1
|
Natarajan K, Adhimoolam K, Santhanu K, Vinod S, Natesan S, Min T, Senthil K. In planta synthesis of silver nanoparticles and its effect on adventitious shoot growth and withanolide production in Withania somnifera (L.) Dunal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108882. [PMID: 38972244 DOI: 10.1016/j.plaphy.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Silver (Ag) is a non-essential heavy metal with substantial environmental toxicity but an excellent promotor for plant organogenesis. It is used as an elicitor for secondary metabolite production and for in planta synthesis of metal nanoparticles (MNPs). In the present study, the Ag accumulation and reduction capability of in vitro shoots of Withania somnifera and the toxicity and elicitation effect of Ag on in vitro shoots were explored. In vitro shoot cultures of W. somnifera were treated with different concentrations of silver nitrate for a specific treatment period. Growth index, withaferin A, elemental and electron microscopy analyses were done on silver-treated in vitro shoots of W. somnifera. 1 mM silver nitrate treatment for 12 days period was found to give increased growth index (1.425 ± 0.05c) and withaferin A (2.568 ± 0.08e mg g-1) content. The concentration of bioaccumulated Ag in 1 mM silver nitrate treated in vitro shoot was found to be 50.8 ppm. The presence of nano-Ag was also found in the leaves of 1 mM silver nitrate-treated in vitro shoots. In summary, this is the first report portraying the bioaccumulation and in planta reduction capability of the in vitro shoot system of W. somnifera, which makes it a potential medicinal plant of commercial value for silver contaminated soils.
Collapse
Affiliation(s)
- Kanimozhi Natarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India
| | - Karthikeyan Adhimoolam
- Subtropical Horticulture Research Institute, Jeju National University, Jeju-63243, Republic of Korea
| | - Krishnapriya Santhanu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India
| | - Sangeetha Vinod
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India
| | - Senthil Natesan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu, India
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju-63243, Republic of Korea
| | - Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| |
Collapse
|
2
|
Fares A, Mahdy A, Ahmed G. Unraveling the mysteries of silver nanoparticles: synthesis, characterization, antimicrobial effects and uptake translocation in plant-a review. PLANTA 2024; 260:7. [PMID: 38789841 PMCID: PMC11126449 DOI: 10.1007/s00425-024-04439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
MAIN CONCLUSION The study thoroughly investigates nanosilver production, properties, and interactions, shedding light on its multifaceted applications. It underscores the importance of characterizing nanosilver for predicting its behavior in complex environments. Particularly, it highlights the agricultural and environmental ramifications of nanosilver uptake by plants. Nowadays, silver nanoparticles (AgNPs) are a very adaptable nanomaterial with many uses, particularly in antibacterial treatments and agricultural operations. Clarification of key elements of nanosilver, such as its synthesis and characterization procedures, antibacterial activity, and intricate interactions with plants, particularly those pertaining to uptake and translocation mechanisms, is the aim of this in-depth investigation. Nanosilver synthesis is a multifaceted process that includes a range of methodologies, including chemical, biological, and sustainable approaches that are also environmentally benign. This section provides a critical evaluation of these methods, considering their impacts on repeatability, scalability, and environmental impact. The physicochemical properties of nanosilver were determined by means of characterization procedures. This review highlights the significance of analytical approaches such as spectroscopy, microscopy, and other state-of the-art methods for fully characterizing nanosilver particles. Although grasp of these properties is necessary in order to predict the behavior and potential impacts of nanosilver in complex biological and environmental systems. The second half of this article delves into the intricate interactions that plants have with nanosilver, emphasizing the mechanisms of absorption and translocation. There are significant ramifications for agricultural and environmental problems from the uptake of nanosilver by plants and its subsequent passage through their tissues. In summary, by summarizing the state-of-the-art information in this field, this study offers a comprehensive overview of the production, characterization, antibacterial capabilities, and interactions of nanosilver with plants. This paper contributes to the ongoing conversation in nanotechnology.
Collapse
Affiliation(s)
- Ahmed Fares
- Plant Research Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Abdou Mahdy
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Gamal Ahmed
- Plant Pathology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
4
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
5
|
Iori V, Muzzini VG, Venditti I, Casentini B, Iannelli MA. Phytotoxic impact of bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO 3) on chronically exposed callus cultures of Populus nigra L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116175-116185. [PMID: 37907823 PMCID: PMC10682225 DOI: 10.1007/s11356-023-30690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Owing to the unique physicochemical properties and the low manufacturing costs, silver nanoparticles (AgNPs) have gained growing interest and their application has expanded considerably in industrial and agricultural sectors. The large-scale production of these nanoparticles inevitably entails their direct or indirect release into the environment, raising some concerns about their hazardous aspects. Callus culture represents an important tool in toxicological studies to evaluate the impact of nanomaterials on plants and their potential environmental risk. In this study, we investigated the chronic phytotoxic effects of different concentrations of novel bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on callus culture of Populus nigra L., a pioneer tree species in the riparian ecosystem. Our results showed that AgNPs-Cit-L-Cys were more toxic on poplar calli compared to AgNO3, especially at low concentration (2.5 mg/L), leading to a significant reduction in biomass production, accompanied by a decrease in protein content, a significant increase in both lipid peroxidation level, ascorbate peroxidase (APX), and catalase (CAT) enzymatic activities. In addition, these findings suggested that the harmful activity of AgNPs-Cit-L-Cys might be correlated with their physicochemical properties and not solely attributed to the released Ag+ ions and confirmed that AgNPs-Cit-L-Cys phytoxicity is associated to oxidative stress.
Collapse
Affiliation(s)
- Valentina Iori
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy.
| | - Valerio Giorgio Muzzini
- Research Institute On Terrestrial Ecosystems - National Research Council (IRET-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Via Della Vasca Navale 79, 00146, Rome, Italy
| | - Barbara Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| |
Collapse
|
6
|
Trotta F, Da Silva S, Massironi A, Mirpoor SF, Lignou S, Ghawi SK, Charalampopoulos D. Silver Bionanocomposites as Active Food Packaging: Recent Advances & Future Trends Tackling the Food Waste Crisis. Polymers (Basel) 2023; 15:4243. [PMID: 37959923 PMCID: PMC10650736 DOI: 10.3390/polym15214243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Food waste is a pressing global challenge leading to over $1 trillion lost annually and contributing up to 10% of global greenhouse gas emissions. Extensive study has been directed toward the use of active biodegradable packaging materials to improve food quality, minimize plastic use, and encourage sustainable packaging technology development. However, this has been achieved with limited success, which can mainly be attributed to poor material properties and high production costs. In the recent literature, the integration of silver nanoparticles (AgNPs) has shown to improve the properties of biopolymer, prompting the development of bionanocomposites. Furthermore, the antibacterial properties of AgNPs against foodborne pathogens leads towards food shelf-life improvement and provides a route towards reducing food waste. However, few reviews have analyzed AgNPs holistically throughout a portfolio of biopolymers from an industrial perspective. Hence, this review critically analyses the antibacterial, barrier, mechanical, thermal, and water resistance properties of AgNP-based bionanocomposites. These advanced materials are also discussed in terms of food packaging applications and assessed in terms of their performance in enhancing food shelf-life. Finally, the current barriers towards the commercialization of AgNP bionanocomposites are critically discussed to provide an industrial action plan towards the development of sustainable packaging materials to reduce food waste.
