1
|
Amiar S, Johnson KA, Husby ML, Marzi A, Stahelin RV. A fatty acid-ordered plasma membrane environment is critical for Ebola virus matrix protein assembly and budding. J Lipid Res 2024; 65:100663. [PMID: 39369791 PMCID: PMC11565396 DOI: 10.1016/j.jlr.2024.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Plasma membrane (PM) domains and order phases have been shown to play a key role in the assembly, release, and entry of several lipid-enveloped viruses. In the present study, we provide a mechanistic understanding of the Ebola virus (EBOV) matrix protein VP40 interaction with PM lipids and their effect on VP40 oligomerization, a crucial step for viral assembly and budding. VP40 matrix formation is sufficient to induce changes in the PM fluidity. We demonstrate that the distance between the lipid headgroups, the fatty acid tail saturation, and the PM order are important factors for the stability of VP40 binding and oligomerization at the PM. The use of FDA-approved drugs to fluidize the PM destabilizes the viral matrix assembly leading to a reduction in budding efficiency. Overall, these findings support an EBOV assembly mechanism that reaches beyond lipid headgroup specificity by using ordered PM lipid regions independent of cholesterol.
Collapse
Affiliation(s)
- Souad Amiar
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN
| | - Kristen A Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Monica L Husby
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN.
| |
Collapse
|
2
|
Ablooglu AJ, Chen WS, Xie Z, Desai A, Paul S, Lack JB, Scott LA, Eisch AR, Dudek AZ, Parikh SM, Druey KM. Intrinsic endothelial hyperresponsiveness to inflammatory mediators drives acute episodes in models of Clarkson disease. J Clin Invest 2024; 134:e169137. [PMID: 38502192 DOI: 10.1172/jci169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.
Collapse
Affiliation(s)
- Ararat J Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Subrata Paul
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Justin B Lack
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Linda A Scott
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - A Robin Eisch
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Arkadiusz Z Dudek
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| |
Collapse
|
3
|
Goellner S, Enkavi G, Prasad V, Denolly S, Eu S, Mizzon G, Witte L, Kulig W, Uckeley ZM, Lavacca TM, Haselmann U, Lozach PY, Brügger B, Vattulainen I, Bartenschlager R. Zika virus prM protein contains cholesterol binding motifs required for virus entry and assembly. Nat Commun 2023; 14:7344. [PMID: 37957166 PMCID: PMC10643666 DOI: 10.1038/s41467-023-42985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- Sarah Goellner
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Sungmin Eu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- d-fine GmbH, Frankfurt, Germany
| | - Giulia Mizzon
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Leander Witte
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Zina M Uckeley
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Department of Molecular Genetics & Microbiology, University of Florida, Florida, USA
| | - Teresa M Lavacca
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Pierre-Yves Lozach
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Tang H, Abouleila Y, Saris A, Shimizu Y, Ottenhoff THM, Mashaghi A. Ebola virus-like particles reprogram cellular metabolism. J Mol Med (Berl) 2023; 101:557-568. [PMID: 36959259 PMCID: PMC10036248 DOI: 10.1007/s00109-023-02309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
5
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy. Nat Commun 2022; 13:6007. [PMID: 36224200 PMCID: PMC9554868 DOI: 10.1038/s41467-022-33805-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Virus infection affects cellular proteostasis and provides an opportunity to study this cellular process under perturbation. The proteostasis network in the endoplasmic reticulum (ER) is composed of the calnexin cycle, and the two protein degradation pathways ER-associated protein degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD/ER-phagy/reticulophagy). Here we show that calnexin and calreticulin trigger Zaire Ebolavirus (EBOV) glycoprotein GP1,2 misfolding. Misfolded EBOV-GP1,2 is targeted by ERAD machinery, but this results in lysosomal instead of proteasomal degradation. Moreover, the ER Ub ligase RNF185, usually associated with ERAD, polyubiquitinates EBOV-GP1,2 on lysine 673 via ubiquitin K27-linkage. Polyubiquinated GP1,2 is subsequently recruited into autophagosomes by the soluble autophagy receptor sequestosome 1 (SQSTM1/p62), in an ATG3- and ATG5-dependent manner. We conclude that EBOV hijacks all three proteostasis mechanisms in the ER to downregulate GP1,2 via polyubiquitination and show that this increases viral fitness. This study identifies linkages among proteostasis network components previously thought to function independently. Little is known about how proteostasis is maintained during viral infection. Here, the authors identify unexpected crosstalk between the calnexin cycle, ERAD, and reticulophagy, resulting in suppression of ebolavirus glycoprotein expression.
