1
|
Chen S, Liu W, Parsons D, Du T. Optimized irrigation and fertilization can mitigate negative CO 2 impacts on seed yield and vigor of hybrid maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175951. [PMID: 39226973 DOI: 10.1016/j.scitotenv.2024.175951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/03/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Seed yield and vigor of hybrid maize determine the planting, yield, and quality of maize, and consequently affect food, nutrition, and livelihood security; however, the response of seed yield and vigor to climate change is still unclear. We established an optimization-simulation framework consisting of a water‑nitrogen crop production function, a seed vigor and a gridded process-based model to optimize irrigation and nitrogen fertilization management, and used it to evaluate seed yield and vigor in major seed production locations of China, the USA, and Mexico. This framework could reflect the influence of water and nitrogen inputs at different stages on seed yield and vigor considering the spatio-temporal variability of climate and soil properties. Projected seed yield and vigor decreased by 5.8-9.0 % without adaptation by the 2050s, due to the 1.3-5.8 % decrease in seed number and seed protein concentration. Seed yield was positively correlated with CO2 and negatively correlated with temperature, while seed vigor depended on the response of components of seed vigor to climatic factors. Under optimized management, the direct positive effects of temperature on seed protein concentration and CO2 on seed number were strengthened, and the direct negative effects of temperature on seed number and CO2 on seed protein concentration were weakened, which mitigated the reductions in both seed yield and vigor. Elevated CO2 was projected to exacerbate the 2.6 % seed vigor reduction and mitigate the 2.9 % seed yield loss without adaptation, while optimized management could increase seed yield by 4.1 % and mitigate the 2.2 % seed vigor reduction in the Hexi Corridor of China, and decrease the seed yield and vigor reduction by 2.4-5.8 % in the USA and Mexico. Optimized management can strengthen the positive and mitigate the negative effects of climate change on irrigated hybrid maize and inform high-yield and high-quality seed production globally.
Collapse
Affiliation(s)
- Shichao Chen
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - Wenfeng Liu
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
| | - David Parsons
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Taisheng Du
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei 733009, China; Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Gupta J, Bai X, Liverman DM, Rockström J, Qin D, Stewart-Koster B, Rocha JC, Jacobson L, Abrams JF, Andersen LS, Armstrong McKay DI, Bala G, Bunn SE, Ciobanu D, DeClerck F, Ebi KL, Gifford L, Gordon C, Hasan S, Kanie N, Lenton TM, Loriani S, Mohamed A, Nakicenovic N, Obura D, Ospina D, Prodani K, Rammelt C, Sakschewski B, Scholtens J, Tharammal T, van Vuuren D, Verburg PH, Winkelmann R, Zimm C, Bennett E, Bjørn A, Bringezu S, Broadgate WJ, Bulkeley H, Crona B, Green PA, Hoff H, Huang L, Hurlbert M, Inoue CYA, Kılkış Ş, Lade SJ, Liu J, Nadeem I, Ndehedehe C, Okereke C, Otto IM, Pedde S, Pereira L, Schulte-Uebbing L, Tàbara JD, de Vries W, Whiteman G, Xiao C, Xu X, Zafra-Calvo N, Zhang X, Fezzigna P, Gentile G. A just world on a safe planet: a Lancet Planetary Health-Earth Commission report on Earth-system boundaries, translations, and transformations. Lancet Planet Health 2024; 8:e813-e873. [PMID: 39276783 DOI: 10.1016/s2542-5196(24)00042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/09/2023] [Accepted: 03/08/2024] [Indexed: 09/17/2024]
Affiliation(s)
- Joyeeta Gupta
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands; IHE-Delft Institute for Water Education, Delft, Netherlands
| | - Xuemei Bai
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Diana M Liverman
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ben Stewart-Koster
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Juan C Rocha
- Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | | | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Lauren S Andersen
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - David I Armstrong McKay
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Systems Institute, University of Exeter, Exeter, UK; Georesilience Analytics, Leatherhead, UK
| | - Govindasamy Bala
- Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India
| | - Stuart E Bunn
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Daniel Ciobanu
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrice DeClerck
- EAT, Oslo, Norway; Alliance of Bioversity and CIAT, CGIAR, Montpellier, France
| | - Kristie L Ebi
- Center for Health & the Global Environment, University of Washington, Seattle, WA, USA
| | - Lauren Gifford
- School of Geography, Development and Environment, University of Arizona, Tucson, AZ, USA
| | - Christopher Gordon
- Institute for Environment and Sanitation Studies, University of Ghana, Legon, Ghana
| | - Syezlin Hasan
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Norichika Kanie
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | - Sina Loriani
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Awaz Mohamed
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | | | - David Obura
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | | | - Klaudia Prodani
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Crelis Rammelt
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany
| | - Joeri Scholtens
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Thejna Tharammal
- Interdisciplinary Centre for Water Research, Indian Institute of Science, Bengaluru, India
| | - Detlef van Vuuren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands
| | - Peter H Verburg
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricarda Winkelmann
- Potsdam Institute for Climate Impact Research, Leibniz Association, Potsdam, Germany; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Caroline Zimm
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Elena Bennett
- Bieler School of Environment and Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Anders Bjørn
- Centre for Absolute Sustainability and Section for Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan Bringezu
- Center for Environmental Systems Research, University of Kassel, Kassel, Germany
| | | | - Harriet Bulkeley
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands; Department of Geography, Durham University, Durham, UK
| | - Beatrice Crona
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Economic Dynamics and the Biosphere Programme, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Pamela A Green
- Advanced Science Research Center at the Graduate Center, City University of New York, NY, USA
| | - Holger Hoff
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Lei Huang
- National Climate Center, Beijing, China
| | - Margot Hurlbert
- Johnson-Shoyama Graduate School of Public Policy, University of Regina, Regina, SK, Canada
| | - Cristina Y A Inoue
- Center for Global Studies, Institute of International Relations, University of Brasília, Brasília, Brazil; Institute for Management Research, Radboud University, Nijmegen, Netherlands
| | - Şiir Kılkış
- Scientific and Technological Research Council of Turkey, Ankara, Türkiye
| | - Steven J Lade
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia; Future Earth Secretariat, Stockholm, Sweden; Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Imran Nadeem
- Institute of Meteorology and Climatology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - Christopher Ndehedehe
- Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia; School of Environment & Science, Griffith University, Nathan, QLD, Australia
| | | | - Ilona M Otto
- Wegener Center for Climate and Global Change, University of Graz, Graz, Austria
| | - Simona Pedde
- Future Earth Secretariat, Stockholm, Sweden; Soil raphy and Landscape Group, Wageningen University & Research, Wageningen, Netherlands
| | - Laura Pereira
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Lena Schulte-Uebbing
- PBL Netherlands Environmental Assessment Agency, The Hague, Netherlands; Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | - J David Tàbara
- Autonomous University of Barcelona, Barcelona, Spain; Global Climate Forum, Berlin, Germany
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Cunde Xiao
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Xinwu Xu
- China Meteorological Administration, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Noelia Zafra-Calvo
- Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Biscay, Spain
| | - Xin Zhang
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Paola Fezzigna
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| | - Giuliana Gentile
- Amsterdam Institute for Social Science Research, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Welti EA, Kaspari M. Elevated CO 2, nutrition dilution, and shifts in Earth's insect abundance. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101255. [PMID: 39182720 DOI: 10.1016/j.cois.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Declining insect populations are concerning, given the numerous ecosystem services provided by insects. Here, we examine yet another threat to global insect populations - nutrient dilution, the reduction in noncarbon essential nutrients in plant tissues. The rise of atmospheric CO2, and subsequent 'global greening', is a major driver of nutrient dilution. As plant nutrient concentrations are already low compared to animal tissues, further reductions can be detrimental to herbivore fitness, resulting in increased development times, smaller intraspecific body sizes, reduced reproduction, and reduced population sizes. By altering herbivore populations and traits, nutrient dilution can ramify up trophic levels. Conservation of Earth's biodiversity will require not just protection of habitat, but reductions in anthropogenic alterations to biogeochemical cycles, including the carbon cycle.
Collapse
Affiliation(s)
- Ellen Ar Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630 USA.
| | - Michael Kaspari
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
4
|
Kashyap S, Reddy BHR, Devi S, Kurpad AV. Potential impact of climate change on dietary grain protein content and its bioavailability-a mini review. Front Nutr 2024; 11:1397219. [PMID: 39257608 PMCID: PMC11385011 DOI: 10.3389/fnut.2024.1397219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
The changing global climate brings a gradual yet constant and adverse shift in crop production. Grain crop plants, particularly cereals and legumes, respond varyingly to adverse climate, including reduction in grain yield and changes to their nutrient densities. An understanding of specific changes to crop systems under differing climatic conditions can help in planning diets to meet human nutrient sufficiency. Grain protein content is also affected by adverse environmental factors. Deficits in protein yield, linked to changes in grain or seed protein and antinutrient concentrations, have been reported in major food crops when exposed to elevated carbon dioxide, high temperature, drought, and humidity. These changes, in addition to affecting the quantity of indispensable or essential amino acids (IAA), also impact their bioavailability. Therefore, it is important to assess consequences of climate change on grain protein quality. An important tool to measure grain protein quality, is measuring its digestibility at the level of the ileum and its IAA concentration, linked to a metric called the Digestible IAA Score (DIAAS). A minimally invasive technique called the dual isotope tracer technique, which measures IAA digestibility after simultaneous administration of two different intrinsically labelled protein sources, one a test protein (2H/15N) and one a reference protein (13C) of predetermined digestibility, has been used in evaluation of grain protein IAA digestibility, and promises more in the evaluation of changes based on climate. This review discusses climate induced changes to grain protein quality through the prism of IAA digestibility, using the dual isotope tracer technique.