Collapse
Affiliation(s)
- Federico Trotta
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Sidonio Da Silva
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Alessio Massironi
- Metalchemy Limited., 71-75 Shelton Street, London WC2H 9JQ, UK; (S.D.S.); (A.M.)
| | - Seyedeh Fatemeh Mirpoor
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Stella Lignou
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Sameer Khalil Ghawi
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK (S.L.); (S.K.G.); (D.C.)
| |
Collapse
|
7
|
Niu Z, Xu M, Guo X, Yan J, Liu M, Yang Y. Uptake of Silver-Containing Nanoparticles in an Estuarine Plant: Speciation and Bioaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16075-16085. [PMID: 37842941 DOI: 10.1021/acs.est.3c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Understanding the bioaccumulation of silver-containing nanoparticles (Ag-NPs) with different species, concentrations, and sizes in estuarine plants is critical to their related environmental risk. Herein, the distribution of Ag-NPs in tidewater, sediments, and plants (Scirpus triqueter) of field-constructed mesocosm was investigated, where tidewater was exposed to Ag0-NPs and Ag+ at environmentally relevant concentrations. Particle number concentrations (PNCs) and sizes of Ag-NPs with various species were analyzed using a multistep selective dissolution method followed by the single-particle- inductively coupled plasma mass spectrometry technique. After 30 days of exposure, more than half of Ag0-NPs were dissolved to Ag+ and about 1/4 of Ag+ were transformed into Ag0-/AgCl-NPs in tidewater. Ag-NPs in stems exposed to Ag0-NPs were found to be dominated by metallic Ag, while Ag+ exposure led to more Ag2S-NPs in stems. In roots, 71% and 51% of Ag-NPs were found as Ag2S-NPs for Ag0-NPs and Ag+ treatment groups, respectively. Plant stems had a significantly higher enrichment of Ag-NPs than roots. Based on both random forests and structure equation models, it is suggested that salinity of tidewater can regulate Ag0-NPs in tidewater indirectly by influencing AgCl-NPs in tidewater and further affect the total PNCs of Ag-NPs in plant stems. Moreover, elevated sulfate-reducing bacteria (SRB) result in more Ag2S-NPs in rhizosphere sediments, thereby enhancing the bioaccumulation of Ag-NPs by roots.
Collapse
Affiliation(s)
- Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
8
|
Kim M, Sung JS, Atchudan R, Syed A, Nadda AK, Kim DY, Ghodake GS. A rapid, high-yield and bioinspired synthesis of colloidal silver nanoparticles using Glycyrrhiza glabra root extract and assessment of antibacterial and phytostimulatory activity. Microsc Res Tech 2023; 86:1154-1168. [PMID: 37421302 DOI: 10.1002/jemt.24389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Goyang, Gyeonggi, South Korea
| |
Collapse
|
9
|
Komazec B, Cvjetko P, Balen B, Letofsky-Papst I, Lyons DM, Peharec Štefanić P. The Occurrence of Oxidative Stress Induced by Silver Nanoparticles in Chlorella vulgaris Depends on the Surface-Stabilizing Agent. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1967. [PMID: 37446486 DOI: 10.3390/nano13131967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Silver nanoparticles (AgNPs) are of great interest due to their antimicrobial properties, but their reactivity and toxicity pose a significant risk to aquatic ecosystems. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by agents that affect their physicochemical properties. In this study, microalga Chlorella vulgaris was used as a model organism to evaluate the effects of AgNPs in aquatic habitats. Algae were exposed to AgNPs stabilized with citrate and cetyltrimethylammonium bromide (CTAB) agents and to AgNO3 at concentrations that allowed 75% cell survival after 72 h. To investigate algal response, silver accumulation, ROS content, damage to biomolecules (lipids, proteins, and DNA), activity of antioxidant enzymes (APX, PPX, CAT, SOD), content of non-enzymatic antioxidants (proline and GSH), and changes in ultrastructure were analyzed. The results showed that all treatments induced oxidative stress and adversely affected algal cells. AgNO3 resulted in the fastest death of algae compared to both AgNPs, but the extent of oxidative damage and antioxidant enzymatic defense was similar to AgNP-citrate. Furthermore, AgNP-CTAB showed the least toxic effect and caused the least oxidative damage. These results highlight the importance of surface-stabilizing agents in determining the phytotoxicity of AgNPs and the underlying mechanisms affecting aquatic organisms.
Collapse
Affiliation(s)
- Bruno Komazec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz Centre for Electron Microscopy (ZFE), Austrian Cooperative Research (ACR), Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Wang W, Yuan L, Zhou J, Zhu X, Liao Z, Yin L, Li W, Jiang HS. Inorganic carbon utilization: A target of silver nanoparticle toxicity on a submerged macrophyte. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120906. [PMID: 36549447 DOI: 10.1016/j.envpol.2022.120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Submerged macrophytes play an important role in the global carbon cycle through diversified pathways of inorganic carbon (Ci) utilization distinct from terrestrial plants. However, the effects of silver nanoparticles (AgNPs), an emerging contaminant, were unknown on the Ci utilization of submerged macrophytes. In Ottelia alismoides, the only known submerged macrophyte with three pathways of Ci utilization, before absorption, AgNPs inhibited the external carbonic anhydrase activity thus reducing the capacity of the plant to use HCO3-. After entering the plant, AgNPs mainly aggregated at the cell wall and in the chloroplast. The internalized AgNPs inhibited ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity blocking CO2 fixation and disturbed C4 and crassulacean acid metabolism (CAM) by inhibiting phosphoenolpyruvate carboxylase (PEPC), pyruvate phosphate dikinase (PPDK), and NAD-dependent malic enzyme (NAD-ME) activities to alter intracellular malate biosynthesis and decarboxylation. Overall, our findings indicate that the Ci utilization of the submerged macrophyte is a target of AgNPs toxicity that might affect the carbon cycle in aquatic systems.
Collapse
Affiliation(s)
- Wanwan Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Longyi Yuan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Jingzhe Zhou
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xi Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, HaiKou, 570228, China
| | - Zuying Liao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, HaiKou, 570228, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hong Sheng Jiang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
12
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
13
|
Biba R, Cvjetko P, Tkalec M, Košpić K, Štefanić PP, Šikić S, Domijan AM, Balen B. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco ( Nicotiana tabacum) Seedlings Are Coating-Dependent. Int J Mol Sci 2022; 23:15923. [PMID: 36555562 PMCID: PMC9787911 DOI: 10.3390/ijms232415923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Institute of Public Health “Dr. Andrija Štampar”, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
15
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
16
|
Silver Nanoparticles Affect Arabidopsis thaliana Leaf Tissue Integrity and Suppress Pseudomonas syringae Infection Symptoms in a Dose-Dependent Manner. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00957-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
He G, Shu S, Liu G, Zhang Q, Liu Y, Jiang Y, Liu W. Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118611. [PMID: 34861336 DOI: 10.1016/j.envpol.2021.118611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly released into the aquatic environments because of their extensive use in consumer products and industrial applications. Some researchers have explored the toxicity of AgNPs to nitrogen (N) and carbon (C) cycles, but little is known about the role of aquatic plants in regulating the impact of AgNPs on these biogeochemical processes and related microorganisms. Here, two 90-day pot experiments were conducted to determine the effect of AgNPs on denitrification rates and greenhouse gas emissions in riparian wetland soils, with or without emergent plants (Typha minima Funck). As a comparison, the toxicity of equal concentration of AgNO3 was also determined. The results showed that AgNPs released a great quantity of free Ag+, most of which was accumulated in soils, while little (less than 2%) was absorbed by plant shoots and roots. Both AgNPs and AgNO3 could increase the soil redox potential and affect the growth and nutrient (N and phosphorus) uptake of plants. In soils with plants, there was no significant difference in denitrification rates and emissions of N2O and CH4 between control and AgNPs or AgNO3 treatments at all tested concentrations (0.5, 1 and 10 mg kg-1). However, low levels of AgNPs (0.5 mg kg-1) significantly enhanced CO2 emission throughout the experiment. Interestingly, in the absence of plants, a high dosage (10 mg kg-1) of AgNPs generally inhibited soil denitrification and stimulated the emissions of CO2, CH4 and N2O in the short-term. Meanwhile, the abundance of key denitrifying genes (nirS and nirK) was significantly increased by exposure to 10 mg kg-1 AgNPs or AgNO3. Our results suggest that emergent plants can alleviate the short-term negative effects of AgNPs on N and C cycling processes in wetland soils through different pathways.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Shu
- Wuhan Sino-Sci Ruihua Eco Tech Co., Ltd, Wuhan, 430080, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Yi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Ying Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Chinese Academy of Sciences, Wuhan Botanical Garden, Wuhan, 430074, China.
| |
Collapse
|
18
|
Mahapatra DM, Satapathy KC, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149990. [PMID: 34492488 DOI: 10.1016/j.scitotenv.2021.149990] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023]
Abstract
Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.
