboratoryRoyal Devon & Exeter NHS Foundation TrustExeterUK
| | - Kashyap Patel
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
15
|
Motte-Signoret E, Saint-Martin C, Bellané-Chantelot C, Portha B, Boileau P. Glucocorticoid-Induced Hyperinsulinism in a Preterm Neonate with Inherited ABCC8 Variant. Metabolites 2022; 12:metabo12090847. [PMID: 36144251 PMCID: PMC9506278 DOI: 10.3390/metabo12090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Glucose homeostasis is a real challenge for extremely preterm infants (EPIs) who have both limited substrate availability and immature glucose metabolism regulation. In the first days of life, EPIs frequently develop transient glucose intolerance, which has a complex pathophysiology that associates unregulated gluconeogenesis, immature insulin secretion, and peripheral insulin resistance. In this population, glucocorticoid therapy is frequently administrated to prevent severe bronchopulmonary dysplasia. During this treatment, glucose intolerance classically increases and may lead to hyperglycemia. We report a case of neonatal hypoglycemia that was concomitant to a glucocorticoids administration, and that led to a congenital hyperinsulinism diagnosis in an EPI with a heterozygous ABCC8 variant. The variant was inherited from his mother, who had developed monogenic onset diabetes of the youth (MODY) at the age of 23. ABCC8 encodes a beta-cell potassium channel unit and causes congenital hyperinsulinism or MODY depending on the mutation location. Moreover, some mutations have been observed in the same patient to cause both hyperinsulinism in infancy and MODY in adulthood. In our case, the baby showed repeated and severe hypoglycemias, which were undoubtedly time-associated with the betamethasone intravenous administration. This hyperinsulinism was transient, and the infant has not yet developed diabetes at three years of age. We take the opportunity presented by this unusual clinical presentation to provide a review of the literature, suggesting new insights regarding the pathophysiology of the beta-pancreatic cells’ insulin secretion: glucocorticoids may potentiate basal insulin secretion in patients with ABCC8 mutation.
Collapse
Affiliation(s)
- Emmanuelle Motte-Signoret
- Department of Neonatal Intensive Care Unit, Poissy St Germain Hospital, 10 rue du Champ Gaillard, 78300 Poissy, France
- Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Versailles St Quentin University—Paris-Saclay University, 78350 Jouy-en-Josas, France
- Correspondence: ; Tel.: +331-39-27-52-40; Fax: +331-39-27-44-30
| | - Cécile Saint-Martin
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, Sorbonne University, AP-HP, 75013 Paris, France
| | | | - Bernard Portha
- Unité de Biologie Fonctionnelle et Adaptive, Laboratoire B2PE, CNRS UMR 8251, Campus Grands Moulins, Université Paris Cité, 75205 Paris, France
| | - Pascal Boileau
- Department of Neonatal Intensive Care Unit, Poissy St Germain Hospital, 10 rue du Champ Gaillard, 78300 Poissy, France
- Physiologie et Physiopathologie Endocriniennes, Inserm, Paris-Saclay University, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
16
|
Second MAFA Variant Causing a Phosphorylation Defect in the Transactivation Domain and Familial Insulinomatosis. Cancers (Basel) 2022; 14:cancers14071798. [PMID: 35406570 PMCID: PMC8997416 DOI: 10.3390/cancers14071798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Adult-onset familial insulinomatosis is a rare disorder with recurrent, severe hypoglycemia caused by multiple insulin-secreting pancreatic tumors. The etiology was unclear until the variant p.Ser64Phe in the transcription factor MAFA, a key coordinator of β-cell insulin secretion, was defined as the cause in two families. We here describe detailed genetic, clinical, and family analyses of two sisters with insulinomatosis, aiming to identify further disease causes. Using exome sequencing, we detected a novel, heterozygous missense variant, p.Thr57Arg, in MAFA’s highly conserved transactivation domain. The impact of the affected region is so crucial that in vitro expression studies replacing Thr57 have already been performed, demonstrating a phosphorylation defect with the impairment of transactivation activity and degradation. However, prior to our study, the link to human disease was missing. Furthermore, mild hyperglycemia was observed in six additional, heterozygote family members, indicating that not only insulinomatosis but also MODY-like symptoms co-segregate with p.Thr57Arg. The pre-described MAFA variant, p.Ser64Phe, is located in the same domain, impairs the same phosphorylation cascade, and results in the same symptoms. We confirm MAFA phosphorylation defects are important causes of a characteristic syndrome, thus complementing the pathophysiological and diagnostic disease concept. Additionally, we verify the high penetrance and autosomal dominant inheritance pattern.
Collapse
|
17
|
Nichols CG, York NW, Remedi MS. ATP-Sensitive Potassium Channels in Hyperinsulinism and Type 2 Diabetes: Inconvenient Paradox or New Paradigm? Diabetes 2022; 71:367-375. [PMID: 35196393 PMCID: PMC8893938 DOI: 10.2337/db21-0755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 11/13/2022]
Abstract
Secretion of insulin from pancreatic β-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of β-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Park H, Kim MS, Kim J, Lee SM, Cho SY, Yoo EG, Jin DK. Hypertriglyceridemia with acute pancreatitis in a 14-year-old girl with diabetic ketoacidosis. Ann Pediatr Endocrinol Metab 2022; 27:73-77. [PMID: 34015902 PMCID: PMC8984753 DOI: 10.6065/apem.2040250.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Diabetic ketoacidosis (DKA) is a medically fatal condition in poorly controlled hyperglycemia or newly diagnosed diabetes mellitus. Severe hypertriglyceridemia (HTG) is an uncommon complication of DKA and can be associated with acute pancreatitis (AP). We present the clinical manifestations, laboratory findings, and management of AP associated with HTG in a 14-year-old girl with DKA. The patient, with a 7-year history of type 2 diabetes presented with epigastric pain, 1 month after stopping insulin injection. DKA, severe HTG, and AP were diagnosed based on the laboratory and imaging tests. She recovered from DKA after conventional treatment for DKA, and her triglyceride (TG) level was reduced from 10,867 mg/dL to the normal range after 7 days of admission without antilipid medication. Given that her C-peptide level was not too low and considering her negative diabetes-related antibodies and high TG level, targeted gene panel sequencing was performed on the genes associated with diabetes and HTG. We identified a heterozygous mutation, c.4607C>T (p. Ala1537Val), in ABCC8 related to maturityonset diabetes of the young (MODY) 12. To our knowledge, this is the first reported case of HTG-induced AP with DKA in a patient with MODY. In addition, we reviewed the literature for pediatric cases of HTG with DKA. In patients with DKA, timely awareness of severe HTG related to insulin deficiency is crucial for improving the consequences of AP. We recommend considering AP in all DKA patients presenting with severe HTG to ensure early and proper management.
