1
|
Neves D, Neto AC, Salazar M, Fernandes AS, Martinho M, Charrua A, Rodrigues AR, Gouveia AM, Almeida H. A narrative review about the intricate crosstalk among endometrium, adipose tissue, and neurons in endometriosis. The multifaceted role of leptin. Obes Rev 2025; 26:e13879. [PMID: 39657320 DOI: 10.1111/obr.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024]
Abstract
Endometriosis is a highly prevalent gynecological disease characterized by the presence of endometrium-like tissue outside the uterus, whose etiopathology is far from being elucidated. The most frequent complains of patients are pelvic pain and infertility. Increasing evidence supports the systemic impact of endometriosis suggesting that an intricate crosstalk among distinct organs underlies the development of the disease. In this setting, endometriosis patients present an increased risk for developing other diseases, such as cancer, cardiovascular pathologies, and autoimmune diseases, and manifest neurologic disturbances, including neuropathic hyperalgesia. Whilst the ovary-secreted estrogen dependency of ectopic endometrium growth is well established, we conjecture that adipose tissue-secreted molecules also intervene in endometriosis development and pain manifestation. In fact, women with endometriosis present a peculiar pattern of adipokine secretion that ensues the disease onset. Unexpectedly, the levels of adipose tissue-secreted molecules in those women present similarities with those found in patients with obesity, despite the recognized association of low body mass index with endometriosis. Taking this evidence into consideration, we hypothesize that endometriosis patients present a dysfunctional adipose tissue, which is associated with enhanced metabolism and unregulated browning that not only intervene in the control of body weight but also in peculiar pain processing pathways.
Collapse
Affiliation(s)
- Delminda Neves
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Ana Catarina Neto
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Maria Salazar
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Ana Sofia Fernandes
- Department of Obstetrics and Gynecology, Faculty of Medicine of the University of Porto, Porto, Portugal/Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Margarida Martinho
- Department of Obstetrics and Gynecology, Faculty of Medicine of the University of Porto, Porto, Portugal/Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Ana Charrua
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- RISE-HEALTH@FMUP, Porto, Portugal
| | - Adriana Raquel Rodrigues
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Alexandra Maria Gouveia
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Henrique Almeida
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| |
Collapse
|
2
|
Nicchio IG, Cirelli T, da Costa Quil LC, Camilli ÂC, Scarel-Caminaga RM, Manzolli Leite FR. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity but are limited by adverse effects. Emerging therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, Universidade Estadual Paulista - UNESP, Faculty of Dentistry of Araraquara, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry of the Faculty of Dentistry of Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, SP CEP 14801-385, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista, SP CEP 13870-377, Brazil
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, Universidade Estadual Paulista - UNESP, Faculty of Dentistry of Araraquara, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry of the Faculty of Dentistry of Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, SP CEP 14801-385, Brazil.
| | - Ângelo Constantino Camilli
- Department of Diagnosis and Surgery, Universidade Estadual Paulista - UNESP, Faculty of Dentistry of Araraquara, Araraquara, SP CEP 14801-385, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry of the Faculty of Dentistry of Araraquara, Universidade Estadual Paulista - UNESP, Araraquara, SP CEP 14801-385, Brazil.
| | - Fabio Renato Manzolli Leite
- Singapore National Institute of Dental Research, National Dental Centre, Singapore 168938, SingaporeOral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857 Singapore.
| |
Collapse
|
3
|
Lin F, Gilbertson TA. Fat taste responsiveness, but not dietary fat intake, is affected in Adipor1 null mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642880. [PMID: 40161824 PMCID: PMC11952482 DOI: 10.1101/2025.03.12.642880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Taste is a major driving force that influences food choices and dietary intake. Adiponectin has been shown to selectively enhance cellular responses to fatty acids by mediating the activation of AMPK and translocation of CD36 in taste cells via its receptor AdipoR1. Whether Adipor1 gene knockout affects fat taste responsiveness and dietary fat intake in animals remains unclear. In the present study, we evaluated cellular, neural, and behavioral responses to fat, as well as the dietary fat intake in global Adipor1 knockout mice and their WT controls. Sex-specific changes in cellular and behavioral responses to fatty acid were observed in Adipor1 knockout mice. Linoleic acid (LA)-induced calcium responsiveness appears to be reduced in taste cells from Adipor1-deficient males and increased in taste cells from Adipor1-deficient females. Brief-access taste testing revealed a loss of fat taste behavioral responsiveness in naïve Adipor1 -/- animals. Fat taste loss found in Adipor1 -/- males was restored after fat exposure and showed no significant differences in taste behavioral responses to fatty acids with WT controls in two-bottle preference and conditioned taste aversion tests. Adipor1 -/- females were found to have diminished preference for LA in two-bottle preference tests, lower intralipid/water lick ratio in a brief-access assay, and reduced avoidance for LA in conditioned taste aversion assay. Furthermore, the taste nerve responses to intralipid and the dietary fat intakes appeared to be the same between Adipor1 -/- and WT mice. In the high-fat diet feeding study, Adipor1 -/- females gained more weight, while no differences in body weight gain were found in males. Together, we show that adiponectin/AdipoR1 signaling plays crucial sex-specific roles in the modulation of fat taste and the maintenance of healthy body weight primarily by regulating energy expenditure rather than dietary fat intake in mice.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Cao H, Xu J, Wang H, Yi W, Yang D, Yang J, Sun J, Wang Y, Zhang F, Yan J, Li D. Fecal microbiota transplantation mitigates postdieting weight regain in mice by modulating the gut-liver axis. BMC Microbiol 2025; 25:135. [PMID: 40075266 PMCID: PMC11905490 DOI: 10.1186/s12866-025-03853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Dysbiosis of the microbiome is strongly associated with weight rebound after dieting. However, the interactions between the host and microbiome and their relevance to the pathogenesis of post-diet weight rebound remain unclear. PURPOSE This study aimed to evaluate the effects of fecal microbiota transplantation (FMT) on post-diet weight regain and to investigate the underlying mechanisms by which FMT inhibits weight regain. METHODS FMT was administered once daily to mice for 5 weeks. Gas chromatography tandem mass spectrometry was employed to analyze short-chain fatty acid levels in serum, ultrahigh-performance liquid chromatography tandem mass spectrometry was utilized for analyzing hepatic lipid metabolites, and shotgun metagenomic sequencing was applied to examine the intestinal microbiome. RESULTS FMT reduced weight regain and prevented lipid accumulation in both liver and adipose tissue while also improving glucose intolerance in mice. Furthermore, FMT increased the abundance of Enterorhabdus caecimuris and decreased the abundances of Burkholderiales, Sutterellaceae, Turicimonas muris, Bacteroides stercorirosoris, and Acetivibrio ethanolgignens within the gut microbiota. Additionally, elevated propionic acid levels and significant alterations in hepatic lipid metabolites were observed following FMT administration. CONCLUSIONS Our findings demonstrate that FMT effectively mitigates post-diet weight regain and associated complications. These effects are mediated through interactions between the gut microbiota and the liver via the gut-propionic acid-liver axis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiangwei Xu
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Han Wang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wanya Yi
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dandan Yang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ju Yang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Sun
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yingyu Wang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, 214200, China
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiai Yan
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, 214200, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Dan Li
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, 214200, China.
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Garbas K, Zapała Ł, Ślusarczyk A, Piekarczyk H, Piecha T, Radziszewski P. Beyond urodynamics: non-invasive approaches to diagnosing detrusor underactivity in men with lower urinary tract symptoms - a systematic review. BMC Urol 2025; 25:44. [PMID: 40050880 PMCID: PMC11887070 DOI: 10.1186/s12894-025-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND To evaluate and synthesize existing evidence on non-invasive methods for diagnosing detrusor underactivity (DU) in men presenting with lower urinary tract symptoms (LUTS), focusing on their feasibility and diagnostic accuracy. METHODS A systematic search of PubMed, Scopus, and Web of Science databases was conducted for original articles reporting on non-invasive diagnostic tests for DU in men with LUTS. Data extraction focuses on study characteristics, diagnostic methods, and accuracy. The risk of bias was assessed using the QUADAS-2 tool. RESULTS Eighteen studies involving 7390 patients, of whom 3194 were diagnosed with DU, were included in our analysis. The evaluated diagnostic methods included ultrasound parameters, biomarkers, uroflowmetry results, symptom questionnaires, and clinical characteristics. Developed models, including those based on artificial intelligence (AI), and nomograms were also assessed. The symptom questionnaire DUA-SQ showed the highest sensitivity of 95.8%, while ultrasound measurements, such as detrusor wall thickness showed 100% specificity but limited sensitivity (42%). Models incorporating clinical variables achieved sensitivity rates of over 75%. Uroflowmetry parameters, particularly presence of "sawtooth" and "interrupted" waveforms, demonstrated sensitivity of 80% and specificity of 87%. Biomarkers, including serum adiponectin and urine NO/ATP ratio, achieved sensitivity of 79% and 88.5%, respectively. AI models showed potential, with sensitivities ranging from 65.9% to 79.7%. Due to the poor quality of the studies and data heterogeneity, meta-analysis was not performed. CONCLUSIONS Non-invasive diagnostic methods for DU, particularly DUA-SQ, ultrasound measurements, and AI models, demonstrate potential, though their accuracies vary. Further research is needed to standardize these methods and enhance their diagnostic reliability. TRIAL REGISTRATION The study protocol was registered with PROSPERO (CRD42024556425). CLINICAL TRIAL NUMBER not applicable.