Collapse
Affiliation(s)
- Sindhu Kashyap
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences (A Unit of CBCI Society for Medical Education), Bengaluru, India
| | - Bellam H Rajashekar Reddy
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences (A Unit of CBCI Society for Medical Education), Bengaluru, India
| | - Sarita Devi
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences (A Unit of CBCI Society for Medical Education), Bengaluru, India
| | - Anura V Kurpad
- Department of Physiology, St. John's Medical College, Bengaluru, India
| |
Collapse
|
5
|
Stoffel NU, Drakesmith H. Effects of Iron Status on Adaptive Immunity and Vaccine Efficacy: A Review. Adv Nutr 2024; 15:100238. [PMID: 38729263 PMCID: PMC11251406 DOI: 10.1016/j.advnut.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Vaccines can prevent infectious diseases, but their efficacy varies, and factors impacting vaccine effectiveness remain unclear. Iron deficiency is the most common nutrient deficiency, affecting >2 billion individuals. It is particularly common in areas with high infectious disease burden and in groups that are routinely vaccinated, such as infants, pregnant women, and the elderly. Recent evidence suggests that iron deficiency and low serum iron (hypoferremia) not only cause anemia but also may impair adaptive immunity and vaccine efficacy. A report of human immunodeficiency caused by defective iron transport underscored the necessity of iron for adaptive immune responses and spurred research in this area. Sufficient iron is essential for optimal production of plasmablasts and IgG responses by human B-cells in vitro and in vivo. The increased metabolism of activated lymphocytes depends on the high-iron acquisition, and hypoferremia, especially when occurring during lymphocyte expansion, adversely affects multiple facets of adaptive immunity, and may lead to prolonged inhibition of T-cell memory. In mice, hypoferremia suppresses the adaptive immune response to influenza infection, resulting in more severe pulmonary disease. In African infants, anemia and/or iron deficiency at the time of vaccination predict decreased response to diphtheria, pertussis, and pneumococcal vaccines, and response to measles vaccine may be increased by iron supplementation. In this review, we examine the emerging evidence that iron deficiency may limit adaptive immunity and vaccine responses. We discuss the molecular mechanisms and evidence from animal and human studies, highlight important unknowns, and propose a framework of key research questions to better understand iron-vaccine interactions.
Collapse
Affiliation(s)
- Nicole U Stoffel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Hal Drakesmith
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Qiang W, Wang C, Wang Y, Jiang Y, Li Y, Xue X, Dou X. All-fiber multifunction differential absorption CO 2 lidar integrating single-photon and coherent detection. OPTICS EXPRESS 2024; 32:19665-19675. [PMID: 38859096 DOI: 10.1364/oe.519325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
This study demonstrates a differential absorption lidar (DIAL) for CO2 that integrates both single-photon direct detection and coherent detection. Based on all-fiber 1572 nm wavelength devices, this compact lidar achieves detection of CO2 concentration, wind field, and single photon aerosol backscattering signal. First, by comparing DIAL with VAISALA-GMP343, the concentration deviation between the two devices is less than 5 ppm, proving the accuracy of the DIAL. Second, through the scanning detection experiment in Chaohu Lake, Hefei, not only the CO2 concentration between single-photon detection and coherent detection but also the wind field was obtained, proving the multifunctionality and stability of the DIAL. Benefiting from the advantages of combined the two detection methods, single photon detection offers 3-km CO2 and aerosol backscattering signals; coherent detection offers a 360-m shorter blind zone and wind field. This DIAL can achieve monitoring of CO2 flux and sudden emissions, which can effectively compensate for the shortages of in-situ sensors and spaceborne systems.
Collapse
|
7
|
Lowe NM, Hall AG, Broadley MR, Foley J, Boy E, Bhutta ZA. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv Nutr 2024; 15:100181. [PMID: 38280724 PMCID: PMC10882121 DOI: 10.1016/j.advnut.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Through diverse roles, zinc determines a greater number of critical life functions than any other single micronutrient. Beyond the well-recognized importance of zinc for child growth and resistance to infections, zinc has numerous specific roles covering the regulation of glucose metabolism, and growing evidence links zinc deficiency with increased risk of diabetes and cardiometabolic disorders. Zinc nutriture is, thus, vitally important to health across the life course. Zinc deficiency is also one of the most common forms of micronutrient malnutrition globally. A clearer estimate of the burden of health disparity attributable to zinc deficiency in adulthood and later life emerges when accounting for its contribution to global elevated fasting blood glucose and related noncommunicable diseases (NCDs). Yet progress attenuating its prevalence has been limited due, in part, to the lack of sensitive and specific methods to assess human zinc status. This narrative review covers recent developments in our understanding of zinc's role in health, the impact of the changing climate and global context on zinc intake, novel functional biomarkers showing promise for monitoring population-level interventions, and solutions for improving population zinc intake. It aims to spur on implementation of evidence-based interventions for preventing and controlling zinc deficiency across the life course. Increasing zinc intake and combating global zinc deficiency requires context-specific strategies and a combination of complementary, evidence-based interventions, including supplementation, food fortification, and food and agricultural solutions such as biofortification, alongside efforts to improve zinc bioavailability. Enhancing dietary zinc content and bioavailability through zinc biofortification is an inclusive nutrition solution that can benefit the most vulnerable individuals and populations affected by inadequate diets to the greatest extent.
Collapse
Affiliation(s)
- Nicola M Lowe
- Center for Global Development, University of Central Lancashire, Preston, United Kingdom.
| | - Andrew G Hall
- Department of Nutrition, University of California, Davis, CA, United States; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, United States
| | - Martin R Broadley
- Rothamsted Research, West Common, Harpenden, United Kingdom; School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jennifer Foley
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Zulfiqar A Bhutta
- Center for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Zhang D, Liu J, Li D, Batchelor WD, Wu D, Zhen X, Ju H. Future climate change impacts on wheat grain yield and protein in the North China Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166147. [PMID: 37562625 DOI: 10.1016/j.scitotenv.2023.166147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
The threat of global climate change on wheat production may be underestimated by the limited capacity of many crop models to predict grain quality and protein composition. This study aimed to integrate a wheat quality module of protein components into the CROPSIM-CERES-Wheat model to investigate the impact of climate change on wheat grain yield and protein quality in the North China Region (NCR) using five Global Climate Models (GCMs) from CMIP6 under three shared socioeconomic pathways. The CERES-Wheat model with a quality module was developed and calibrated and validated using data from several sites in the NCR. The results of the calibration and validation showed that the modified CERES-Wheat model can accurately predict grain yield, protein content and its components in field experiments. Compared with the baseline period (1981-2010), the annual mean temperature and annual cumulative precipitation increased in the NCR in the 2030's, 2050's and 2080's. The radiation was higher under the SSP126 and SSP585 scenarios, and lower under the SSP370 scenario compared to the baseline period. The anthesis and maturity date occurred earlier under the three future scenarios. The average grain yield increased by 13.3-30.9 % under three future scenarios. However, the regional average grain protein content of winter wheat in the future decreased by 2.0 %- 3.5 %. The reduction in wheat grain protein at the regional was less pronounced under SSP370 than that under SSP126 and SSP585. The structural protein content of winter wheat decreased under future climate conditions compared with the baseline period, but the storage protein content showed the opposite tendency. The model provided a useful tool to study the effects of future climate on grain quality and protein composition. These findings are important for developing agricultural practices and strategies to mitigate the potential impacts of climate change on wheat production and wheat quality in the future.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China; Department of Biological Engineering, Yangling Vocational & Technical College, Xianyang 712000, China
| | - Jinna Liu
- Department of Biological Engineering, Yangling Vocational & Technical College, Xianyang 712000, China
| | - Dongxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | | | - Dongxia Wu
- Natural Resources Institute Finland (Luke), Natural Resources, P.O. Box 68, FI-80100 Joensuu, Finland
| | - Xiaoxing Zhen
- Biosystems Engineering Department, Auburn University, Auburn, AL 36849, USA
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
9
|
Loechl CU, Datta-Mitra A, Fenlason L, Green R, Hackl L, Itzkowitz L, Koso-Thomas M, Moorthy D, Owino VO, Pachón H, Stoffel N, Zimmerman MB, Raiten DJ. Approaches to Address the Anemia Challenge. J Nutr 2023; 153 Suppl 1:S42-S59. [PMID: 37714779 PMCID: PMC10797550 DOI: 10.1016/j.tjnut.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/17/2023] Open
Abstract
Anemia is a multifactorial condition; approaches to address it must recognize that the causal factors represent an ecology consisting of internal (biology, genetics, and health) and external (social/behavioral/demographic and physical) environments. In this paper, we present an approach for selecting interventions, followed by a description of key issues related to the multiple available interventions for prevention and reduction of anemia. We address interventions for anemia using the following 2 main categories: 1) those that address nutrients alone, and, 2) those that address nonnutritional causes of anemia. The emphasis will be on interventions of public health relevance, but we also consider the clinical context. We also focus on interventions at different stages of the life course, with a particular focus on women of reproductive age and preschool-age children, and present evidence on various factors to consider when selecting an intervention-inflammation, genetic mutations, nutrient delivery, bioavailability, and safety. Each section on an intervention domain concludes with a brief discussion of key research areas.