Collapse
Affiliation(s)
- Hyojung Park
- Department of Pediatrics, Seongnam Citizens Medical Center, Seongnam, Korea
| | - Min-Sun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sae-Mi Lee
- GC Genome, GCLabs, Yongin, Korea,Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Address for correspondence: Sung Yoon Cho Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Eun-Gyong Yoo
- Department of Pediatrics, College of Medicine, Pochon CHA University, Seongnam, Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Lithovius V, Otonkoski T. Stem Cell Based Models in Congenital Hyperinsulinism - Perspective on Practicalities and Possibilities. Front Endocrinol (Lausanne) 2022; 13:837450. [PMID: 35250887 PMCID: PMC8895269 DOI: 10.3389/fendo.2022.837450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Väinö Lithovius, ; Timo Otonkoski,
| |
Collapse
|
20
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
21
|
Gurzeler E, Ruotsalainen AK, Laine A, Valkama T, Kettunen S, Laakso M, Ylä-Herttuala S. SUR1-E1506K mutation impairs glucose tolerance and promotes vulnerable atherosclerotic plaque phenotype in hypercholesterolemic mice. PLoS One 2021; 16:e0258408. [PMID: 34767557 PMCID: PMC8589160 DOI: 10.1371/journal.pone.0258408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Diabetes is a major risk factor of atherosclerosis and its complications. The loss-of-function mutation E1506K in the sulfonylurea receptor 1 (SUR1-E1506K) induces hyperinsulinemia in infancy, leading to impaired glucose tolerance and increased risk of type 2 diabetes. In this study, we investigate the effect of SUR1-E1506K mutation on atherogenesis in hypercholesterolemic LDLR-/- mice. METHODS SUR1-E1506K mutated mice were cross-bred with LDLR-/- mice (SUR1Δ/LDLR-/-), 6 months old mice were fed a western-diet (WD) for 6 months to induce advanced atherosclerotic plaques. At the age of 12 months, atherosclerosis and plaque morphology were analyzed and mRNA gene expression were measured from aortic sections and macrophages. Glucose metabolism was characterized before and after WD. Results were compared to age-matched LDLR-/- mice. RESULTS Advanced atherosclerotic plaques did not differ in size between the two strains. However, in SUR1Δ/LDLR-/- mice, plaque necrotic area was increased and smooth muscle cell number was reduced, resulting in higher plaque vulnerability index in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice. SUR1Δ/LDLR-/- mice exhibited impaired glucose tolerance and elevated fasting glucose after WD. The positive staining area of IL-1β and NLRP3 inflammasome were increased in aortic sections in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice, and IL-18 plasma level was elevated in SUR1Δ/LDLR-/- mice. Finally, the mRNA expression of IL-1β and IL-18 were increased in SUR1Δ/LDLR-/- bone marrow derived macrophages in comparison to LDLR-/- macrophages in response to LPS. CONCLUSIONS SUR1-E1506K mutation impairs glucose tolerance and increases arterial inflammation, which promotes a vulnerable atherosclerotic plaque phenotype in LDLR-/- mice.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Blood Glucose/metabolism
- Cells, Cultured
- Diet, Western/adverse effects
- Disease Models, Animal
- Gene Expression
- Glucose Intolerance/genetics
- Hypercholesterolemia/blood
- Hypercholesterolemia/etiology
- Hypercholesterolemia/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Necrosis
- Phenotype
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- RNA, Messenger/genetics
- Receptors, LDL/genetics
- Sulfonylurea Receptors/genetics
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Anssi Laine
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Teemu Valkama
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
22
|
Zhao MM, Lu J, Li S, Wang H, Cao X, Li Q, Shi TT, Matsunaga K, Chen C, Huang H, Izumi T, Yang JK. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun 2021; 12:5616. [PMID: 34556670 PMCID: PMC8460738 DOI: 10.1038/s41467-021-25952-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet β-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.
Collapse
Affiliation(s)
- Miao-Miao Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Jing Lu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Sen Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Hao Wang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Xi Cao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, 100730, Beijing, China.
| |
Collapse
|
23
|
Li M, Gong S, Han X, Zhang S, Ren Q, Cai X, Luo Y, Zhou L, Zhang R, Liu W, Zhu Y, Zhou X, Sun Y, Li Y, Ma Y, Ji L. Genetic variants of ABCC8 and phenotypic features in Chinese early onset diabetes. J Diabetes 2021; 13:542-553. [PMID: 33300273 DOI: 10.1111/1753-0407.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ABCC8 variants cause neonatal diabetes, maturity onset diabetes of the young (MODY), and hyperinsulinemic hypoglycemia because of activating or inactivating variants. In this study we used targeted exon sequencing to investigate genetic variants of ABCC8 and phenotypic features in Chinese patients with early onset diabetes (EOD). METHODS A cross-sectional study of 543 Chinese patients with EOD was recruited and the exons of them were conducted targeted sequencing. The pathogenicity of ABCC8 variants was defined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline. The phenotypes of patients owing to ABCC8 variants (ABCC8-MODY) were characterized. RESULTS Among the 543 participants, eight (1.5%) patients with ABCC8-MODY were identified. They harbored eight missense ABCC8 variants (p.R306C, p.E1326K, and p.R1379H, previously reported; p.R298C, p.F1176C, p.R1221W, p.K1358R, and p.I1404V) classified as likely pathogenic. Two family members with ABCC8-MODY were also confirmed. The average diagnosed age of the 10 patients was 26.8 ± 12.9 years. The majority of them had unsatisfactory glucose control, 80% of them had diabetic kidney disease, and neurological features were not observed. CONCLUSION Using targeted exon sequencing followed by pathogenicity analysis, we could be able to make genetic diagnoses for eight (1.5%) patients with ABCC8-MODY. The phenotype was variable with higher risk of diabetic microvascular complications. Genetic diagnosis is conducive for facilitating the personalized treatment of ABCC8-MODY.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yanfang Sun
- Department of Internal Medicine, Hebei Province Sanhe Hospital, Langfang, China
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Capital Medical University Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
24
|
Männistö JME, Jääskeläinen J, Otonkoski T, Huopio H. Long-Term Outcome and Treatment in Persistent and Transient Congenital Hyperinsulinism: A Finnish Population-Based Study. J Clin Endocrinol Metab 2021; 106:e1542-e1551. [PMID: 33475139 PMCID: PMC7993590 DOI: 10.1210/clinem/dgab024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT The management of congenital hyperinsulinism (CHI) has improved. OBJECTIVE To examine the treatment and long-term outcome of Finnish patients with persistent and transient CHI (P-CHI and T-CHI). DESIGN A population-based retrospective study of CHI patients treated from 1972 to 2015. PATIENTS 106 patients with P-CHI and 132 patients with T-CHI (in total, 42 diagnosed before and 196 after year 2000) with median follow-up durations of 12.5 and 6.2 years, respectively. MAIN OUTCOME MEASURES Recovery, diabetes, pancreatic exocrine dysfunction, neurodevelopment. RESULTS The overall incidence of CHI (n = 238) was 1:11 300 live births (1972-2015). From 2000 to 2015, the incidence of P-CHI (n = 69) was 1:13 500 and of T-CHI (n = 127) 1:7400 live births. In the 21st century P-CHI group, hyperinsulinemic medication was initiated and normoglycemia achieved faster relative to earlier. Of the 74 medically treated P-CHI patients, 68% had discontinued medication. Thirteen (12%) P-CHI patients had partial pancreatic resection and 19 (18%) underwent near-total pancreatectomy. Of these, 0% and 84% developed diabetes and 23% and 58% had clinical pancreatic exocrine dysfunction, respectively. Mild neurological difficulties (21% vs 16%, respectively) and intellectual disability (9% vs 5%, respectively) were as common in the P-CHI and T-CHI groups. However, the 21st century P-CHI patients had significantly more frequent normal neurodevelopment and significantly more infrequent diabetes and pancreatic exocrine dysfunction compared with those diagnosed earlier. CONCLUSIONS Our results demonstrated improved treatment and long-term outcome in the 21st century P-CHI patients relative to earlier.