Collapse
Affiliation(s)
- Karolina Garbas
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland.
| | - Łukasz Zapała
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Aleksander Ślusarczyk
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Hanna Piekarczyk
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Tomasz Piecha
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Piotr Radziszewski
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| |
Collapse
|
6
|
Miyake G, Nagasaka A, Bando Y, Sakiyama K, Iseki S, Sakashita H, Amano O. Expression and localization of adiponectin in myoepithelial cells in sublingual glands of normal and diabetic rats. J Oral Biosci 2025; 67:100590. [PMID: 39613095 DOI: 10.1016/j.job.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVES Adiponectin is a hormone produced by adipocytes with anti-atherosclerotic and anti-diabetic properties. We previously discovered that adiponectin is specifically localized in the myoepithelial cells of rat sublingual glands. This study aims to investigate the localization of adiponectin and its receptors, AdipoR1 and AdipoR2, in adult rats, postnatally developing rats, and diabetic model rats. METHODS We examined the localization and expression of adiponectin and its receptors by immunohistochemistry and RT-PCR in the sublingual glands of adult rats and in two diabetic rat models: Streptozotocin (STZ)-treated rats for type 1 diabetes and GK rats for type 2 diabetes. RESULTS In rat sublingual glands, adiponectin was localized in the cytoplasm of myoepithelial cells, while AdipoR1 and AdipoR2 were localized in the basolateral membrane of mucous acinar cells. In GK rats, there was a significant decrease in the immunoreactivity and mRNA levels of adiponectin, while both AdipoR1 and AdipoR2 expression levels were upregulated. In STZ-treated rats, both adiponectin and its receptors showed reduced expression. CONCLUSIONS Adiponectin acts as a paracrine factor in sublingual myoepithelial cells, influencing salivary secretion through upregulated receptors in acinar cells, particularly in type 2 diabetes. This process is associated with a reduction in myoepithelial adiponectin levels.
Collapse
MESH Headings
- Animals
- Adiponectin/metabolism
- Rats
- Receptors, Adiponectin/metabolism
- Receptors, Adiponectin/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Male
- Sublingual Gland/metabolism
- Sublingual Gland/pathology
- Epithelial Cells/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/genetics
- Immunohistochemistry
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Rats, Wistar
Collapse
Affiliation(s)
- Genki Miyake
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Yasuhiko Bando
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Shoichi Iseki
- Faculty of Health Sciences Department of Clinical Engineering, Komatsu University, Komatsu, Ishikawa, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama, Japan; Department of Oral and Maxillofacial Surgery, Abiko Seijinkai Hospital, Abiko, Chiba, Japan
| | - Osamu Amano
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama, Japan.
| |
Collapse
|
7
|
Jeong AY, Ma EB, Hong SJ, Kim E, Ko S, Huh JY, Kim YM. Kombucha inhibits adipogenesis and promotes lipolytic activity in 3T3-L1 adipocytes. Food Sci Biotechnol 2025; 34:1037-1043. [PMID: 39974855 PMCID: PMC11832843 DOI: 10.1007/s10068-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 02/21/2025] Open
Abstract
This research was conducted to investigate the anti-obesity effects of black tea or green tea kombucha (BK, GK) and compared their compositional differences. As a result of kombucha treatment during the adipocyte differentiation process, peroxisome proliferator-activated receptor γ was significantly decreased, and CCAAT/enhancer binding protein α and adipocyte protein 2 showed a tendency to decrease with BK treatment. Oil red O staining results also demonstrated a reduction of lipid accumulation by BK treatment compared to the control. In mature adipocytes, BK significantly upregulated the gene expression of hormone-sensitive lipase and tended to increase the expression of adipose triglyceride lipase and adiponectin. Additionally, as a biomarker of lipolysis, glycerol content also marginally increased with either BK or GK treatment. The differences were observed in tea polyphenol compound and organic acid contents between BK and GK. In conclusion, these results suggest that black tea kombucha may have anti-obesity activity. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01740-8.
Collapse
Affiliation(s)
- Ah-Young Jeong
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eun-Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Jin Hong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
- Research Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Eunhye Kim
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Sugju Ko
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, 58213 Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
8
|
Chen CL, Yang WS, Yang HI, Chen CF, Wang LY, Lu SN, Kao JH, Chen PJ, Chen CJ. Plasma Adiponectin Levels in Relation to Chronic Hepatitis B Infection Progression to Liver Cancer Milestones: A Prospective Study. Liver Cancer 2025; 14:19-35. [PMID: 40144469 PMCID: PMC11936446 DOI: 10.1159/000539909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction Our previous nested-case-control study demonstrated elevated adiponectin increased liver cirrhosis and HCC risk in HBV carriers. We extended the analysis to the whole REVEAL-HBV cohort to prospectively evaluate whether adiponectin directly affected end-stage liver diseases, or through affecting HBV progression. Methods Baseline plasma adiponectin was determined to investigate the association between adiponectin and subsequent HBeAg, HBsAg, and HBV DNA seroclearance, and the development of cirrhosis, HCC and liver-related death. Whether HBV characteristics modify the adiponectin-milestones associations was also examined. Results Among 3,931 HBsAg(+)/anti-HCV(-) REVEAL-HBV participants, 3,684 had sufficient biosamples left for adiponectin assay. Elevated adiponectin was associated with a higher chance of HBeAg-seropositive, high HBV viral load (≥2 × 105 IU/mL) and high HBsAg titers (≥1,000 IU/mL) in a dose-response manner (OR = 2.25, 95% CI: 1.55-3.28; OR = 2.11, 95% CI: 1.47-3.04; and OR = 1.92, 95% CI: 1.47-2.52 for Q5 vs. Q1, respectively). Those with the highest quintile had a lower chance of achieving HBeAg (HR = 0.48, 95% CI: 0.27-0.85), HBsAg (HR = 0.69, 95% CI: 0.49-0.97), and HBV DNA seroclearance (HR = 0.63, 95% CI: 0.43-0.90) and a higher chance of developing liver cirrhosis (HR = 2.88, 95% CI: 1.98-4.20, HCC (HR = 2.38, 95% CI: 1.52-3.73), and died from liver-related causes (HR = 2.32, 95% CI: 1.51-3.54). HBV genotype significantly modified the adiponectin-HCC (Pinteraction = 0.005) and adiponectin-liver death associations (Pinteraction = 0.0157), with higher risk among genotype C. Conclusion Elevated adiponectin is consistently associated with all important chronic HBV infection milestones toward progression to liver cancer. The exact mechanism of how adiponectin mediates HBV infection toward carcinogenesis remains unclear and warrants further investigation. Disentangling this may help us in finding new HBV treatment target, biomarker in HBV surveillance to identify high-risk patients, or even cancer prevention.
Collapse
Affiliation(s)
- Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwai-I. Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chuen-Fei Chen
- Department of Medicine, Mackay Medical College, Kaohsiung, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, Kaohsiung, Taiwan
| | - Sheng-Nan Lu
- Department of Gastroenterology, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Natarajan D, Ekambaram S, Tarantini S, Nagaraja RY, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves neurovascular coupling responses, attenuates blood-brain barrier leakage and neuroinflammation, and enhances cognition in aged mice. Aging (Albany NY) 2025; 17:448-463. [PMID: 39976587 DOI: 10.18632/aging.206203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old C57BL/6J mice were treated with saline or β3-adrenergic agonist (CL 316, 243, CL) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex and increased microvascular density in the hippocampus of aged mice. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in aged mice. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of cerebromicrovascular function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shoba Ekambaram
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raghavendra Y Nagaraja
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andria F Hedrick
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 73104, USA
| | - Anna Csiszar
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Bernhardt SM, House CD. Bisphenol A and DDT disrupt adipocyte function in the mammary gland: implications for breast cancer risk and progression. Front Oncol 2025; 15:1490898. [PMID: 40034592 PMCID: PMC11873108 DOI: 10.3389/fonc.2025.1490898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
As breast cancer incidence continues to rise worldwide, there is a pressing need to understand the environmental factors that contribute to its development. Obesogens, including Bisphenol A (BPA) and Dichlorodiphenyltrichloroethane (DDT), are highly prevalent in the environment, and have been associated with obesity and metabolic dysregulation. BPA and DDT, known to disrupt hormone signaling in breast epithelial cells, also promote adipogenesis, lipogenesis, and adipokine secretion in adipose tissue, directly contributing to the pathogenesis of obesity. While the adipose-rich mammary gland may be particularly vulnerable to environmental obesogens, there is a scarcity of research investigating obesogen-mediated changes in adipocytes that drive oncogenic transformation of breast epithelial cells. Here, we review the preclinical and clinical evidence linking BPA and DDT to impaired mammary gland development and breast cancer risk. We discuss how the obesogen-driven mechanisms that contribute to obesity, including changes in adipogenesis, lipogenesis, and adipokine secretion, could provide a pro-inflammatory, nutrient-rich environment that promotes activation of oncogenic pathways in breast epithelial cells. Understanding the role of obesogens in breast cancer risk and progression is essential for informing public health guidelines aimed at minimizing obesogen exposure, to ultimately reduce breast cancer incidence and improve outcomes for women.