Collapse
Affiliation(s)
- Cornelia U Loechl
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Ananya Datta-Mitra
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Lindy Fenlason
- Bureau for Global Health, USAID, Washington, DC, United States
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA, United States
| | - Laura Hackl
- USAID Advancing Nutrition, John Snow Inc., Arlington, VA, United States
| | - Laura Itzkowitz
- Bureau for Global Health, USAID, Washington, DC, United States
| | - Marion Koso-Thomas
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, Unites States
| | - Denish Moorthy
- USAID Advancing Nutrition, John Snow Inc., Arlington, VA, United States.
| | | | - Helena Pachón
- Food Fortification Initiative, Emory University, Atlanta, GA, United States
| | - Nicole Stoffel
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, Zu¨rich, Switzerland; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michael B Zimmerman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, Unites States
| |
Collapse
|
10
|
Zhu Y, He C, Gasparrini A, Vicedo-Cabrera AM, Liu C, Bachwenkizi J, Zhou L, Cheng Y, Kan L, Chen R, Kan H. Global warming may significantly increase childhood anemia burden in sub-Saharan Africa. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:1388-1399. [PMID: 37904727 PMCID: PMC7615260 DOI: 10.1016/j.oneear.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Childhood anemia constitutes a global public health problem, especially in low- and middle-income countries (LMICs). However, it remains unknown whether global warming has an impact on childhood anemia. Here, we examined the association between annual temperatures and childhood anemia prevalence in sub-Saharan Africa and then projected childhood anemia burden attributable to climate change. Each 1°C increment in annual temperature was associated with increased odds of childhood anemia (odd ratio = 1.138, 95% confidence interval: 1.134-1.142). Compared with the baseline period (1985-2014), the attributable childhood anemia cases would increase by 7,597 per 100,000 person-years under a high-emission scenario in the 2090s, which would be almost 2-fold and over 3-fold more than those projected in moderate- and low-emission scenarios. Our results reveal the vulnerabilities and inequalities of children for the excess burden of anemia due to climate warming and highlight the importance of climate mitigation and adaptation strategies in LMICs.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- Helmholtz Zentrum Mu€nchen - German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Jovine Bachwenkizi
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yuexin Cheng
- Department of Hematology, The First People’s Hospital of Yancheng, Yancheng Affiliated Hospital of Xuzhou Medical University, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
| |
Collapse
|
11
|
Kang M, Wang X, Chen J, Fang Q, Liu J, Tang L, Liu L, Cao W, Zhu Y, Liu B. Extreme low-temperature events can alleviate micronutrient deficiencies while increasing potential health risks from heavy metals in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122165. [PMID: 37429493 DOI: 10.1016/j.envpol.2023.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Despite global warming, extreme low-temperature stress (LTS) events pose a significant threat to rice production (especially in East Asia) that can significantly impact micronutrient and heavy metal elements in rice. With two billion people worldwide facing micronutrient deficiencies (MNDs) and widespread heavy metal pollution in rice, understanding these impacts is crucial. We conducted detailed extreme LTS experiments with two rice (Oryza sativa L.) cultivars (Huaidao 5 and Nanjing 46) grown under four temperature levels (from 21/27 °C to 6/12 °C) and three LTS durations (three, six, and nine days). We observed significant interaction effects for LTS at different growth stages, durations and temperature levels on the contents and accumulation of mineral elements. The contents of most mineral elements (such Fe, Zn, As, Cu, and Cd) increased significantly under severe LTS at flowering, but decreased under LTS at the grain-filling stage. The accumulations of all mineral elements decreased at the three growth stages under LTS due to decreased grain weight. The contents and accumulation of mineral elements were more sensitive to LTS at the peak flowering stage than at the other two stages. Furthermore, the contents of most mineral elements in Nanjing 46 show larger variation under LTS compared to Huaidao 5. Accumulated cold degree days (ACDD, °C·d) were found to be suitable for quantifying the effects of LTS on the relative contents and accumulations of mineral elements. LTS at the flowering stage will help alleviate MNDs, but may also increase potential health risks from heavy metals. These results provide valuable insights for evaluating future climate change impacts on rice grain quality and potential health risks from heavy metals.
Collapse
Affiliation(s)
- Min Kang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xue Wang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiankun Chen
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qizhao Fang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiaming Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
12
|
Sampath V, Shalakhti O, Veidis E, Efobi JAI, Shamji MH, Agache I, Skevaki C, Renz H, Nadeau KC. Acute and chronic impacts of heat stress on planetary health. Allergy 2023; 78:2109-2120. [PMID: 36883412 DOI: 10.1111/all.15702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Heat waves are increasing in intensity, frequency, and duration causing significant heat stress in all living organisms. Heat stress has multiple negative effects on plants affecting photosynthesis, respiration, growth, development, and reproduction. It also impacts animals leading to physiological and behavioral alterations, such as reduced caloric intake, increased water intake, and decreased reproduction and growth. In humans, epidemiological studies have shown that heat waves are associated with increased morbidity and mortality. There are many biological effects of heat stress (structural changes, enzyme function disruption, damage through reactive oxygen or nitrogen species). While plants and animals can mitigate some of these effects through adaptive mechanisms such as the generation of heat shock proteins, antioxidants, stress granules, and others, these mechanisms may likely be inadequate with further global warming. This review summarizes the effects of heat stress on plants and animals and the adaptative mechanisms that have evolved to counteract this stress.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Omar Shalakhti
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, California, Stanford, USA
| | - Jo Ann Ifeoma Efobi
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Ji W, Hu X, Kang M, Qiu X, Liu B, Tang L, Zhu Y, Cao W, Liu L. Effects of pre-anthesis low-temperature stress on the mineral components in wheat grains. FRONTIERS IN PLANT SCIENCE 2023; 14:1221466. [PMID: 37575945 PMCID: PMC10413566 DOI: 10.3389/fpls.2023.1221466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Introduction The nutritional value of wheat is important to human health. Despite minerals being essential nutrients for the human body, they are often neglected in consideration of the nutritional quality of cereal grains. Extreme low-temperature events have become more frequent due to the current environmental unpredictability, and it is yet unknown how the mineral components in grains are affected by low temperature. Methods To provide valuable information for enhancing the nutritional quality of wheat under potential climatic conditions, we treated different cold-sensitive wheat cultivars at four low-temperature levels during the individual and combined stages of jointing and booting in controlled-environment phytotrons. Results and Discussion In general, the contents of P, K, Ca, and Zn in the cold-sensitive cultivar (Yangmai16) and K in the cold-tolerant cultivar (Xumai30) were enhanced by low temperature. However, the accumulation of minerals in mature grains was reduced under low-temperature treatment, except for P, Ca, and Zn in Yangmai16. In addition, the mineral content and accumulation in Yangmai16 (except for Fe) were more susceptible to low temperature during the combined stages, while the mineral content and accumulation of K, Fe, and Zn in Xumai30 were more susceptible to low temperature during the booting stage. Moreover, Yangmai16 under extremely low temperatures (T3 and T4) during booting and Xumai30 under all low-temperature treatments during the combined stages had lower comprehensive evaluation values. These findings offer a crucial reference for enhancing the nutritional quality of wheat grains under climate change.
Collapse
Affiliation(s)
- Wenbin Ji
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Hu
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Meng Kang
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaolei Qiu
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bing Liu
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liang Tang
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yan Zhu
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weixing Cao
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Leilei Liu
- Key Laboratory for Crop System Analysis and Decision Making, National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Ministry of Education, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Czarnek K, Tatarczak-Michalewska M, Dreher P, Rajput VD, Wójcik G, Gierut-Kot A, Szopa A, Blicharska E. UV-C Seed Surface Sterilization and Fe, Zn, Mg, Cr Biofortification of Wheat Sprouts as an Effective Strategy of Bioelement Supplementation. Int J Mol Sci 2023; 24:10367. [PMID: 37373518 PMCID: PMC10298951 DOI: 10.3390/ijms241210367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes play an important role in the regulation of many biological functions. An effective way to prevent deficiencies of essential minerals in human diets is the biofortification of plant materials. The process of enriching crop sprouts under hydroponic conditions is the easiest and cheapest to conduct and control. In this study, the sprouts of the wheat (Triticum aestivum L.) varieties Arkadia and Tonacja underwent biofortification with Fe, Zn, Mg, and Cr solutions in hydroponic media at four concentrations (0, 50, 100, and 200 µg g-1) over four and seven days. Moreover, this study is the first to combine sprout biofortification with UV-C (λ = 254 nm) radiation treatment for seed surface sterilization. The results showed that UV-C radiation was effective in suppressing seed germination contamination by microorganisms. The seed germination energy was slightly affected by UV-C radiation but remained at a high level (79-95%). The influence of this non-chemical sterilization process on seeds was tested in an innovative manner using a scanning electron microscope (SEM) and EXAKT thin-section cutting. The applied sterilization process reduced neither the growth and development of sprouts nor nutrient bioassimilation. In general, wheat sprouts easily accumulate Fe, Zn, Mg, and Cr during the applied growth period. A very strong correlation between the ion concentration in the media and microelement assimilation in the plant tissues (R2 > 0.9) was detected. The results of the quantitative ion assays performed with atomic absorption spectrometry (AAS) using the flame atomization method were correlated with the morphological evaluation of sprouts in order to determine the optimum concentration of individual elements in the hydroponic solution. The best conditions were indicated for 7-day cultivation in 100 µg g-1 of solutions with Fe (218% and 322% better nutrient accumulation in comparison to the control condition) and Zn (19 and 29 times richer in zinc concentration compared to the sprouts without supplementation). The maximum plant product biofortification with magnesium did not exceed 40% in intensity compared to the control sample. The best-developed sprouts were grown in the solution with 50 µg g-1 of Cr. In contrast, the concentration of 200 µg g-1 was clearly toxic to the wheat sprouts.
Collapse
Affiliation(s)
- Katarzyna Czarnek
- Institute of Medical Science, Faculty of Medical, The John Paul II Catholic University of Lublin, Konstantynów 1 H Str., 20-708 Lublin, Poland
| | - Małgorzata Tatarczak-Michalewska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Piotr Dreher
- Chair and Department of Public Health, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Grzegorz Wójcik
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Anna Gierut-Kot
- Intermag sp. z o.o. R+D Department, Al. 1000-Lecia 15G, 32-300 Olkusz, Poland;
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Kraków, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| |
Collapse
|
15
|
Belzer A, Parker ER. Climate Change, Skin Health, and Dermatologic Disease: A Guide for the Dermatologist. Am J Clin Dermatol 2023:10.1007/s40257-023-00770-y. [PMID: 37336870 DOI: 10.1007/s40257-023-00770-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/21/2023]
Abstract
Climate change has a pervasive impact on health and is of clinical relevance to every organ system. Climate change-related factors impact the skin's capacity to maintain homeostasis, leading to a variety of cutaneous diseases. Stratospheric ozone depletion has led to increased risk of melanoma and keratinocyte carcinomas due to ultraviolet radiation exposure. Atopic dermatitis, psoriasis, pemphigus, acne vulgaris, melasma, and photoaging are all associated with rising levels of air pollution. Elevated temperatures due to global warming induce disruption of the skin microbiome, thereby impacting atopic dermatitis, acne vulgaris, and psoriasis, and high temperatures are associated with exacerbation of skin disease and increased risk of heat stroke. Extreme weather events due to climate change, including floods and wildfires, are of relevance to the dermatologist as these events are implicated in cutaneous injuries, skin infections, and acute worsening of inflammatory skin disorders. The health consequences as well as the economic and social burden of climate change fall most heavily on vulnerable and marginalized populations due to structural disparities. As dermatologists, understanding the interaction of climate change and skin health is essential to appropriately manage dermatologic disease and advocate for our patients.
