1
|
Iseki M, Sakamoto Y, Takezaki D, Matsuda Y, Inoue M, Morizane S, Mukai T. Epstein-Barr Virus-Induced 3 Attributes to TLR7-Mediated Splenomegaly. Immunology 2025; 175:36-51. [PMID: 39876525 DOI: 10.1111/imm.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Epstein-Barr virus-induced 3 (EBI3) functions as a component of the heterodimer cytokine IL-27, which regulates innate and acquired immune responses. The expression of EBI3 gene is induced by Toll-like receptors (TLRs). Repeated treatment with imiquimod (IMQ), a TLR7 agonist, induces splenomegaly and cytopaenia due to increased splenic function. Although immune cell activation is speculated to play a role in chronic infection-mediated splenomegaly, the detailed mechanisms remain unknown. This study shows that IMQ treatment induces marked splenomegaly and severe bicytopaenia (anaemia and thrombocytopaenia) in wild-type mice. In IMQ-treated mice, myeloid cell populations in the spleen increased, and extramedullary haematopoiesis was observed. RNA-seq analysis revealed the upregulation of type I interferon (IFN)-related genes in the spleens of IMQ-treated mice. IMQ-induced pathological changes were partially mitigated by EBI3 deficiency. To investigate the mechanism of the improved phenotypes in the Ebi3 KO mice, we examined the involvement of IL-27, a heterodimer of EBI3 and IL-27p28. The expression of Il27a, which encodes IL-27p28, was increased in the spleen and peripheral blood by IMQ treatment. Furthermore, IL-27 stimulation upregulated type I IFN-related genes in bone marrow-derived macrophage cultures without type I IFN. These findings suggest that EBI3 deficiency mitigated IMQ-mediated pathological changes, presumably via a lack of IL-27 formation. Our study thus provides insights into the molecular mechanisms underlying chronic infection-mediated splenomegaly.
Collapse
Affiliation(s)
- Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Yuma Sakamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Daiki Takezaki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Inoue
- Medical Bioresource Research Unit, Central Research Institute, Kawasaki Medical School, Kurashiki, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
2
|
Stacchiotti C, Mazzella di Regnella S, Cinotti M, Spalloni A, Volpe E. Neuroinflammation and Amyotrophic Lateral Sclerosis: Recent Advances in Anti-Inflammatory Cytokines as Therapeutic Strategies. Int J Mol Sci 2025; 26:3854. [PMID: 40332510 PMCID: PMC12028049 DOI: 10.3390/ijms26083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroinflammation is an inflammatory response occurring within the central nervous system (CNS). The process is marked by the production of pro-inflammatory cytokines, chemokines, small-molecule messengers, and reactive oxygen species. Microglia and astrocytes are primarily involved in this process, while endothelial cells and infiltrating blood cells contribute to neuroinflammation when the blood-brain barrier (BBB) is damaged. Neuroinflammation is increasingly recognized as a pathological hallmark of several neurological diseases, including amyotrophic lateral sclerosis (ALS), and is closely linked to neurodegeneration, another key feature of ALS. In fact, neurodegeneration is a pathological trigger for inflammation, and neuroinflammation, in turn, contributes to motor neuron (MN) degeneration through the induction of synaptic dysfunction, neuronal death, and inhibition of neurogenesis. Importantly, resolution of acute inflammation is crucial for avoiding chronic inflammation and tissue destruction. Inflammatory processes are mediated by soluble factors known as cytokines, which are involved in both promoting and inhibiting inflammation. Cytokines with anti-inflammatory properties may exert protective roles in neuroinflammatory diseases, including ALS. In particular, interleukin (IL)-10, transforming growth factor (TGF)-β, IL-4, IL-13, and IL-9 have been shown to exert an anti-inflammatory role in the CNS. Other recently emerging immune regulatory cytokines in the CNS include IL-35, IL-25, IL-37, and IL-27. This review describes the current understanding of neuroinflammation in ALS and highlights recent advances in the role of anti-inflammatory cytokines within CNS with a particular focus on their potential therapeutic applications in ALS. Furthermore, we discuss current therapeutic strategies aimed at enhancing the anti-inflammatory response to modulate neuroinflammation in this disease.
Collapse
Affiliation(s)
- Costanza Stacchiotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Mazzella di Regnella
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| | - Miriam Cinotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Santa Lucia Foundation, 00143 Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| |
Collapse
|
3
|
Phan AT, Aunins E, Cruz-Morales E, Dwivedi G, Bunkofske M, Eberhard JN, Aldridge DL, Said H, Banda O, Tam Y, Christian DA, Vonderheide RH, Kedl RM, Weissman D, Alameh MG, Hunter CA. The type I IFN-IL-27 axis promotes mRNA vaccine-induced CD8 + T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633383. [PMID: 39896632 PMCID: PMC11785111 DOI: 10.1101/2025.01.16.633383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ability of lipid nanoparticle (LNP)-delivered mRNA vaccines to induce type I IFNs is critical to promote CD8 + T cell responses. The studies presented here indicate that immunization with nucleoside modified mRNA-LNP vaccines drives myeloid cell expression of the cytokine IL-27, which acts on antigen-specific CD8 + T cells to sustain T cell expansion. In vitro and in vivo studies revealed that type I IFN signaling is necessary for mRNA-LNP-induced IL-27 production, that immunization failed in IL-27 KO mice, and that immunization of IFNAR1-deficient mice with mRNA-LNP particles that also encode IL-27 mRNA restored antigen-specific CD8 + T cell responses. In addition, IL-27 mRNA-LNPs served as an adjuvant that improved cytolytic CD8 + T cell responses and the therapeutic efficacy of mRNA-LNPs to drive anti-pathogen and anti-tumor immunity. These studies highlight the central role of IL-27 in mRNA-LNP induced CD8 + T cell responses and the ability of this cytokine to augment the functionality of the CD8 + T cell response for prophylactic or therapeutic immunization.