Collapse
|
7
|
Wang B, Zhang J, Liu X, Chai Q, Lu X, Yao X, Yang Z, Sun L, Johnson SF, Schwartz RC, Zheng YH. Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway. Autophagy 2022; 18:2350-2367. [PMID: 35130104 PMCID: PMC9542513 DOI: 10.1080/15548627.2022.2031381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: β-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.
Collapse
Affiliation(s)
- Bin Wang
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- MSD (Ningbo) Animal Health Technology Co., Ltd, Ningbo, China
| | - Jing Zhang
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Liu
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingqing Chai
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Xiaoran Lu
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Yao
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Silas F. Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Richard C Schwartz
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Yong-Hui Zheng
- CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
9
|
Tang Y, Hu L, Liu Y, Zhou B, Qin X, Ye J, Shen M, Wu Z, Zhang P. Possible mechanisms of cholesterol elevation aggravating COVID-19. Int J Med Sci 2021; 18:3533-3543. [PMID: 34522180 PMCID: PMC8436106 DOI: 10.7150/ijms.62021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Importance: Despite the availability of a vaccine against the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), humans will have to live with this virus and the after-effects of the coronavirus disease 2019 (COVID-19) infection for a long time. Cholesterol plays an important role in the infection and prognosis of SARS-CoV-2, and the study of its mechanism is of great significance not only for the treatment of COVID-19 but also for research on generic antiviral drugs. Observations: Cholesterol promotes the development of atherosclerosis by activating NLR family pyrin domain containing 3 (NLRP3), and the resulting inflammatory environment indirectly contributes to COVID-19 infection and subsequent deterioration. In in vitro studies, membrane cholesterol increased the number of viral entry sites on the host cell membrane and the number of angiotensin-converting enzyme 2 (ACE2) receptors in the membrane fusion site. Previous studies have shown that the fusion protein of the virus interacts with cholesterol, and the spike protein of SARS-CoV-2 also requires cholesterol to enter the host cells. Cholesterol in blood interacts with the spike protein to promote the entry of spike cells, wherein the scavenger receptor class B type 1 (SR-B1) plays an important role. Because of the cardiovascular protective effects of lipid-lowering therapy and the additional anti-inflammatory effects of lipid-lowering drugs, it is currently recommended to continue lipid-lowering therapy for patients with COVID-19, but the safety of extremely low LDL-C is questionable. Conclusions and Relevance: Cholesterol can indirectly increase the susceptibility of patients to SARS-CoV-2 and increase the risk of death from COVID-19, which are mediated by NLRP3 and atherosclerotic plaques, respectively. Cholesterol present in the host cell membrane, virus, and blood may also directly participate in the virus cell entry process, but the specific mechanism still needs further study. Patients with COVID-19 are recommended to continue lipid-lowering therapy.
Collapse
Affiliation(s)
- Yan Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Longtai Hu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- School of Traditional Chinese Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Yi Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Bangyi Zhou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Xiaohuan Qin
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Jujian Ye
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Maoze Shen
- Department of Cardiology, Raoping County People's Hospital, 161 Caichang Street, Huanggang Town, Chaozhou, 515700, Guangdong, People's Republic of China
| | - Zhijian Wu
- Department of Cardiology, Affiliated Boai Hospital of Zhongshan, Southern Medical University, No. 6, Chenggui Road, East District, Zhongshan, 528403, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 235 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Nieto‐Garai JA, Arboleya A, Otaegi S, Chojnacki J, Casas J, Fabriàs G, Contreras F, Kräusslich H, Lorizate M. Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003468. [PMID: 33552873 PMCID: PMC7856888 DOI: 10.1002/advs.202003468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 05/07/2023]
Abstract
HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.