Collapse
Affiliation(s)
- Sarah M. Bernhardt
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Si S, Zhang X, Yu Y, Zhong X, Zhang X, Yuan J, Chu KH, Li F. Molecular mechanisms of Mmd2 gene in regulating growth of the Pacific white shrimp Litopenaeus vannamei. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:50-65. [PMID: 40027329 PMCID: PMC11871217 DOI: 10.1007/s42995-024-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/28/2024] [Indexed: 03/05/2025]
Abstract
Growth of the Pacific white shrimp Litopenaeus vannamei, the most important farmed crustacean, has consistently been a focal point for breeders. Over the past decades, some candidate genes for shrimp growth have been identified. However, further research is needed to elucidate the molecular regulatory mechanism of these genes. LvMmd2 was previously identified as a candidate gene that may inhibit the growth of L. vannamei. In this study, we analyzed the genotype and expression of the LvMmd2 gene in a breeding family and indicated its role as a growth-inhibiting gene. We found that LvMmd2 co-localized with its homolog LvPAQR3 at the Golgi apparatus. Using co-immunoprecipitation (Co-IP) and DUAL membrane system yeast two-hybrid (MbY2H), we indicated the interactions between LvMmd2 and LvPAQR3, LvPAQR3 and LvRaf1, as well as LvMmd2 and LvRho. These results suggest that LvMmd2 directly and indirectly regulates the Ras signaling pathway. Furthermore, we show that the LvMmd2 gene may indirectly affect the PI3K/AKT, insulin, and Hippo signaling pathways to regulate cell proliferation and differentiation via LvPAQR3 and LvRaf1. Through transcriptome and MbY2H analyses, we have also revealed the interaction between LvMmd2 and proteins involved in growth, immunity, protein transport, synthesis, and modification. These findings demonstrate the various molecular pathways through which LvMmd2 regulates L. vannamei growth. This study provides insights into the mechanism of shrimp growth regulated by Mmd2, enhances our understanding of LvMmd2 function, and highlights its potential application in shrimp breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00273-7.
Collapse
Affiliation(s)
- Shuqing Si
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xiaoyun Zhong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ka Hou Chu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
12
|
Moreira RJ, Oliveira PF, Spadella MA, Ferreira R, Alves MG. Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants (Basel) 2025; 14:150. [PMID: 40002337 PMCID: PMC11851673 DOI: 10.3390/antiox14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity results from a disproportionate accumulation of fat and has become a global health concern. The increase in adipose tissue is responsible for several systemic and testicular changes including hormone levels (leptin, adiponectin, testosterone, estrogen), inflammatory cytokines (increase in TNF-α and IL-6 and decrease in IL-10), and redox state (increase in reactive oxygen species and reduction in antioxidant enzymes). This results in poor sperm quality and compromised fertility in men with obesity. Lifestyle modifications, particularly diet transition to caloric restriction and physical exercise, are reported to reverse these negative effects. Nevertheless, precise mechanisms mediating these benefits, including how they modulate testicular oxidative stress, inflammation, and metabolism, remain to be fully elucidated. The main pathway described by which these lifestyle interventions reverse obesity-induced oxidative damage is the Nrf2-SIRT1 axis, which modulates the overexpression of antioxidant defenses. Of note, some of the detrimental effects of obesity on the testis are inherited by the descendants of individuals with obesity, and while caloric restriction reverses some of these effects, no significant work has been carried out regarding physical exercise. This review discusses the consequences of obesity-induced testicular oxidative stress on adult and pediatric populations, emphasizing the therapeutic potential of lifestyle to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Ruben J. Moreira
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Pedro F. Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | | | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Marco G. Alves
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
13
|
Anwar C, Chu YC, Tsai ML, Ho CT, Lai CS. Tetrahydrocurcumin alleviates di-(2-ethylhexyl) phthalate-induced adipose tissue dysfunction and testicular toxicity in adult mice: possible involvement of adiponectin-adipoR signaling in the testis. Food Funct 2025; 16:583-600. [PMID: 39704213 DOI: 10.1039/d4fo04271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg-1 day-1) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg-1 day-1 of DEHP. Moreover, THC ameliorated DEHP-induced deregulation of adiponectin but not leptin. DEHP caused testicular histological damage, spermatogenesis impairment, apoptosis, inflammation, and AGE, which were improved by THC. THC treatment elevated Nrf2/HO-1 and decreased Glut1 in interstitial Leydig cells, which may contribute to its beneficial effects on the testis. Our results further demonstrated that THC also ameliorated circulating adiponectin and testicular adipoR1-AMPK signaling, partially accounting for the improvement of DEHP-caused testicular dysfunction. The finding of this study revealed that THC is a promising candidate for improving adipose and testicular dysfunction caused by DEHP.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan
| | - Yu-Chi Chu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| |
Collapse
|
14
|
Lin J, Liang Z, Liang Y, Cao X, Tang X, Zhuang H, Yin X, Zhao D, Shen L. A systematically investigation of plasma complement and coagulation-related proteins and adiponectin in gestational diabetes mellitus by multiple reaction monitoring technology. Acta Diabetol 2025:10.1007/s00592-025-02451-0. [PMID: 39821309 DOI: 10.1007/s00592-025-02451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is defined as a glucose intolerance resulting in hyperglycaemia of variable severity with onset during pregnancy, and is prevalent worldwide. The study of diagnostic markers of GDM in early pregnancy is important for early diagnosis and early intervention of GDM. The aim of this study was to search for biomarkers of GDM in early and mid-pregnancy using a targeted proteomics approach. METHODS Through multiple response monitoring (MRM) technology and bioinformatics analysis including machine learning, 44 proteins associated with complement and coagulation cascades, and one protein, adiponectin, which is frequently reported to be associated with GDM, were targeted for quantitative analysis, and potential biomarkers were screened. RESULTS The results showed that 7 and 6 proteins were identified as differentially expressed proteins (DEPs) between pregnant women subsequently diagnosed with GDM and controls during the first trimester, as well as between GDM cases and controls during the second trimester, respectively. Among them, C1QC and CFHR1 may serve as early predictive markers, and C1QC and adiponectin may serve as mid-term diagnostic markers. DISCUSSION Complement and coagulation-related proteins and adiponectin, have been implicated in the pathogenesis of GDM, and some of these proteins have the potential to serve as markers for the prediction or diagnosis of GDM.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China.
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China.
| |
Collapse
|
15
|
Selvaraju V, Babu SR, Judd RL, Geetha T. Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes. Biomolecules 2025; 15:129. [PMID: 39858523 PMCID: PMC11763665 DOI: 10.3390/biom15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity.
Collapse
Affiliation(s)
| | - Shivani R. Babu
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Guo Y, Zhao Y, Wei Z, Cao J. Effects of exogenous insulin supplementation on lipid metabolism in peripartum obese dairy cows. Front Vet Sci 2025; 11:1468779. [PMID: 39881718 PMCID: PMC11774932 DOI: 10.3389/fvets.2024.1468779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Cows with high body condition scores experience more severe negative energy balance (NEB) and undergo mobilization of more body fat during the peripartum period, leading to more production of nonesterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA). Postpartum insulin secretion is lower, and insulin resistance is stronger in obese cows. Exogenous insulin supplementation has been hypothesized as a key approach for regulating NEFA in these cows. In this study, we assessed the effects of exogenous insulin supplementation on lipid metabolism, key genes regulated by insulin, and the underlying regulatory mechanism. We selected 181 periparturient multiparous obese dairy cows for the study. Cows in the insulin group (n = 96) received subcutaneous injections of 200 IU insulin (5 mL) on postpartum days 1 and 7, while cows in the control group (n = 85) received subcutaneous injections of 5 mL physiological saline on the same days. The incidence of ketosis was recorded and compared between the two groups. The results demonstrated that postpartum insulin injections significantly reduced the incidence of type II ketosis and delayed the onset time. Meanwhile, a cohort experiment was conducted on 20 cows selected from 181 field trial cows, with 10 cows in the insulin group and 10 cows in the control group. Blood samples were collected for biochemical indicators and subcutaneous adipose tissue was collected for paraffin-embedding and sectioning and RNA sequencing analysis. The results showed that insulin supplementation postpartum reduced concentrations of NEFA and BHBA as well as BCS loss, but did not affect glucose. Additionally, the expression of SREBF1 in insulin signaling pathway and the downstream-regulated lipogenesis network genes were successfully upregulated in insulin-treated healthy group. High expression of SREBF1 may be a key for postpartum insulin supplementation to improve insulin resistance, significantly reduce NEFA concentrations, and prevent or treat ketosis and fatty liver in obese cows. Postpartum administration of insulin could effectively decrease alterations of adipocytes size, which also fully validates that postpartum insulin supplementation promotes lipogenesis and reduces NEFA release.