Collapse
|
4
|
An J, Fu D, Chen X, Guan C, Li L, Bai J, Lv H. Revisiting the role of IL-27 in obesity-related metabolic diseases: safeguard or perturbation? Front Immunol 2025; 15:1498288. [PMID: 39906735 PMCID: PMC11792170 DOI: 10.3389/fimmu.2024.1498288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
The prevalence of metabolic diseases, such as obesity, has been steadily increasing in recent years, posing a significant threat to public health. Therefore, early identification and intervention play a crucial role. With the deepening understanding of the etiology of metabolic diseases, novel therapeutic targets are emerging for the treatment of obesity, lipid metabolism disorders, cardiovascular and cerebrovascular diseases, glucose metabolism disorders, and other related metabolic conditions. IL-27, as a multi-potent cytokine, holds great promise as a potential candidate target in this regard. This article provides a comprehensive review of the latest findings on IL-27 expression and signal transduction in the regulation of immune inflammatory cells, as well as its implications in obesity and other related metabolic diseases. Furthermore, it explores the potential of IL-27 as a novel therapeutic target for the treatment of obesity and metabolic disorders. Finally, an overview is presented on both the opportunities and challenges associated with targeting IL-27 for therapeutic interventions.
Collapse
Affiliation(s)
- Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Fu
- Department of Endocrinology, The People’s Hospital of Yuzhong County, Lanzhou, Gansu, China
| | - Ximei Chen
- Department of General Medicine, Zhengzhou Yihe Hospital affiliated to Henan University, Zhengzhou, Henan, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lingling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jia Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Jiang N, Zhao J, Zhou C, Nan X. Circulating interleukin-27 is associated with the risk of chronic periodontitis and allergic rhinitis: A Mendelian randomization analysis. Autoimmunity 2024; 57:2358070. [PMID: 38829359 DOI: 10.1080/08916934.2024.2358070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Chronic periodontitis (CP) and allergic rhinitis (AR) have attracted wide attention as global public health problems with high incidence. Recent studies have shown that circulating interleukin-27 (IL-27) is associated with the risk of CP and AR. The aim of this study is to analyze the causal effect between them using Mendelian randomization (MR). METHODS Bidirectional MR analyses were performed with the use of publicly available genome-wide association study (GWAS) data. Summary data on circulating IL-27, CP, and AR published in genome-wide association studies were collected. Instrumental variables (IV) were extracted using assumptions of correlation, independence and exclusivity as criteria. Inverse variance weighting (IVW) was used as the main method, combined with weighted median method (WM) and MR-Egger and other MR Analysis methods for causal inference of exposure and outcome. Cochran's Q and MR-Egger intercept were used for sensitivity analysis. RESULTS The IVW study showed a causal effect between increased circulating IL-27 levels and increased risk of CP (OR = 1.14, 95%CI = 1.02-1.26, p = .020). Similarly, the increase of circulating IL-27 level had a causal effect on the decreased risk of AR (OR = 0.88, 95%CI = 0.80-0.97, p = .012). In addition, IVW study found that there was a causal between the increased risk of CP and circulating IL-27 level (OR = 1.05, 95%CI = 1.01-1.10, p = .016). However, there was no significant causal relationship between the risk of AR and circulating IL-27 levels (OR = 0.97, 95%CI = 0.91-1.02, p = .209). no significant heterogeneity or horizontal pleiotropy was found in sensitivity analysis. CONCLUSIONS There is a causal effect between circulating IL-27 level and CP, AR, which will help to find new ideas and methods for the diagnosis and treatment of CP and AR.
Collapse
Affiliation(s)
- Nan Jiang
- School of Stomatology, Shanxi Medical University, Taiyuan, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - JingLi Zhao
- School of Stomatology, Shanxi Medical University, Taiyuan, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - ChuHuan Zhou
- School of Stomatology, Shanxi Medical University, Taiyuan, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - XinRong Nan
- School of Stomatology, Shanxi Medical University, Taiyuan, Taiyuan, China
- The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Yazdanpanah E, Pazoki A, Dadfar S, Nemati MH, Sajad Siadati SM, Tarahomi M, Orooji N, Haghmorad D, Oksenych V. Interleukin-27 and Autoimmune Disorders: A Compressive Review of Immunological Functions. Biomolecules 2024; 14:1489. [PMID: 39766196 PMCID: PMC11672993 DOI: 10.3390/biom14121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune disorders (ADs) pose significant health and economic burdens globally, characterized by the body's immune system mistakenly attacking its own tissues. While the precise mechanisms driving their development remain elusive, a combination of genetic predisposition(s) and environmental triggers is implicated. Interleukin-27 (IL-27), among numerous cytokines involved, has emerged as a key regulator, exhibiting dual roles in immune modulation. This review delves into the molecular structure and signaling mechanisms of IL-27, highlighting its diverse effects on various immune cells. Additionally, it explores the involvement of IL-27 in autoimmune diseases, such as multiple sclerosis (MS) and rheumatoid arthritis (RA), offering insights into its potential therapeutic implications. Moreover, its involvement in autoimmune diseases like type 1 diabetes (T1D), inflammatory bowel disease (IBD), myasthenia gravis (MG), Sjögren's syndrome (SS), and Guillain-Barré syndrome (GBS) is multifaceted, with potential diagnostic and therapeutic implications across these conditions. Further research is essential to fully understand IL-27's mechanisms of action and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hosein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Mahdieh Tarahomi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
7
|
Hadifar S, Masoudzadeh N, Andersson B, Heydari H, Mashayekhi Goyonlo V, Kerachian M, Persson J, Rahimi-Tamandegani H, Erfanian Salim R, Rafati S, Harandi AM. Integrated analysis of lncRNA and mRNA expression profiles in cutaneous leishmaniasis lesions caused by Leishmania tropica. Front Cell Infect Microbiol 2024; 14:1416925. [PMID: 39639867 PMCID: PMC11617529 DOI: 10.3389/fcimb.2024.1416925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Background Cutaneous leishmaniasis (CL), caused by Leishmania (L.) species, remains a neglected tropical disease in many developing countries. We and others have shown that different Leishmania species can alter the gene expression profile of human host cells. Long non-coding RNAs (lncRNAs) have been found to play a role in the pathogenesis of leishmaniasis through dysregulation of transcriptome signatures. Understanding the regulatory roles of lncRNAs in the biological networks involved in leishmaniasis can improve our understanding of the disease. Methods Herein, we used our previous RNA sequencing data (GSE216638) to investigate the profile of lncRNAs in the skin