Collapse
Affiliation(s)
- Durga Madhab Mahapatra
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Biological and Ecological Engineering Department, Oregon State University, Corvallis, OR, USA.
| | - Kanhu Charan Satapathy
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Anthropology, Utkal University, Bhubaneswar 751004, Odisha, India.
| | - Bhabatarini Panda
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
19
|
Bhardwaj AK, Arya G, Kumar R, Hamed L, Pirasteh-Anosheh H, Jasrotia P, Kashyap PL, Singh GP. Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding. J Nanobiotechnology 2022; 20:19. [PMID: 34983548 PMCID: PMC8728941 DOI: 10.1186/s12951-021-01177-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
The worldwide agricultural enterprise is facing immense pressure to intensify to feed the world's increasing population while the resources are dwindling. Fertilizers which are deemed as indispensable inputs for food, fodder, and fuel production now also represent the dark side of the intensive food production system. With most crop production systems focused on increasing the quantity of produce, indiscriminate use of fertilizers has created havoc for the environment and damaged the fiber of the biogeosphere. Deteriorated nutritional quality of food and contribution to impaired ecosystem services are the major limiting factors in the further growth of the fertilizer sector. Nanotechnology in agriculture has come up as a better and seemingly sustainable solution to meet production targets as well as maintaining the environmental quality by use of less quantity of raw materials and active ingredients, increased nutrient use-efficiency by plants, and decreased environmental losses of nutrients. However, the use of nanofertilizers has so far been limited largely to controlled environments of laboratories, greenhouses, and institutional research experiments; production and availability on large scale are still lagging yet catching up fast. Despite perceivable advantages, the use of nanofertilizers is many times debated for adoption at a large scale. The scenario is gradually changing, worldwide, towards the use of nanofertilizers, especially macronutrients like nitrogen (e.g. market release of nano-urea to replace conventional urea in South Asia), to arrest environmental degradation and uphold vital ecosystem services which are in critical condition. This review offers a discussion on the purpose with which the nanofertilizers took shape, the benefits which can be achieved, and the challenges which nanofertilizers face for further development and real-world use, substantiated with the significant pieces of scientific evidence available so far.
Collapse
Affiliation(s)
| | - Geeta Arya
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Raj Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Lamy Hamed
- Soil and Water Department, Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Hadi Pirasteh-Anosheh
- National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, 8917357676 Iran
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | | |
Collapse
|
20
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
21
|
Hajian MH, Ghorbanpour M, Abtahi F, Hadian J. Differential effects of biogenic and chemically synthesized silver-nanoparticles application on physiological traits, antioxidative status and californidine content in California poppy (Eschscholzia californica Cham). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118300. [PMID: 34627966 DOI: 10.1016/j.envpol.2021.118300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 05/15/2023]
Abstract
Silver nanoparticles (AgNPs) of both biologically and chemically origins trigger various physiological and metabolic processes through interaction with plant cells, exerting positive, negative and inconsequential effects. However, their impacts on plant systems must be critically investigated to guarantee their safe application in food chain. In this study, the effects of chemically synthesized (synthetic) AgNPs (sAgNPs) and biologically synthesized (biogenic) AgNPs (bAgNPs) on physiological and biochemical features of Eschscholzia californica Cham were evaluated at different concentrations (0, 10, 25, 50 and 100 mg L-1). Plants exposed to bAgNPs (at 10 and 25 mg L-1) and sAgNPs (at 10 mg L-1) displayed relatively uniform deposition of AgNPs on leaf surface, however, the higher concentration (100 mg L-1) was accompanied by aggregation of AgNPs, resulting in anatomical and physiological disorders. Foliar application of both AgNPs at lower concentrations resulted in significant (P < 0.01) improve in the content of photosynthetic pigments (chlorophylls a, b, a+b, and carotenoids) and total phenolics over the control in a dose-related manner. Leaf relative water content decreased steadily with increasing both sAgNPs and bAgNPs concentrations-with sAgNPs being more inhibitive. Both types of AgNPs at 100 mg L-1 significantly (P < 0.05) increased electrolyte leakage index, level of lipid peroxidation product (malondialdehyde), and leaf soluble sugar content when compared to controls. No significant difference was found on cell membrane stability index among the plants exposed to bAgNPs and sAgNPs at the lowest concentration over the control. Californidine content was significantly (P < 0.01, by 45.1%) increased upon all the bAgNPs treatments (with a peak at 25 mg L-1) relative to control. The obtained extracts from plants treated with bAgNPs at lower concentrations revealed a significant induction of antioxidant capacity (based on DPPH˙ free radical scavenging and ferrous ions-chelating activities) with lower IC50 values compared to the other treatments. Conclusively, bAgNPs at lower concentrations are potent elicitors of pharmaceutically active compounds biosynthesis, which enhance physiological efficiency of E. californica, but at higher concentrations bAgNPs are equally toxic as sAgNPs.
Collapse
Affiliation(s)
- Mohammad Hossein Hajian
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Faezehossadat Abtahi
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Javad Hadian
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
Biba R, Košpić K, Komazec B, Markulin D, Cvjetko P, Pavoković D, Peharec Štefanić P, Tkalec M, Balen B. Surface Coating-Modulated Phytotoxic Responses of Silver Nanoparticles in Plants and Freshwater Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:24. [PMID: 35009971 PMCID: PMC8746378 DOI: 10.3390/nano12010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (R.B.); (K.K.); (B.K.); (D.M.); (P.C.); (D.P.); (P.P.Š.); (M.T.)
| |
Collapse
|
23
|
Zhang B, Wang M, Qu J, Zhang Y, Liu H. Characterization and mechanism analysis of tylosin biodegradation and simultaneous ammonia nitrogen removal with strain Klebsiella pneumoniae TN-1. BIORESOURCE TECHNOLOGY 2021; 336:125342. [PMID: 34082338 DOI: 10.1016/j.biortech.2021.125342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
A novel bacterial strain that exhibited a high capacity for the simultaneous degradation and removal of tylosin and ammonia nitrogen, respectively, was isolated from tylosin fermentation dregs (TFDs) and identified as Klebsiella pneumoniae TN-1. The removal efficiencies of tylosin and ammonia nitrogen reached 95.31% and 83.26%, respectively, at initial concentrations of 300 mg/L for both. Three identified intermediates with less toxicity indicated that de-sugarization and hydrolysis were the proposed biodegradation pathways. The results also suggested that strain TN-1 could reduce nitrogen loss by transforming ammonium into nitrate nitrogen according to the transcriptional expression of nitrogen transformation-related genes and the activities of functional enzymes. Moreover, strain TN-1 effectively reduced ammonia volatilization by 65.20% and facilitated tylosin degradation, with a maximum removal efficiency of 57.35% in the simulated fermentation process of TFDs. This work provides an efficient bioaugmentation for simultaneous antibiotic degradation and nitrogen conservation during the composting process.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
24
|
Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A. Silver Nanoparticle's Toxicological Effects and Phytoremediation. NANOMATERIALS 2021; 11:nano11092164. [PMID: 34578480 PMCID: PMC8465113 DOI: 10.3390/nano11092164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA 01845, USA;
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Pragati Kumari
- Scientist Hostel-S-02, Chauras Campus, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Xiaojun Yan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
- Correspondence: (X.Y.); (A.R.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
- Correspondence: (X.Y.); (A.R.)