Collapse
Affiliation(s)
- Annika Belzer
- Yale University School of Medicine, New Haven, CT, USA
| | - Eva Rawlings Parker
- Department of Dermatology, Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, 719 Thompson Lane, Suite 26-300, Nashville, TN, 37204, USA.
| |
Collapse
|
16
|
DeFries R, Liang S, Chhatre A, Davis KF, Ghosh S, Rao ND, Singh D. Climate resilience of dry season cereals in India. Sci Rep 2023; 13:9960. [PMID: 37340018 DOI: 10.1038/s41598-023-37109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
India is the world's second largest producer of wheat, with more than 40% increase in production since 2000. Increasing temperatures raise concerns about wheat's sensitivity to heat. Traditionally-grown sorghum is an alternative rabi (winter season) cereal, but area under sorghum production has declined more than 20% since 2000. We examine sensitivity of wheat and sorghum yields to historical temperature and compare water requirements in districts where both cereals are cultivated. Wheat yields are sensitive to increases in maximum daily temperature in multiple stages of the growing season, while sorghum does not display the same sensitivity. Crop water requirements (mm) are 1.4 times greater for wheat than sorghum, mainly due to extension of its growing season into summer. However, water footprints (m3 per ton) are approximately 15% less for wheat due to its higher yields. Sensitivity to future climate projections, without changes in management, suggests 5% decline in wheat yields and 12% increase in water footprints by 2040, compared with 4% increase in water footprint for sorghum. On balance, sorghum provides a climate-resilient alternative to wheat for expansion in rabi cereals. However, yields need to increase to make sorghum competitive for farmer profits and efficient use of land to provide nutrients.
Collapse
Affiliation(s)
- Ruth DeFries
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, 10027, USA.
- Climate School, Columbia University, New York, 10027, USA.
| | - Shefang Liang
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, 10027, USA
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Kyle Frankel Davis
- Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Subimal Ghosh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, MH, India
| | - Narasimha D Rao
- Yale School of the Environment, Yale University, New Haven, CT, 06520, USA
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Deepti Singh
- School of the Environment, Washington State University, Vancouver, WA, 98686, USA
| |
Collapse
|
17
|
Harnessing the connectivity of climate change, food systems and diets: Taking action to improve human and planetary health ☆. ANTHROPOCENE 2023; 42:100381. [PMCID: PMC10084708 DOI: 10.1016/j.ancene.2023.100381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 09/02/2024]
Abstract
With climate change, the COVID-19 pandemic, and ongoing conflicts, food systems and the diets they produce are facing increasing fragility. In a turbulent, hot world, threatened resiliency and sustainability of food systems could make it all the more complicated to nourish a population of 9.7 billion by 2050. Climate change is having adverse impacts across food systems with more frequent and intense extreme events that will challenge food production, storage, and transport, potentially imperiling the global population’s ability to access and afford healthy diets. Inadequate diets will contribute further to detrimental human and planetary health impacts. At the same time, the way food is grown, processed, packaged, and transported is having adverse impacts on the environment and finite natural resources further accelerating climate change, tropical deforestation, and biodiversity loss. This state-of-the-science iterative review covers three areas. The paper's first section presents how climate change is connected to food systems and how dietary trends and foods consumed worldwide impact human health, climate change, and environmental degradation. The second area articulates how food systems affect global dietary trends and the macro forces shaping food systems and diets. The last section highlights how specific food policies and actions related to dietary transitions can contribute to climate adaptation and mitigation responses and, at the same time, improve human and planetary health. While there is significant urgency in acting, it is also critical to move beyond the political inertia and bridge the separatism of food systems and climate change agendas that currently exists among governments and private sector actors. The window is closing and closing fast.
Collapse
|
18
|
Goshua A, Gomez J, Erny B, Gisondi M, Patel L, Sampath V, Sheffield P, Nadeau KC. Child-focused climate change and health content in medical schools and pediatric residencies. Pediatr Res 2023:10.1038/s41390-023-02600-7. [PMID: 37081111 DOI: 10.1038/s41390-023-02600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Anthropogenic climate change-driven primarily by the combustion of fossil fuels that form greenhouse gases-has numerous consequences that impact health, including extreme weather events of accelerating frequency and intensity (e.g., wildfires, thunderstorms, droughts, and heat waves), mental health sequelae of displacement from these events, and the increase in aeroallergens and other pollutants. Children are especially vulnerable to climate-related exposures given that they are still developing, encounter higher exposures compared to adults, and are at risk of losing many healthy future years of life. In order to better meet the needs of generations of children born into a world affected by climate change, medical trainees must develop their knowledge of the relationships between climate change and children's health-with a focus on applying that information in clinical practice. This review provides an overview of salient climate change and children's health topics that medical school and pediatric residency training curricula should cover. In addition, it highlights the strengths and limitations of existing medical school and residency climate change and pediatric health curricula. IMPACT: Provides insight into the current climate change and pediatric health curricular opportunities for medical trainees in North America at both the medical school and residency levels. Condenses climate change and pediatric health material relevant to trainees to help readers optimize curricula at their institutions.
Collapse
Affiliation(s)
- Anna Goshua
- Stanford School of Medicine, Stanford, CA, USA
| | - Jason Gomez
- Stanford School of Medicine, Stanford, CA, USA
- Stanford Graduate School of Business, Stanford, CA, USA
| | - Barbara Erny
- Department of Internal Medicine, Division of Med/Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael Gisondi
- Department of Emergency Medicine, Precision Education and Assessment Research Lab Stanford University, Palo Alto, CA, USA
| | - Lisa Patel
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Perry Sheffield
- Departments of Environmental Medicine and Public Health and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
19
|
Abraão A, Yu M, Gouvinhas I, Ferreira L, Silva AM, Domínguez-Perles R, Barros A. Prunus lusitanica L. Fruits: A Promising Underexploited Source of Nutrients with Potential Economic Value. Foods 2023; 12:foods12050973. [PMID: 36900490 PMCID: PMC10001125 DOI: 10.3390/foods12050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In recent times, less-known fruit species have increasingly attracted worldwide attention and their health benefits are at the forefront. The fruits of plants from the genus Prunus are good sources of nutrients due to their economic, agronomic, and healthy values. However, Prunus lusitanica L., commonly known as Portuguese laurel cherry is considered an endangered species. Thus, the present work aimed to monitor the nutritional components of P. lusitanica fruits grown in three locations in northern Portugal for four consecutive years (2016-2019), using AOAC (Association of Official Analytical Chemists), spectrophotometric, and chromatographic analysis. The results evidenced the abundance of phytonutrients in P. lusitanica, such as proteins, fat, carbohydrates, soluble sugars, dietary fibre, amino acids, and minerals. It was also highlighted that the variation of nutritional components was relatively linked to the year factor, being especially relevant in the frame of the current changing climate, among others. These findings suggest that P. lusitanica L. deserves to be conserved and planted because of its food and nutraceutical applications. However, more detailed information on this rare plant species, such as phytophysiology, phytochemistry, bioactivity, pharmacology, etc., is certainly required for the design and development of appropriate uses and valorization alternatives for this species.
Collapse
Affiliation(s)
- Ana Abraão
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Manyou Yu
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Food Lab (LabFAS), Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, 30100 Murcia, Spain
| | - Ana Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
20
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Fei C, Jägermeyr J, McCarl B, Contreras EM, Mutter C, Phillips M, Ruane AC, Sarofim MC, Schultz P, Vargo A. Future climate change impacts on U.S. agricultural yields, production, and market. ANTHROPOCENE 2023; 42:100386. [PMID: 39434981 PMCID: PMC11492982 DOI: 10.1016/j.ancene.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This study provides estimates of climate change impacts on U.S. agricultural yields and the agricultural economy through the end of the 21st century, utilizing multiple climate scenarios. Results from a process-based crop model project future increases in wheat, grassland, and soybean yield due to climate change and atmospheric CO2 change; corn and sorghum show more muted responses. Results using yields from econometric models show less positive results. Both the econometric and process-based models tend to show more positive yields by the end of the century than several other similar studies. Using the process-based model to provide future yield estimates to an integrated agricultural sector model, the welfare gain is roughly $16B/year (2019 USD) for domestic producers and $6.2B/year for international trade, but domestic consumers lose $10.6B/year, resulting in a total welfare gain of $11.7B/year. When yield projections for major crops are drawn instead from econometric models, total welfare losses of more than $28B/year arise. Simulations using the process-based model as input to the agricultural sector model show large future production increases for soybean, wheat, and sorghum and large price reductions for corn and wheat. The most important factors are those about economic growth, flooding, international trade, and the type of yield model used. Somewhat less, but not insignificant factors include adaptation, livestock productivity, and damages from surface ozone, waterlogging, and pests and diseases.