Collapse
Affiliation(s)
| | | | | | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Wang L, Li J, Tang P, Zhu D, Tai L, Wang Y, Miyata T, Woodgett JR, Di LJ. GSK3β Deficiency Expands Obese Adipose Vasculature to Mitigate Metabolic Disorders. Circ Res 2025; 136:91-111. [PMID: 39629559 DOI: 10.1161/circresaha.124.325187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Maintaining a well-developed vascular system alongside adipose tissue (AT) expansion significantly reduces the risk of metabolic complications. Although GSK3β (glycogen synthase kinase-3 beta) is known for its role in various cellular processes, its specific functions in AT and regulation of body homeostasis have not been reported. METHODS GSK3β-floxed and GSK3α-floxed mice were crossed with adiponectin-Cre mice to generate GSK3β or GSK3α adipocyte-specific knockout mice (GSK3βADKO and GSK3αADKO). A comprehensive whole-body metabolism analysis was performed on obese GSK3βADKO mice induced by a high-fat diet. RNA sequencing was conducted on AT of both obese GSK3βADKO and GSK3αADKO mice. Various analyses, including vessel perfusion studies, lipolysis analysis, multiplex protein assays, in vitro protein phosphorylation assays, and whole-mount histology staining, were performed on AT of obese GSK3βADKO mice. Tube-formation experiments were performed using 3B-11 endothelial cells cultured in the conditional medium of matured adipocytes under hypoxic conditions. Chromatin precipitation and immunofluorescence studies were conducted using cultured adipocytes with GSK3 inhibition. RESULTS Our findings provide the first evidence that adipocyte-specific knockout of GSK3β expands AT vascularization and mitigates obesity-related metabolic disorders. GSK3β deficiency, but not GSK3α, in adipocytes activates AMPK (AMP-activated protein kinase), leading to increased phosphorylation and nuclear accumulation of HIF-2α, resulting in enhanced transcriptional regulation. Consequently, adipocytes increased VEGF (vascular endothelial growth factor) expression, which engages VEGFR2 on endothelial cells, promoting angiogenesis, expanding the vasculature, and improving vessel perfusion within obese AT. GSK3β deficiency promotes AT remodeling, shifting unhealthy adipocyte function toward a healthier state by increasing insulin-sensitizing hormone adiponectin and preserving healthy adipocyte function. These effects lead to reduced fibrosis, reactive oxygen species, and ER (endoplasmic reticulum) stress in obese AT and improve metabolic disorders associated with obesity. CONCLUSIONS Deletion of GSK3β in adipocytes activates the AMPK/HIF-2α/VEGF/VEGFR2 axis, promoting vasculature expansion within obese AT. This results in a significantly improved local microenvironment, reducing inflammation and effectively ameliorating metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
- Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences (L.W.), University of Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Ping Tang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Dongliang Zhu
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Lixin Tai
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Yuan Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Tsukiko Miyata
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
| |
Collapse
|
18
|
Wang L, Wang S, Anema JA, Moghaddam VA, Lu Y, Lin S, Daw EW, Kuipers AL, Miljkovic I, Brent M, Patti GJ, Thygarajan B, Zmuda JM, Province MA, An P. Novel loci for triglyceride/HDL-C ratio longitudinal change among subjects without T2D. J Lipid Res 2025; 66:100702. [PMID: 39557295 PMCID: PMC11699370 DOI: 10.1016/j.jlr.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Triglyceride (TG)/HDL-C ratio (THR) is a surrogate predictor of hyperinsulinemia. To identify novel genetic loci for THR change over time (ΔTHR), we conducted genome-wide association study (GWAS) and genome-wide linkage scan (GWLS) among nondiabetic Europeans from the Long Life Family Study (n = 1,384). Subjects with diabetes or on dyslipidemia medications were excluded. ΔTHR was derived using growth curve modeling and adjusted for age, sex, field centers, and principal components. GWAS used a linear mixed model accounting for familial relatedness. GWLS employed haplotype-based identity-by-descent estimation with 0.5 cM average spacing. Heritability of ΔTHR was moderate (46%). Our GWAS identified a significant locus at the LPL (P = 1.58e-9) for ΔTHR; this locus has been reported before influencing baseline THR levels. Our GWLS found significant linkage with a logarithm of the odds exceeding 3 on 3q28 (logarithm of the odds = 4.1). Using a subset of 25 linkage-enriched families, we assessed sequence elements under 3q28 and identified two novel variants (EIF4A2 [eukaryotic translation initiation factor 4A2]/ADIPOQ-rs114108468, p = 5e-6, minor allele frequency = 1.8%; TPRG1-rs16864075, p = 3e-6, minor allele frequency = 8%; accounted for ∼28% and ∼29% of the linkage, respectively). While the former variant was associated with EIF4A2 (p = 7e-5)/ADIPOQ (P = 3.49e-2) transcriptional levels, the latter variant was not associated with TPRG1 (P = 0.23) transcriptional levels. Replication in the Framingham Heart Study Offspring Cohort observed modest effect of these loci on ΔTHR. Our approach discovered two novel gene variants EIF4A2/ADIPOQ-rs114108468 and TPRG1-rs16864075 on 3q28 for ΔTHR among subjects without diabetes. Our findings provided novel insights into the molecular regulation of insulin resistance.
Collapse
Affiliation(s)
- Lihua Wang
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Siyu Wang
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason A Anema
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Vaha A Moghaddam
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanli Lu
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shiow Lin
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison L Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Brent
- Division of Computation & Data Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Bharat Thygarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Park H, Trupiano SP, Medarev SL, Ghosh P, Caldwell JT, Yarrow JF, Muller-Delp JM. Aerobic exercise training-induced bone and vascular adaptations in mice lacking adiponectin. Bone 2025; 190:117272. [PMID: 39369833 PMCID: PMC11795456 DOI: 10.1016/j.bone.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Adiponectin regulates lipid and glucose metabolism, and insulin sensitivity in various target organs; however, the effects of adiponectin on bone health remain controversial. Exercise training can enhance bone density, bone microarchitecture, and blood flow. This study aimed to elucidate the role of adiponectin in adaptations of bone microarchitecture and bone vasculature in response to aerobic exercise training. Adult male C57BL/6 wild-type (WT) and homozygous adiponectin knockout (AdipoKO) mice were either treadmill exercise trained or remained sedentary for 8-10 weeks. The trabecular structures of the distal femoral metaphysis, a weight-bearing bone, and the mandible, a non-weight-bearing bone, were examined using microcomputed tomography. The femoral principal nutrient arteries were isolated to assess vasoreactivity (vasodilation and vasoconstriction) and structural remodeling. At the femoral metaphysis, impaired trabecular bone structures, including reduced connectivity density and increased trabecular spacing, were observed in AdipoKO mice compared to WT mice. In addition, nitric oxide-mediated, endothelium-dependent vasodilation was substantially reduced, and wall-to-lumen ratio was significantly increased in the femoral principal nutrient artery of AdipoKO mice. Interestingly, although exercise training-induced enhancements in trabecular connectivity density were observed at the femoral metaphysis of both WT and AdipoKO, increased vasoconstrictor responses were only observed in the femoral principal nutrient artery of WT mice, not in the AdipoKO mice. In mandibular trabecular bone, exercise training increased trabecular bone volume fraction (BV/TV, %) and intersection surface in the mandible of both WT and AdipoKO mice. These findings indicate that adiponectin is crucial for maintaining normal bone microarchitecture and vasculature. Although the absence of adiponectin compromises bone vascular adaptation to exercise training in mice, some exercise training-induced alterations in bone microarchitecture occurred in the absence of adiponectin, suggesting contribution of compensatory mechanisms during exercise training.
Collapse
Affiliation(s)
- Hyerim Park
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Samuel P Trupiano
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Steven L Medarev
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Payal Ghosh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Jacob T Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA; Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, USA
| | - Joshua F Yarrow
- Eastern Colorado Geriatrics Research, Education, and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
21
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
22
|
Shimizu R, Suzuki H, Amitani M, Amitani H. The Effects of Yoga on Key Adipocytokines in Obesity: A Narrative Review of Leptin and Adiponectin. Cureus 2025; 17:e76792. [PMID: 39897330 PMCID: PMC11786781 DOI: 10.7759/cureus.76792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a global health concern that increases the risk of numerous complications, including type 2 diabetes, hypertension, and cardiovascular diseases. Conventional obesity treatments, such as lifestyle modifications, pharmacotherapy, and surgical interventions, are often insufficient, highlighting the need for more efficient and effective approaches. Yoga, an ancient mind-body practice incorporating physical postures (asanas), breathing exercises (pranayama), and meditation, has emerged as a potential therapeutic intervention for obesity management. This review examines the functions of leptin and adiponectin, two key adipocytokines central to obesity, and evaluates the impact of yoga on these hormones. A literature search was conducted using PubMed, Scopus, and Google Scholar with the keywords "yoga" and "adipocytokine" as of May 5, 2024, resulting in the selection of 12 relevant studies. The majority of studies reviewed demonstrated that yoga significantly decreases leptin levels and increases adiponectin levels. Intensive yoga sessions and combined dietary interventions were found to contribute notably to improvements in these hormonal levels. These findings suggest that yoga may improve the balance between leptin and adiponectin, offering beneficial effects on anti-obesity and chronic inflammation reduction. Yoga, as an economical and non-invasive treatment option, presents a promising approach to managing obesity. Further research is expected to elucidate the underlying mechanisms and explore potential clinical applications.