| |
Collapse
|
25
|
Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 2021; 11:357. [PMID: 34268065 DOI: 10.1007/s13205-021-02907-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Over the last century, the demand for food resources has been continuously increasing with the rapid population growth. Therefore, it is critically important to adopt sustainable farming practices that can enhance crop production without the excessive use of fertilizers. In this regard, there is a growing interest in the use of nanomaterials for improving plant nutrition as an alternative to traditional chemical or mineral fertilizers. Using this technology, the efficiency of micro- and macro-nutrients in plants can increase. Various nanomaterials have been successfully applied in agricultural production, compared to conventional fertilizers. Among the major plant nutrients, phosphorus (P) is the least accessible since most farmlands are frequently P deficient. Hence, P use efficiency should be maximized to conserve the resource base and maintain agricultural productivity. This review summarizes the current research and the future possibilities of nanotechnology in the biofortification of plant nutrition, with a focus on P fertilizers. In addition, it covers the challenges, environmental impacts, and toxic effects that have been explored in the area of nanotechnology to improve crop production. The potential uses and benefits of nanoparticle-based fertilizers in precision and sustainable agriculture are also discussed.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| |
Collapse
|
26
|
Liu M, Lin Z, Ke X, Fan X, Joseph S, Taherymoosavi S, Liu X, Bian R, Solaiman ZM, Li L, Pan G. Rice Seedling Growth Promotion by Biochar Varies With Genotypes and Application Dosages. FRONTIERS IN PLANT SCIENCE 2021; 12:580462. [PMID: 34234791 PMCID: PMC8256797 DOI: 10.3389/fpls.2021.580462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
While biochar use in agriculture is widely advocated, how the effect of biochar on plant growth varies with biochar forms and crop genotypes is poorly addressed. The role of dissolvable organic matter (DOM) in plant growth has been increasingly addressed for crop production with biochar. In this study, a hydroponic culture of rice seedling growth of two cultivars was treated with bulk mass (DOM-containing), water extract (DOM only), and extracted residue (DOM-free) of maize residue biochar, at a volumetric dosage of 0.01, 0.05, and 0.1%, respectively. On seedling root growth of the two cultivars, bulk biochar exerted a generally negative effect, while the biochar extract had a consistently positive effect across the application dosages. Differently, the extracted biochar showed a contrasting effect between genotypes. In another hydroponic culture with Wuyunjing 7 treated with biochar extract at sequential dosages, seedling growth was promoted by 95% at 0.01% dosage but by 26% at 0.1% dosage, explained with the great promotion of secondary roots rather than of primary roots. Such effects were likely explained by low molecular weight organic acids and nanoparticles contained in the biochar DOM. This study highlights the importance of biochar DOM and crop genotype when evaluating the effect of biochar on plants. The use of low dosage of biochar DOM could help farmers to adopt biochar technology as a solution for agricultural sustainability.
Collapse
Affiliation(s)
- Minglong Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Zhi Lin
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianlin Ke
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Sarasadat Taherymoosavi
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zakaria M. Solaiman
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Venzhik YV, Moshkov IE, Dykman LA. Influence of Nanoparticles of Metals and Their Oxides on the Photosynthetic Apparatus of Plants. BIOL BULL+ 2021. [DOI: 10.1134/s106235902102014x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Landa P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:12-24. [PMID: 33561657 DOI: 10.1016/j.plaphy.2021.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles (NPs) are considered as potential agents for agriculture as fertilizers, growth enhancers and pesticides. Therefore, understanding the mechanisms that are responsible for their effects is important. Various studies demonstrated that the application of nontoxic concentrations can promote seed germination, enhance plant growth and increase the yield. Moreover, NPs can be used to protect plants from environmental impacts such as salt or drought stress and diminish accumulation and toxicity of heavy metals. NPs can serve as a source of micronutrients (e.g. ZnO, iron- and manganese-based NPs), thus increasing fitness and helps plants to cope with stress conditions. TiO2 and iron-based NPs are able to delay senescence and speed-up cell division via changes in phytohormonal levels. The application of some NPs can promote the activity of enzymes such as amylase, nitrate reductase, phosphatase, phytase and carbonic anhydrases, which are involved in metabolism and nutrient acquisition. E.g. ZnO and TiO2 NPs can stimulate chlorophyll biosynthesis and photosynthetic activity. Iron-based and CeO2 NPs enhance stomata opening resulting in better gas exchange and CO2 assimilation rate. NPs can also modulate oxidative stress by the stimulation of the antioxidant enzymes such peroxidases and superoxide dismutase. However, the knowledge about the fate, transformation, and accumulation of NPs in the environment and organisms is needed prior to their use in agriculture to avoid negative environmental impacts. Higher or lower toxicity of various NPs was established for microorganisms, plants or animals. In this overview, we focused on the possible mechanisms of Ag, ZnO, TiO2, Fe-based, CeO2, Al2O3, and manganese-based NPs responsible for their positive effects on plants.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 165 02, Prague 6 - Lysolaje, Czech Republic.
| |
Collapse
|
29
|
Zhang B, Yuan Q, Wang MM, Sun R, Liu H, Wang P. Insights into the effects of Zn exposure on the fate of tylosin resistance genes and dynamics of microbial community during co-composting with tylosin fermentation dregs and swine manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14423-14433. [PMID: 33210251 DOI: 10.1007/s11356-020-11471-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Though heavy metals are widely reported to induce antibiotic resistance propagation, how antibiotic resistance changes in response to heavy metal abundances remains unclearly. In this study, the tylosin fermentation dregs (TFDs) and swine manure co-composting process amended with two exposure levels of heavy metal Zn were performed. Results showed that the bioavailable Zn contents decreased 2.6-fold averagely, and the removal percentage of total tylosin resistance genes was around 23.5% after the co-composting completed. Furthermore, the tylosin resistance genes and some generic bacteria may exhibited a hormetic-like dose-response with the high-dosage inhibition and low dosage stimulation induced by bioavailable Zn contents during the co-composting process, which represented a beneficial aspect of adaptive responses to harmful environmental stimuli. This study provided a comprehensive understanding and predicted risk assessment for the Zn-contaminate solid wastes deposal and suggested that low levels of Zn or other heavy metals should receive more attention for their potential to the induction of resistance bacteria and propagation of antibiotic resistance genes.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Urban Water Resources and Environment, Harbin, 150090, China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Meng Meng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ruonan Sun
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin, 150090, China.