lesions of L. tropica-infected patients. We employed the weighted gene correlation network analysis (WGCNA) algorithm to establish co-expression networks of shared genes between CL patients and infer the potential role of lncRNAs in CL patients. We identified hub genes and trans- and cis-acting lncRNAs, and carried out functional enrichment analysis on a key co-expressed module related to L. tropica-infected patients. Results We found substantial involvement of lncRNAs in the CL patient dataset. Using the WGCNA method, we classified all included genes into seven modules, with a module (turquoise) being significantly correlated with the studied clinical traits and identified as the key module. This module was mainly involved in the "interferon gamma signaling" and "cytokine signaling" pathways. We highlighted several lncRNAs and their co-expressed mRNA pairs, like SIRPG-AS1, IL21R-AS1, IL24, and TLDC2, as hub genes of the key module. Quantitative RT-PCR validated the expression of several genes in the lesions of an independent cohort of L. tropica-infected patients. Conclusions These findings enhance our understanding of the human skin response to L. tropica infection. Furthermore, the hub genes identified in this study are worthy of further evaluation as potential targets in the development of more effective treatments and preventive measures for CL caused by L. tropica.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Björn Andersson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hossein Heydari
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammadali Kerachian
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Hadifar S, Masoudzadeh N, Heydari H, Mashayekhi Goyonlo V, Kerachian M, Daneshpazhooh M, Sadeghnia A, Tootoonchi N, Erfanian Salim R, Rafati S, Harandi AM. Intralesional gene expression profile of JAK-STAT signaling pathway and associated cytokines in Leishmania tropica-infected patients. Front Immunol 2024; 15:1436029. [PMID: 39364404 PMCID: PMC11446769 DOI: 10.3389/fimmu.2024.1436029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Background The JAK-STAT signaling pathway is a central cascade of signal transduction for the myriad of cytokines in which dysregulation has been implicated in progression of inflammatory and infectious diseases. However, the involvement of this pathway in human cutaneous leishmaniasis (CL) due to Leishmania (L.) tropica warrants further investigation. Methods This study sought to investigate differential gene expression of several cytokines and their associated jak-stat genes in the lesions of L. tropica-infected patients byquantitative Real-Time PCR. Further, the expression of five inhibitory immune checkpoint genes was evaluated. Results Results showed that the gene expression levelsof both Th1 (ifng, il12, il23) and Th2 (il4, il10) types cytokines were increased in the lesion of studied patients. Further, elevated expression levels of il35, il21, il27 and il24 genes were detected in the lesions of CL patients. Notably, the expression of the majority of genes involved in JAK/STAT signaling pathway as well as checkpoint genes including pdl1, ctla4 and their corresponding receptors was increased. Conclusion Our finding revealed dysregulation of cytokines and related jak-stat genes in the lesion of CL patients. These results highlight the need for further exploration of the functional importance of these genes in the pathogenesis of, and immunity to, CL.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Heydari
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammadali Kerachian
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Liu JQ, Jabbari A, Lin CH, Akkanapally V, Frankel WL, Basu S, He K, Zheng P, Liu Y, Bai XF. IL-27 Gene Therapy Ameliorates IPEX Syndrome Caused by Germline Mutation of Foxp3 Gene: A Major Role for Induction of IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:559-566. [PMID: 38975727 PMCID: PMC11333164 DOI: 10.4049/jimmunol.2400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.
Collapse
MESH Headings
- Animals
- Forkhead Transcription Factors/genetics
- Mice
- Interleukin-10/genetics
- Interleukin-10/immunology
- Genetic Therapy/methods
- Germ-Line Mutation
- T-Lymphocytes, Regulatory/immunology
- Genetic Diseases, X-Linked/therapy
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/genetics
- Interleukins/immunology
- Interleukins/genetics
- Diarrhea/genetics
- Diarrhea/therapy
- Diarrhea/immunology
- Intestinal Diseases/immunology
- Intestinal Diseases/genetics
- Intestinal Diseases/therapy
- Dependovirus/genetics
- Mice, Inbred C57BL
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Immune System Diseases/genetics
- Immune System Diseases/congenital
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Mice, Knockout
- Lymphocyte Activation/immunology
- Humans
- Interleukin-27/genetics
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, College of Medicine, Iowa City, Iowa, USA
| | - Cho-Hao Lin
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Venu Akkanapally
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Wendy L. Frankel
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pan Zheng
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Yang Liu
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Korobova ZR, Arsentieva NA, Santoni A, Totolian AA. Role of IL-27 in COVID-19: A Thin Line between Protection and Disease Promotion. Int J Mol Sci 2024; 25:7953. [PMID: 39063193 PMCID: PMC11276726 DOI: 10.3390/ijms25147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokine storm is usually described as one of the main reasons behind COVID-associated mortality. Cytokines are essential protein molecules engaged in immune responses; they play a critical role in protection against infections. However, they also contribute to inflammatory reactions and tissue damage, becoming a double-edged sword in the context of COVID-19. Recent studies have suggested various cytokines and chemokines that play a crucial role in the immune response to SARS-CoV-2 infection. One such cytokine is interleukin 27 (IL-27), which has been found to be elevated in the blood plasma of patients with COVID-19. Within this study, we will explore the role of IL-27 in immune responses and analyze both the existing literature and our own prior research findings on this cytokine in the context of COVID-19. It affects a wide variety of immune cells. Regardless of the pathological process it is involved in, IL-27 is critical for upholding the necessary balance between tissue damage and cytotoxicity against infectious agents and/or tumors. In COVID-19, it is involved in multiple processes, including antiviral cytotoxicity via CD8+ cells, IgG subclass switching, and even the activation of Tregs.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| |
Collapse
|
11
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
12
|
Lima ADR, Ferrari BB, Pradella F, Carvalho RM, Rivero SLS, Quintiliano RPS, Souza MA, Brunetti NS, Marques AM, Santos IP, Farias AS, Oliveira EC, Santos LMB. Dimethyl fumarate modulates the regulatory T cell response in the mesenteric lymph nodes of mice with experimental autoimmune encephalomyelitis. Front Immunol 2024; 15:1391949. [PMID: 38765015 PMCID: PMC11099268 DOI: 10.3389/fimmu.2024.1391949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.