Collapse
Affiliation(s)
| | - Jonas Jägermeyr
- Columbia University, Climate School, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | | | | | | | | | - Alex C. Ruane
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Erland LAE, Needham AMLW, Kehinde AZ, Adebowale AP, Lincoln NK, Ragone D, Murch SJ. Impact of microclimate on Artocarpus altilis (Parkinson) Fosberg var Ma’afala fruit and nutritional quality. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Poudel P, Di Gioia F, Lambert JD, Connolly EL. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. FRONTIERS IN PLANT SCIENCE 2023; 14:1177844. [PMID: 37139105 PMCID: PMC10150129 DOI: 10.3389/fpls.2023.1177844] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023]
Abstract
Micronutrient deficiencies caused by malnutrition and hidden hunger are a growing concern worldwide, exacerbated by climate change, COVID-19, and conflicts. A potentially sustainable way to mitigate such challenges is the production of nutrient-dense crops through agronomic biofortification techniques. Among several potential target crops, microgreens are considered suitable for mineral biofortification because of their short growth cycle, high content of nutrients, and low level of anti-nutritional factors. A study was conducted to evaluate the potential of zinc (Zn) biofortification of pea and sunflower microgreens via seed nutri-priming, examining the effect of different Zn sources (Zn sulfate, Zn-EDTA, and Zn oxide nanoparticles) and concentrations (0, 25, 50, 100, and 200 ppm) on microgreen yield components; mineral content; phytochemical constituents such as total chlorophyll, carotenoids, flavonoids, anthocyanin, and total phenolic compounds; antioxidant activity; and antinutrient factors like phytic acid. Treatments were arranged in a completely randomized factorial block design with three replications. Seed soaked in a 200 ppm ZnSO4 solution resulted in higher Zn accumulation in both peas (126.1%) and sunflower microgreens (229.8%). However, an antagonistic effect on the accumulation of other micronutrients (Fe, Mn, and Cu) was seen only in pea microgreens. Even at high concentrations, seed soaking in Zn-EDTA did not effectively accumulate Zn in both microgreens' species. ZnO increased the chlorophyll, total phenols, and antioxidant activities compared to Zn-EDTA. Seed soaking in ZnSO4 and ZnO solutions at higher concentrations resulted in a lower phytic acid/Zn molar ratio, suggesting the higher bioaccessibility of the biofortified Zn in both pea and sunflower microgreens. These results suggest that seed nutrient priming is feasible for enriching pea and sunflower microgreens with Zn. The most effective Zn source was ZnSO4, followed by ZnO. The optimal concentration of Zn fertilizer solution should be selected based on fertilizer source, target species, and desired Zn-enrichment level.
Collapse
Affiliation(s)
- Pradip Poudel
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Francesco Di Gioia,
| | - Joshua D. Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Erin L. Connolly
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
24
|
Al-Jawaldeh A, Nabhani M, Taktouk M, Nasreddine L. Climate Change and Nutrition: Implications for the Eastern Mediterranean Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17086. [PMID: 36554966 PMCID: PMC9779613 DOI: 10.3390/ijerph192417086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 05/29/2023]
Abstract
The Eastern Mediterranean Region (EMR) is considered among the world's most vulnerable to the dire impacts of climate change. This review paper aims at (1) characterizing climate change in countries of the EMR; (2) examining the potential effects of climate change on the nutritional and health status of the population; and (3) identifying the most vulnerable population groups. The paper explored several climate change indicators including daily temperatures, extreme temperature, daily precipitation, extreme precipitation (flooding, drought, storms, etc.), humidity, CO2 concentrations and sea surface temperature in EMR countries. Findings suggest that climate change will exert a significant adverse effect on water and food security and showed that the nutritional status of the population, which is already characterized by the triple burden of malnutrition, is likely to worsen via three main pathways mediated by climate change, namely, its impact on food security, care and health. Women, infants, children, those living in poor households and those experiencing displacement will be among the most vulnerable to the nutritional impacts of climate change. The paper concludes with a set of recommendations from the Initiative on Climate Action and Nutrition, which can support the region in tackling the critical nexus of climate change and nutrition.
Collapse
Affiliation(s)
- Ayoub Al-Jawaldeh
- Regional Office for the Eastern Mediterranean (EMRO), World Health Organization (WHO), Cairo 7608, Egypt
| | - Maya Nabhani
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Mandy Taktouk
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Lara Nasreddine
- Nutrition and Food Sciences Department, Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
25
|
Angenent SC, Schuttinga JH, van Efferen MFH, Kuizenga B, van Bree B, van der Krieken RO, Verhoeven TJ, Wijffels RH. Hydrogen Oxidizing Bacteria as Novel Protein Source for Human Consumption: An Overview. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2207270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The increasing threat of climate change combined with the prospected growth in the world population puts an enormous pressure on the future demand for sustainable protein sources for human consumption. In this review, hydrogen oxidizing bacteria (HOB) are presented as a novel protein source that could play a role in fulfilling this future demand. HOB are species of bacteria that merely require an inflow of the gasses hydrogen, oxygen, carbon dioxide, and a nitrogen source to grow in a conventional bioreactor. Cupriavidus necator is proposed as HOB for industrial cultivation due to its remarkably high protein content (up to 70% of mass), suitability for cultivation in a bioreactor, and the vast amount of available background information. A broad overview of the unique aspects of the bacteria will be provided, from the production process, amino acid composition, and source of the required gasses to the future acceptance of HOB into the market.
Collapse
|
26
|
Fuglie K, Wiebe K, Sulser TB, Cenacchi N, Willenbockel D. Multidimensional impacts from international agricultural research: Implications for research priorities. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Investors in international agricultural research seek sustainable agri-food technologies that can potentially serve multiple objectives, including economic growth, food security, and sustainable use of natural resources. We employ quantitative economic models to examine the potential multi-dimensional impacts of agricultural productivity gains in the Global South. These models take into account behavior responses to agricultural technological change, i.e., how productivity changes may affect decisions on what to produce, trade, and consume. We compare potential impacts of productivity growth in different commodities and regions and assess implications along several impact dimensions, including economic and income growth, the population at risk of hunger, adequacy of protein and micronutrients in human diets, land and water use, and greenhouse gas emissions. Potential impacts vary widely by commodity group and by region. These results reveal strengths and potential tradeoffs of different R&D spending allocations, and can help inform decision-making about an optimal R&D portfolio that takes into account the multiple objectives of agricultural investments.
Collapse
|
27
|
Haase E. Using Case-Based Teaching of Climate Change to Broaden Appreciation of Socio-Environmental Determinants of Mental Health. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2022; 46:574-578. [PMID: 36109425 DOI: 10.1007/s40596-022-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Elizabeth Haase
- Carson Tahoe Regional Medical Center, Carson City, NV, USA.
- University of Nevada School of Medicine, Reno, NV, USA.
| |
Collapse
|
28
|
Myers S, Fanzo J, Wiebe K, Huybers P, Smith M. Current guidance underestimates risk of global environmental change to food security. BMJ 2022; 378:e071533. [PMID: 36175018 PMCID: PMC9517947 DOI: 10.1136/bmj-2022-071533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Samuel Myers
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
- Harvard University Center for the Environment, Cambridge, MA, USA
| | - Jessica Fanzo
- Nitze School of Advanced International Studies, Berman Institute of Bioethics, Bloomberg School of Public Health, Johns Hopkins University, Washington DC, USA
| | - Keith Wiebe
- International Food Policy Research Institute, Washington DC, USA
| | - Peter Huybers
- Harvard University Center for the Environment, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Matthew Smith
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
29
|
Wu J. Emerging sources and applications of alternative proteins: An introduction. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:1-15. [PMID: 35940701 DOI: 10.1016/bs.afnr.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food protein is an essential macronutrient. Even though daily per capita supply of protein has increased globally from 61g in 1961 to 81g in 2013, and most people in the developed world have sufficient protein intake from their diets, however, protein deficiencies continue to be pervasive globally. Protein deficiency is the single major factor responsible for impaired growth and suboptimal health worldwide. Animal proteins are high quality and contain adequate and balanced amino acids, animal protein production however is inefficient and resource intensive. Alternative proteins are expected to provide the solution to meet the growing protein demand within the environmental limits. Alternative proteins include proteins from plants (i.e., grains, legumes, pulse, and nuts), fungus (i.e., mushrooms), algae, insects and cultured (lab-grown) meat that can be used to replace conventional animal proteins. Major concerns for human consumption of alternative proteins are inferior organoleptic properties, consumer acceptability, affordability, and sustainability. There is a need to develop culturally diversified alternative proteins to mitigate global protein malnutrition. Food proteins are also found applications in biomaterials and as a source of bioactive peptides.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:927535. [PMID: 35903229 PMCID: PMC9315450 DOI: 10.3389/fpls.2022.927535] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 05/05/2023]
Abstract
Climatic variability has been acquiring an extensive consideration due to its widespread ability to impact food production and livelihoods. Climate change has the potential to intersperse global approaches in alleviating hunger and undernutrition. It is hypothesized that climate shifts bring substantial negative impacts on food production systems, thereby intimidating food security. Vast developments have been made addressing the global climate change, undernourishment, and hunger for the last few decades, partly due to the increase in food productivity through augmented agricultural managements. However, the growing population has increased the demand for food, putting pressure on food systems. Moreover, the potential climate change impacts are still unclear more obviously at the regional scales. Climate change is expected to boost food insecurity challenges in areas already vulnerable to climate change. Human-induced climate change is expected to impact food quality, quantity, and potentiality to dispense it equitably. Global capabilities to ascertain the food security and nutritional reasonableness facing expeditious shifts in biophysical conditions are likely to be the main factors determining the level of global disease incidence. It can be apprehended that all food security components (mainly food access and utilization) likely be under indirect effect via pledged impacts on ménage, incomes, and damages to health. The corroboration supports the dire need for huge focused investments in mitigation and adaptation measures to have sustainable, climate-smart, eco-friendly, and climate stress resilient food production systems. In this paper, we discussed the foremost pathways of how climate change impacts our food production systems as well as the social, and economic factors that in the mastery of unbiased food distribution. Likewise, we analyze the research gaps and biases about climate change and food security. Climate change is often responsible for food insecurity issues, not focusing on the fact that food production systems have magnified the climate change process. Provided the critical threats to food security, the focus needs to be shifted to an implementation oriented-agenda to potentially cope with current challenges. Therefore, this review seeks to have a more unprejudiced view and thus interpret the fusion association between climate change and food security by imperatively scrutinizing all factors.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Yinlong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | | |
Collapse
|
31
|
A S, Sathee L, Singh D, Jha SK, Chinnusamy V, Singh MP. Interactive effect of elevated CO 2 and nitrogen dose reprograms grain ionome and associated gene expression in bread wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:134-143. [PMID: 35344758 DOI: 10.1016/j.plaphy.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Wheat crop grown under elevated CO2 (EC) often have a lowered grain nitrogen (N) and protein concentration along with an altered grain ionome. The mechanistic understanding on the impact of CO2 x N interactions on the grain ionome and the expression of genes regulating grain ionome is scarce in wheat. In the present study, the interactive effect of EC and N dosage on grain yield, grain protein, grain ionome, tissue nitrate, and the expression of genes contributing to grain ionome (TaNAM-B1 and TaYSL6) are described. Three bread wheat genotypes were evaluated under two CO2 levels (Ambient CO2 (AC) of 400 ± 10 ppm and elevated CO2 (EC) of 700 ± 10 ppm) and two N levels (Low (LN) and Optimum N (ON). In EC, wheat genotypes HD2967 and HI 1500 recorded a significant decrease in grain nitrate content, while leaf and stem nitrate showed a significant increase. BT. Schomburgk (BTS), showed a significant increase in unassimilated nitrate and a decline in grain N and grain protein under EC. There was a general decline of grain ionome (N, P, K, Ca, Fe) in EC, except for grain Na content. The expression of genes TaNAM-B1 and TaYSL6 associated with protein and micronutrient remobilization to grains during senescence were affected by both EC and N treatments. For instance, in flag leaves of BTS, the expression of TaNAM-B1 and TaYSL6 were lower in EC-LN compared to AC-LN. In maturing spikes, transcript abundance of TaNAM-B1 and TaYSL6 were lower in EC in BTS. The altered transcript abundance of TaYSL6 and TaNAM-B1 in source and sink supports the change in grain ionome and suggests an N dependent transcriptional reprogramming in EC.