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
30
|
Saim AK, Kumah FN, Oppong MN. Extracellular and intracellular synthesis of gold and silver nanoparticles by living plants: a review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-020-00095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Huang M, Keller AA, Wang X, Tian L, Wu B, Ji R, Zhao L. Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N 2-Fixing Cyanobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15996-16005. [PMID: 33232140 DOI: 10.1021/acs.est.0c05300] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although toxic effects of silver nanoparticles (AgNPs) on aquatic organisms have been extensively reported, responses of nitrogen-fixing cyanobacteria to AgNPs/Ag+ under environmentally relevant concentrations are largely unknown. Here, cyanobacteria were exposed to different concentrations of AgNPs (0.01, 0.1, and 1 mg/L) or Ag+ (0.1, 1, and 10 μg/L) for 96 h. The impacts of AgNPs and Ag+ on photosynthesis and N2 fixation in cyanobacteria (Nostoc sphaeroides) were evaluated. In addition, gas chromatography-mass spectrometry (GC-MS)-based metabolomics was employed to give an instantaneous snapshot of the physiological status of the cells under AgNP/Ag+ exposure. Exposure to high doses of AgNPs (1 mg/L) or Ag+ (10 μg/L) caused growth inhibition, reactive oxygen species overproduction, malondialdehyde accumulation, and decreased N2 fixation. In contrast, low doses of AgNPs (0.01 and 0.1 mg/L) and Ag+ (0.1 and 1 μg/L) did not induce observable responses. However, metabolomics revealed that metabolic reprogramming occurred even at low concentrations of AgNP and Ag+ exposure. Levels of a number of antioxidant defense-related metabolites, especially phenolic acid and polyphenols (gallic acid, resveratrol, isochlorogenic acid, chlorogenic acid, cinnamic acid, 3-hydroxybenzoic acid, epicatechin, catechin, and ferulic acid), significantly decreased in response to AgNPs or Ag+. This indicates that AgNPs and Ag+ can disrupt the antioxidant defense system and disturb nitrogen metabolism even at low-dose exposure. Metabolomics was shown to be a powerful tool to detect "invisible" changes, not observable by typical phenotypic-based endpoints.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Arturo A Keller
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyan Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Mittal D, Kaur G, Singh P, Yadav K, Ali SA. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.579954] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform the resilient agricultural system while promising food security. Therefore, nanoparticles are becoming a new-age material to transform modern agricultural practices. The variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, fungicides, fertilizers, and sensors, have been widely investigated for plant health management and soil improvement. In-depth understanding of plant and nanomaterial interactions opens new avenues toward improving crop practices through increased properties such as disease resistance, crop yield, and nutrient utilization. In this review, we highlight the critical points to address current nanotechnology-based agricultural research that could benefit productivity and food security in future.
Collapse
|
33
|
Kong IC, Ko KS, Koh DC. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int J Mol Sci 2020; 21:E8465. [PMID: 33187117 PMCID: PMC7696109 DOI: 10.3390/ijms21228465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
34
|
Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJGM. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114117. [PMID: 32062092 DOI: 10.1016/j.envpol.2020.114117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/25/2023]
Abstract
Whether toxicity of silver nanoparticles (AgNPs) to organisms originates from the nanoparticles themselves or from the dissolved Ag-ions is still debated, with the majority of studies claiming that extracellular release of Ag-ions is the main cause of toxicity. The objective of this study was to determine the contributions of both particles and dissolved ions to toxic responses, and to better understand the underlying mechanisms of toxicity. In addition, the pathways of AgNPs exposure to plants might play an important role and therefore are explicitly studied as well. We systematically assessed the phytotoxicity, internalization, biodistribution, and antioxidant responses in lettuce (Lactuca sativa) following root or foliar exposure to AgNPs and ionic Ag at various concentrations. For each endpoint the relative contribution of the particle-specific versus the ionic form was quantified. The results reveal particle-specific toxicity and uptake of AgNPs in lettuce as the relative contribution of particulate Ag accounted for more than 65% to the overall toxicity and the Ag accumulation in whole plant tissues. In addition, particle toxicity is shown to originate from the accumulation of Ag in plants by blocking nutrient transport, while ion toxicity is likely due to the induction of excess ROS production. Root exposure induced higher toxicity than foliar exposure at comparable exposure levels. Ag was found to be taken up and subsequently translocated from the exposed parts of plants to other portions regardless of the exposure pathway. These findings suggest particle related toxicity, and demonstrate that the accumulation and translocation of silver nanoparticles need to be considered in assessment of environmental risks and of food safety following consumption of plants exposed to AgNPs by humans.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands.
| | - Guiyin Wang
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
35
|
Abbas Q, Yousaf B, Ullah H, Ali MU, Zia-Ur-Rehman M, Rizwan M, Rinklebe J. Biochar-induced immobilization and transformation of silver-nanoparticles affect growth, intracellular-radicles generation and nutrients assimilation by reducing oxidative stress in maize. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121976. [PMID: 31899028 DOI: 10.1016/j.jhazmat.2019.121976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in a wide range of consumer products inevitably releases in massive quantities in the natural environment, posing a potential thread to ecosystem-safety and plant health. Here, the impact of AgNPs (100-1000 mg L-1) without and with biochar (@2 % w/v) amendment on maize plants was assessed in hydroponics exposure medium. AgNPs exposure to plants induced dose-dependent phytotoxicity by suppressing plant growth, disturbing photosynthesis and gas exchange traits and alteration in macro- and micronutrients assimilation. At the same time, AgNPs with addition of biochar alleviated the phyto-toxic effects of AgNPs through approximately 4-8 times reduction in uptake and tissue accumulation of Ag. Moreover, activities of antioxidant enzymes in AgNPs + biochar treated plants indicated the lower oxidative stress. Electron paramagnetic resonance (EPR) spectroscopy confirmed that superoxide (O2-) radical was the dominant reactive oxygen species. Fourier-transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) results revealed that biochar surface carboxyl and sulfur functional groups were involved in complexation process with NPs, which inhibited the oxidative dissolution and release of Ag+ ions besides of biochar space shield effect. Thus, the interaction of biochar with AgNPs immobilizes these NPs and can effectively reduce their bioavailability in the environmental matrix.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Su Y, Ashworth VETM, Geitner NK, Wiesner MR, Ginnan N, Rolshausen P, Roper C, Jassby D. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS NANO 2020; 14:2966-2981. [PMID: 32141736 DOI: 10.1021/acsnano.9b07733] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Crop disease control is crucial for the sustainable development of agriculture, with recent advances in nanotechnology offering a promising solution to this pressing problem. However, the efficacy of nanoparticle (NP) delivery methods has not been fully explored, and knowledge regarding the fate and mobility of NPs within trees is still largely unknown. In this study, we evaluate the efficiency of NP delivery methods and investigate the mobility and distribution of NPs with different surface coatings (citrate (Ct), polyvinylpyrrolidone (PVP), and gum Arabic (GA)) within Mexican lime citrus trees. In contrast to the limited delivery efficiency reported for foliar and root delivery methods, petiole feeding and trunk injection are able to deliver a large amount of NPs into trees, although petiole feeding takes much longer time than trunk injection (7 days vs 2 h in citrus trees). Once NPs enter plants, steric repulsive interactions between NPs and conducting tube surfaces are predicted to facilitate NP transport throughout the plant. Compared to PVP and Ct, GA is highly effective in inhibiting the aggregation of NPs in synthetic sap and enhancing the mobility of NPs in trees. Over a 7 day experimental period, the majority of the Ag recovered from trees (10 mL, 10 ppm GA-AgNP suspension) remain throughout the trunk (81.0% on average), with a considerable amount in the roots (11.7% on average), some in branches (4.4% on average), and a limited amount in leaves (2.9% on average). Furthermore, NP concentrations during injection and tree incubation time postinjection are found to impact the distribution of Ag in tree. We also present evidence for a transport pathway that allows NPs to move from the xylem to the phloem, which disperses the NPs throughout the plant architecture, including to the roots.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Nicholas K Geitner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nichole Ginnan
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Caroline Roper
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep 2020; 10:5037. [PMID: 32193449 PMCID: PMC7081193 DOI: 10.1038/s41598-020-61696-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Seed priming uses treatments to improve seed germination and thus potentially increase growth and yield. Low-cost, environmentally friendly, effective seed treatment remain to be optimized and tested for high-value specialty crop like watermelon (Citrullus lanatus) in multi-locations. This remains a particularly acute problem for triploids, which produce desirable seedless watermelons, but show low germination rates. In the present study, turmeric oil nanoemulsions (TNE) and silver nanoparticles (AgNPs) synthesized from agro-industrial byproducts were used as nanopriming agents for diploid (Riverside) and triploid (Maxima) watermelon seeds. Internalization of nanomaterials was confirmed by neutron activation analysis, transmission electron microscopy, and gas chromatography-mass spectrometry. The seedling emergence rate at 14 days after sowing was significantly higher in AgNP-treated triploid seeds compared to other treatments. Soluble sugar (glucose and fructose) contents were enhanced during germination in the AgNP-treated seeds at 96 h. Seedlings grown in the greenhouse were transplanted at four locations in Texas: Edinburg, Pecos, Grapeland, and Snook in 2017. At Snook, higher yield 31.6% and 35.6% compared to control were observed in AgNP-treated Riverside and Maxima watermelons, respectively. To validate the first-year results, treated and untreated seeds of both cultivars were sown in Weslaco, Texas in 2018. While seed emegence and stand establishments were enhanced by seed priming, total phenolics radical-scavenging activities, and macro- and microelements in the watermelon fruits were not significantly different from the control. The results of the present study demonstracted that seed priming with AgNPs can enhance seed germination, growth, and yield while maintaining fruit quality through an eco-friendly and sustainable nanotechnological approach.