Collapse
Affiliation(s)
- Rinne Shimizu
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JPN
- Kampo Medical Center, Kagoshima University Hospital, Kagoshima, JPN
- Department of General Medicine, Ryokusenkai Yonemori Hospital, Kagoshima, JPN
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JPN
| | - Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JPN
| | - Haruka Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, JPN
| |
Collapse
|
23
|
Du YZ, Hu HJ, Yang JQ, Yuan Q, Huang R, Dong QX, Guo B, Cao Y, Guo J. The relationship between increased regional body fat and overactive bladder: a population-based study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:226. [PMID: 39719652 DOI: 10.1186/s41043-024-00725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The link between regional body fat distribution and overactive bladder (OAB) in prior epidemiological research has been uncertain. Our objective is to assess the relationship between increased regional body fat and the prevalence of OAB. METHODS Within this analysis, 8,084 individuals aged 20 years and older were selected from NHANES surveys conducted from 2011 to 2018. The evaluation of OAB symptoms utilized the overactive bladder symptom score (OABSS). Fat mass (FM) across various regions was quantified employing dual-energy X-ray absorptiometry, which assessed total FM, trunk FM, arm FM, and leg FM. The fat mass index (FMI) was calculated as the ratio of fat mass (kg) to the square of height (meters). Data weighting was performed in accordance with analysis guidelines. A linear logistic regression model was employed to assess the correlation between regional FMI and the occurrence of OAB. Stratified analyses were also conducted. RESULTS The study found significant associations between total FMI and limb FMI with OAB. After adjusting for all variables in the analysis, higher total FMI (OR = 1.07, 95% CI = 1.02-1.12) was linked to an increased risk of OAB. Trunk FMI (OR = 1.12, 95% CI = 1.03-1.22), arm FMI (OR = 1.59, 95% CI = 1.20-2.10), and leg FMI (OR = 1.12, 95% CI = 1.01-1.25) demonstrated significant correlations with OAB. The weighted associations between total FMI and limb FMI with OAB incidence showed no significant differences among most subgroups. CONCLUSIONS The data indicates a correlation between higher regional FMI and increased OAB risk across different populations.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Hong-Ji Hu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Jia-Qing Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Qian Yuan
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rong Huang
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian-Xi Dong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Biao Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Ying Cao
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
24
|
Wat LW, Svensson KJ. Novel secreted regulators of glucose and lipid metabolism in the development of metabolic diseases. Diabetologia 2024; 67:2626-2636. [PMID: 39180580 DOI: 10.1007/s00125-024-06253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/01/2024] [Indexed: 08/26/2024]
Abstract
The tight regulation of glucose and lipid metabolism is crucial for maintaining metabolic health. Dysregulation of these processes can lead to the development of metabolic diseases. Secreted factors, or hormones, play an essential role in the regulation of glucose and lipid metabolism, thus also playing an important role in the development of metabolic diseases such as type 2 diabetes and obesity. Given the important roles of secreted factors, there has been significant interest in identifying new secreted factors and new functions for existing secreted factors that control glucose and lipid metabolism. In this review, we evaluate novel secreted factors or novel functions of existing factors that regulate glucose and lipid metabolism discovered in the last decade, including secreted isoform of endoplasmic reticulum membrane complex subunit 10, vimentin, cartilage intermediate layer protein 2, isthmin-1, lipocalin-2, neuregulin-1 and neuregulin-4. We discuss their discovery, tissues of origin, mechanisms of action and sex differences, emphasising their potential to regulate metabolic processes central to diabetes. Additionally, we discuss the translational barriers, particularly the absence of identified receptors, that hamper their functional characterisation and further therapeutic development. Ultimately, the identification of new secreted factors may give insights into previously unidentified pathways of disease progression and mechanisms of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
25
|
Lee EO, Jin H, Kim S, Joo HK, Lee YR, An SY, Piao S, Lee KH, Jeon BH. Alterations in Adipose Tissue and Adipokines in Heterozygous APE1/Ref-1 Deficient Mice. Endocrinol Metab (Seoul) 2024; 39:932-945. [PMID: 39566547 PMCID: PMC11695485 DOI: 10.3803/enm.2024.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGRUOUND The role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) in adipose tissue remains poorly understood. This study investigates adipose tissue dysfunction in heterozygous APE1/Ref-1 deficiency (APE1/Ref-1+/-) mice, focusing on changes in adipocyte physiology, oxidative stress, adipokine regulation, and adipose tissue distribution. METHODS APE1/Ref-1 mRNA and protein levels in white adipose tissue (WAT) were measured in APE1/Ref-1+/- mice, compared to their wild-type (APE1/Ref-1+/+) controls. Oxidative stress was assessed by evaluating reactive oxygen species (ROS) levels. Histological and immunohistochemical analyses were conducted to observe adipocyte size and macrophage infiltration of WAT. Adipokine expression was measured, and micro-magnetic resonance imaging (MRI) was used to quantify abdominal fat volumes. RESULTS APE1/Ref-1+/- mice exhibited significant reductions in APE1/Ref-1 mRNA and protein levels in WAT and liver tissue. These mice also showed elevated ROS levels, suggesting a regulatory role for APE1/Ref-1 in oxidative stress in WAT and liver. Histological and immunohistochemical analyses revealed hypertrophic adipocytes and macrophage infiltration in WAT, while Oil Red O staining demonstrated enhanced ectopic fat deposition in the liver of APE1/Ref-1+/- mice. These mice also displayed altered adipokine expression, with decreased adiponectin and increased leptin levels in the WAT, along with corresponding alterations in plasma levels. Despite no significant changes in overall body weight, microMRI assessments demonstrated a significant increase in visceral and subcutaneous abdominal fat volumes in APE1/Ref-1+/- mice. CONCLUSION APE1/Ref-1 is crucial in adipokine regulation and mitigating oxidative stress. These findings suggest its involvement in adipose tissue dysfunction, highlighting its potential impact on abdominal fat distribution and its implications for obesity and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Eun-Ok Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hao Jin
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sungmin Kim
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hee Kyoung Joo
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yu Ran Lee
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Soo Yeon An
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shuyu Piao
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kwon Ho Lee
- Department of Physical Therapy, Joongbu University, Geumsan, Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Physiology, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
26
|
Yaqoob MU, Qi Y, Hou J, Zhe L, Zhu X, Wu P, Li Z, Wang M, Li Y, Yue M. Coated cysteamine and choline chloride could be potential feed additives to mitigate the harmful effects of fatty liver hemorrhagic syndrome in laying hens caused by high-energy low-protein diet. Poult Sci 2024; 103:104296. [PMID: 39305615 PMCID: PMC11437759 DOI: 10.1016/j.psj.2024.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
The research aimed to examine the impact of coated cysteamine (CS) and choline chloride (CC) on relieving the pathological effects of fatty liver hemorrhagic syndrome (FLHS) in laying hens. FLHS was induced by a high-energy low-protein (HELP) diet. Ninety laying hens were equally divided into 5 treatments with 6 replicates per treatment (3 hens/replicate). The control treatment (Cont) was fed a basal diet, while the remaining treatments were fed a HELP diet. Under the HELP dietary plan, 4 treatments were set by a 2 × 2 factorial design. Two levels of CS (CS-: 0.00 mg/kg CS; CS+: 100 mg/kg diet) and 2 levels of choline (CC-: 1,182 mg/kg; CC+: 4,124 mg/kg) were set and named CS-CC- (HELP), CS+CC-, CS-CC+ and CS+CC+. The liver of the CS-CC- (HELP) group became yellowish-brown and greasy, with hemorrhages and bleeding spots. Elevated (P < 0.05) plasma and hepatic ALT and AST and hepatic MDA levels, combined with reduced (P < 0.05) plasma and hepatic SOD and GSH-Px activities in the CS-CC- (HELP) group proved that FLHS was successfully induced. Dietary supplementation of CS, CC, or both (CS+CC+) in HELP diets relieved the pathological changes, significantly (P < 0.05) reduced the AST and ALT levels, and strengthened the antioxidant potential in laying hens under FLHS. The highest (P < 0.001) plasma adiponectin concentration was observed in the CS+CC- and lowest in the CS-CC- (HELP) group. In addition, CS and CC supplementation lowers the elevated levels of hepatic T-CHO and TG by increasing the HDL-C and reducing LDL-C levels (P < 0.05) than CS-CC- (HELP) group. CS supplementation, either alone or with CC, helps laying hens restore their egg production. It could be stated that CS and CC supplements could ameliorate the adverse effects of FLHS by regulating antioxidant enzymes activities, modulating the hepatic lipid metabolism, and restoring the production performance in laying hens. Hence, adding CS and CC could be an effective way to reduce FLHS in laying hens.
Collapse
Affiliation(s)
- Muhammad Umar Yaqoob
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Yingying Qi
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Jia Hou
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Li Zhe
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Xiangde Zhu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Peng Wu
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Zhefeng Li
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd. Zhejiang Hangzhou 311107, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
27
|
Liu Y, Fu X, Sun J, Cui R, Yang W. AdipoRon exerts an antidepressant effect by inhibiting NLRP3 inflammasome activation in microglia via promoting mitophagy. Int Immunopharmacol 2024; 141:113011. [PMID: 39213872 DOI: 10.1016/j.intimp.2024.113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Depression is a serious mental disorder that threatens patients' physical and mental health worldwide. The activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is essential for microglia-mediated neuroinflammation and neuronal damage in depression. Numerous pathophysiological factors, such as mitochondrial dysfunction and impaired mitophagy, have an essential role in activating the NLRP3 inflammasome. AdipoRon is a potent adiponectin receptor agonist; however, its antidepressant effects have not been thoroughly investigated. In this study, we found that AdipoRon ameliorated depression-like behavior and neuronal damage induced by chronic unpredictable mild stress (CUMS). Further research demonstrated that AdipoRon inhibited the activation of the NLRP3 inflammasome and protected hippocampal neurons from microglial cytotoxicity by promoting mitophagy, increasing the clearance of damaged mitochondria, and reducing mtROS accumulation. Importantly, inhibition of mitophagy attenuated the antidepressant and neuroprotective effects of AdipoRon. Overall, these findings indicate that AdipoRon alleviates depression by inhibiting NLRP3 inflammasome activation in microglia via improving mitophagy.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiangjin Sun
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin Province, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
28
|
Carpi S, Daniele S, de Almeida JFM, Gabbia D. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. Int J Mol Sci 2024; 25:12229. [PMID: 39596297 PMCID: PMC11595301 DOI: 10.3390/ijms252212229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, 41125 Modena, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (J.F.M.d.A.)
| | | | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
29
|
Zhong RF, Liu CJ, Hao KX, Fan XD, Jiang JG. Polysaccharides from Flos Sophorae Immaturus ameliorates insulin resistance in IR-HepG2 cells by co-regulating signaling pathways of AMPK and IRS-1/PI3K/AKT. Int J Biol Macromol 2024; 280:136088. [PMID: 39366625 DOI: 10.1016/j.ijbiomac.2024.136088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.