Collapse
Affiliation(s)
- Jonna M E Männistö
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Correspondence: Jonna Männistö, MD, Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Kuopio, Finland.
| | - Jarmo Jääskeläinen
- Department of Pediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Otonkoski
- Children’s Hospital and Stem Cells and Metabolism Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Huopio
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
25
|
Li M, Han X, Ji L. Clinical and Genetic Characteristics of ABCC8 Nonneonatal Diabetes Mellitus: A Systematic Review. J Diabetes Res 2021; 2021:9479268. [PMID: 34631896 PMCID: PMC8497126 DOI: 10.1155/2021/9479268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Diabetes mellitus (DM) is a major chronic metabolic disease in the world, and the prevalence has been increasing rapidly in recent years. The channel of KATP plays an important role in the regulation of insulin secretion. The variants in ABCC8 gene encoding the SUR1 subunit of KATP could cause a variety of phenotypes, including neonatal diabetes mellitus (ABCC8-NDM) and ABCC8-induced nonneonatal diabetes mellitus (ABCC8-NNDM). Since the features of ABCC8-NNDM have not been elucidated, this study is aimed at concluding the genetic features and clinical characteristics. METHODS We comprehensively reviewed the literature associated with ABCC8-NNDM in the following databases: MEDLINE, PubMed, and Web of Science to investigate the features of ABCC8-NNDM. RESULTS Based on a comprehensive literature search, we found that 87 probands with ABCC8-NNDM carried 71 ABCC8 genetic variant alleles, 24% of whom carried inactivating variants, 24% carried activating variants, and the remaining 52% carried activating or inactivating variants. Nine of these variants were confirmed to be activating or inactivating through functional studies, while four variants (p.R370S, p.E1506K, p.R1418H, and p.R1420H) were confirmed to be inactivating. The phenotypes of ABCC8-NNDM were variable and could also present with early hyperinsulinemia followed by reduced insulin secretion, progressing to diabetes later. They had a relatively high risk of microvascular complications and low prevalence of nervous disease, which is different from ABCC8-NDM. CONCLUSIONS Genetic testing is essential for proper diagnosis and appropriate treatment for patients with ABCC8-NNDM. And further studies are required to determine the complex mechanism of the variants of ABCC8-NNDM.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China 100044
| |
Collapse
|
26
|
Vaxillaire M, Bonnefond A, Liatis S, Ben Salem Hachmi L, Jotic A, Boissel M, Gaget S, Durand E, Vaillant E, Derhourhi M, Canouil M, Larcher N, Allegaert F, Medlej R, Chadli A, Belhadj A, Chaieb M, Raposo JF, Ilkova H, Loizou D, Lalic N, Vassallo J, Marre M, Froguel P. Monogenic diabetes characteristics in a transnational multicenter study from Mediterranean countries. Diabetes Res Clin Pract 2021; 171:108553. [PMID: 33242514 DOI: 10.1016/j.diabres.2020.108553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically. AIMS To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries. METHODS We conducted a transnational multicenter study based on exome sequencing in 204 unrelated patients with diabetes (age-at-diagnosis: 26.1 ± 9.1 years). Rare coding variants in 35 targeted genes were evaluated for pathogenicity. Data were analyzed using one-way ANOVA, chi-squared test and factor analysis of mixed data. RESULTS Forty pathogenic or likely pathogenic variants, 14 of which novel, were identified in 36 patients yielding a genetic diagnosis rate of 17.6%. The majority of cases were due to GCK, HNF1A, ABCC8 and HNF4A variants. We observed highly variable diagnosis rates according to countries, with association to genetic ancestry. Lower body mass index and HbA1c at study inclusion, and less frequent insulin treatment were hallmarks of pathogenic variant carriers. Treatment changes following genetic diagnosis have been made in several patients. CONCLUSIONS Our data from patients in several Mediterranean countries highlight a broad clinical and genetic spectrum of diabetes, showing the relevance of wide genetic testing for personalized care of early-onset diabetes.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom.