Collapse
Affiliation(s)
- Amanda D. R. Lima
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Breno B. Ferrari
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernando Pradella
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rodrigo M. Carvalho
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L. S. Rivero
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Raphael P. S. Quintiliano
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Matheus A. Souza
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Natália S. Brunetti
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Ana M. Marques
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Irene P. Santos
- Departamento de Citometria do Centro de Hematologia e Hemoterapia da UNICAMP, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro S. Farias
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elaine C. Oliveira
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Technology Faculty of Sorocaba- Paula Souza State Center of Technological Education, Sorocaba, Brazil
| | - Leonilda M. B. Santos
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, (INCT-NIM), National Council for Scientific and Technological Development (CNPq), Brasilia, Brazil
| |
Collapse
|
13
|
Min KY, Kim DK, Jo MG, Choi MY, Lee D, Park JW, Park YJ, Chung Y, Kim YM, Park YM, Kim HS, Choi WS. IL-27-induced PD-L1 highSca-1 + innate lymphoid cells suppress contact hypersensitivity in an IL-10-dependent manner. Exp Mol Med 2024; 56:616-629. [PMID: 38424193 PMCID: PMC10984996 DOI: 10.1038/s12276-024-01187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
Innate lymphoid cells (ILCs) play an important role in maintaining tissue homeostasis and various inflammatory responses. ILCs are typically classified into three subsets, as is the case for T-cells. Recent studies have reported that IL-10-producing type 2 ILCs (ILC210s) have an immunoregulatory function dependent on IL-10. However, the surface markers of ILC210s and the role of ILC210s in contact hypersensitivity (CHS) are largely unknown. Our study revealed that splenic ILC210s are extensively included in PD-L1highSca-1+ ILCs and that IL-27 amplifies the development of PD-L1highSca-1+ ILCs and ILC210s. Adoptive transfer of PD-L1highSca-1+ ILCs suppressed oxazolone-induced CHS in an IL-10-dependent manner Taken together, our results demonstrate that ILC210s are critical for the control of CHS and suggest that ILC210s can be used as target cells for the treatment of CHS.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Min Yeong Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong Won Park
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Jun Park
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yeonseok Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Mi Kim
- Department of Preventive Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
14
|
Li P, Pu S, Yi J, Li X, Wu Q, Yang C, Kang M, Peng F, Zhou Z. Deletion of IL-27p28 induces CD8 T cell immunity against colorectal tumorigenesis. Int Immunopharmacol 2024; 128:111464. [PMID: 38224627 DOI: 10.1016/j.intimp.2023.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, characterized by molecular and clinical heterogeneity. Interleukin (IL)-27, a heterodimeric cytokine composed of p28 and EBI3 subunits, has been reported to exert potent antitumor activity in several cancer models. However, the precise role of IL-27 in the pathogenesis of CRC remains unclear. Here, we show that during the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC development, IL-27p28 levels are dramatically increased in peripheral blood and tumor tissues, and the cytokine is mainly produced by tumor-infiltrating myeloid cells. IL-27p28 deficient mice display tumor resistances in both inflammation-associated CRC model and syngeneic MC38 colon cancer model. Administration with IL-27p28 neutralizing antibody also reduces the tumor formation in AOM/DSS-treated mice. Mechanically, CD8+ T cells in IL-27p28-/- mice exhibit enhanced tumor infiltration and cytotoxicity, which can be largely attributed to activation of the Akt/mTOR signaling pathway. Furthermore, selective depletion of CD8+ T cells in IL-27p28-/- mice markedly accelerate tumor growth and almost abrogate the protective effects of IL-27p28 deficiency. Most interestingly, the expression of IL-27p28 is also upregulated in tumor tissues of CRC patients and those with high expression of IL-27p28 tend to have a poorer overall survival. Our results suggest that loss of IL-27p28 suppresses colorectal tumorigenesis by augmenting CD8+ T cell-mediated anti-tumor immunity. Targeting IL-27p28 could be developed as a novel strategy for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Peihua Li
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shiming Pu
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiequn Yi
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoyu Li
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qiong Wu
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cheng Yang
- College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mafei Kang
- Department of Oncology, Guilin Medical University Affiliated Hospital, Guilin 541001, China
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China
| | - Zuping Zhou
- College of Physical Education and Health, Guangxi Normal University, Guilin 541006, China; College of Life Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
15
|
Vasquez Ayala A, Hsu CY, Oles RE, Matsuo K, Loomis LR, Buzun E, Carrillo Terrazas M, Gerner RR, Lu HH, Kim S, Zhang Z, Park JH, Rivaud P, Thomson M, Lu LF, Min B, Chu H. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J Exp Med 2024; 221:e20230063. [PMID: 38085267 PMCID: PMC10716256 DOI: 10.1084/jem.20230063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.
Collapse
Affiliation(s)
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Renee E. Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhiko Matsuo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-osaka, Japan
| | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | - Romana R. Gerner
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Hsueh-Han Lu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jong Hwee Park
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Paul Rivaud
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, CA, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
16
|
Vietzen H, Berger SM, Kühner LM, Furlano PL, Bsteh G, Berger T, Rommer P, Puchhammer-Stöckl E. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell 2023; 186:5705-5718.e13. [PMID: 38091993 DOI: 10.1016/j.cell.2023.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS. Epstein-Barr virus (EBV) contributes to the MS pathogenesis because high levels of EBV EBNA386-405-specific antibodies cross react with the CNS-derived GlialCAM370-389. However, it is unclear why only some individuals with such high autoreactive antibody titers develop MS. Here, we show that autoreactive cells are eliminated by distinct immune responses, which are determined by genetic variations of the host, as well as of the infecting EBV and human cytomegalovirus (HCMV). We demonstrate that potent cytotoxic NKG2C+ and NKG2D+ natural killer (NK) cells and distinct EBV-specific T cell responses kill autoreactive GlialCAM370-389-specific cells. Furthermore, immune evasion of these autoreactive cells was induced by EBV-variant-specific upregulation of the immunomodulatory HLA-E. These defined virus and host genetic pre-dispositions are associated with an up to 260-fold increased risk of MS. Our findings thus allow the early identification of patients at risk for MS and suggest additional therapeutic options against MS.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Sarah M Berger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Laura M Kühner