Collapse
Affiliation(s)
- Rui-Fang Zhong
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chang-Jun Liu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Dan Fan
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
30
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Li J, Wei H, Wang N, Chen J, Zhang Y, An Z, Song J, Niu T, Wu W. Ozone-Induced Lung Injury are Mediated Via PPAR-Mediated Ferroptosis in Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04386-z. [PMID: 39370454 DOI: 10.1007/s12011-024-04386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, the concentration of PM2.5 in China has decreased, while the concentration of ozone remains rising. Exposure to ozone contributes to respiratory illnesses; however, little is known about the underlying molecular mechanisms. The present study established an ozone-induced lung injury mice model to investigate potential molecular biomarkers and toxic mechanisms. Collected and analyzed the ozone pollution data in Xinxiang city from 2015 to 2022. At the same time, 24 male C57BL/6 mice were randomly assigned to control group and ozone exposure group. The ozone exposure concentration is 1 ppm, with 4 h of daily exposure for 33 consecutive days. HE staining was used to assess lung histological alterations and lung injury. High-throughput sequencing performed on the lung tissues of mice was used to analyze the differential expressed genes and signal transduction pathways. Xinxiang city is suffering from ozone pollution, especially in summer. HE staining showed that the ozone exposure could induce obvious inflammatory cell infiltration, alveolar wall thickening, or fracture. Transcriptome data revealed that there is a 145 differentially expressed genes between two groups and the genes enriched in PPAR signaling pathway, ferroptosis. The pivotal genes in the PPAR pathway including Adipoq, Lpl, Pck1, and Plin1 expression were significantly reduced. Additionally, the expression of Acsl6 and Scl7a11, which are close to PPAR pathway and ferroptosis has decreased. Ozone exposure could disrupt the lipid metabolism balance via downregulating lipid peroxidation-related genes through the PPAR signaling pathway, which further induced lung cell ferroptosis and aggravated lung injury in mice.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Huai Wei
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Ning Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Jing Chen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Ying Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Tianqi Niu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
33
|
Moon S, Park Y, Jang S, Kim S, Song DG, Shin DC, Lee CH. Interleukin-2 improves insulin sensitivity through hypothalamic sympathetic activation in obese mice. J Neuroinflammation 2024; 21:250. [PMID: 39367382 PMCID: PMC11453069 DOI: 10.1186/s12974-024-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND IL-2 regulates T cell differentiation: low-dose IL-2 induces immunoregulatory Treg differentiation, while high-dose IL-2 acts as a potent activator of cytotoxic T cells and NK cells. Therefore, high-dose IL-2 has been studied for use in cancer immunotherapy. We aimed to utilize low-dose IL-2 to treat inflammatory diseases such as obesity and insulin resistance, which involve low-grade chronic inflammation. MAIN BODY Systemic administration of low-dose IL-2 increased Treg cells and decreased inflammation in gonadal white adipose tissue (gWAT), leading to improved insulin sensitivity in high-fat diet-fed obese mice. Additionally, central administration of IL-2 significantly enhanced insulin sensitivity through the activation of the sympathetic nervous system. The sympathetic signaling induced by central IL-2 administration not only decreased interferon γ (IFNγ) + Th1 cells and the expression of pro-inflammatory cytokines, including Il-1β, Il-6, and Il-8, but also increased CD4 + CD25 + FoxP3 + Treg cells and Tgfβ expression in the gWAT of obese mice. These phenomena were accompanied by hypothalamic microgliosis and activation of pro-opiomelanocortin neurons. Furthermore, sympathetic denervation in gWAT reversed the enhanced insulin sensitivity and immune cell polarization induced by central IL-2 administration. CONCLUSION Overall, we demonstrated that IL-2 improves insulin sensitivity through two mechanisms: direct action on CD4 + T cells and via the neuro-immune axis triggered by hypothalamic microgliosis.
Collapse
Affiliation(s)
- Subin Moon
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yejin Park
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sooyeon Jang
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Saeha Kim
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dan-Gyeong Song
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dae-Chul Shin
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Republic of Korea.
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
34
|
Daurai B, Baruah AJ, Gogoi M. Recent advances in point-of-care biosensors for pancreatic diseases. Trends Analyt Chem 2024; 179:117867. [DOI: 10.1016/j.trac.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Respekta-Długosz N, Mlyczyńska E, Pich K, Greggio A, Ramé C, Dupont J, Rak A. The adipokine profile in the plasma and anterior pituitary of pigs during the estrous cycle. Gen Comp Endocrinol 2024; 357:114588. [PMID: 39013539 DOI: 10.1016/j.ygcen.2024.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Adipokines play crucial roles in both reproductive and energy metabolic processes. This study aimed to compare the hormonal plasma profile of adiponectin, apelin, vaspin, chemerin, resistin, visfatin, and adipolin, and the expression of their receptors in the anterior pituitary (AP) between normal-weight Large White (LW) and fat Meishan (MS) pigs during different phases of the estrous cycle. We measured adipokine levels in the plasma and assessed their gene expression in the AP. We used Pearson's correlation analysis to examine potential links between adipokines levels, their receptors, and metabolic parameters (body weight; backfat thickness) and reproductive parameters (pituitary weight; age at puberty; levels of gonadotropins, steroid hormones; and gene expression of gonadotropin-releasing hormone receptor and gonadotropins in AP). The plasma levels of the evaluated adipokines fluctuated with phase and breed, except for visfatin and adipolin. Moreover, adipokine expression in AP varied significantly between breeds and estrous cycle phases, except for resistin receptor CAP1. Notably, we observed a positive correlation between plasma levels of adiponectin and its transcript in the AP only in MS pigs. Apelin gene expression correlated negatively with its receptor in MS, while we observed a breed-dependent correlation between chemerin gene expression and its receptor CMKLR1. We identified significant positive or negative correlations between adipokines or their receptor levels in plasma and AP as well as metabolic or reproductive parameters, depending on the breed. In conclusion, we have demonstrated breed-specific and estrous cycle-dependent regulation of adipokines in AP, underscoring their potential impact on metabolic and reproductive processes in swine.
Collapse
Affiliation(s)
- Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland
| | - Christelle Ramé
- INRAE, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRAE, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Poland.
| |
Collapse
|
36
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
37
|
Quispe R, Sweeney T, Martin SS, Jones SR, Allison MA, Budoff MJ, Ndumele CE, Elshazly MB, Michos ED. Associations of Adipokine Levels With Levels of Remnant Cholesterol: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2024; 13:e030548. [PMID: 39248264 PMCID: PMC11935629 DOI: 10.1161/jaha.123.030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/06/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The metabolic syndrome phenotype of individuals with obesity is characterized by elevated levels of triglyceride-rich lipoproteins and remnant particles, which have been shown to be significantly atherogenic. Understanding the association between adipokines, endogenous hormones produced by adipose tissue, and remnant cholesterol (RC) would give insight into the link between obesity and atherosclerotic cardiovascular disease. METHODS AND RESULTS We studied 1791 MESA (Multi-Ethnic Study of Atherosclerosis) participants who took part in an ancillary study on body composition with adipokine levels measured (leptin, adiponectin, and resistin) at either visit 2 or visit 3. RC was calculated as non-high-density lipoprotein cholesterol minus low-density lipoprotein cholesterol, measured at the same visit as the adipokines, as well as subsequent visits 4 through 6. Multivariable-adjusted linear mixed-effects models were used to assess the cross-sectional and longitudinal associations between adipokines and log-transformed levels of RC. Mean±SD age was 64.5±9.6 years; mean±SD body mass index was 29.9±5.0 kg/m2; and 52.0% were women. In fully adjusted cross-sectional models that included body mass index, diabetes, low-density lipoprotein cholesterol, and lipid-lowering therapy, for each 1-unit increment in adiponectin, there was 14.6% (95% CI, 12.2-16.9) lower RC. With each 1-unit increment in leptin and resistin, there was 4.8% (95% CI, 2.7-7.0) and 4.0% (95% CI, 0.2-8.1) higher RC, respectively. Lower adiponectin and higher leptin were also associated with longitudinal increases in RC levels over median follow-up of 5 (interquartile range, 4-8) years. CONCLUSIONS Lower adiponectin and higher leptin levels were independently associated with higher levels of RC at baseline and longitudinal RC increase, even after accounting for body mass index and low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Renato Quispe
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Ty Sweeney
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Seth S. Martin
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Steven R. Jones
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Matthew A. Allison
- Department of Family MedicineUniversity of California San DiegoSan DiegoCA
| | | | - Chiadi E. Ndumele
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| | - Mohamed B. Elshazly
- Department of Cardiovascular MedicineHeart and Vascular Institute, Cleveland ClinicClevelandOH
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular DiseaseJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
38
|
Tumurbaatar B, Ogawa S, Nakamura N, Yamada T, Minato T, Mori Y, Saiki T, Matsubara T, Naruse K, Suda H. The effect of hydrogen gas on the oxidative stress response in adipose tissue. Sci Rep 2024; 14:21425. [PMID: 39271809 PMCID: PMC11399153 DOI: 10.1038/s41598-024-72626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.
Collapse
Affiliation(s)
- Batkhishig Tumurbaatar
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| | - Shinji Ogawa
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Nobuhisa Nakamura
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan.
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan.
| | - Toshiyuki Yamada
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Nagoya City University Midori Municipal Hospital, Nagoya, 458-0037, Japan
| | - Tomomi Minato
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Clinical Laboratory, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Yoshiharu Mori
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
- Department of Cardiovascular Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Tomokazu Saiki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
- Department of Pharmacy, Aichi Gakuin University Dental Hospital, Nagoya, 464-8651, Japan
| | - Tatsuaki Matsubara
- Faculty of Human Sciences, Aichi Mizuho College, Nagoya, 467-0867, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651, Japan
| | - Hisao Suda
- Department of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467- 8601, Japan
| |
Collapse
|
39
|
Anwar C, Lin JR, Tsai ML, Ho CT, Lai CS. Calebin A attenuated inflammation in RAW264.7 macrophages and adipose tissue to improve hepatic glucose metabolism and hyperglycemia in high-fat diet-fed obese mice. Eur J Pharmacol 2024; 978:176789. [PMID: 38945287 DOI: 10.1016/j.ejphar.2024.176789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The increased incidence of obesity, which become a global health problem, requires more functional food products with minor side and excellent effects. Calebin A (CbA) is a non-curcuminoid compound, which is reported to be an effective treatment for lipid metabolism and thermogenesis. However, its ability and mechanism of action in improving obesity-associated hyperglycemia remain unclear. This study was designed to explore the effect and mechanism of CbA in hyperglycemia via improvement of inflammation and glucose metabolism in the adipose tissue and liver in high-fat diet (HFD)-fed mice. After 10 weeks fed HFD, obese mice supplemented with CbA (25 and 100 mg/kg) for another 10 weeks showed a remarkable reducing adiposity and blood glucose. CbA modulated M1/M2 macrophage polarization, ameliorated inflammatory cytokines, and restored adiponectin as well as Glut 4 expression in the adipose tissue. In the in vitro study, CbA attenuated pro-inflammatory markers while upregulated anti-inflammatory IL-10 in LPS + IFNγ-generated M1 phenotype macrophages. In the liver, CbA attenuated steatosis, inflammatory infiltration, and protein levels of inflammatory TNF-α and IL-6. Moreover, CbA markedly upregulated Adiponectin receptor 1, AMPK, and insulin downstream Akt signaling to improve glycogen content and increase Glut2 protein. These findings indicated that CbA may be a novel therapeutic approach to treat obesity and hyperglycemia phenotype targeting on adipose inflammation and hepatic insulin signaling.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Jing-Ru Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, 08901, USA.