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, National and Kapodistrian University of Athens Medical School, Diabetes Center, Laiko General Hospital, Athens, Greece
| | - Leila Ben Salem Hachmi
- Department of Endocrinology and Metabolic Diseases, National Institut of Nutrition, Tunis, Tunisia
| | - Aleksandra Jotic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Stefan Gaget
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Nicolas Larcher
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | - Frédéric Allegaert
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France
| | | | - Asma Chadli
- Department of Endocrinology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Azzedine Belhadj
- Department of Internal Medicine, CHU Dr Ben Badis University Hospital, Constantine, Algeria
| | - Molka Chaieb
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Hasan Ilkova
- Department of Endocrinology, School of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Nebojsa Lalic
- Department of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Josanne Vassallo
- Division of Endocrinology and University of Malta Medical School, Mater Dei Hospital; Centre of Molecular Medicine and Biobanking, University of Malta, Malta
| | - Michel Marre
- Department of Diabetology-Endocrinology-Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux de Paris, Paris, France; Inserm U1138, Centre de Recherche des Cordeliers, Paris, France; UFR de Médecine, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur Lille, Univ. Lille, Lille University Hospital, Lille, France; Department of Metabolism, Section of Genomics of Common Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
29
|
The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 2020; 6:20. [PMID: 33292863 PMCID: PMC7640483 DOI: 10.1186/s40842-020-00112-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The most common type of monogenic diabetes is maturity-onset diabetes of the young (MODY), a clinically and genetically heterogeneous group of endocrine disorders that affect 1–5% of all patients with diabetes mellitus. MODY is characterized by autosomal dominant inheritance but de novo mutations have been reported. Clinical features of MODY include young-onset hyperglycemia, evidence of residual pancreatic function, and lack of beta cell autoimmunity or insulin resistance. Glucose-lowering medications are the main treatment options for MODY. The growing recognition of the clinical and public health significance of MODY by clinicians, researchers, and governments may lead to improved screening and diagnostic practices. Consequently, this review article aims to discuss the epidemiology, pathogenesis, diagnosis, and treatment of MODY based on relevant literature published from 1975 to 2020. Main body The estimated prevalence of MODY from European cohorts is 1 per 10,000 in adults and 1 per 23,000 in children. Since little is known about the prevalence of MODY in African, Asian, South American, and Middle Eastern populations, further research in non-European cohorts is needed to help elucidate MODY’s exact prevalence. Currently, 14 distinct subtypes of MODY can be diagnosed through clinical assessment and genetic analysis. Various genetic mutations and disease mechanisms contribute to the pathogenesis of MODY. Management of MODY is subtype-specific and includes diet, oral antidiabetic drugs, or insulin. Conclusions Incidence and prevalence estimates for MODY are derived from epidemiologic studies of young people with diabetes who live in Europe, Australia, and North America. Mechanisms involved in the pathogenesis of MODY include defective transcriptional regulation, abnormal metabolic enzymes, protein misfolding, dysfunctional ion channels, or impaired signal transduction. Clinicians should understand the epidemiology and pathogenesis of MODY because such knowledge is crucial for accurate diagnosis, individualized patient management, and screening of family members.
Collapse
|
30
|
Matsutani N, Furuta H, Matsuno S, Oku Y, Morita S, Uraki S, Doi A, Furuta M, Iwakura H, Ariyasu H, Nishi M, Akamizu T. Identification of a compound heterozygous inactivating ABCC8 gene mutation responsible for young-onset diabetes with exome sequencing. J Diabetes Investig 2020; 11:333-336. [PMID: 31479591 PMCID: PMC7078087 DOI: 10.1111/jdi.13138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022] Open
Abstract
Activating mutations in the ABCC8 gene cause diabetes and inactivating mutations usually cause hyperinsulinemic hypoglycemia in infancy. Patients with hypoglycemia in infancy due to a heterozygous inactivating mutation have been reported to occasionally progress to diabetes later in life. We explored the gene responsible for diabetes in two brothers, who were suspected to have diabetes at 15 and 18 years-of-age, respectively, with whole exome sequencing, and identified a compound heterozygous ABCC8 gene mutation (p.Arg168Cys and p.Arg1421Cys). Although their father and mother were heterozygous carriers of the p.Arg168Cys and the p.Arg1421Cys mutation, respectively, neither parent had diabetes. These mutations have been reported to be responsible for hypoglycemia in infancy and function as an inactivating mutation. Our results suggest that the inactivating ABCC8 gene mutation is also important in the etiology of diabetes.
Collapse
Affiliation(s)
- Norihiko Matsutani
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroto Furuta
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shohei Matsuno
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | | | - Shuhei Morita
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinsuke Uraki
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Asako Doi
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Machi Furuta
- Clinical Laboratory MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroshi Iwakura
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Ariyasu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| | - Masahiro Nishi
- Department of Clinical Nutrition and MetabolismWakayama Medical UniversityWakayamaJapan
| | - Takashi Akamizu
- First Department of Internal MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
31
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
32
|
Karatojima M, Furuta H, Matsutani N, Matsuno S, Tamai M, Komiya K, Morita S, Uraki S, Doi A, Furuta M, Iwakura H, Ariyasu H, Nishi M, Akamizu T. A family in which people with a heterozygous ABCC8 gene mutation (p.Lys1385Gln) have progressed from hyperinsulinemic hypoglycemia to hyperglycemia. J Diabetes 2020; 12:21-24. [PMID: 31578783 DOI: 10.1111/1753-0407.12990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mai Karatojima
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroto Furuta
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Norihiko Matsutani
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shohei Matsuno
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | - Shuhei Morita
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Uraki
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Asako Doi
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroshi Iwakura
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Ariyasu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Nishi
- Department of Clinical Nutrition and Metabolism, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akamizu
- First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
33
|
From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep 2019; 25:3800-3810.e6. [PMID: 30590050 DOI: 10.1016/j.celrep.2018.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/26/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023] Open
Abstract
Glucose-stimulated insulin secretion from islet β cells is mediated by KATP channels. However, the role of non-KATP K+ channels in insulin secretion is largely unknown. Here, we show that a non-KATP K+ channel, KCNH6, plays a key role in insulin secretion and glucose hemostasis in humans and mice. KCNH6 p.P235L heterozygous mutation co-separated with diabetes in a four-generation pedigree. Kcnh6 knockout (KO) or Kcnh6 p.P235L knockin (KI) mice had a phenotype characterized by changing from hypoglycemia with hyperinsulinemia to hyperglycemia with insulin deficiency. Islets from the young KO mice had increased intracellular calcium concentration and increased insulin secretion. However, islets from the adult KO mice not only had increased intracellular calcium levels but also had remarkable ER stress and apoptosis, associated with loss of β cell mass and decreased insulin secretion. Therefore, dysfunction of KCNH6 causes overstimulation of insulin secretion in the short term and β cell failure in the long term.
Collapse
|
34
|
Yang YS, Wu CZ, Lin JD, Hsieh CH, Chen YL, Pei D, Kuo SW. The relationships between hemoglobin and insulin resistance, glucose effectiveness, and first- and second-phase insulin secretion in adult Chinese. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:509-515. [PMID: 31482956 PMCID: PMC10522261 DOI: 10.20945/2359-3997000000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/21/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We denote the four major factors related to the development of type 2 diabetes (T2D) as "diabetes factor" (DF); increased insulin resistance (IR); decreased glucose effectiveness (GE); and the first-and-second-phase of insulin secretion (FPIS, SPIS). The level of hemoglobin (Hb) was found to be related to IR and FPIS, but no-known studies focused on its role in relation to SPIS and GE. In this study, we aim to evaluate the relationships between Hb and all four DFs in the same individual. SUBJECTS AND METHODS We randomly enrolled 24,407 men and 24,889 women between 30 and 59 years old. IR, FPIS, SPIS and GE were measured according to equations published in our previous studies. To compare the slopes between Hb and the four DFs with different units, we converted their units to percent of change per unit of increased Hb. RESULTS Age, HDL-cholesterol and GE were higher in women; BMI, blood pressure, LDL-cholesterol, TG, Hb, FPIS, SPIS and IR were higher in men. After they were converted into percentage, the closeness of their relationships to Hb, from the highest to the lowest, were GE, IR, FPIS and SPIS for women and IR, GE, FPIS and SPIS for men. GE was the only one negatively related to Hb. CONCLUSIONS Our data showed that IR, FPIS and SPIS were both positively and, GE negatively, related to the Hb in adult Chinese. For women, GE had the closest association with Hb; for men, it was IR. Both phases of insulin secretion had relatively weaker relationships than IR and GE.