Collapse
Affiliation(s)
- Jon Ander Nieto‐Garai
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Aroa Arboleya
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)Barrio Sarriena s/nLeioaE‐48940Spain
| | - Sara Otaegi
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| | | | - Josefina Casas
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules. Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia (IQAC‐CSIC)BarcelonaCatalonia08034Spain
- Liver and Digestive Diseases Networking Biomedical Research Center (CIBEREHD) ISCIIMadrid28029Spain
| | - F‐Xabier Contreras
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
- IkerbasqueBasque Foundation for ScienceBilbao48013Spain
| | - Hans‐Georg Kräusslich
- Department of Infectious DiseasesVirologyUniversitätsklinikum HeidelbergHeidelberg69120Germany
| | - Maier Lorizate
- Instituto Biofisika (UPV/EHU, CSIC)University of the Basque CountryLeioaE‐48940Spain
- Department of Biochemistry and Molecular BiologyFaculty of Science and TechnologyUniversity of the Basque CountryLeioaE‐48940Spain
| |
Collapse
|
12
|
Lee J, Kreutzberger AJB, Odongo L, Nelson EA, Nyenhuis DA, Kiessling V, Liang B, Cafiso DS, White JM, Tamm LK. Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry. Nat Struct Mol Biol 2021; 28:181-189. [PMID: 33462517 PMCID: PMC7992113 DOI: 10.1038/s41594-020-00548-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Cholesterol serves critical roles in enveloped virus fusion by modulating membrane properties. The glycoprotein (GP) of Ebola virus (EBOV) promotes fusion in the endosome, a process that requires the endosomal cholesterol transporter NPC1. However, the role of cholesterol in EBOV fusion is unclear. Here we show that cholesterol in GP-containing membranes enhances fusion and the membrane-proximal external region and transmembrane (MPER/TM) domain of GP interacts with cholesterol via several glycine residues in the GP2 TM domain, notably G660. Compared to wild-type (WT) counterparts, a G660L mutation caused a more open angle between MPER and TM domains in an MPER/TM construct, higher probability of stalling at hemifusion for GP2 proteoliposomes and lower cell entry of virus-like particles (VLPs). VLPs with depleted cholesterol show reduced cell entry, and VLPs produced under cholesterol-lowering statin conditions show less frequent entry than respective controls. We propose that cholesterol-TM interactions affect structural features of GP2, thereby facilitating fusion and cell entry.
Collapse
Affiliation(s)
- Jinwoo Lee
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth A Nelson
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David A Nyenhuis
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - David S Cafiso
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Judith M White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
13
|
Kong X, Xu W, Chen N, Li Y, Shen Y, Wu X. Bombyx mori nucleopolyhedrovirus F-like protein Bm14 is a factor for viral-induced cytopathic effects via regulating oxidative phosphorylation and cellular ROS levels. Virology 2020; 552:83-93. [PMID: 33120224 DOI: 10.1016/j.virol.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is highly pathogenic to Bombyx mori, silkworm, which causes serious cytopathic effects (CPEs) during infection. However, the role of viral protein in the virus-induced CPEs remains unclear. Here, we discovered that BmNPV infection induced severe CPEs including titer-dependent cell floating and changes in cellular surface morphology. Further explorations revealed the involvement of F-like protein (Bm14), a viral envelope protein, in inducing cytotoxicity and detachment of adherent BmN cells, and its disruption significantly impaired the virus infection-mediated CPEs. Intriguingly, transcriptomic analysis identified the tight association of Bm14 deletion with the activation of cellular oxidative phosphorylation pathway, consistent with the elevated mitochondrial membrane potential (MMP) levels and ATP concentrations as well as reduced ROS levels. Collectively, our results characterized for the first time the novel role of Bm14 in accelerating viral-induced cytopathogenicity via suppressing the cellular oxidative phosphorylation levels and upregulating the ROS levels.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Weifan Xu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
15
|
Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat Commun 2020; 11:2967. [PMID: 32528049 PMCID: PMC7290035 DOI: 10.1038/s41467-020-16754-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recent outbreak of Zika virus (ZIKV) was associated with birth defects and pregnancy loss when maternal infection occurs in early pregnancy, but specific mechanisms driving placental insufficiency and subsequent ZIKV-mediated pathogenesis remain unclear. Here we show, using large scale metabolomics, that ZIKV infection reprograms placental lipidome by impairing the lipogenesis pathways. ZIKV-induced metabolic alterations provide building blocks for lipid droplet biogenesis and intracellular membrane rearrangements to support viral replication. Furthermore, lipidome reprogramming by ZIKV is paralleled by the mitochondrial dysfunction and inflammatory immune imbalance, which contribute to placental damage. In addition, we demonstrate the efficacy of a commercially available inhibitor in limiting ZIKV infection, provides a proof-of-concept for blocking congenital infection by targeting metabolic pathways. Collectively, our study provides mechanistic insights on how ZIKV targets essential hubs of the lipid metabolism that may lead to placental dysfunction and loss of barrier function. Zika virus (ZIKV) infection of pregnant women is associated with pregnancy loss and birth defects, but molecular insights for the aetiology are scarce. Here the authors show that ZIKV reprograms the host lipidome to facilitate viral replication, induce mitochondria dysfunction, and cause immune imbalance, thereby identifying a potential target for ZIKV therapy.