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
40
|
Rehman IU, Park JS, Choe K, Park HY, Park TJ, Kim MO. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: Peripheral and CNS insights. Ageing Res Rev 2024; 100:102447. [PMID: 39111409 DOI: 10.1016/j.arr.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that affects millions of people worldwide. It is caused by abnormalities in cholinergic neurons, oxidative stress, and inflammatory cascades. The illness is accompanied by personality changes, memory issues, and dementia. Metabolic signaling pathways help with fundamental processes like DNA replication and RNA transcription. Being adaptable is essential for both surviving and treating illness. The body's metabolic signaling depends on adipokines, including adiponectin (APN) and other adipokines secreted by adipose tissues. Energy homeostasis is balanced by adipokines, and nutrients. Overconsumption of nutrients messes with irregular signaling of adipokines, such as APN in both peripheral and brain which leads to neurodegeneration, such as AD. Despite the failure of traditional treatments like memantine and cholinesterase inhibitors, natural plant bioactive substances like Osmotin (OSM) have been given a focus as potential therapeutics due to their antioxidant properties, better blood brain barrier (BBB) permeability, excellent cell viability, and especially nanoparticle approaches. The review highlights the published preclinical literature regarding the role of OSM in AD pathology while there is a need for more research to investigate the hidden therapeutic potential of OSM which may open a new gateway and further strengthen its healing role in the pathogenesis of neurodegeneration, especially AD.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht 6202 AZ, the Netherlands.
| | - Tae Ju Park
- Haemato-oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, United Kingdom.
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Alz-Dementia Korea Co., Jinju 52828, Republic of Korea.
| |
Collapse
|
41
|
Al‐Ibraheem AMT, Hameed AAZ, Marsool MDM, Jain H, Prajjwal P, Khazmi I, Nazzal RS, AL‐Najati HMH, Al‐Zuhairi BHYK, Razzaq M, Abd ZB, Marsool ADM, wahedaldin AI, Amir O. Exercise-Induced cytokines, diet, and inflammation and their role in adipose tissue metabolism. Health Sci Rep 2024; 7:e70034. [PMID: 39221051 PMCID: PMC11365580 DOI: 10.1002/hsr2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Background Obesity poses a significant global health challenge, necessitating effective prevention and treatment strategies. Exercise and diet are recognized as pivotal interventions in combating obesity. This study reviews the literature concerning the impact of exercise-induced cytokines, dietary factors, and inflammation on adipose tissue metabolism, shedding light on potential pathways for therapeutic intervention. Methodology A comprehensive review of relevant literature was conducted to elucidate the role of exercise-induced cytokines, including interleukin-6 (IL-6), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, myostatin, fibroblast growth factor 21 (FGF21), follistatin (FST), and angiopoietin-like 4 (ANGPTL4), in adipose tissue metabolism. Various databases were systematically searched using predefined search terms to identify relevant studies. Articles selected for inclusion underwent thorough analysis to extract pertinent data on the mechanisms underlying the influence of these cytokines on adipose tissue metabolism. Results and Discussion Exercise-induced cytokines exert profound effects on adipose tissue metabolism, influencing energy expenditure (EE), thermogenesis, fat loss, and adipogenesis. For instance, IL-6 activates AMP-activated protein kinase (AMPK), promoting fatty acid oxidation and reducing lipogenesis. IL-15 upregulates peroxisome proliferator-activated receptor delta (PPARδ), stimulating fatty acid catabolism and suppressing lipogenesis. BDNF enhances AMPK-dependent fat oxidation, while irisin induces the browning of white adipose tissue (WAT), augmenting thermogenesis. Moreover, myostatin, FGF21, FST, and ANGPTL4 each play distinct roles in modulating adipose tissue metabolism, impacting factors such as fatty acid oxidation, adipogenesis, and lipid uptake. The elucidation of these pathways offers valuable insights into the complex interplay between exercise, cytokines, and adipose tissue metabolism, thereby informing the development of targeted obesity management strategies. Conclusion Understanding the mechanisms by which exercise-induced cytokines regulate adipose tissue metabolism is critical for devising effective obesity prevention and treatment modalities. Harnessing the therapeutic potential of exercise-induced cytokines, in conjunction with dietary interventions, holds promise for mitigating the global burden of obesity. Further research is warranted to delineate the precise mechanisms underlying the interactions between exercise, cytokines, and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - Hritvik Jain
- All India Institute of Medical SciencesJodhpurIndia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klobučar I, Habisch H, Klobučar L, Trbušić M, Pregartner G, Berghold A, Kostner GM, Scharnagl H, Madl T, Frank S, Degoricija V. Sex-Related Differences in the Associations between Adiponectin and Serum Lipoproteins in Healthy Subjects and Patients with Metabolic Syndrome. Biomedicines 2024; 12:1972. [PMID: 39335486 PMCID: PMC11429094 DOI: 10.3390/biomedicines12091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The strong associations between the serum levels of adiponectin and the lipoprotein subclasses observed in healthy subjects are much weaker in patients with metabolic syndrome (MS). However, the impact of sex on these associations remained unexplored. Therefore, in the present study, we examined associations between adiponectin and the lipoprotein subclasses, analyzed by nuclear magnetic resonance spectroscopy, separately in healthy females and males, as well as in females and males with MS. We observed negative correlations between adiponectin and VLDL, IDL, and small-dense LDL in healthy males, but neither in healthy females nor in females or males with MS. Additionally, adiponectin was positively correlated with some HDL subclasses in healthy males and females with MS, but not in healthy females or males with MS. Adjusting for age and either body mass index, waist circumference, C-reactive protein, or interleukin-6 weakened the associations between adiponectin and VLDL and IDL but not small-dense LDL. The adjustment weakened the associations between adiponectin and HDL in healthy males but not in females with MS. Based on our results, we conclude that sex and the presence of MS are strong determinants of the associations between adiponectin and serum lipoproteins and that the complex regulatory network comprising adiponectin and other molecular players involved in the regulation of lipoprotein metabolism is primarily operative in healthy males and females with MS.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Gerhard M. Kostner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
43
|
Bouchi R, Kondo T, Ohta Y, Goto A, Tanaka D, Satoh H, Yabe D, Nishimura R, Harada N, Kamiya H, Suzuki R, Yamauchi T. A consensus statement from the Japan Diabetes Society: A proposed algorithm for pharmacotherapy in people with type 2 diabetes - 2nd edition (English version). J Diabetes Investig 2024; 15:1326-1342. [PMID: 38988282 PMCID: PMC11363114 DOI: 10.1111/jdi.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 07/12/2024] Open
Abstract
This algorithm was issued for the appropriate use of drugs for the treatment of type 2 diabetes mellitus in Japan. The revisions include safety considerations, fatty liver disease as a comorbidity to be taken into account and the position of tirzepatide.
Collapse
Affiliation(s)
- Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research CenterNational Center for Global Health and MedicineTokyoJapan
| | - Tatsuya Kondo
- Department of Diabetes, Metabolism and EndocrinologyKumamoto University HospitalKumamotoJapan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineYamaguchiJapan
| | - Atsushi Goto
- Department of Health Data Science, Graduate School of Data ScienceYokohama City UniversityYokohamaJapan
| | - Daisuke Tanaka
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroaki Satoh
- Department of Diabetes and EndocrinologyJuntendo University Urayasu HospitalChibaJapan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and EndocrinologyJikei University School of MedicineTokyoJapan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal MedicineAichi Medical UniversityNagakuteJapan
| | - Ryo Suzuki
- Department of Diabetes, Metabolism and EndocrinologyTokyo Medical UniversityTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesUniversity of Tokyo Graduate School of MedicineTokyoJapan
| | | |
Collapse
|
44
|
Nunes-Souza V, Alenina N, Qadri F, Mosienko V, Santos RAS, Bader M, Rabelo LA. ACE2 Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity in an Age-Dependent Manner. Int J Mol Sci 2024; 25:9515. [PMID: 39273464 PMCID: PMC11394789 DOI: 10.3390/ijms25179515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake. Male C57Bl/6 (WT) and ACE2-deficient (ACE2-/y) mice were analyzed at the age of 6 and 12 months under standard diet (StD) and high-fat diet (HFD). Under StD, ACE2-/y showed lower body weight and fat depots, improved glucose tolerance, enhanced insulin sensitivity, higher adiponectin, and lower leptin levels compared to WT. This difference was even more pronounced after HFD in 6-month-old mice, but, interestingly, it was blunted at the age of 12 months. ACE2-/y presented a decrease in adipocyte diameter and lipolysis, which reflected in the upregulation of lipid metabolism in white adipose tissue through the increased expression of genes involved in lipid regulation. Under HFD, both food intake and total energy expenditure were decreased in 6-month-old ACE2-/y mice, accompanied by an increase in liquid intake, compared to WT mice, fed either StD or HFD. Thus, ACE2-/y mice are less susceptible to HFD-induced obesity in an age-dependent manner, as well as represent an excellent animal model of human lipodystrophy and a tool to investigate new treatments.