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
17
|
Lin CH, Wu CJ, Cho S, Patkar R, Huth WJ, Lin LL, Chen MC, Israelsson E, Betts J, Niedzielska M, Patel SA, Duong HG, Gerner RR, Hsu CY, Catley M, Maciewicz RA, Chu H, Raffatellu M, Chang JT, Lu LF. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of T H17 cell immunity. Nat Immunol 2023; 24:2108-2120. [PMID: 37932457 PMCID: PMC11058069 DOI: 10.1038/s41590-023-01667-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Treg cells) are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, in the present study we show that interleukin (IL)-27 is specifically produced by intestinal Treg cells to regulate helper T17 cell (TH17 cell) immunity. Selectively increased intestinal TH17 cell responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+CD62Llo Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a new Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Collapse
Affiliation(s)
- Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cheng-Jang Wu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sunglim Cho
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rasika Patkar
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William J Huth
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Mei-Chi Chen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Elisabeth Israelsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joanne Betts
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Niedzielska
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Han G Duong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Matthew Catley
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rose A Maciewicz
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Han Y, Zhang X, Wang Q, Cui X, Wang H, Zhang X, Wang Q, Ji J, Wang Y, Wang S, Zhang X, Xu H, Qiao M, Wu Z. IL-27p28 specifically regulates MHC II expression in macrophages through CIITA. Immunobiology 2023; 228:152757. [PMID: 37944428 DOI: 10.1016/j.imbio.2023.152757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Antigen-presenting cells (APCs) constantly express major histocompatibility complex II (MHC II), including macrophages and dendritic cells (DCs) which deliver antigens to CD4+ T cells and play an important role in adaptive immunity. The expression of MHC II is controlled by the transcriptional coactivator CIITA. Interleukin-27 (IL-27), a newly discovered IL-12 family cytokine, is composed of p28 and EBI3 subunits. In this study, we used IL-27p28 conditional knock-out mice to investigate the regulatory effects of IL-27p28 on macrophage polarization and the expression of MHC II in macrophages. We found that MHC II expression was upregulated in the bone marrow-derived and peritoneal exudate macrophages (BMDMs; PEMs) from IL-27p28-deficient mice, with their inflammation regulating function unaffected. We also demonstrated that in the APCs, IL-27p28 selectively regulated MHC II expression in macrophages but not in dendritic cells. During Pseudomonas aeruginosa (P. aeruginosa) reinfection, higher survival rate, bacterial clearance, and ratio of CD4+/CD8+ T cells in the spleen during the specific immune phase were observed in IL-27p28 defect mice, as well as an increased MHC II expression in alveolar macrophages (AMs). But these did not occur in the first infection. For the first time we discovered that IL-27p28 specifically regulates the expression of MHC II in macrophages by regulating CIITA, while its absence enhances antigen presentation and adaptive immunity against P. aeruginosa.
Collapse
Affiliation(s)
- Yu Han
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyue Cui
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hesuiyuan Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiang Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jianbin Ji
- First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shusen Wang
- Tianjin First Central Hospital, Tianjin, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
19
|
Riehl DR, Sharma A, Roewe J, Murke F, Ruppert C, Eming SA, Bopp T, Kleinert H, Radsak MP, Colucci G, Subramaniam S, Reinhardt C, Giebel B, Prinz I, Guenther A, Strand D, Gunzer M, Waisman A, Ward PA, Ruf W, Schäfer K, Bosmann M. Externalized histones fuel pulmonary fibrosis via a platelet-macrophage circuit of TGFβ1 and IL-27. Proc Natl Acad Sci U S A 2023; 120:e2215421120. [PMID: 37756334 PMCID: PMC10556605 DOI: 10.1073/pnas.2215421120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFβ and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFβ1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFβ1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFβ1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.
Collapse
Affiliation(s)
- Dennis R. Riehl
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Arjun Sharma
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, Cologne50931, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne50931, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Markus P. Radsak
- Mainz Research School of Translational Biomedicine (TransMed), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Third Department of Medicine – Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Giuseppe Colucci
- Outer Corelab, Viollier AG, Allschwil4123, Switzerland
- Department of Hematology, University of Basel, Basel4031, Switzerland
| | - Saravanan Subramaniam
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz55131, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45122, Germany
| | - Immo Prinz
- Institute for Immunology, Hannover Medical School, Hannover30625, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen35392, Germany
| | - Dennis Strand
- First Department of Internal Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz55131, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen45122, Germany
- Leibniz-Institute for Analytical Sciences -ISAS- e.V., Dortmund44139, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor48109, MI
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Katrin Schäfer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA02118
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| |
Collapse
|
20
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
21
|
Zhang Y, Gao S, Yao S, Weng D, Wang Y, Huang Q, Zhang X, Wang H, Xu W. IL-27 mediates immune response of pneumococcal vaccine SPY1 through Th17 and memory CD4 +T cells. iScience 2023; 26:107464. [PMID: 37588169 PMCID: PMC10425906 DOI: 10.1016/j.isci.2023.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
Vaccination is an effective means of preventing pneumococcal disease and SPY1 is a live attenuated pneumococcal vaccine we obtained earlier. We found IL-27 and its specific receptor (WSX-1) were increased in SPY1 vaccinated mice. Bacterial clearance and survival rates were decreased in SPY1 vaccinated IL-27Rα-/- mice. The vaccine-induced Th17 cell response and IgA secretion were also suppressed in IL-27Rα-/- mice. STAT3 and NF-κB signaling and expression of the Th17 cell polarization-related cytokines were also decreased in IL-27Rα-/- bone-marrow-derived dendritic cells(BMDC) stimulated with inactivated SPY1. The numbers of memory CD4+T cells were also decreased in SPY1 vaccinated IL-27Rα-/- mice. These results suggested that IL-27 plays a protective role in SPY1 vaccine by promoting Th17 polarization through STAT3 and NF-κB signaling pathways and memory CD4+T cells production in the SPY1 vaccine. In addition, we found that the immune protection of SPY1 vaccine was independent of aerobic glycolysis.