Collapse
|
16
|
Kong X, Wei G, Chen N, Zhao S, Shen Y, Zhang J, Li Y, Zeng X, Wu X. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLoS Pathog 2020; 16:e1008633. [PMID: 32511266 PMCID: PMC7326278 DOI: 10.1371/journal.ppat.1008633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
DNA viruses can hijack and manipulate the host chromatin state to facilitate their infection. Multiple lines of evidences reveal that DNA virus infection results in the host chromatin relocation, yet there is little known about the effects of viral infection on the architecture of host chromatin. Here, a combination of epigenomic, transcriptomic and biochemical assays were conducted to investigate the temporal dynamics of chromatin accessibility in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The high-quality ATAC-seq data indicated that progressive chromatin remodeling took place following BmNPV infection. Viral infection resulted in a more open chromatin architecture, along with the marginalization of host genome and nucleosome disassembly. Moreover, our results revealed that chromatin accessibility in uninfected cells was regulated by euchromatic modifications, whereas the viral-induced highly accessible chromatin regions were originally associated with facultative heterochromatic modification. Overall, our findings illustrate for the first time the organization and accessibility of host chromatin in BmNPV-infected cells, which lay the foundation for future studies on epigenomic regulation mediated by DNA viruses. As a well-studied arthropod-specific double-stranded DNA virus, Bombyx mori nucleopolyhedrovirus (BmNPV) is a representative member of baculoviruses. BmNPV infection results in significant host chromatin marginalization, which has also been found in most DNA viruses. However, the effects of baculovirus infection on the organization and accessibility of host chromatin are poorly understood. Here, by using ATAC-seq, we show that DNA virus BmNPV infection gradually remodels the accessibility of host chromatin. ATAC-seq data reveal that the marginalized host chromatin is a more accessible architecture along with the depletion of multi-nucleosome depositions. Moreover, our findings suggest the increased accessibility regions are regulated by the facultative heterochromatic modification. Overall, we provide a novel understanding of molecular mechanisms by which baculovirus and DNA viruses alter the organization of host chromatin in epigenomic regulation.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shudi Zhao
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjia Zhang
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqun Zeng
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Nehls J, Businger R, Hoffmann M, Brinkmann C, Fehrenbacher B, Schaller M, Maurer B, Schönfeld C, Kramer D, Hailfinger S, Pöhlmann S, Schindler M. Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner. Cell Rep 2020; 26:1841-1853.e6. [PMID: 30759394 DOI: 10.1016/j.celrep.2019.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 11/07/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
The Ebola virus glycoprotein (EBOV-GP) forms GP-containing microvesicles, so-called virosomes, which are secreted from GP-expressing cells. However, determinants of GP-virosome release and their functionality are poorly understood. We characterized GP-mediated virosome formation and delineated the role of the antiviral factor tetherin (BST2, CD317) in this process. Residues in the EBOV-GP receptor-binding domain (RBD) promote GP-virosome secretion, while tetherin suppresses GP-virosomes by interactions involving the GP-transmembrane domain. Tetherin from multiple species interfered with GP-virosome release, and tetherin from the natural fruit bat reservoir showed the highest inhibitory activity. Moreover, analyses of GP from various ebolavirus strains, including the EBOV responsible for the West African epidemic, revealed the most efficient GP-virosome formation by highly pathogenic ebolaviruses. Finally, EBOV-GP-virosomes were immunomodulatory and acted as decoys for EBOV-neutralizing antibodies. Our results indicate that GP-virosome formation might be a determinant of EBOV immune evasion and pathogenicity, which is suppressed by tetherin.
Collapse
Affiliation(s)
- Julia Nehls
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ramona Businger
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | | | - Birgit Fehrenbacher
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Brigitte Maurer
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Schönfeld
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Daniela Kramer
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stephan Hailfinger
- Interfaculty Institute for Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
18
|
Olukitibi TA, Ao Z, Mahmoudi M, Kobinger GA, Yao X. Dendritic Cells/Macrophages-Targeting Feature of Ebola Glycoprotein and its Potential as Immunological Facilitator for Antiviral Vaccine Approach. Microorganisms 2019; 7:E402. [PMID: 31569539 PMCID: PMC6843631 DOI: 10.3390/microorganisms7100402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.
Collapse
Affiliation(s)
- Titus Abiola Olukitibi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mona Mahmoudi
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Gary A Kobinger
- Centre de Recherche en Infectiologie de l' Université Laval/Centre Hospitalier de l' Université Laval (CHUL), Québec, QC G1V 4G2, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
19
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Shaikh F, Zhao Y, Alvarez L, Iliopoulou M, Lohans C, Schofield CJ, Padilla-Parra S, Siu SWI, Fry EE, Ren J, Stuart DI. Structure-Based in Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. J Med Chem 2019; 62:2928-2937. [PMID: 30785281 PMCID: PMC6441942 DOI: 10.1021/acs.jmedchem.8b01328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Potent Ebolavirus (EBOV) inhibitors
will help to curtail outbreaks
such as that which occurred in 2014–16 in West Africa. EBOV
has on its surface a single glycoprotein (GP) critical for viral entry
and membrane fusion. Recent high-resolution complexes of EBOV GP with
a variety of approved drugs revealed that binding to a common cavity
prevented fusion of the virus and endosomal membranes, inhibiting
virus infection. We performed docking experiments, screening a database
of natural compounds to identify those likely to bind at this site.