Collapse
Affiliation(s)
- Valéria Nunes-Souza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Luiza Antas Rabelo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Laboratory of Cardiovascular Reactivity, Metabolic Syndrome Center, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, Brazil
| |
Collapse
|
45
|
Alenezi SA, Elkmeshi N, Alanazi A, Alanazi ST, Khan R, Amer S. The Impact of Diet-Induced Weight Loss on Inflammatory Status and Hyperandrogenism in Women with Polycystic Ovarian Syndrome (PCOS)-A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:4934. [PMID: 39201076 PMCID: PMC11355208 DOI: 10.3390/jcm13164934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Currently, the primary strategy for addressing polycystic ovarian syndrome (PCOS) involves lifestyle modifications, with a focus on weight loss. The purpose of this meta-analysis was to assess the impact of weight loss through dietary interventions on inflammatory status and hyperandrogenism in PCOS women. Methods: A comprehensive search was conducted to identify randomised controlled trials (RCTs) and cohort studies assessing the impact of diet-induced weight loss on circulating inflammatory markers (CRP, IL-6, IL-1β, TNF-α), androgens (testosterone, androstenedione), SHBG, and luteinising hormone (LH) in PCOS women. The quality and risk of bias of the included studies were assessed using the Cochrane Collaboration's tool for RCTs and the Newcastle-Ottawa Scale for cohort studies. Data were entered into RevMan software v5.9 for the calculation of standard mean difference (SMD) and the 95% confidence interval (95%CI) of circulating inflammatory markers, androgens, and LH between baseline and post-weight loss values. Results: Eleven studies (n = 323) were eligible for the systematic review, of which nine (n = 286) were included in the meta-analysis. Pooled analysis of data revealed a statistically significant decrease in circulating CRP (SMD 0.39, 95%CI 0.22, 0.56; 9 studies, n = 286), IL-6 (SMD 0.37, 95%Cl, 0.12, 0.61; 3 Studies, n = 140), TNF-α (SMD 0.30, 95%Cl, 0.07, 0.53; 4 Studies, n = 162), androstenedione (SMD 0.36, 95%Cl, 0.13, 0.60; 4 studies, n = 147) and LH (SMD 0.30, 95% Cl, 0.09, 0.51; 5 studies, n = 197) after weight loss compared to baseline levels among PCOS women. A meta-analysis of five studies (n = 173) showed a statistically significant increase in circulating SHBG after weight loss compared to baseline levels (SMD -0.43, 95%Cl, -0.65, -0.21). Conclusions: These findings suggest that weight loss induced by dietary interventions seems to improve PCOS-related chronic inflammation and hyperandrogenism. The possible causative relationship between the improvement in inflammation and hyperandrogenism remains to be determined.
Collapse
Affiliation(s)
- Salih Atalah Alenezi
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK or (S.A.A.); (N.E.); (R.K.)
- Prince Mohammed Bin Abdulaziz Medical City, Ministry of Health, Riyadh 14214, Saudi Arabia
| | - Nusaiba Elkmeshi
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK or (S.A.A.); (N.E.); (R.K.)
| | - Abdullah Alanazi
- Health Sciences, Applied Sciences, Petaling Jaya 47301, Malaysia; (A.A.); (S.T.A.)
| | - Sulaiman T. Alanazi
- Health Sciences, Applied Sciences, Petaling Jaya 47301, Malaysia; (A.A.); (S.T.A.)
| | - Raheela Khan
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK or (S.A.A.); (N.E.); (R.K.)
| | - Saad Amer
- Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK or (S.A.A.); (N.E.); (R.K.)
| |
Collapse
|
46
|
Ding Z, Zhuang Z, Tang R, Qu X, Huang Z, Sun M, Yuan F. Negative association between Body Roundness Index and bone mineral density: insights from NHANES. Front Nutr 2024; 11:1448938. [PMID: 39176032 PMCID: PMC11340502 DOI: 10.3389/fnut.2024.1448938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Background Osteoporosis (OP), affecting millions around the globe, is a prevalent degenerative condition of the bones characterized by a decrease in bone mineral density (BMD) and an increase in bone fragility. A novel anthropometric measure, the Body Roundness Index (BRI), provides a more accurate assessment of body fat distribution compared to traditional metrics. Using data from the National Health and Nutrition Examination Survey (NHANES), this study aims to explore the relationship between BRI and total BMD in U.S. adults aged 20 and above. Methods Data from NHANES (2011-2018) were examined, encompassing 9,295 participants following exclusions. Dual-energy X-ray absorptiometry (DXA) was employed to measure BMD. BRI was calculated using waist circumference (WC) and height. The study accounted for variables such as demographic traits, physical exam results, lab test findings, and survey responses. Weighted multivariable linear regression models and smooth curve fitting methods were utilized to assess the relationship between BRI and total BMD. Results The research found a notable inverse relationship between BRI and total BMD. In the model with full adjustments, an increase of one unit in BRI was linked to a 0.0313 g/cm2 reduction in total BMD (P < 0.0001). Moreover, an inflection point was identified at BRI = 9.5229, where each one-unit rise in BRI beyond this threshold corresponded to a more substantial decrease in total BMD (0.0363 g/cm2). Analysis by subgroups revealed that this negative association was consistent across most demographic and health-related categories. Conclusions The results demonstrate a notable inverse relationship between BRI and total BMD, indicating that a higher BRI could be associated with lower BMD and a potentially greater risk of developing OP. This underscores the significance of accounting for body fat distribution in preventing OP and advocates for the use of BRI as a valuable marker for early intervention approaches.
Collapse
Affiliation(s)
- Ziyao Ding
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhe Zhuang
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rongze Tang
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinzhe Qu
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zicheng Huang
- Department of Gynecologic Oncology, International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Maji Sun
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Yuan
- Department of Spine Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
47
|
Mizokami A, Otani T, Mukai S, Hirata M. Roles of Nutrition-Sensing Receptor GPRC6A in Energy Metabolism and Oral Inflammatory Diseases. CURRENT ORAL HEALTH REPORTS 2024; 11:306-311. [DOI: 10.1007/s40496-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 01/03/2025]
|
48
|
Chen K, Qin YR, Liu SQ, Chen RL. Remission of iron overload in adipose tissue of obese mice by fatty acid-modified polyoxovanadates. RARE METALS 2024. [DOI: 10.1007/s12598-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 09/11/2024]
|
49
|
Wang H, Li C, Zhu L, Liu Z, Li N, Zheng Z, Liang S, Yan J. Adiponectin attenuates H2O2-induced apoptosis in chicken skeletal myoblasts through the lysosomal-mitochondrial axis. In Vitro Cell Dev Biol Anim 2024; 60:805-814. [PMID: 38427138 DOI: 10.1007/s11626-024-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Adiponectin has previously been investigated for exerting its protective effect against myocardial injury through anti-apoptotic and anti-oxidative actions. Therefore, the present study aimed to investigate the nature and mechanism of adiponectin inhibition of H2O2-induced apoptosis in chicken skeletal myoblasts. Skeletal muscle satellite cells were differentiated and assigned into three groups. Group C was on the blank control group, group H was stimulated with the H2O2 (500 μmol/L, 4 h) alone group, group A + H was pre-treated with adiponectin (10 μg/mL, 24 h) and stimulated with the H2O2 (500 μmol/L, 4 h) group. Cytotoxicity inhibited by adiponectin was evaluated by the CCK-8 assay. The degree of apoptosis and oxidative damage was investigated by the TdT-mediated dUTP nick end labeling (TUNEL) and reactive oxygen species (ROS) staining assays. Oxidative stress was assessed by evaluating lipid peroxidation, superoxide dismutase, and reduced glutathione. Acridine orange (AO) staining detected lysosomal membrane permeability. The changes in mitochondrial membrane potential (MMP) were analyzed using 5,5,6,6'-tetrachloro-1,1,3,3-tetraethylimidacarbocyanine iodide (JC-1) dye under a fluorescence microscope. The lysosomal function, mitochondrial function, and apoptosis-related mRNA and protein expression levels were quantified by real-time quantitative PCR and western blot, respectively. The results suggested that adiponectin treatment attenuated H2O2-induced cytotoxicity and oxidative stress in skeletal myoblasts. Compared with H2O2 treatment, TUNEL and ROS staining demonstrated lower apoptosis upon adiponectin treatment. AO staining confirmed the amelioration of lysosomal membrane damage, and JC-1 staining revealed an increase in mitochondrial membrane potential after adiponectin treatment. At the molecular level, adiponectin treatment inhibited the expression of the lysosomal apoptotic factors cathepsin B, chymotrypsin B, and the mitochondrial apoptotic pathway cytochrome-c (cyt-c) and caspase-8; decreased the apoptotic marker gene Bax; and increased the expression of the anti-apoptotic marker gene Bcl-2. Adiponectin treatment attenuated H2O2-induced apoptosis in skeletal myoblasts, possibly by inhibiting oxidative stress and apoptosis through the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Han Wang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Longbo Zhu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and BiotechnologyTianjin Engineering Research Center of Animal Healthy FarmingInstitute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
50
|
Natarajan D, Ekambaram S, Tarantini S, Yelahanka Nagaraja R, Yabluchanskiy A, Hedrick AF, Awasthi V, Subramanian M, Csiszar A, Balasubramanian P. Chronic β3 adrenergic agonist treatment improves brain microvascular endothelial function and cognition in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602747. [PMID: 39026792 PMCID: PMC11257558 DOI: 10.1101/2024.07.09.602747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old old C57BL/6J mice were treated with saline or CL (β3-adrenergic agonist) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex of aged animals. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in radial arm water maze and Y-maze tests. Our results suggest that β3-adrenergic agonist treatment improves multiple aspects of brain microvascular endothelial function and can be potentially repurposed for treating age-associated cognitive decline.
Collapse
|