Collapse
Affiliation(s)
- Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Hansson C, Lebrero-Fernández C, Schön K, Angeletti D, Lycke N. Tr1 cell-mediated protection against autoimmune disease by intranasal administration of a fusion protein targeting cDC1 cells. Mucosal Immunol 2023; 16:486-498. [PMID: 37192682 DOI: 10.1016/j.mucimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Curative therapies against autoimmune diseases are lacking. Indeed, most of the currently available treatments are only targeting symptoms. We have developed a novel strategy for a therapeutic vaccine against autoimmune diseases based on intranasal administration of a fusion protein tolerogen, which consists of a mutant, enzymatically inactive, cholera toxin A1 (CTA1)-subunit genetically fused to disease-relevant high-affinity peptides and a dimer of D-fragments from protein A (DD). The CTA1 R7K mutant - myelin oligodendrocyte glycoprotein (MOG), or proteolipid protein (PLP) - DD (CTA1R7K-MOG/PLP-DD) fusion proteins effectively reduced clinical symptoms in the experimental autoimmune encephalitis model of multiple sclerosis. The treatment induced Tr1 cells, in the draining lymph node, which produced interleukin (IL)-10 and suppressed effector clusters of differentiation 4+ T-cell responses. This effect was dependent on IL-27 signaling because treatment was ineffective in bone marrow chimeras lacking IL-27Ra within their hematopoietic compartment. Single-cell RNA sequencing of dendritic cells in draining lymph nodes demonstrated distinct gene transcriptional changes of classic dendritic cells 1, including enhanced lipid metabolic pathways, induced by the tolerogenic fusion protein. Thus, our results with the tolerogenic fusion protein demonstrate the possibility to vaccinate and protect against disease progression by reinstating tolerance in multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Charlotta Hansson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Kang M, Yadav MK, Mbanefo EC, Yu CR, Egwuagu CE. IL-27-containing exosomes secreted by innate B-1a cells suppress and ameliorate uveitis. Front Immunol 2023; 14:1071162. [PMID: 37334383 PMCID: PMC10272713 DOI: 10.3389/fimmu.2023.1071162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction IL-27 is a heterodimeric cytokine composed of Ebi3 and IL-27p28 and can exert proinflammatory or immune suppressive effects depending on the physiological context. Ebi3 does not contain membrane-anchoring motifs, suggesting that it is a secreted protein while IL-27p28 is poorly secreted. How IL-27p28 and Ebi3 dimerize in-vivo to form biologically active IL-27 is unknown. Major impediment to clinical use of IL-27 derives from difficulty of determining exact amount of bioavailable heterodimeric IL-27 needed for therapy. Methods To understand how IL-27 mediates immune suppression, we characterized an innate IL-27-producing B-1a regulatory B cell population (i27-Breg) and mechanisms i27-Bregs utilize to suppress neuroinflammation in mouse model of uveitis. We also investigated biosynthesis of IL-27 and i27-Breg immunobiology by FACS, immunohistochemical and confocal microscopy. Results Contrary to prevailing view that IL-27 is a soluble cytokine, we show that i27-Bregs express membrane-bound IL-27. Immunohistochemical and confocal analyses co-localized expression of IL-27p28 at the plasma membrane in association with CD81 tetraspanin, a BCR-coreceptor protein and revealed that IL-27p28 is a transmembrane protein in B cells. Most surprising, we found that i27-Bregs secrete IL-27-containing exosomes (i27-exosomes) and adoptive transfer of i27-exosomes suppressed uveitis by antagonizing Th1/Th17 cells, up-regulating inhibitory-receptors associated with T-cell exhaustion while inducing Treg expansion. Discussion Use of i27-exosomes thus obviates the IL-27 dosing problem, making it possible to determine bioavailable heterodimeric IL-27 needed for therapy. Moreover, as exosomes readily cross the blood-retina-barrier and no adverse effects were observed in mice treated with i27-exosome, results of this study suggest that i27-exosomes might be a promising therapeutic approach for CNS autoimmune diseases.
Collapse
|
24
|
Sarin R, Gu R, Jalali Z, Maverakis E, Tsokos MG, Adamopoulos IE. IL-27 attenuates IL-23 mediated inflammatory arthritis. Clin Immunol 2023; 251:109327. [PMID: 37037268 PMCID: PMC10205692 DOI: 10.1016/j.clim.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Interleukin 27 has both pro-inflammatory and anti-inflammatory properties in autoimmunity. The anti-inflammatory effects of IL-27 are linked with inhibition of Th17 differentiation but the IL-27 effect on myeloid cells is less studied. Herein we demonstrate that IL-27 inhibits IL-23-induced inflammation associated not only with Th17 cells but also with myeloid cell infiltration in the joints and splenic myeloid populations of CD11b+ GR1+ and CD3-CD11b+CD11c-GR1- cells. The IL-27 anti-inflammatory response was associated with reduced levels of myeloid cells in the spleen and bone marrow. Overall, our data demonstrate that IL-27 has an immunosuppressive role that affects IL-23-dependent myelopoiesis in the bone marrow and its progression to inflammatory arthritis and plays a crucial role in controlling IL-23 driven joint inflammation by negatively regulating the expansion of myeloid cell subsets.
Collapse
Affiliation(s)
- Ritu Sarin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis Medical Center, Sacramento, CA, USA
| | - Ran Gu
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis Medical Center, Sacramento, CA, USA
| | - Zahra Jalali
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California at Davis Medical Center, Sacramento, CA, USA
| | - Maria G Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis Medical Center, Sacramento, CA, USA; Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Schepers M, Paes D, Tiane A, Rombaut B, Piccart E, van Veggel L, Gervois P, Wolfs E, Lambrichts I, Brullo C, Bruno O, Fedele E, Ricciarelli R, Ffrench-Constant C, Bechler ME, van Schaik P, Baron W, Lefevere E, Wasner K, Grünewald A, Verfaillie C, Baeten P, Broux B, Wieringa P, Hellings N, Prickaerts J, Vanmierlo T. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis. Brain Behav Immun 2023; 109:1-22. [PMID: 36584795 DOI: 10.1016/j.bbi.2022.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Experimental Medicine, Section of General Pathology, University of Genova, Genova, Italy
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Marie E Bechler
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline van Schaik
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Evy Lefevere
- Rewind Therapeutics NV, Gaston Geenslaan 2, B-3001, Leuven, Belgium
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Belgium
| | - Paulien Baeten
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Paul Wieringa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| |
Collapse
|
27
|
Lin CH, Wu CJ, Cho S, Patkar R, Lin LL, Chen MC, Israelsson E, Betts J, Niedzielska M, Patel SA, Duong HG, Gerner RR, Hsu CY, Catley M, Maciewicz RA, Chu H, Raffatellu M, Chang JT, Lu LF. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of Th17 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529261. [PMID: 36865314 PMCID: PMC9980002 DOI: 10.1101/2023.02.20.529261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Regulatory T (Treg) cells are instrumental in establishing immunological tolerance. However, the precise effector mechanisms by which Treg cells control a specific type of immune response in a given tissue remains unresolved. By simultaneously studying Treg cells from different tissue origins under systemic autoimmunity, here we show that IL-27 is specifically produced by intestinal Treg cells to regulate Th17 immunity. Selectively increased intestinal Th17 responses in mice with Treg cell-specific IL-27 ablation led to exacerbated intestinal inflammation and colitis-associated cancer, but also helped protect against enteric bacterial infection. Furthermore, single-cell transcriptomic analysis has identified a CD83+TCF1+ Treg cell subset that is distinct from previously characterized intestinal Treg cell populations as the main IL-27 producers. Collectively, our study uncovers a novel Treg cell suppression mechanism crucial for controlling a specific type of immune response in a particular tissue, and provides further mechanistic insights into tissue-specific Treg cell-mediated immune regulation.