Using both inhibition assays of HIV-1-derived pseudovirus cell entry
and structural analyses of the complexes of the compounds with GP,
we show here that two of these compounds attach in the common binding
cavity, out of eight tested. In both cases, two molecules bind in
the cavity. The two compounds are chemically similar, but the tighter
binder has an additional chlorine atom that forms good halogen bonds
to the protein and achieves an IC50 of 50 nM, making it
the most potent GP-binding EBOV inhibitor yet identified, validating
our screening approach for the discovery of novel antiviral compounds.
Collapse
Affiliation(s)
- Faraz Shaikh
- Department of Computer and Information Science, Faculty of Science and Technology , University of Macau , E11, Macau 999078 , China.,Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Yuguang Zhao
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Luis Alvarez
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Maria Iliopoulou
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Christopher Lohans
- Department of Chemistry , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | | | - Sergi Padilla-Parra
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K.,Biocruces-Bizkaia Health Research Institute , Ikerbasque, Basque Foundation for Science , Bilbao 48011 , Spain
| | - Shirley W I Siu
- Department of Computer and Information Science, Faculty of Science and Technology , University of Macau , E11, Macau 999078 , China
| | - Elizabeth E Fry
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - Jingshan Ren
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K
| | - David I Stuart
- Division of Structural Biology , University of Oxford , The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN , U.K.,Diamond Light Source Limited , Harwell Science & Innovation Campus , Didcot OX11 0DE , U.K
| |
Collapse
|
21
|
Graul M, Kisielnicka E, Rychłowski M, Verweij MC, Tobler K, Ackermann M, Wiertz EJHJ, Bieńkowska-Szewczyk K, Lipińska AD. Transmembrane regions of bovine herpesvirus 1-encoded UL49.5 and glycoprotein M regulate complex maturation and ER-Golgi trafficking. J Gen Virol 2019; 100:497-510. [PMID: 30694168 DOI: 10.1099/jgv.0.001224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1)-encoded UL49.5 (a homologue of herpesvirus glycoprotein N) can combine different functions, regulated by complex formation with viral glycoprotein M (gM). We aimed to identify the mechanisms governing the immunomodulatory activity of BoHV-1 UL49.5. In this study, we addressed the impact of gM/UL49.5-specific regions on heterodimer formation, folding and trafficking from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) - events previously found to be responsible for abrogation of the UL49.5-mediated inhibition of the transporter associated with antigen processing (TAP). We first established, using viral mutants, that no other viral protein could efficiently compensate for the chaperone function of UL49.5 within the complex. The cytoplasmic tail of gM, containing putative trafficking signals, was dispensable either for ER retention of gM or for the release of the complex. We constructed cell lines with stable co-expression of BoHV-1 gM with chimeric UL49.5 variants, composed of the BoHV-1 N-terminal domain fused to the transmembrane region (TM) from UL49.5 of varicella-zoster virus or TM and the cytoplasmic tail of influenza virus haemagglutinin. Those membrane-anchored N-terminal domains of UL49.5 were sufficient to form a complex, yet gM/UL49.5 folding and ER-TGN trafficking could be affected by the UL49.5 TM sequence. Finally, we found that leucine substitutions in putative glycine zipper motifs within TM helices of gM resulted in strong reduction of complex formation and decreased ability of gM to interfere with UL49.5-mediated major histocompatibility class I downregulation. These findings highlight the importance of gM/UL49.5 transmembrane domains for the biology of this conserved herpesvirus protein complex.
Collapse
Affiliation(s)
- Małgorzata Graul
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Edyta Kisielnicka
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Rychłowski
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marieke C Verweij
- 2Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kurt Tobler
- 3Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Emmanuel J H J Wiertz
- 4Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Krystyna Bieńkowska-Szewczyk
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- 1Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
22
|
Abstract
Almost all new treatments being developed for the next influenza pandemic target the virus. During the Ebola crisis in West Africa, patients were treated with an inexpensive generic statin/angiotensin receptor blocker combination that appeared to greatly improve survival. These drugs target the host response, not the virus, and probably reverse endothelial dysfunction. Scientists and health officials have shown little interest in this idea. Yet, during the early months of the next pandemic, vaccines will be unavailable and treatment options will be limited. Physicians should be prepared to undertake clinical trials of widely available generic drugs to determine whether they improve survival in patients with seasonal influenza, other emerging virus diseases, and other forms of acute critical illness. Public health officials should give these studies their strong support. If successful, they will suggest a 'bottom up' approach to patient care that could be implemented worldwide on the first pandemic day.