Collapse
|
38
|
Ke M, Li Y, Qu Q, Ye Y, Peijnenburg WJGM, Zhang Z, Xu N, Lu T, Sun L, Qian H. Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121975. [PMID: 31884364 DOI: 10.1016/j.jhazmat.2019.121975] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 05/16/2023]
Abstract
Many studies have considered silver nanoparticles (AgNPs) cytotoxicity to mammalian and human cell lines and plant growth. However, only few studies considered toxic effects of AgNPs on plant offspring, especially on flowering. Arabidopsis thaliana was treated with 12.5 mg/kg AgNPs employing parental-(P-AgNPs) and offspring-generation (O-AgNPs) exposure to study the effects of AgNPs on flowering and floral development. Exposure to P-AgNPs was found to significantly decrease petal and pollen viability and subsequently reduced pod production. The inhibition of A. thaliana vegetative growth caused by P-AgNPs exposure was transferred to offspring and even became more severe in the O-AgNPs group. Further, the transcription of genes related to flowering and floral organ development in P-AgNPs and O-Con plants was downregulated by approximately 10-40% compared to the transcription in P-Con plants and showed a stronger decrease in the O-AgNPs group to 30-50% of that in the P-AgNPs group. This resulted in a delay in flowering of 4, 3 and 8 days in P-AgNPs, O-Con and O-AgNPs plants, respectively. Our research shows that the negative effects on floral development can be transferred to the offspring in A. thaliana, which may have significant implications with regard to the risks posed by NPs to food safety and security.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
39
|
Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C. Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110072. [PMID: 31864120 DOI: 10.1016/j.ecoenv.2019.110072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry, increasing their potential level in the environment. Plant root, the key organ absorbing water and nutrients, are directly exposed to the soil. Little is known about AgNP-mediated effects on plant root growth. Here, we show that AgNPs are absorbed by root and mostly localized in cell wall and intercellular spaces, which affect root growth in a dose-dependent manner. Increased root elongation was observed when Arabidopsis was exposed to an AgNP concentration of 50 mg L-1, while decreased elongation was observed at concentrations of equal to or more than 100 mg L-1. Similarly, there was an increase in the number of cells in the root apical meristem and also in cell-cycle related gene expression (CYCB1;1) at 50 mg L-1 AgNP, while both cell number and gene expression declined at concentrations equal to or more than 100 mg L-1. This indicates that AgNPs regulate root growth by affecting cell division. Reactive oxygen species (ROS) related genes were deferentially expressed after 50 mg L-1 AgNP treatment. Further studies showed that AgNPs induce ROS accumulation in root tips in a dose-dependent manner. KI treatment, which scavenges H2O2, partially rescued AgNP-inhibited root growth. The application 50 mg L-1 AgNPs also rescued the root length phenotype of upb1-1, a mutant with slightly higher ROS levels and longer root length. Our results revealed that ROS mediate the dose-dependent effects of AgNPs on root growth. These findings provide new insights into mechanisms underlying how AgNPs regulate root growth in Arabidopsis.
Collapse
Affiliation(s)
- Likai Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juzhi Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Enshi Autonomous Prefecture Academy of Agricultural Sciences, Shizhou Road No.517, Enshi, 445000, Hubei, China
| | - Luming Lin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajuan Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harri Alenius
- Unit of Systems Toxicology, Nanosafety Research Centre, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FIN-00250, Helsinki, Finland
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Chen Y, Mao Y, Song M, Yin Y, Liu G, Cai Y. Occurrence and leaching of silver in municipal sewage sludge in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109929. [PMID: 31718800 DOI: 10.1016/j.ecoenv.2019.109929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Sewage treatment plants effectively remove silver (Ag) from sewage. Sewage sludge can therefore be important Ag sinks, polluting the environment with this element. In this work, we report a nation-wide survey on the Ag content of sewage sludge in China (0.23-19.02 mg kg-1, average 2.72 mg kg-1). Furthermore, we identify that sludge disposal represents an important Ag pollution source (84.48 tons in 2016) for the environment by estimating the national and provincial inventories of sludge-borne Ag in China. Also the positive correlations between the per capita gross domestic product (GDP)/provincial GDP and the content/mass loadings of Ag highlighted the impact of human activities on Ag pollution. In different samples, strong complexation of thiosulfate contributed to the highest leaching concentration (95.00-438.15 μg kg-1) and ratio (1.9-8.8%) of Ag, emphasizing the necessity of a long-term risk assessment for landfill and land application of sludge.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxiang Mao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Maoyong Song
- University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| |
Collapse
|
41
|
Li J, Wu F, Fang Q, Wu Z, Duan Q, Li X, Ye W. The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:289-294. [PMID: 31901451 DOI: 10.1016/j.plaphy.2019.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 05/27/2023]
Abstract
The broad application and unique properties of graphene oxide (GO) nanosheets make them interact with other pollutants and subsequently alter their behaviors and toxicities. However, investigation on the effects of GO nanosheets on plant uptake of co-occurring heavy metals is scarce. We evaluated the mutual effects of cadmium (Cd) at 1 mg/L and different concentrated GO nanosheets (0, 1 and 10 mg/L) on the rice seed germination, further seedling growth, Cd uptake and accumulation in rice roots and shoots in a hydroponic system. The effects of GO were concentration dependent. GO alone at 1 mg/L showed no apparent effects, while GO alone at 10 mg/L accelerated the rice seed germination and root growth due to the improved water uptake. Cd alone showed adverse effects on the rice seed germination, which was alleviated by the presence of GO at 1 or 10 mg/L. GO at 10 mg/L also increased the membrane permeability, thus enhancing Cd uptake by rice roots and shoots. These results indicate that GO can change the effects of Cd on the rice seed germination and Cd uptake as well as accumulation in the roots and shoots of rice seedlings, which is helpful for understanding the fate and ecotoxicological impacts of both GO and Cd.