Collapse
Affiliation(s)
- Yen-Shan Yang
- Department of MedicineSchool of MedicineFu-Jen Catholic UniversityNew Taipei CityTaiwan Department of Medicine , School of Medicine , Fu-Jen Catholic University , New Taipei City , Taiwan
| | - Chung-Ze Wu
- Department of Internal MedicineShuang Ho HospitalTaipei Medical UniversityTaiwanDivision of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University; Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Jiunn-Diann Lin
- Department of Internal MedicineShuang Ho HospitalTaipei Medical UniversityTaiwanDivision of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University; Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and MetabolismDepartment of Internal MedicineTri-Service General HospitalTaipeiTaiwan Division of Endocrinology and Metabolism , Department of Internal Medicine , Tri-Service General Hospital , Taipei , Taiwan
| | - Yen-Lin Chen
- Cardinal Tien HospitalSchool of MedicineFu-Jen Catholic UniversityNew Taipei CityTaiwan Department of Pathology, Cardinal Tien Hospital , School of Medicine , Fu-Jen Catholic University , New Taipei City , Taiwan
| | - Dee Pei
- Catholic Fu-Jen HospitalSchool of MedicineFu-Jen Catholic UniversityNew Taipei CityTaiwan Department of Internal Medicine, Catholic Fu-Jen Hospital , School of Medicine , Fu-Jen Catholic University , New Taipei City , Taiwan
| | - Shi-Wen Kuo
- Department of EndocrinologyTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationTaiwan Department of Endocrinology , Taipei Tzu Chi Hospital , Buddhist Tzu Chi Medical Foundation , Taiwan
| |
Collapse
|
35
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
36
|
Apperley L, Giri D, Houghton JAL, Flanagan SE, Didi M, Senniappan S. A rare case of congenital hyperinsulinism (CHI) due to dual genetic aetiology involving HNF4A and ABCC8. J Pediatr Endocrinol Metab 2019; 32:301-304. [PMID: 30730840 DOI: 10.1515/jpem-2018-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/30/2018] [Indexed: 12/19/2022]
Abstract
Background Congenital hyperinsulinism (CHI) occurs due to an unregulated insulin secretion from the pancreatic β-cells resulting in hypoglycaemia. Causative mutations in multiple genes have been reported. Phenotypic variability exists both within and between different genetic subgroups. Case presentation A male infant born at 35+6 weeks' gestation with a birth weight of 4.3 kg [+3.6 standard deviation score (SDS)] had recurrent hypoglycaemic episodes from birth. Biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and the dose was progressively increased to maintain euglycaemia. His father was slim and had been diagnosed with type 2 diabetes in his 30s. Sequence analysis identified a heterozygous hepatocyte nuclear factor 4 alpha (HNF4A) mutation (p.Arg245Pro, c.734G>C) and compound heterozygous ABCC8 mutations (p.Gly92Ser, c.274G>A and p.Ala1185Val, c.3554C>T) in the patient. The p.Ala1185Val ABCC8 mutation was inherited from his unaffected mother and the p.Arg245Pro HNF4A and p.Gly92Ser ABCC8 mutations from his father. All three mutations were predicted to be pathogenic. Identification of the HNF4A mutation in the father established a diagnosis of maturity-onset diabetes of the young (MODY), which enabled medication change resulting in improved glycaemic control. Conclusions We report a rare patient with CHI due to dual genetic aetiology. Although he is currently responsive to the maximum dose of diazoxide, the long-term prognosis remains unclear.
Collapse
Affiliation(s)
- Louise Apperley
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Dinesh Giri
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Jayne A L Houghton
- Department of Molecular Genetics, The Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
37
|
Işık E, Demirbilek H, Houghton JA, Ellard S, Flanagan SE, Hussain K. Congenital Hyperinsulinism and Evolution to Sulfonylurearesponsive Diabetes Later in Life due to a Novel Homozygous p.L171F ABCC8 Mutation. J Clin Res Pediatr Endocrinol 2019; 11:82-87. [PMID: 29739729 PMCID: PMC6398184 DOI: 10.4274/jcrpe.galenos.2018.2018.0077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycemia in infants and children. Recessive inactivating mutations in the ABCC8 and KCNJ11 genes account for approximately 50% of all CHI cases. Hyperinsulinaemic hypoglycaemia in infancy and diabetes in later life have been reported in patients with HNF1A, HNF4A and ABCC8 mutations. Herein, we present a child who was diagnosed with CHI at birth, then developed diabetes mellitus at the age of nine years due to a novel homozygous missense, p.L171F (c.511C>T) mutation in exon 4 of ABCC8. The parents and one sibling were heterozygous carriers, whilst a younger sibling who had transient neonatal hypoglycemia was homozygous for the mutation. The mother and (maternal) uncle, who was also heterozygous for the mutation, developed diabetes within their third decade of life. The preliminary results of sulphonylurea (SU) treatment was suggestive of SU responsiveness. Patients with homozygous ABCC8 mutations can present with CHI in the newborn period, the hyperinsulinism can show variability in terms of clinical severity and age at presentation and can cause diabetes later in life. Patients with homozygous ABCC8 mutations who are managed medically should be followed long-term as they may be at increased risk of developing diabetes after many years.