Collapse
|
23
|
A GXXXA Motif in the Transmembrane Domain of the Ebola Virus Glycoprotein Is Required for Tetherin Antagonism. J Virol 2018; 92:JVI.00403-18. [PMID: 29669839 DOI: 10.1128/jvi.00403-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
The interferon-induced antiviral host cell protein tetherin can inhibit the release of several enveloped viruses from infected cells. The Ebola virus (EBOV) glycoprotein (GP) antagonizes tetherin, but the domains and amino acids in GP that are required for tetherin antagonism have not been fully defined. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was previously shown to be important for GP-mediated cellular detachment. Here, we investigated whether this motif also contributes to tetherin antagonism. Mutation of the GXXXA motif did not impact GP expression or particle incorporation and only modestly reduced EBOV-GP-driven entry. In contrast, the GXXXA motif was required for tetherin antagonism in transfected cells. Moreover, alteration of the GXXXA motif increased tetherin sensitivity of a replication-competent vesicular stomatitis virus (VSV) chimera encoding EBOV-GP. Although these results await confirmation with authentic EBOV, they indicate that a GXXXA motif in the TMD of EBOV-GP is important for tetherin antagonism. Moreover, they provide the first evidence that GP can antagonize tetherin in the context of an infectious EBOV surrogate.IMPORTANCE The glycoprotein (GP) of Ebola virus (EBOV) inhibits the antiviral host cell protein tetherin and may promote viral spread in tetherin-positive cells. However, tetherin antagonism by GP has so far been demonstrated only with virus-like particles, and it is unknown whether GP can block tetherin in infected cells. Moreover, a mutation in GP that selectively abrogates tetherin antagonism is unknown. Here, we show that a GXXXA motif in the transmembrane domain of EBOV-GP, which was previously reported to be required for GP-mediated cell rounding, is also important for tetherin counteraction. Moreover, analysis of this mutation in the context of vesicular stomatitis virus chimeras encoding EBOV-GP revealed that GP-mediated tetherin counteraction is operative in infected cells. To our knowledge, these findings demonstrate for the first time that GP can antagonize tetherin in infected cells and provide a tool to study the impact of GP-dependent tetherin counteraction on EBOV spread.
Collapse
|
24
|
Zhao Y, Ren J, Fry EE, Xiao J, Townsend AR, Stuart DI. Structures of Ebola Virus Glycoprotein Complexes with Tricyclic Antidepressant and Antipsychotic Drugs. J Med Chem 2018; 61:4938-4945. [DOI: 10.1021/acs.jmedchem.8b00350] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
| | - Julia Xiao
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, U.K
| | - Alain R. Townsend
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, U.K
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, U.K
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K
| |
Collapse
|
25
|
Shrivastava-Ranjan P, Flint M, Bergeron É, McElroy AK, Chatterjee P, Albariño CG, Nichol ST, Spiropoulou CF. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing. mBio 2018; 9:e00660-18. [PMID: 29717011 PMCID: PMC5930306 DOI: 10.1128/mbio.00660-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD.IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune system are characteristic features of EVD, statins could be explored as part of EVD therapeutics.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anita K McElroy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Webb SR, Smith SE, Fried MG, Dutch RE. Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro. mSphere 2018; 3:e00047-18. [PMID: 29669880 PMCID: PMC5907656 DOI: 10.1128/msphere.00047-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.