Collapse
Affiliation(s)
- Sinto A
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
32
|
Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed. PLANTS 2022; 11:plants11071000. [PMID: 35406979 PMCID: PMC9003137 DOI: 10.3390/plants11071000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
While the role of CO2 as a greenhouse gas in the context of global warming is widely acknowledged, additional data from multiple sources is demonstrating that rising CO2 of and by itself will have a tremendous effect on plant biology. This effect is widely recognized for its role in stimulating photosynthesis and growth for multiple plant species, including crops. However, CO2 is also likely to alter plant chemistry in ways that will denigrate plant nutrition. That role is also of tremendous importance, not only from a human health viewpoint, but also from a global food–web perspective. Here, the goal is to review the current evidence, propose potential mechanistic explanations, provide an overview of critical unknowns and to elucidate a series of next steps that can address what is, overall, a critical but unappreciated aspect of anthropogenic climate change.
Collapse
|
33
|
Huey SL, Krisher JT, Bhargava A, Friesen VM, Konieczynski EM, Mbuya MNN, Mehta NH, Monterrosa E, Nyangaresi AM, Mehta S. Review of the Impact Pathways of Biofortified Foods and Food Products. Nutrients 2022; 14:1200. [PMID: 35334857 PMCID: PMC8952206 DOI: 10.3390/nu14061200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Biofortification is the process of increasing the concentrations and/or bioavailability of micronutrients in staple crops and has the potential to mitigate micronutrient deficiencies globally. Efficacy trials have demonstrated benefits of consuming biofortified crops (BFCs); and in this paper, we report on the results of a systematic review of biofortified crops effectiveness in real-world settings. We synthesized the evidence on biofortified crops consumption through four Impact Pathways: (1) purchased directly; (2) in informal settings; (3) in formal settings; or (4) in farmer households, from their own production. Twenty-five studies, covering Impact Pathway 1 (five studies), Impact Pathway 2 (three), Impact Pathway 3 (three), Impact Pathway 4 (21) were included. The review found evidence of an improvement in micronutrient status via Impact Pathway 4 (mainly in terms of vitamin A from orange sweet potato) in controlled interventions that involved the creation of demand, the extension of agriculture and promotion of marketing. In summary, evidence supports that biofortified crops can be part of food systems interventions to reduce micronutrient deficiencies in farmer households; ongoing and future research will help fully inform their potential along the other three Impact Pathways for scaling up.
Collapse
Affiliation(s)
- Samantha L. Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
- Program in International Nutrition, Cornell University, Ithaca, NY 14853, USA
| | - Jesse T. Krisher
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
| | - Arini Bhargava
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
| | - Valerie M. Friesen
- Global Alliance for Improved Nutrition, 1202 Geneva, Switzerland; (V.M.F.); (E.M.)
| | - Elsa M. Konieczynski
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
| | | | - Neel H. Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
| | - Eva Monterrosa
- Global Alliance for Improved Nutrition, 1202 Geneva, Switzerland; (V.M.F.); (E.M.)
| | | | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (S.L.H.); (J.T.K.); (A.B.); (E.M.K.); (N.H.M.)
- Program in International Nutrition, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Dettori M, Cesaraccio C, Duce P, Mereu V. Performance Prediction of Durum Wheat Genotypes in Response to Drought and Heat in Climate Change Conditions. Genes (Basel) 2022; 13:488. [PMID: 35328044 PMCID: PMC8951375 DOI: 10.3390/genes13030488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
With an approach combining crop modelling and biotechnology to assess the performance of three durum wheat cultivars (Creso, Duilio, Simeto) in a climate change context, weather and agronomic datasets over the period 1973-2004 from two sites, Benatzu and Ussana (Southern Sardinia, Itay), were used and the model responses were interpreted considering the role of DREB genes in the genotype performance with a focus on drought conditions. The CERES-Wheat crop model was calibrated and validated for grain yield, earliness and kernel weight. Forty-eight synthetic scenarios were used: 6 scenarios with increasing maximum air temperature; 6 scenarios with decreasing rainfall; 36 scenarios combining increasing temperature and decreasing rainfall. The simulated effects on yields, anthesis and kernel weights resulted in yield reduction, increasing kernel weight, and shortened growth duration in both sites. Creso (late cultivar) was the most sensitive to simulated climate conditions. Simeto and Duilio (early cultivars) showed lower simulated yield reductions and a larger anticipation of anthesis date. Observed data showed the same responses for the three cultivars in both sites. The CERES-Wheat model proved to be effective in representing reality and can be used in crop breeding programs with a molecular approach aiming at developing molecular markers for the resistance to drought stress.
Collapse
Affiliation(s)
- Marco Dettori
- Agricultural Research Agency of Sardinia, Viale Trieste 111, 09123 Cagliari, Italy;
| | - Carla Cesaraccio
- Institute of BioEconomy (IBE), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.C.); (P.D.)
| | - Pierpaolo Duce
- Institute of BioEconomy (IBE), National Research Council (CNR), Traversa La Crucca 3, 07100 Sassari, Italy; (C.C.); (P.D.)
| | - Valentina Mereu
- Agricultural Research Agency of Sardinia, Viale Trieste 111, 09123 Cagliari, Italy;
- Impacts on Agriculture, Forestry and Ecosystem Services (IAFES) Division, Euro-Mediterranean Center on Climate Changes (CMCC), Via E. de Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
35
|
Song X, Cui X, Jiang L, Ma N, Shu Y, Li J, Du D. Multi-parameter screening study on the static properties of nanoparticle-stabilized CO2 foam near the CO2 critical point. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Sajtos Z, Varga T, Gajdos Z, Burik P, Csontos M, Lisztes-Szabó Z, Jull AJT, Molnár M, Baranyai E. Rape, sunflower and forest honeys for long-term environmental monitoring: Presence of indicator elements and non-photosynthetic carbon in old Hungarian samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152044. [PMID: 34856271 DOI: 10.1016/j.scitotenv.2021.152044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we present the time-dependent elemental composition and AMS radiocarbon dating results of 36 rape, sunflower and forest honey samples, collected between 1985 and 2018 in geographically close locations. Based on the elemental information, we conclude that bee products regardless the type provide useful environmental information of the previous decades, such as the decreasing trend of airborne Pb emission can be traced. However, radiocarbon results agree less with the atmospheric bomb peak. Random offsets were observed in the specific radiocarbon activity of the honey samples indicating that rape, sunflower and forest honey samples are not as reliable materials for radiocarbon dating as acacia honeys. The radiocarbon results show that the rape, sunflower and forest honey samples can contain non-photosynthetic carbon, presumably derived from the soil. Thus, the complex application of honey samples for environmental reconstruction requires the species-separated investigation of bee products to reveal their adaptability for assessment approaches.