Collapse
Affiliation(s)
- Emregül Işık
- Gaziantep Children’s Hospital, Clinics of Paediatric Endocrinology, Gaziantep, Turkey
| | - Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey,* Address for Correspondence: Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey Phone: +90 312 305 11 24 E-mail:
| | - Jayne A. Houghton
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Sarah E. Flanagan
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
| |
Collapse
|
38
|
Banerjee I, Salomon‐Estebanez M, Shah P, Nicholson J, Cosgrove KE, Dunne MJ. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet Med 2019; 36:9-21. [PMID: 30246418 PMCID: PMC6585719 DOI: 10.1111/dme.13823] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 12/01/2022]
Abstract
Congenital hyperinsulinism is a rare disease, but is the most frequent cause of persistent and severe hypoglycaemia in early childhood. Hypoglycaemia caused by excessive and dysregulated insulin secretion (hyperinsulinism) from disordered pancreatic β cells can often lead to irreversible brain damage with lifelong neurodisability. Although congenital hyperinsulinism has a genetic cause in a significant proportion (40%) of children, often being the result of mutations in the genes encoding the KATP channel (ABCC8 and KCNJ11), not all children have severe and persistent forms of the disease. In approximately half of those without a genetic mutation, hyperinsulinism may resolve, although timescales are unpredictable. From a histopathology perspective, congenital hyperinsulinism is broadly grouped into diffuse and focal forms, with surgical lesionectomy being the preferred choice of treatment in the latter. In contrast, in diffuse congenital hyperinsulinism, medical treatment is the best option if conservative management is safe and effective. In such cases, children receiving treatment with drugs, such as diazoxide and octreotide, should be monitored for side effects and for signs of reduction in disease severity. If hypoglycaemia is not safely managed by medical therapy, subtotal pancreatectomy may be required; however, persistent hypoglycaemia may continue after surgery and diabetes is an inevitable consequence in later life. It is important to recognize the negative cognitive impact of early-life hypoglycaemia which affects half of all children with congenital hyperinsulinism. Treatment options should be individualized to the child/young person with congenital hyperinsulinism, with full discussion regarding efficacy, side effects, outcomes and later life impact.
Collapse
Affiliation(s)
- I. Banerjee
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. Salomon‐Estebanez
- Department of Paediatric EndocrinologyRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - P. Shah
- Endocrinology DepartmentGreat Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - J. Nicholson
- Paediatric Psychosocial DepartmentRoyal Manchester Children's HospitalManchester University NHS Foundation TrustManchesterUK
| | - K. E. Cosgrove
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - M. J. Dunne
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
39
|
Rego S, Dagan-Rosenfeld O, Zhou W, Sailani MR, Limcaoco P, Colbert E, Avina M, Wheeler J, Craig C, Salins D, Röst HL, Dunn J, McLaughlin T, Steinmetz LM, Bernstein JA, Snyder MP. High-frequency actionable pathogenic exome variants in an average-risk cohort. Cold Spring Harb Mol Case Stud 2018; 4:a003178. [PMID: 30487145 PMCID: PMC6318774 DOI: 10.1101/mcs.a003178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Exome sequencing is increasingly utilized in both clinical and nonclinical settings, but little is known about its utility in healthy individuals. Most previous studies on this topic have examined a small subset of genes known to be implicated in human disease and/or have used automated pipelines to assess pathogenicity of known variants. To determine the frequency of both medically actionable and nonactionable but medically relevant exome findings in the general population we assessed the exomes of 70 participants who have been extensively characterized over the past several years as part of a longitudinal integrated multiomics profiling study. We analyzed exomes by identifying rare likely pathogenic and pathogenic variants in genes associated with Mendelian disease in the Online Mendelian Inheritance in Man (OMIM) database. We then used American College of Medical Genetics (ACMG) guidelines for the classification of rare sequence variants. Additionally, we assessed pharmacogenetic variants. Twelve out of 70 (17%) participants had medically actionable findings in Mendelian disease genes. Five had phenotypes or family histories associated with their genetic variants. The frequency of actionable variants is higher than that reported in most previous studies and suggests added benefit from utilizing expanded gene lists and manual curation to assess actionable findings. A total of 63 participants (90%) had additional nonactionable findings, including 60 who were found to be carriers for recessive diseases and 21 who have increased Alzheimer's disease risk because of heterozygous or homozygous APOE e4 alleles (18 participants had both). Our results suggest that exome sequencing may have considerably more utility for health management in the general population than previously thought.
Collapse
Affiliation(s)
- Shannon Rego
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Orit Dagan-Rosenfeld
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - M Reza Sailani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Limcaoco
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elizabeth Colbert
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jessica Wheeler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Colleen Craig
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Denis Salins
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hannes L Röst
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jessilyn Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Mobilize Center, Stanford University, Stanford, California 94305, USA
| | - Tracey McLaughlin
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94304, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
40
|
Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Mägi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss M, Prins BP, Guo X, Bielak LF, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Eckardt KU, Fischer K, Kardia SLR, Kronenberg F, Läll K, Liu CT, Locke AE, Luan J, Ntalla I, Nylander V, Schönherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, ford I, Franco OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jørgensen ME, Jørgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stančáková A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Köttgen A, Abecasis G, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, et alMahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Steinthorsdottir V, Scott RA, Grarup N, Cook JP, Schmidt EM, Wuttke M, Sarnowski C, Mägi R, Nano J, Gieger C, Trompet S, Lecoeur C, Preuss M, Prins BP, Guo X, Bielak LF, Bennett AJ, Bork-Jensen J, Brummett CM, Canouil M, Eckardt KU, Fischer K, Kardia SLR, Kronenberg F, Läll K, Liu CT, Locke AE, Luan J, Ntalla I, Nylander V, Schönherr S, Schurmann C, Yengo L, Bottinger EP, Brandslund I, Christensen C, Dedoussis G, Florez JC, ford I, Franco OH, Frayling TM, Giedraitis V, Hackinger S, Hattersley AT, Herder C, Ikram MA, Ingelsson M, Jørgensen ME, Jørgensen T, Kriebel J, Kuusisto J, Ligthart S, Lindgren CM, Linneberg A, Lyssenko V, Mamakou V, Meitinger T, Mohlke KL, Morris AD, Nadkarni G, Pankow JS, Peters A, Sattar N, Stančáková A, Strauch K, Taylor KD, Thorand B, Thorleifsson G, Thorsteinsdottir U, Tuomilehto J, Witte DR, Dupuis J, Peyser PA, Zeggini E, Loos RJF, Froguel P, Ingelsson E, Lind L, Groop L, Laakso M, Collins FS, Jukema JW, Palmer CNA, Grallert H, Metspalu A, Dehghan A, Köttgen A, Abecasis G, Meigs JB, Rotter JI, Marchini J, Pedersen O, Hansen T, Langenberg C, Wareham NJ, Stefansson K, Gloyn AL, Morris AP, Boehnke M, McCarthy MI. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 2018; 50:1505-1513. [PMID: 30297969 PMCID: PMC6287706 DOI: 10.1038/s41588-018-0241-6] [Show More Authors] [Citation(s) in RCA: 1182] [Impact Index Per Article: 168.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
Collapse
Affiliation(s)
- Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Matthias Thurner
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Jason M Torres
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GA, UK
| | - Ellen M Schmidt
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Jana Nano
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015CN, The Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology 2, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Cécile Lecoeur
- CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, 59000, France
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California, 90502, US
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, US
| | - Mickaël Canouil
- CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, 59000, France
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care Charité, University Medicine Berlin, Berlin, 10117, Germany and German Chronic Kidney Disease study
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Sharon LR Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, 6020, Austria and German Chronic Kidney Disease study
| | - Kristi Läll
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Division of Genomics & Bioinformatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, 6020, Austria and German Chronic Kidney Disease study
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Loïc Yengo
- CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, 59000, France
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, 7100, Denmark
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, 17671, Greece
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, 02142, USA