Collapse
Affiliation(s)
- Stacy R Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Stacy E Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
27
|
Genetic variation in VAC14 is associated with bacteremia secondary to diverse pathogens in African children. Proc Natl Acad Sci U S A 2018; 115:E3601-E3603. [PMID: 29588414 DOI: 10.1073/pnas.1802071115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Das J, Maji S, Agarwal T, Chakraborty S, Maiti TK. Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clin Exp Metastasis 2018. [DOI: 10.1007/s10585-018-9887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Ren J, Zhao Y, Fry EE, Stuart DI. Target Identification and Mode of Action of Four Chemically Divergent Drugs against Ebolavirus Infection. J Med Chem 2018; 61:724-733. [PMID: 29272110 PMCID: PMC5808380 DOI: 10.1021/acs.jmedchem.7b01249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we show that four chemically divergent approved drugs reported to inhibit Ebolavirus infection, benztropine, bepridil, paroxetine and sertraline, directly interact with the Ebolavirus glycoprotein. Binding of these drugs destabilizes the protein, suggesting that this may be the mechanism of inhibition, as reported for the anticancer drug toremifene and the painkiller ibuprofen, which bind in the same large cavity on the glycoprotein. Crystal structures show that the position of binding and the mode of interaction within the pocket vary significantly between these compounds. The binding constants (Kd) determined by thermal shift assay correlate with the protein-inhibitor interactions as well as with the antiviral activities determined by virus cell entry assays, supporting the hypothesis that these drugs inhibit viral entry by binding the glycoprotein and destabilizing the prefusion conformation. Details of the protein-inhibitor interactions of these complexes and their relation with binding affinity may facilitate the design of more potent inhibitors.
Collapse
Affiliation(s)
- Jingshan Ren
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - Yuguang Zhao
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K
| | - David I Stuart
- Division of Structural Biology, University of Oxford , The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, U.K.,Diamond Light Source Ltd. , Harwell Science & Innovation Campus, Didcot, OX11 0DE, U.K
| |
Collapse
|
30
|
Brinkmann C, Hoffmann M, Lübke A, Nehlmeier I, Krämer-Kühl A, Winkler M, Pöhlmann S. The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells. PLoS One 2017; 12:e0189073. [PMID: 29216247 PMCID: PMC5720808 DOI: 10.1371/journal.pone.0189073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 11/26/2022] Open
Abstract
Vesicular stomatitis virus (VSV) release from infected cells is inhibited by the interferon (IFN)-inducible antiviral host cell factor tetherin (BST-2, CD317). However, several viruses encode tetherin antagonists and it is at present unknown whether residual VSV spread in tetherin-positive cells is also promoted by a virus-encoded tetherin antagonist. Here, we show that the viral glycoprotein (VSV-G) antagonizes tetherin in transfected cells, although with reduced efficiency as compared to the HIV-1 Vpu protein. Tetherin antagonism did not involve alteration of tetherin expression and was partially dependent on a GXXXG motif in the transmembrane domain of VSV-G. However, mutation of the GXXXG motif did not modulate tetherin sensitivity of infectious VSV. These results identify VSV-G as a tetherin antagonist in transfected cells but fail to provide evidence for a contribution of tetherin antagonism to viral spread.
Collapse
Affiliation(s)
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
| | - Anastasia Lübke
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
| | - Annika Krämer-Kühl
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Clarke EC, Collar AL, Ye C, Caì Y, Anaya E, Rinaldi D, Martinez B, Yarborough S, Merle C, Theisen M, Wada J, Kuhn JH, Bradfute SB. Production and Purification of Filovirus Glycoproteins in Insect and Mammalian Cell Lines. Sci Rep 2017; 7:15091. [PMID: 29118454 PMCID: PMC5678155 DOI: 10.1038/s41598-017-15416-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023] Open
Abstract
Filoviruses are highly virulent pathogens capable of causing severe disease. The glycoproteins of filoviruses are the only virally expressed proteins on the virion surface and are required for receptor binding. As such, they are the main candidate vaccine antigen. Despite their virulence, most filoviruses are not comprehensively characterized, and relatively few commercially produced reagents are available for their study. Here, we describe two methods for production and purification of filovirus glycoproteins in insect and mammalian cell lines. Considerations of expression vector choice, modifications to sequence, troubleshooting of purification method, and glycosylation differences are all important for successful expression of filovirus glycoproteins in cell lines. Given the scarcity of commercially available filovirus glycoproteins, we hope our experiences with possible difficulties in purification of the proteins will facilitate other researchers to produce and purify filovirus glycoproteins rapidly.
Collapse
Affiliation(s)
- Elizabeth C Clarke
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Amanda L Collar
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Chunyan Ye
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Eduardo Anaya
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Derek Rinaldi
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Britney Martinez
- Undergraduate Pipeline Network, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Sarah Yarborough
- Undergraduate Pipeline Network, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | | | | | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Steven B Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
32
|
Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol. Proc Natl Acad Sci U S A 2017; 114:E7746-E7755. [PMID: 28827342 DOI: 10.1073/pnas.1706070114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.