Collapse
Affiliation(s)
- Zsófi Sajtos
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; University of Debrecen, Doctoral School of Chemistry, Debrecen, Hungary
| | - Tamás Varga
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Eötvös Loránd Research Network (ELKH), Debrecen H-4001, P.O Box 51, Hungary; University of Debrecen, Doctoral School of Physics, Debrecen, Hungary.
| | - Zita Gajdos
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Petra Burik
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Máté Csontos
- University of Debrecen, Doctoral School of Chemistry, Debrecen, Hungary; Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Zsuzsa Lisztes-Szabó
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Eötvös Loránd Research Network (ELKH), Debrecen H-4001, P.O Box 51, Hungary
| | - A J Timothy Jull
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Eötvös Loránd Research Network (ELKH), Debrecen H-4001, P.O Box 51, Hungary; Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA; University of Arizona, AMS Laboratory, Tucson, AZ 85721, USA
| | - Mihály Molnár
- Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Eötvös Loránd Research Network (ELKH), Debrecen H-4001, P.O Box 51, Hungary
| | - Edina Baranyai
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
37
|
Fanzo J, Rudie C, Sigman I, Grinspoon S, Benton TG, Brown ME, Covic N, Fitch K, Golden CD, Grace D, Hivert MF, Huybers P, Jaacks LM, Masters WA, Nisbett N, Richardson RA, Singleton CR, Webb P, Willett WC. Sustainable food systems and nutrition in the 21st century: a report from the 22nd annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2022; 115:18-33. [PMID: 34523669 PMCID: PMC8755053 DOI: 10.1093/ajcn/nqab315] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023] Open
Abstract
Food systems are at the center of a brewing storm consisting of a rapidly changing climate, rising hunger and malnutrition, and significant social inequities. At the same time, there are vast opportunities to ensure that food systems produce healthy and safe food in equitable ways that promote environmental sustainability, especially if the world can come together at the UN Food Systems Summit in late 2021 and make strong and binding commitments toward food system transformation. The NIH-funded Nutrition Obesity Research Center at Harvard and the Harvard Medical School Division of Nutrition held their 22nd annual Harvard Nutrition Obesity Symposium entitled "Global Food Systems and Sustainable Nutrition in the 21st Century" in June 2021. This article presents a synthesis of this symposium and highlights the importance of food systems to addressing the burden of malnutrition and noncommunicable diseases, climate change, and the related economic and social inequities. Transformation of food systems is possible, and the nutrition and health communities have a significant role to play in this transformative process.
Collapse
Affiliation(s)
- Jessica Fanzo
- Nitze School of Advanced International Studies, Johns Hopkins University, Baltimore, MD, USA
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Coral Rudie
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Iman Sigman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tim G Benton
- Energy, Environment and Resources Programme, Chatham House, London, United Kingdom
| | - Molly E Brown
- Department of Geographical Sciences, University of Maryland College Park, College Park, MD, USA
| | - Namukolo Covic
- International Food Policy Research Institute, Addis Ababa, Ethiopia
| | - Kathleen Fitch
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher D Golden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Delia Grace
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Peter Huybers
- Department of Earth and Planetary Sciences, Harvard University, Boston, MA, USA
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Security, The University of Edinburgh, Edinburgh, United Kingdom
| | - William A Masters
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nicholas Nisbett
- Health and Nutrition Cluster, Institute of Development Studies, Falmer, United Kingdom
| | | | - Chelsea R Singleton
- Department of Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Patrick Webb
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Walter C Willett
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
38
|
Abstract
Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host–pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet’s habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO2.
Collapse
|
39
|
Pathak D, Deuri S, Phukan P. Nucleophilicity and CO2 fixation ability of phosphorus, nitrogen and sulfur ylides: insights on stereoelectronic factors from DFT study. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Nutritional quality in response to elevated CO2 concentration in foxtail millet (Setaria italica). J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Drakesmith H, Pasricha SR, Cabantchik I, Hershko C, Weiss G, Girelli D, Stoffel N, Muckenthaler MU, Nemeth E, Camaschella C, Klenerman P, Zimmermann MB. Vaccine efficacy and iron deficiency: an intertwined pair? Lancet Haematol 2021; 8:e666-e669. [PMID: 34450104 PMCID: PMC8384343 DOI: 10.1016/s2352-3026(21)00201-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023]
Abstract
Vaccines are the most effective measure to prevent deaths and illness from infectious diseases. Nevertheless, the efficacy of several paediatric vaccines is lower in low-income and middle-income countries (LMICs), where mortality from vaccine-preventable infections remains high. Vaccine efficacy can also be decreased in adults in the context of some common comorbidities. Identifying and correcting the specific causes of impaired vaccine efficacy is of substantial value to global health. Iron deficiency is the most common micronutrient deficiency worldwide, affecting more than 2 billion people, and its prevalence in LMICs could increase as food security is threatened by the COVID-19 pandemic. In this Viewpoint, we highlight evidence showing that iron deficiency limits adaptive immunity and responses to vaccines, representing an under-appreciated additional disadvantage to iron deficient populations. We propose a framework for urgent detailed studies of iron-vaccine interactions to investigate and clarify the issue. This framework includes retrospective analysis of newly available datasets derived from trials of COVID-19 and other vaccines, and prospective testing of whether nutritional iron interventions, commonly used worldwide to combat anaemia, improve vaccine performance.
Collapse
Affiliation(s)
- Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; Haematology Theme, Oxford Biomedical Research Centre, Oxford, UK.
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Diagnostic Haematology, The Royal Melbourne Hospital, Parkville, VIC, Australia; Clinical Haematology, The Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Ioav Cabantchik
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chaim Hershko
- Internal Medicine, Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Nicole Stoffel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Michael B Zimmermann
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Sulser TB, Beach RH, Wiebe KD, Dunston S, Fukagawa NK. Disability-adjusted life years due to chronic and hidden hunger under food system evolution with climate change and adaptation to 2050. Am J Clin Nutr 2021; 114:550-563. [PMID: 34013962 PMCID: PMC8326044 DOI: 10.1093/ajcn/nqab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Climate change presents an increasing challenge for food-nutrition security. Nutrition metrics calculated from quantitative food system projections can help focus policy actions. OBJECTIVES To estimate future chronic and hidden hunger disability-adjusted life years (DALYs)-due to protein-energy undernutrition and micronutrient deficiencies, respectively-using food systems projections to evaluate the potential impact of climate change and agricultural sector investment for adaptation. METHODS We use a novel combination of a chronic and hidden hunger DALY estimation procedure and food system projections from quantitative foresight modeling to assess DALYs under alternative agricultural sector scenarios to midcentury. RESULTS Total chronic and hidden hunger DALYs are projected to increase globally out to 2050-by over 30 million compared with 2010-even without climate change. Climate change increases total DALY change between 2010 and 2050 by nearly 10% compared with no climate change. Agricultural sector investments show promise for offsetting these impacts. With investments, DALY incidence due to chronic and hidden hunger is projected to decrease globally in 2050 by 0.24 and 0.56 per 1000 capita, respectively. Total global DALYs will still rise because projected population growth will outpace the rate reduction, especially in Africa south of the Sahara. However, projections also show important regional reductions in total DALYs due to chronic (13.9 million in South Asia, 4.3 million in East Asia and the Pacific) and hidden hunger (7.5 million in East Asia and the Pacific) with investments. CONCLUSIONS Food system projections to 2050 show a decreasing DALY incidence from both chronic and hidden hunger. Population growth is projected to outpace these improvements and lead to increasing total chronic and hidden hunger DALYs globally, concentrated in Africa south of the Sahara. Climate change increases per-capita chronic and hidden hunger DALY incidence compared with no climate change. Agricultural sector investments show the potential to offset the climate impact on DALYs.
Collapse
Affiliation(s)
- Timothy B Sulser
- International Food Policy Research Institute, Environment and Production Technology Division, Washington, DC, USA
| | - Robert H Beach
- RTI International, Environmental Engineering & Economics Division, Research Triangle Park, NC, USA
| | - Keith D Wiebe
- International Food Policy Research Institute, Environment and Production Technology Division, Washington, DC, USA
| | - Shahnila Dunston
- International Food Policy Research Institute, Environment and Production Technology Division, Washington, DC, USA
| | - Naomi K Fukagawa
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| |
Collapse
|
43
|
Cromar K, Howard P, Vásquez VN, Anthoff D. Health Impacts of Climate Change as Contained in Economic Models Estimating the Social Cost of Carbon Dioxide. GEOHEALTH 2021; 5:e2021GH000405. [PMID: 34355109 PMCID: PMC8319815 DOI: 10.1029/2021gh000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The health impacts of climate change are substantial and represent a primary motivating factor to mitigate climate change. However, the health impacts in economic models that estimate the social cost of carbon dioxide (SC-CO2) have generally been made in isolation from health experts and have never been rigorously evaluated. Version 3.10 of the Framework for Uncertainty, Negotiation and Distribution (FUND) model was used to estimate the health-based portion of current SC-CO2 estimates across low-, middle-, and high-income regions. In addition to the base model, three additional experiments assessed the sensitivity of these estimates to changes in the socio-economic assumptions in the model. Economic impacts from adverse health outcomes represent ∼8.7% of current SC-CO2 estimates. The majority of these health impacts (74%) were attributable to diarrhea mortality (from both low- and high-income regions) followed by diarrhea morbidity (12%) and malaria mortality (11%); no other health impact makes a meaningful contribution to SC-CO2 estimates in current economic models. The results of the socio-economic experiments show that the health-based portion of SC-CO2 estimates are highly sensitive to assumptions regarding income elasticity of health effects, income growth, and use of equity weights. Improving the health-based portion of SC-CO2 estimates could have substantial impacts on magnitude of the SC-CO2. Incorporating additional health impacts not previously included in estimates of SC-CO2 will be a critical component of model updates. This effort will be most successful through coordination between economists and health researchers and should focus on updating the form and function of concentration-response functions.