| | - Ian ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015CN, The Netherlands
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX1 2LU, UK
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Andrew T Hattersley
- University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015CN, The Netherlands
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- National Institute of Public Health, Southern Denmark University, Copenhagen, 1353, Denmark
| | - Torben Jørgensen
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, 2600, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015CN, The Netherlands
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, 02142, USA
- Big Data Institute, Li Ka Shing Centre For Health Information and Discovery, University of Oxford, Oxford, OX37BN, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, 2600, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, 20502, Sweden
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, 81675, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Andrew D Morris
- Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Girish Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55454, US
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, 81675, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, 80802, Germany
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California, 90502, US
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics, Amgen inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Jaakko Tuomilehto
- Department of Health, National Institute for Health and Welfare, Helsinki, 00271, Finland
- Dasman Diabetes Institute, Dasman, 15462, Kuwait
- Department of Neuroscience and Preventive Medicine, Danube-University Krems, Krems, 3500, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, 02118, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, 01702, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, 10029, USA
- Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Philippe Froguel
- CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, 59000, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, W12 0NN, UK
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, US
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 75185, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, 20502, Sweden
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Francis S Collins
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, 2300 RC, the Netherlands
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany
- Clinical Cooparation Group Type 2 Diabetes, Helmholtz Zentrum München, Ludwig-Maximillians University Munich, Germany
- Clinical Cooparation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, Technical University Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015CN, The Netherlands
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - James B Meigs
- General Medicine Division, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jerome I Rotter
- Departments of Pediatrics and Medicine, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, California, 90502, US
| | - Jonathan Marchini
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3TG, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, 5000, Denmark
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kari Stefansson
- deCODE Genetics, Amgen inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Anna L Gloyn
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GA, UK
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK
| |
Collapse
|
41
|
Johnson SR, Leo P, Conwell LS, Harris M, Brown MA, Duncan EL. Clinical usefulness of comprehensive genetic screening in maturity onset diabetes of the young (MODY): A novel ABCC8 mutation in a previously screened family. J Diabetes 2018; 10:764-767. [PMID: 29726111 DOI: 10.1111/1753-0407.12778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/01/2018] [Accepted: 04/27/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Stephanie R Johnson
- Department of Endocrinology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Paul Leo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Louise S Conwell
- Department of Endocrinology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mark Harris
- Department of Endocrinology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
- Department of Endocrinology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Abstract
We report a disease-causing mutation in the β-cell–enriched MAFA transcription factor. Strikingly, the missense p.Ser64Phe MAFA mutation was associated with either of two distinct phenotypes, multiple insulin-producing neuroendocrine tumors of the pancreas—a condition known as insulinomatosis—or diabetes mellitus, recapitulating the physiological properties of MAFA both as an oncogene and as a key islet β-cell transcription factor. The implication of MAFA in these human phenotypes will provide insights into how this transcription factor regulates human β-cell activity as well as into the mechanisms of Maf-induced tumorigenesis. The β-cell–enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity.
Collapse
|
43
|
Bansal V, Gassenhuber J, Phillips T, Oliveira G, Harbaugh R, Villarasa N, Topol EJ, Seufferlein T, Boehm BO. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. BMC Med 2017; 15:213. [PMID: 29207974 PMCID: PMC5717832 DOI: 10.1186/s12916-017-0977-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of diabetes for mutations in disease-associated genes. METHODS We utilized a targeted sequencing approach using the Illumina HiSeq to perform a case-control sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346 individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants identified from the sequence data and compared the frequencies of pathogenic variants (protein-truncating variants and missense variants) between the cases and controls. RESULTS A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group) were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCC8, and INS genes. In addition, heterozygous protein truncating mutations were detected in the GCK, HNF1A, and HNF1B genes in seven individuals with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was homozygous for a rare pathogenic missense variant in the WFS1 gene but did not have the additional phenotypes associated with Wolfram syndrome. CONCLUSION Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed, particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a specific diagnosis, inform disease prognosis and may help to better stratify treatment plans.
Collapse
Affiliation(s)
- Vikas Bansal
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | | | - Tierney Phillips
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Glenn Oliveira
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Rebecca Harbaugh
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Nikki Villarasa
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Bernhard O Boehm
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Imperial College London, London, UK.
| |
Collapse
|
44
|
Role of osteopontin and its regulation in pancreatic islet. Biochem Biophys Res Commun 2017; 495:1426-1431. [PMID: 29180017 DOI: 10.1016/j.bbrc.2017.11.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Osteopontin (OPN) is involved in various physiological processes and also implicated in multiple pathological states. It has been suggested that OPN may have a role in type 2 diabetes (T2D) by protecting pancreatic islets and interaction with incretins. However, the regulation and function of OPN in islets, especially in humans, remains largely unexplored. In this study, we performed our investigations on both diabetic mouse model SUR1-E1506K+/+ and islets from human donors. We demonstrated that OPN protein, secretion and gene expression was elevated in the diabetic SUR1-E1506K+/+ islets. We also showed that high glucose and incretins simultaneously stimulated islet OPN secretion. In islets from human cadaver donors, OPN gene expression was elevated in diabetic islets, and externally added OPN significantly increased glucose-stimulated insulin secretion (GSIS) from diabetic but not normal glycemic donors. The increase in GSIS by OPN in diabetic human islets was Ca2+ dependent, which was abolished by Ca2+-channel inhibitor isradipine. Furthermore, we also confirmed that OPN promoted cell metabolic activity when challenged by high glucose. These observations provided evidence on the protective role of OPN in pancreatic islets under diabetic condition, and may point to novel therapeutic targets for islet protection in T2D.
Collapse
|
45
|
Dastamani A, Güemes M, Walker J, Shah P, Hussain K. Sirolimus precipitating diabetes mellitus in a patient with congenital hyperinsulinaemic hypoglycaemia due to autosomal dominant ABCC8 mutation. J Pediatr Endocrinol Metab 2017; 30:1219-1222. [PMID: 28985184 DOI: 10.1515/jpem-2017-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/07/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sirolimus (mTOR inhibitor) is proven to be effective in children with congenital hyperinsulinism (CHI). Studies in animals suggest that sirolimus may have diabetogenic actions. However, its role in precipitating diabetes mellitus (DM) in children with CHI has not been reported. CASE PRESENTATION A 16-year-old female with CHI due to a dominant ABCC8 gene mutation was switched from diazoxide therapy to sirolimus, due to the hypertrichosis side effect of diazoxide. She developed facial cellulitis that was treated with clarithromycin and a month later, once the infection was resolved, she was found to have persistent hyperglycaemia, and was diagnosed with DM. She was unresponsive to oral sulfonylurea therapy and is currently managed with metformin. Her mother, who had the same ABCC8 mutation, developed DM at her 30s. CONCLUSIONS Patients with dominant ABCC8 gene mutations are prone to DM in adulthood, but Sirolimus therapy might increase the risk of developing diabetes at an early age, as this case illustrates.