Collapse
|
33
|
|
34
|
Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci Rep 2017; 7:46374. [PMID: 28397863 PMCID: PMC5387728 DOI: 10.1038/srep46374] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
We present the structure of the surface Ebola virus (EBOV) trimeric glycoprotein (GP) spike at 11 Å resolution, in situ within the viral plasma membrane of purified virus particles. GP functions in cellular attachment, endosomal entry, and membrane fusion to initiate infection, and is a key therapeutic target. Nevertheless, only about half of the GP molecule has yet been solved to atomic resolution, excluding the mucin-like and transmembrane domains, and some of the glycans. Fitting of the atomic resolution X-ray data from expressed, truncated deletion constructs within our 11 Å structure of the entire molecule demonstrates the relationship between the GP1-GP2 domains, the mucin-like and transmembrane domains, and the bilaminar lipid envelope. We show that the mucin-like domain covers the glycan cap and partially occludes the receptor binding sites prior to proteolytic cleavage. Our structure is also consistent with key antibody neutralisation sites on GP being accessible prior to proteolysis. Based on the findings of us and others, GP-mediated binding may create an angle of 18 degrees between the planes of viral and endosomal membranes.
Collapse
|
35
|
A comparison of host gene expression signatures associated with infection in vitro by the Makona and Ecran (Mayinga) variants of Ebola virus. Sci Rep 2017; 7:43144. [PMID: 28240256 PMCID: PMC5327407 DOI: 10.1038/srep43144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/18/2017] [Indexed: 11/08/2022] Open
Abstract
The Ebola virus (EBOV) variant Makona (which emerged in 2013) was the causative agent of the largest outbreak of Ebola Virus Disease recorded. Differences in virus-host interactions between viral variants have potential consequences for transmission, disease severity and mortality. A detailed profile of the cellular changes induced by the Makona variant compared with other Ebola virus variants was lacking. In this study, A549 cells, a human cell line with a robust innate response, were infected with the Makona variant or with the Ecran variant originating from the 1976 outbreak in Central Africa. The abundance of viral and cellular mRNA transcripts was profiled using RNASeq and differential gene expression analysis performed. Differences in effects of each virus on the expression of interferon-stimulated genes were also investigated in A549 NPro cells where the type 1 interferon response had been attenuated. Cellular transcriptomic changes were compared with those induced by human respiratory syncytial virus (HRSV), a virus with a similar genome organisation and replication strategy to EBOV. Pathway and gene ontology analysis revealed differential expression of functionally important genes; including genes involved in the inflammatory response, cell proliferation, leukocyte extravasation and cholesterol biosynthesis. Whilst there was overlap with HRSV, there was unique commonality to the EBOV variants.
Collapse
|
36
|
Affiliation(s)
- Keith J. Chappell
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
- * E-mail: (KJC); (DW)
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
- * E-mail: (KJC); (DW)
| |
Collapse
|
37
|
Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:421. [PMID: 27942512 DOI: 10.21037/atm.2016.11.03] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.
Collapse
Affiliation(s)
- David S Fedson
- Formerly, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
38
|
Affiliation(s)
- Angela L. Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington 98109;
| |
Collapse
|
39
|
Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 2016; 535:169-172. [PMID: 27362232 PMCID: PMC4947387 DOI: 10.1038/nature18615] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits) which is solely responsible for host cell attachment, endosomal entry and membrane fusion1–7. GP is thus a primary target for the development of antiviral drugs. Here we report the first unliganded structure of EBOV GP, and complexes with an anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered8–10. Unexpectedly both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the 3-fold axis. Protein-drug interactions, with both GP1 and GP2, are predominately hydrophobic. Residues lining the binding site are highly conserved amongst filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 °C decrease in protein melting temperature upon toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. The results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, therefore preventing fusion between the viral and endosome membranes. Thus these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
Collapse
|
40
|
Zhao Y, Ren J, Harlos K, Stuart DI. Structure of glycosylated NPC1 luminal domain C reveals insights into NPC2 and Ebola virus interactions. FEBS Lett 2016; 590:605-12. [PMID: 26846330 PMCID: PMC4819692 DOI: 10.1002/1873-3468.12089] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
Abstract
Niemann‐pick type C1 (NPC1) is an endo/lysosomal membrane protein involved in intracellular cholesterol trafficking, and its luminal domain C is an essential endosomal receptor for Ebola and Marburg viruses. We have determined the crystal structure of glycosylated NPC1 luminal domain C and find all seven possible sites are glycosylated. Mapping the disease mutations onto the glycosylated structure reveals a potential binding face for NPC2. Knowledge‐based docking of NPC1 onto Ebola viral glycoprotein and sequence analysis of filovirus susceptible and refractory species reveals four critical residues, H418, Q421, F502 and F504, some or all of which are likely responsible for the species‐specific susceptibility to the virus infection.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - Karl Harlos
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, UK.,Diamond Light Source Ltd, Didcot, UK
| |
Collapse
|