Collapse
Affiliation(s)
- Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Cheng-Jang Wu
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Sunglim Cho
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Rasika Patkar
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Ling-Li Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Mei-Chi Chen
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
| | - Elisabeth Israelsson
- Bioscience, Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joanne Betts
- Bioscience, Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Niedzielska
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Han G Duong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Romana R Gerner
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Chia-Yun Hsu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Matthew Catley
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rose A Maciewicz
- Bioscience, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, California , CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Kim D, Kim S, Kang MS, Yin Z, Min B. Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep 2023; 13:1812. [PMID: 36725904 PMCID: PMC9892501 DOI: 10.1038/s41598-023-27413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
IL-27 is an IL-12 family cytokine with immune regulatory properties, capable of modulating inflammatory responses, including autoimmunity. While extensive studies investigated the major target cells of IL-27 mediating its functions, the source of IL-27 especially during tissue specific autoimmune inflammation has not formally been examined. IL-27p28 subunit, also known as IL-30, was initially discovered as an IL-27-specific subunit, and it has thus been deemed as a surrogate marker to denote IL-27 expression. However, IL-30 can be secreted independently of Ebi3, a subunit that forms bioactive IL-27 with IL-30. Moreover, IL-30 itself may act as a negative regulator antagonizing IL-27. In this study, we exploited various cell type specific IL-30-deficient mouse models and examined the source of IL-30 in a T cell mediated autoimmune neuroinflammation. We found that IL-30 expressed by infiltrating and CNS resident APC subsets, infiltrating myeloid cells and microglia, is central in limiting the inflammation. However, dendritic cell-derived IL-30 was dispensable for the disease development. Unexpectedly, in cell type specific IL-30 deficient mice that develop severe EAE, IL-30 expression in the remaining wild-type APC subsets is disproportionately increased, suggesting that increased endogenous IL-30 production may be involved in the severe pathogenesis. In support, systemic recombinant IL-30 administration exacerbates EAE severity. Our results demonstrate that dysregulated endogenous IL-30 expression may interfere with immune regulatory functions of IL-27, promoting encephalitogenic inflammation in vivo.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myung-Su Kang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
30
|
Zamani B, Momen-Heravi M, Erami M, Motedayyen H, ArefNezhad R. Impacts of IL-27 and IL-32 in the pathogenesis and outcome of COVID-19 associated mucormycosis. J Immunoassay Immunochem 2023; 44:242-255. [PMID: 36602425 DOI: 10.1080/15321819.2022.2164506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in the immune system participate in the pathogenesis and development of infectious diseases. Previous studies have indicated immune dysregulation in patients suffering from COVID-19 and mucormycosis. Therefore, this study investigated whether interleukin-27 (IL-27) and interleukin-32 (IL-32) levels may participate in the development and outcome of COVID-19 associated mucormycosis (CAM). The blood samples were obtained from 79 patients suffering from COVID-19 and mucormycosis and 25 healthy subjects. The serum samples were isolated from the whole blood and frequencies of some immune cells were measured by a cell counter. The levels of IL-27 and IL-32 were assessed by enzyme-linked immunosorbent assay. IL-27 and IL-32 levels were significantly lower in patients with COVID-19 and mucormycosis than healthy subjects (P < .05), although there was no significant difference in IL-27 between patients with COVID-19 and CAM. IL-27 level was significantly higher in severe COVID-19 survivors than dead cases (P < .01). Patients with CAM had significant increases in NLR compared to COVID-19 patients and healthy individuals (P < .0001-0.01). NLR was significantly associated with COVID-19 outcome (P < .05). Severe COVID-19 survivors had a significant reduction in NLR compared to non-survivors (P < .05). Changes in IL-27 and IL-32 levels may contribute to the pathogenesis of CAM. IL-27 may relate to the pathogenesis and outcomes of mucormycosis in COVID-19 patients.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahzad Erami
- Kashan Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
31
|
Maślanka T. Effect of IL-27, Teriflunomide and Retinoic Acid and Their Combinations on CD4 + T Regulatory T Cells-An In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238471. [PMID: 36500570 PMCID: PMC9739213 DOI: 10.3390/molecules27238471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
32
|
Bradford SD, Witt MR, Povroznik JM, Robinson CM. Interleukin-27 impairs BCG antigen clearance and T cell stimulatory potential by neonatal dendritic cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 4:100176. [DOI: 10.1016/j.crmicr.2022.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
33
|
Składanowska K, Bloch Y, Strand J, White KF, Hua J, Aldridge D, Welin M, Logan DT, Soete A, Merceron R, Murphy C, Provost M, Bazan JF, Hunter CA, Hill JA, Savvides SN. Structural basis of activation and antagonism of receptor signaling mediated by interleukin-27. Cell Rep 2022; 41:111490. [PMID: 36261006 PMCID: PMC9597551 DOI: 10.1016/j.celrep.2022.111490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
Interleukin-27 (IL-27) uniquely assembles p28 and EBI3 subunits to a heterodimeric cytokine that signals via IL-27Rα and gp130. To provide the structural framework for receptor activation by IL-27 and its emerging therapeutic targeting, we report here crystal structures of mouse IL-27 in complex with IL-27Rα and of human IL-27 in complex with SRF388, a monoclonal antibody undergoing clinical trials with oncology indications. One face of the helical p28 subunit interacts with EBI3, while the opposite face nestles into the interdomain elbow of IL-27Rα to juxtapose IL-27Rα to EBI3. This orients IL-27Rα for paired signaling with gp130, which only uses its immunoglobulin domain to bind to IL-27. Such a signaling complex is distinct from those mediated by IL-12 and IL-23. The SRF388 binding epitope on IL-27 overlaps with the IL-27Rα interaction site explaining its potent antagonistic properties. Collectively, our findings will facilitate the mechanistic interrogation, engineering, and therapeutic targeting of IL-27.
Collapse
Affiliation(s)
- Katarzyna Składanowska
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Jamie Strand
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Kerry F White
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Jing Hua
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA
| | - Daniel Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Welin
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 63 Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 63 Lund, Sweden
| | - Arne Soete
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium; Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Romain Merceron
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Casey Murphy
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - Mathias Provost
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium
| | - J Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium; ħ Bioconsulting, Stillwater, MN, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Hill
- Surface Oncology, 50 Hampshire Street, Cambridge, MA 02139, USA.