Collapse
|
46
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Doddabelavangala Mruthyunjaya M, Chapla A, Hesarghatta Shyamasunder A, Varghese D, Varshney M, Paul J, Inbakumari M, Christina F, Varghese RT, Kuruvilla KA, V. Paul T, Jose R, Regi A, Lionel J, Jeyaseelan L, Mathew J, Thomas N. Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene Screening in Pregnant Women with Diabetes in India. PLoS One 2017; 12:e0168656. [PMID: 28095440 PMCID: PMC5240948 DOI: 10.1371/journal.pone.0168656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/05/2016] [Indexed: 02/03/2023] Open
Abstract
Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.
Collapse
Affiliation(s)
| | - Aaron Chapla
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | | | - Deny Varghese
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Manika Varshney
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Johan Paul
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Mercy Inbakumari
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Flory Christina
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Ron Thomas Varghese
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | | | - Thomas V. Paul
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Ruby Jose
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Annie Regi
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Jessie Lionel
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - L. Jeyaseelan
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Jiji Mathew
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
48
|
De Marinis Y, Cai M, Bompada P, Atac D, Kotova O, Johansson ME, Garcia-Vaz E, Gomez MF, Laakso M, Groop L. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int 2017; 89:342-53. [PMID: 26806835 DOI: 10.1016/j.kint.2015.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 10/10/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease is the leading cause of end-stage renal disease. Genetic factors have been suggested to contribute to its susceptibility. However, results from genetic studies are disappointing possibly because the role of glucose in diabetic kidney disease predisposed by epigenetic mechanisms has not been taken into account. Since thioredoxin-interacting protein (TXNIP) has been shown to play an important role in the pathogenesis of diabetic kidney disease, we tested whether glucose could induce expression of TXNIP in the kidney by epigenetic mechanisms. In kidneys from diabetic Sur1-E1506K(+/+) mice, hyperglycemia-induced Txnip expression was associated with stimulation of activating histone marks H3K9ac, H3K4me3, and H3K4me1, as well as decrease in the repressive histone mark H3K27me3 at the promoter region of the gene. Glucose also coordinated changes in histone marks and TXNIP gene expression in mouse SV40 MES13 mesangial cells and the normal human mesangial cell line NHMC. The involvement of histone acetylation in glucose-stimulated TXNIP expression was confirmed by reversing or enhancing acetylation using the histone acetyltransferase p300 inhibitor C646 or the histone deacetylase inhibitor trichostatin A. Thus, glucose is a potent inducer of histone modifications, which could drive expression of proinflammatory genes and thereby predispose to diabetic kidney disease.
Collapse
Affiliation(s)
- Yang De Marinis
- Diabetes and Endocrinology, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden.
| | - Mengyin Cai
- Diabetes and Endocrinology, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden; Department of Endocrinology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pradeep Bompada
- Diabetes and Endocrinology, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - David Atac
- Diabetes and Endocrinology, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Olga Kotova
- Vascular Excitation-Transcription Coupling Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Martin E Johansson
- Clinical Pathology, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Eliana Garcia-Vaz
- Vascular Excitation-Transcription Coupling Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Maria F Gomez
- Vascular Excitation-Transcription Coupling Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Leif Groop
- Diabetes and Endocrinology, Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, Malmö, Sweden; Finnish Institute for Molecular Medicine, Helsinki University, Helsinki, Finland
| |
Collapse
|
49
|
Martínez R, Fernández-Ramos C, Vela A, Velayos T, Aguayo A, Urrutia I, Rica I, Castaño L. Clinical and genetic characterization of congenital hyperinsulinism in Spain. Eur J Endocrinol 2016; 174:717-26. [PMID: 27188453 DOI: 10.1530/eje-16-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
CONTEXT Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disease characterized by severe hypoglycemia caused by inappropriate insulin secretion by pancreatic β-cells. OBJECTIVE To characterize clinically and genetically CHI patients in Spain. DESIGN AND METHODS We included 50 patients with CHI from Spain. Clinical information was provided by the referring clinicians. Mutational analysis was carried out for KCNJ11, ABCC8, and GCK genes. The GLUD1, HNF4A, HNF1A, UCP2, and HADH genes were sequenced depending on the clinical phenotype. RESULTS We identified the genetic etiology in 28 of the 50 CHI patients tested: 21 had a mutation in KATP channel genes (42%), three in GLUD1 (6%), and four in GCK (8%). Most mutations were found in ABCC8 (20/50). Half of these patients (10/20) were homozygous or compound heterozygous, with nine being unresponsive to diazoxide treatment. The other half had heterozygous mutations in ABCC8, six of them being unresponsive to diazoxide treatment and four being responsive to diazoxide treatment. We identified 22 different mutations in the KATP channel genes, of which ten were novel. Notably, patients with ABCC8 mutations were diagnosed earlier, with lower blood glucose levels and required higher doses of diazoxide than those without a genetic diagnosis. CONCLUSIONS Genetic analysis revealed mutations in 56% of the CHI patients. ABCC8 mutations are the most frequent cause of CHI in Spain. We found ten novel mutations in the KATP channel genes. The genetic diagnosis is more likely to be achieved in patients with onset within the first week of life and in those who fail to respond to diazoxide treatment.
Collapse
Affiliation(s)
- R Martínez
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - C Fernández-Ramos
- Pediatric Endocrinology SectionBasurto University Hospital, BioCruces Health Research Institute, UPV/EHU, Bilbao, Spain
| | - A Vela
- Pediatric Endocrinology SectionCruces University Hospital, BioCruces Health Research Institute, CIBERDEM, CIBERER, UPV/EHU, Barakaldo, Spain
| | - T Velayos
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - A Aguayo
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - I Urrutia
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| | - I Rica
- Pediatric Endocrinology SectionCruces University Hospital, BioCruces Health Research Institute, CIBERDEM, CIBERER, UPV/EHU, Barakaldo, Spain
| | - L Castaño
- Endocrinology and Diabetes Research GroupBioCruces Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, UPV-EHU, Barakaldo, Spain
| |
Collapse
|
50
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|