Collapse
Affiliation(s)
- Jie Li
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Fan Wu
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Qing Fang
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Zheng Wu
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Qingyun Duan
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xuede Li
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Wenling Ye
- Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
42
|
Dutta Gupta S, Saha N, Agarwal A, Venkatesh V. Silver nanoparticles (AgNPs) induced impairment of in vitro pollen performance of Peltophorum pterocarpum (DC.) K. Heyne. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:75-85. [PMID: 31786707 DOI: 10.1007/s10646-019-02140-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 05/09/2023]
Abstract
Increasing use of silver nanoparticles (AgNPs) in myriad applications including electronics, medicines and agriculture has led to serious concerns regarding its release to plant ecosystems. Over the years, numerous studies have demonstrated the toxic impact of AgNPs in a variety of cell and tissue systems involved in vegetative growth across a wide range of plant species. However, assessing their impact on haploid phase of plant life cycle was restricted only to a study with Kiwifruit. In this study, in vitro pollen performance of Peltophorum pterocarpum at two endpoints i.e., germination and tube growth was assessed to evaluate the impact of nanoparticulate or ionic form of silver. Increasing concentrations of AgNO3/AgNPs significantly reduced the pollen germination and retarded the tube growth. The EC 50 values indicated a more potent toxic effect of AgNPs than AgNO3 on pollen germination as well as tube growth. Impairment of pollen performance was more pronounced at the stage of emergence of pollen tube. Extensive alterations in the muri and lumen of exine as revealed through SEM analysis and subsequent blockage of germpore might disrupt the emergence of pollen tube. The dynamics of pollen tube growth was analyzed with polynomial models of different degrees. A high degree of polynomial, the quintic model was able to approximate the real data points with highest coefficient of determination and smallest RMSE, compared to other models. An oscillating pattern of tube growth was portrayed with the passage of time in all the treatments that fits well with the established mechanistic oscillatory model of tube growth. It appears that exposure to AgNO3/AgNPs inhibited pollen germination and retarded tube growth without affecting the oscillatory behavior of tip-growth.
Collapse
Affiliation(s)
- S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - N Saha
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - A Agarwal
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - V Venkatesh
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
43
|
Dresler S, Hawrylak-Nowak B, Strzemski M, Wójciak-Kosior M, Sowa I, Hanaka A, Gołoś I, Skalska-Kamińska A, Cieślak M, Kováčik J. Metabolic Changes Induced by Silver Ions in Carlina acaulis. PLANTS 2019; 8:plants8110517. [PMID: 31744231 PMCID: PMC6918347 DOI: 10.3390/plants8110517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/30/2023]
Abstract
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days of exposure. The higher concentration of Ag(I) evoked reduction of growth, while 1 µM Ag had a growth-promoting effect on root biomass. The translocation factor (<0.04) showed that Ag was mainly retained in the roots. The 1 µM Ag concentration increased the level of low-molecular-weight organic acids (LMWOAs), while 10 µM Ag depleted these compounds in the roots. The increased concentration of Ag(I) elevated the accumulation of phytochelatins (PCs) in the roots and reduced glutathione (GSH) in the shoots (but not in the roots). At 1 µM, Ag(I) elevated the level of phenolic and triterpene acids, while the 10 µM Ag treatment increased the carlina oxide content in the roots. The obtained results indicate an alteration of metabolic pathways of C. acaulis to cope with different levels of Ag(I) stress. Our data imply that the intracellular binding of Ag(I) and nonenzymatic antioxidants contribute to the protection against low concentrations of Ag ions.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Iwona Gołoś
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Agnieszka Skalska-Kamińska
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Małgorzata Cieślak
- Łukasiewicz—Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland;
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic;
| |
Collapse
|
44
|
Agathokleous E, Feng Z, Iavicoli I, Calabrese EJ. The two faces of nanomaterials: A quantification of hormesis in algae and plants. ENVIRONMENT INTERNATIONAL 2019; 131:105044. [PMID: 31362152 DOI: 10.1016/j.envint.2019.105044] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The rapid progress in nanotechnology has dramatically promoted the application of engineered nanomaterials in numerous sectors. The wide application of nanomaterials and the potential accumulation in the environment sparked interest in studying the effects of nanomaterials on algae and plants. Hormesis is a dose response phenomenon characterized by a biphasic dose response with a low dose stimulation and a high dose inhibition. This paper quantifies for the first time nanomaterial-induced hormesis in algae and plants. Five hundred hormetic concentration-response relationships were mined from the published literature. The median maximum stimulatory response (MAX) was 123%, and commonly below 200%, of control response. It was also lower in algae than in plants, and occurred commonly at concentrations <100 mg L-1. The no-observed-adverse-effect-level (NOAEL) to MAX ratio was 2.4 for algae and 1.7 for plants, and the two distributions differed significantly. Ag nanoparticles induced higher MAX than TiO2 and ZnO nanoparticles. The MAX varied upon nanomaterial application methods, growth stage of application (seed versus vegetative), type of endpoint and time window. While nanomaterial size did not affect significantly the MAX, sizes ≤50 nm appeared to have lower NOAEL:MAX ratio than sizes ≥100 nm, suggesting higher risks from incorrect application. The mechanisms underlying nanomaterial-induced hormetic concentration responses are discussed. This paper provides a strong foundation for enhancing research protocols of studies on nanomaterial effects on algae and plants as well as for incorporating hormesis into the risk assessment practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - ZhaoZhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Yu SJ, Lai YJ, Dong LJ, Liu JF. Intracellular Dissolution of Silver Nanoparticles: Evidence from Double Stable Isotope Tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10218-10226. [PMID: 31380632 DOI: 10.1021/acs.est.9b03251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To track transformations of silver nanoparticles (AgNPs) in vivo, HepG2 and A549 cells were cocultured with two enriched stable Ag isotopes (107AgNPs and 109AgNO3) at nontoxic doses. After enzymatic digestion, 107AgNPs, ionic 107Ag+ and 109Ag+ in exposed cells could be separated and quantified by liquid chromatography combined with ICP-MS. We found that ratios of 107Ag+ to total 107Ag and proportions of 107Ag+/ 109Ag+ in cells increased gradually after exposure, proving that the Trojan-horse mechanism occurred, i.e., AgNPs released high contents of Ag+ after internalization. While the presence of 109Ag+ (5 and 100 μg/L) has little influence on the uptake of 107AgNPs (0.1 and 2 mg/L), the presence of 107AgNPs at a high dose (2 mg/L) dramatically increases the ingestion of 109Ag+, even though 107AgNPs at a low dose (100 μg/L) showed negligible effects on the internalization of 109Ag+. Cellular homeostasis may be perturbed under sublethal exposure of 107AgNPs, and thus enhanced uptake of 109Ag+. Our findings suggest that the widely adopted control experiments in toxicology studies, culturing organisms with AgNO3 at the same concentration of Ag+ in the AgNP exposure medium, may underestimate uptake of Ag+ and thus cannot exclude suspected toxic effects of Ag+ at high AgNP exposure doses.