Collapse
Affiliation(s)
- Kevin Cromar
- Marron Institute of Urban ManagementNew York UniversityNew YorkNYUSA
- Departments of Environmental Medicine and Population HealthNYU School of MedicineNew YorkNYUSA
| | - Peter Howard
- Institute for Policy IntegrityNew York University School of LawNew YorkNYUSA
| | - Váleri N. Vásquez
- Energy and Resources GroupUniversity of California at BerkeleyBerkeleyCAUSA
- Berkeley Institute for Data ScienceUniversity of California at BerkeleyBerkeleyCAUSA
- School of Public HealthUniversity of California at BerkeleyBerkeleyCAUSA
| | - David Anthoff
- Energy and Resources GroupUniversity of California at BerkeleyBerkeleyCAUSA
- Berkeley Institute for Data ScienceUniversity of California at BerkeleyBerkeleyCAUSA
| |
Collapse
|
44
|
Zolfaghari B, Ghanbari M, Musavi H, Bavandpour Baghshahi P, Taghikhani M, Pourfallah F. Investigation of Zinc Supplement Impact on the Serum Biochemical Parameters in Pulmonary Tuberculosis: A Double Blinded Placebo Control Trial. Rep Biochem Mol Biol 2021; 10:173-182. [PMID: 34604407 PMCID: PMC8480298 DOI: 10.52547/rbmb.10.2.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Zinc (Zn) is nutritionally essential trace element, and thus deficiency may severely affect human health. The results of cross-sectional studies indicate that micronutrient deficiencies are common in patients with tuberculosis. Our goal is to investigate whether Zn supplementation can increase the effects of anti-TB treatment or not. METHODS Patients with newly diagnosed tuberculosis were divided in to 2 groups. One group (n= 37) received capsule contains 50 mg of elemental zinc (as zinc sulfate) for 6 months every other day (micronutrient group) and Group II (n= 37) received placebo. Both groups received the same anti-tuberculosis treatment recommended by the WHO. Clinical examination, BMI, chest X-ray, direct sputum examination, assessment of serum zinc levels (by atomic absorption spectrophotometry), and biochemical markers serum concentration (by using an RA1000 AutoAnalyzer) were carried out before and after 2- and 6-months anti-tuberculosis treatment. RESULTS Plasma zinc concentrations in the micronutrient group was higher than placebo group After treatment. In the placebo group increasing in SGOT and SGPT concentrations were significantly higher than micronutrient group after 2 months of treatment (p< 0.05). The significant changes (p< 0.05) were observed on the serum levels of total protein, albumin. Alkaline phosphatase (ALP) levels, serum creatinine, uric acid and urea in groups were not significantly different. CONCLUSION Zinc supplementation results in earlier sputum smear conversion in the micronutrient group during the first 6 weeks. Increased body weight and serum zinc and serum albumin and decrease in total protein was observed in the micronutrient group.
Collapse
Affiliation(s)
- Bahareh Zolfaghari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahboobeh Ghanbari
- Department of Clinical Biochemistry, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hadis Musavi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Mohammad Taghikhani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
45
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1052. [PMID: 34074065 PMCID: PMC8225050 DOI: 10.3390/plants10061052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China;
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| |
Collapse
|
46
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061052. [PMID: 34074065 DOI: 10.3390/plants10061052`] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/26/2023]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
47
|
Madzorera I, Jaacks L, Paarlberg R, Herforth A, Bromage S, Ghosh S, Myers SS, Masters WA, Fawzi WW. Food Systems as Drivers of Optimal Nutrition and Health: Complexities and Opportunities for Research and Implementation. Curr Dev Nutr 2021; 5:nzab062. [PMID: 34084996 PMCID: PMC8166275 DOI: 10.1093/cdn/nzab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The Sustainable Development Goals (SDGs) are intricately linked to food systems. Addressing challenges in food systems is key to meeting the SDGs in Africa and South Asia, where undernutrition and micronutrient deficiencies persist, alongside increased nutrition transition, overweight and obesity, and related chronic diseases. Suboptimal diets are a key risk factor for mortality and 3 billion people cannot afford a healthy diet; in addition, food systems are not prioritizing environmental sustainability. Optimizing food systems and increasing agricultural productivity beyond calories, to nutrient-rich vegetables and fruits, legumes, and livestock, and sustainable fishing, are required. Strengthening of research around food systems-on pathways, value chains, and development and validation of metrics of diet quality-is required. The development of new technology in crop management and pest control and addressing natural resource degradation is key. Engaging with the public and private sectors, outreach to donors and policymakers, and strengthening cross-disciplinary collaborations are imperative to improving food systems.
Collapse
Affiliation(s)
- Isabel Madzorera
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lindsay Jaacks
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Robert Paarlberg
- Harvard Kennedy School of Public Policy and Governance, Cambridge, MA, USA
| | - Anna Herforth
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Sabri Bromage
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Shibani Ghosh
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- USAID Feed the Future Innovation Lab for Nutrition at Tufts University, Boston, MA, USA
| | - Samuel S Myers
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William A Masters
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- USAID Feed the Future Innovation Lab for Nutrition at Tufts University, Boston, MA, USA
| | - Wafaie W Fawzi
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
48
|
Senay E, Gore K, Sherman J, Patel S, Ziska L, Lucchini R, DeFelice N, Just A, Nabeel I, Thanik E, Sheffield P, Rizzo A, Wright R. Coming Together for Climate and Health: Proceedings of the Second Annual Clinical Climate Change Meeting, January 24, 2020. J Occup Environ Med 2021; 63:e308-e313. [PMID: 33710106 PMCID: PMC8842823 DOI: 10.1097/jom.0000000000002186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Climate change is imposing increasingly severe impacts on public health. Addressing these impacts requires heightened awareness of climate-driven health conditions and appropriate clinical practices to manage these conditions. Within this context, the 2nd Annual Clinical Climate Change Conference, held January 24, 2020 at the New York Academy of Medicine, brought together more than 150 allied health practitioners from across the United States for a one-day conference showcasing the state of the science on the climate and health. Eight platform presentations—including a keynote address from Karenna Gore of the Center for Earth Ethics at Union Theological Seminary—covered a range of environmentally induced, climate-related disease areas as well as topics related to environmental justice. Additionally, key workshops engaged participants in the clinical management of climate-related health conditions. Communicating the existing evidence base for climate change-driven impacts on human health is crucial for preparing practitioners to identify and address these impacts. Further partnership between researchers and practitioners to extend and disseminate this evidence base will yield important advancements toward protecting patients and improving health outcomes in an era of climate crisis.
Collapse
Affiliation(s)
- Emily Senay
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karenna Gore
- Center for Earth Ethics, Union Theological Seminary, New York, NY
| | - Jodi Sherman
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT
- Department of Epidemiology in Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Surili Patel
- The Center for Public Health Policy, Washington, D.C
| | - Lewis Ziska
- Department of Environmental Health Sciences, Columbia University Irving Medical Center, New York, NY
| | - Roberto Lucchini
- Department of Occupational and Environmental Medicine, School of Public Health, Florida International University, Miami, FL
| | - Nicholas DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ismail Nabeel
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erin Thanik
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Perry Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Mount Sinai Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
49
|
Gorji S, Gorji A. COVID-19 pandemic: the possible influence of the long-term ignorance about climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15575-15579. [PMID: 33403640 PMCID: PMC7785327 DOI: 10.1007/s11356-020-12167-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 04/12/2023]
Abstract
In addressing the current COVID-19 pandemic and evaluating the measures taken by global leaders so far, it is crucial to trace back the circumstances influencing the emergence of the crisis that the world is presently facing. Could it be that the failure to act in a timely manner dates way back to when first concerns about climate change and its inevitable threat to human health came up? Multiple lines of evidence suggest that the large-scale and rapid environmental changes in the last few decades may be implicated in the emergence of COVID-19 pandemic by increasing the potential risk of the occurrence and the spread of zoonotic diseases, worsening food security, and weakening the human immune system. As we are facing progressive climatic change, a failure to act accordingly could inevitably lead to further, more frequent confrontations with newly emerging diseases.
Collapse
Affiliation(s)
- Shaghayegh Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, 48149, Germany.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
50
|
Philipsborn RP, Sheffield P, White A, Osta A, Anderson MS, Bernstein A. Climate Change and the Practice of Medicine: Essentials for Resident Education. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2021; 96:355-367. [PMID: 32910006 DOI: 10.1097/acm.0000000000003719] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite calls for including content on climate change and its effect on health in curricula across the spectrum of medical education, no widely used resource exists to guide residency training programs in this effort. This lack of resources poses challenges for training program leaders seeking to incorporate evidence-based climate and health content into their curricula. Climate change increases risks of heat-related illness, infections, asthma, mental health disorders, poor perinatal outcomes, adverse experiences from trauma and displacement, and other harms. More numerous and increasingly dangerous natural disasters caused by climate change impair delivery of care by disrupting supply chains and compromising power supplies. Graduating trainees face a knowledge gap in understanding, managing, and mitigating these many-faceted consequences of climate change, which-expected to intensify in coming decades-will influence both the health of their patients and the health care they deliver. In this article, the authors propose a framework of climate change and health educational content for residents, including how climate change (1) harms health, (2) necessitates adaptation in clinical practice, and (3) undermines health care delivery. The authors propose not only learning objectives linked to the Accreditation Council for Graduate Medical Education core competencies for resident education but also learning formats and assessment strategies in each content area. They also present opportunities for implementation of climate and health education in residency training programs. Including this content in residency education will better prepare doctors to deliver anticipatory guidance to at-risk patients, manage those experiencing climate-related health effects, and reduce care disruptions during climate-driven extreme weather events.
Collapse
Affiliation(s)
- Rebecca Pass Philipsborn
- R.P. Philipsborn is assistant professor, Department of Pediatrics and Emory Global Health Institute, Emory University, Atlanta, Georgia; ORCID: https://orcid.org/0000-0002-2843-7509
| | - Perry Sheffield
- P. Sheffield is assistant professor, Department of Pediatrics and Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mt. Sinai, New York, New York; ORCID: http://orcid.org/0000-0001-9156-1193
| | - Andrew White
- A. White is James P. Keating Professor, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; ORCID: http://orcid.org/0000-0001-9394-7823
| | - Amanda Osta
- A. Osta is associate professor of internal medicine and pediatrics and division chief for education, Department of Pediatrics, University of Illinois, and was, at the time of this research, director, Pediatric Residency Program, UI Health, Chicago, Illinois
| | - Marsha S Anderson
- M.S. Anderson is professor, Department of Pediatrics, associate director, Pediatric Residency Program, and assistant dean, Longitudinal Curriculum, University of Colorado School of Medicine, Aurora, Colorado
| | - Aaron Bernstein
- A. Bernstein is assistant professor of pediatrics, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts; ORCID: http://orcid.org/0000-0003-1703-1041
| |
Collapse
|