Collapse
Affiliation(s)
- Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Yu-Jian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Li-Jie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| |
Collapse
|
46
|
Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1539-1549. [PMID: 31277023 DOI: 10.1016/j.envpol.2019.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) have adverse impacts on plants when released into environments, but their toxic mechanism is still a matter of debate. Here we present a combined analysis of physiology and transcriptome of Arabidopsis thaliana leaves exposure to 30 mg L-1 AgNPs and Ag+ for six days to explore the toxicity mechanism of AgNPs on Arabidopsis. Both transcriptomic and physiological results showed that AgNPs induced reactive oxygen species (ROS) accumulation and damaged photosynthesis. The toxicity of AgNPs is not merely attributable to Ag+ release and much higher photosynthetic toxicity and ROS accumulation were observed in 30 mg L-1 AgNPs than that in 0.12 mg L-1 Ag+. About 60% genes were similarly up- or down-regulated at the same concentration of AgNPs and Ag+ and these genes were enriched in photosynthesis and response to the stimulus. However, 302 genes, including those involved in glucosinolates synthesis, were specifically regulated under AgNPs treatments. In conclusion, more than the released Ag+, nanoparticle-specific effects are responsible for the toxicity of AgNPs in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Chuan Ling Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center For Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shu Ping Gu
- Shanghai Sequen Bio-info Studio, Shanghai, 200092, China
| | - Xiao Hao Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Zhen Wei Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Xiu Han Kang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China
| | - Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, HaiKou, 570228, China.
| |
Collapse
|
47
|
Cocozza C, Perone A, Giordano C, Salvatici MC, Pignattelli S, Raio A, Schaub M, Sever K, Innes JL, Tognetti R, Cherubini P. Silver nanoparticles enter the tree stem faster through leaves than through roots. TREE PHYSIOLOGY 2019; 39:1251-1261. [PMID: 31180506 DOI: 10.1093/treephys/tpz046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
A major environmental pollution problem is the release into the atmosphere of particulate matter, including nanoparticles (NPs), which causes serious hazards to human and ecosystem health, particularly in urban areas. However, knowledge about the uptake, translocation and accumulation of NPs in plant tissues is almost completely lacking. The uptake of silver nanoparticles (Ag-NPs) and their transport and accumulation in the leaves, stems and roots of three different tree species, downy oak (Quercus pubescens Willd.), Scots pine (Pinus sylvestris L.) and black poplar (Populus nigra L.), were assessed. In the experiment, Ag-NPs were supplied separately to the leaves (via spraying, the foliar treatment) and roots (via watering, the root treatment) of the three species. Uptake, transport and accumulation of Ag were investigated through spectroscopy. The concentration of Ag in the stem was higher in the foliar than in the root treatment, and in poplar more than in oak and pine. Foliar treatment with Ag-NPs reduced aboveground biomass and stem length in poplars, but not in oaks or pines. Species-specific signals of oxidative stress were observed; foliar treatment of oak caused the accumulation of H2O2 in leaves, and both foliar and root treatments of poplar led to increased O2- in leaves. Ag-NPs affected leaf and root bacteria and fungi; in the case of leaves, foliar treatment reduced bacterial populations in oak and poplar and fungi populations in pine, and in the case of roots, root treatment reduced bacteria and increased fungi in poplar. Species-specific mechanisms of interaction, transport, allocation and storage of NPs in trees were found. We demonstrated definitively that NPs enter into the tree stem through leaves faster than through roots in all of the investigated tree species.
Collapse
Affiliation(s)
- C Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, via San Bonaventura 13, Florence, Italy
| | - A Perone
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, c.da Fonte Lappone snc, Pesche, Italy
| | - C Giordano
- Istituto Valorizzazione Legno e Specie Arboree, IVALSA-CNR, via Madonna del Piano 10, Firenze, Italy
| | - M C Salvatici
- Istituto di Chimica dei Composti Organo Metallici, ICCOM-CNR, via Madonna del Piano 10, Firenze, Italy
| | - S Pignattelli
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - A Raio
- Istituto per la Protezione Sostenibile delle Piante, IPSP-CNR, via Madonna del Piano 10, Sesto Fiorentino, Italy
| | - M Schaub
- WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, Birmensdorf, Switzerland
| | - K Sever
- Department of Forest Genetics, Dendrology and Botany, Faculty of Forestry, University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia
| | - J L Innes
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - R Tognetti
- Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via de Sanctis sns, 86100 Campobasso, Italy; 10
| | - P Cherubini
- WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, Birmensdorf, Switzerland
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, Canada
| |
Collapse
|
48
|
Abbas Q, Liu G, Yousaf B, Ali MU, Ullah H, Ahmed R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:728-736. [PMID: 31035155 DOI: 10.1016/j.envpol.2019.04.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 05/22/2023]
Abstract
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L-1) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO2 assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L-1 dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag+ ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L-1) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
49
|
Liu J, Williams PC, Goodson BM, Geisler-Lee J, Fakharifar M, Gemeinhardt ME. TiO 2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. ENVIRONMENTAL RESEARCH 2019; 172:202-215. [PMID: 30818230 DOI: 10.1016/j.envres.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 05/25/2023]
Abstract
Treated wastewater is reclaimed to irrigate crops in a growing number of arid and semi-arid areas. In order to study the impacts of metallic nanoparticles (NPs) present in treated wastewater on soil ecosystems, a soil micro-ecosystem containing Arabidopsis thaliana plants, soil microorganisms, and Eisenia fetida earthworms was developed. The soil was irrigated with deionized water containing environmentally relevant concentrations of 70 µg/L of TiO2 NPs; or 20 µg/L of an Ag mixture, which included 90% (w/w) Ag2S NPs, 7.5% (w/w) Ag0 NPs, and 2.5% (w/w) Ag+ to represent speciation of aged Ag NPs in treated wastewater; or a combination of the TiO2 NPs and the Ag mixture to reflect the frequent presence of both types of materials in treated wastewater. It was found that TiO2 NPs alone were not toxic to the soil micro-ecosystem. Irrigation water containing 20 µg/L of the Ag mixture significantly reduced the soil microbial biomass, and inhibited the growth of plants and earthworms; however, a combination of 70 µg/L of TiO2 and 20 µg/L of Ag did not show toxic impact on organism growth compared to the Control of deionized water irrigation. Taken together, these results indicate the importance of investigating the effects of different nanomaterials in combination as they are introduced to the environment-with environmentally relevant concentrations and speciation-instead of only selecting a single NP type or residual ion. Moreover, the results of this study support the safe application of reclaimed water from wastewater treatment plants for use in agricultural lands in regard to limited concentrations of aged NPs (i.e., TiO2 and Ag) if present in combination.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA.
| | - Philip C Williams
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| | - Jane Geisler-Lee
- Department of Plant Biology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901, USA
| | - Masoud Fakharifar
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| |
Collapse
|
50
|
Wang T, Wu J, Xu S, Deng C, Wu L, Wu Y, Bian P. A potential involvement of plant systemic response in initiating genotoxicity of Ag-nanoparticles in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:324-330. [PMID: 30544092 DOI: 10.1016/j.ecoenv.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The extensive availability of engineered nanomaterials in global markets has led to the release of substantial amounts of nanoparticles (NP) into atmosphere, water body and soil, yielding both beneficial and harmful effects in plant systems. The NP are mainly aggregated onto the surface of plant roots and leaves exposed and only slightly transported into other tissues with a low rate of internalization. This raises a question of whether plant systemic response is involved in the induction of biological effects of NP. To address this, model plant Arabidopsis thaliana were root exposed to low concentrations of Ag-NP of two particle sizes (10-nm and 60-nm), and expressions of homologous recombination (HR)-related genes and the alleviation of transcriptional gene silencing (TGS) in aerial leafy tissues were examined as genotoxic endpoints. Results showed that exposure of roots to two sizes of Ag-NP up-regulated expressions of HR genes, and reactivated TGS-silenced repetitive elements in aerial tissues. These effects were blocked by the impairment in the salicylic acid signal pathway, indicating a potential involvement of plant systemic response in the induction of Ag-NP genotoxicity. This is further supported by ICP-MS analysis, in which the Ag content in aerial tissues was not significantly changed by root exposure to 10-nm Ag-NP. Although a significant increase in the Ag content in aerial tissues was observed after root exposure to 60-nm Ag-NP, its genotoxic effects had no obvious difference from that by 10-nm Ag-NP exposure, also suggesting that the genotoxicity might be mainly induced via plant systemic response, at least in the experiments of root exposure to Ag-NP.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Jingjing Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Shaoxin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Chenguang Deng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China
| | - Po Bian
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, PR China.
| |
Collapse
|