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
34
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
35
|
Dendritic cell-derived IL-27 p28 regulates T cell program in pathogenicity and alleviates acute graft-versus-host disease. Signal Transduct Target Ther 2022; 7:319. [PMID: 36109504 PMCID: PMC9477797 DOI: 10.1038/s41392-022-01147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Interleukin 27 (IL-27), a heterodimeric cytokine composed of Epstein-Barr virus-induced 3 and p28, is a pleiotropic cytokine with both pro-and anti-inflammatory properties. However, the precise role of IL-27 in acute graft-versus-host disease is not yet fully understood. In this study, utilizing mice with IL-27 p28 deficiency in dendritic cells (DCs), we demonstrated that IL-27 p28 deficiency resulted in impaired Treg cell function and enhanced effector T cell responses, corresponding to aggravated aGVHD in mice. In addition, using single-cell RNA sequencing, we found that loss of IL-27 p28 impaired Treg cell generation and promoted IL-1R2+TIGIT+ pathogenic CD4+ T cells in the thymus at a steady state. Mechanistically, IL-27 p28 deficiency promoted STAT1 phosphorylation and Th1 cell responses, leading to the inhibition of Treg cell differentiation and function. Finally, patients with high levels of IL-27 p28 in serum showed a substantially decreased occurrence of grade II-IV aGVHD and more favorable overall survival than those with low levels of IL-27 p28. Thus, our results suggest a protective role of DC-derived IL-27 p28 in the pathogenesis of aGVHD through modulation of the Treg/Teff cell balance during thymic development. IL-27 p28 may be a valuable marker for predicting aGVHD development after transplantation in humans.
Collapse
|
36
|
Effect and Mechanism of Flavored Tongxie Yaofang Decoction for Diarrheal Irritable Bowel Syndrome under Intestinal Microecology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3904571. [PMID: 35966738 PMCID: PMC9365570 DOI: 10.1155/2022/3904571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
This research was to analyze the effect of flavored Tongxie Yaofang on diarrheal irritable bowel syndrome (IBS) by the situation of intestinal microecology. The treatment mechanism was analyzed, so as to provide a more effective treatment method for patients clinically. 60 IBS patients were selected as the research objects and were divided according to the different treatment methods. For the control group (n = 20 cases), oral pinaverium bromide tablets were given. For the treatment group (n = 40 cases), the flavored Tongxie Yaofang decoction was given in addition to conventional treatment. The curative effects on the two groups of patients were evaluated in combination with the changes in intestinal microecology. With the syndrome score, the total effective rate of the treatment group (92.5%) was obviously superior to the control group (80%) (P < 0.05). The clinical symptoms such as abdominal pain, abdominal distension, and diarrhea in the treatment group were significantly relieved after treatment in contrast to the control group (P < 0.05). Intestinal Bifidobacterium, Escherichia coli, and Bifidobacterium/Escherichia coli (B/E) ratio were all greatly higher than those in the control group (P < 0.05). In summary, flavored Tongxie Yaofang had a good effect in improving the symptoms of patients with diarrheal IBS and improved the microflora of Bifidobacterium and Escherichia coli in the intestinal tract of patients.
Collapse
|
37
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Rehman MU, Alanazi MM, Alhamed AS, Ibrahim KE, Albekairi NA, Ahmad SF. CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis. Immunobiology 2022; 227:152245. [PMID: 35868215 DOI: 10.1016/j.imbio.2022.152245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), an immune-mediated and neurodegenerative disorder of the central nervous system (CNS), is characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model used to study MS. To explore the impact of chemokine receptor CCR1 blockade in EAE and the underlying mechanisms, we used CCR1 antagonist J-113863 in PLP139-151-induced EAE in SJL/J mice. Following EAE induction, mice were treated with J-113863 (10 mg/kg) daily from day 14 until day 25. We investigated the effect of J-113863 on expression levels of GM-CSF, IL-6, IL-10, IL-27 in CD4+ spleen cells, using flow cytometry. We also analyzed the effect of J-113863 on GM-CSF, IL-6, IL-10, IL-27 mRNA and protein expression levels using RT-PCR and Western blot analysis in brain tissues. J-113863 treatment decreased the populations of CD4+GM-CSF+ and CD4+IL-6+ cells and increased CD4+IL-27+ and CD4+IL-10+ cells in the spleen. J-113863 had a suppressive effect on the mRNA and protein expression levels of GM-CSF, and IL-6 in the brain tissue. On the other hand, J-113863 treatment increased the mRNA and protein expression of IL-10 and IL-27 in the brain tissue. Our results highlighted J-113863's potential role in suppressing pro-inflammatory expression and up-regulating anti-inflammatory mediators, which could represent a beneficial alternative approach to MS treatment.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
38
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
39
|
Sharma A, Noon JB, Kontodimas K, Garo LP, Platten J, Quinton LJ, Urban JF, Reinhardt C, Bosmann M. IL-27 Enhances γδ T Cell–Mediated Innate Resistance to Primary Hookworm Infection in the Lungs. THE JOURNAL OF IMMUNOLOGY 2022; 208:2008-2018. [PMID: 35354611 PMCID: PMC9012701 DOI: 10.4049/jimmunol.2000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
Abstract
IL-27 is a heterodimeric IL-12 family cytokine formed by noncovalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through ligation to IL-27 receptor α (IL-27RA). Although IL-27 is known to contribute to immunity and to limit inflammation after various infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early host intrapulmonary life cycle. IL-27(p28) was detectable in bronchoalveolar lavage fluid of C57BL/6J wild-type mice on day 1 after s.c. inoculation. IL-27RA expression was most abundant on lung-invading γδ T cells. Il27ra-/- mice showed increased lung parasite burden together with aggravated pulmonary hemorrhage and higher alveolar total protein leakage as a surrogate for epithelial-vascular barrier disruption. Conversely, injections of recombinant mouse (rm)IL-27 into wild-type mice reduced lung injury and parasite burden. In multiplex screens, higher airway accumulations of IL-6, TNF-α, and MCP-3 (CCL7) were observed in Il27ra-/- mice, whereas rmIL-27 treatment showed a reciprocal effect. Importantly, γδ T cell numbers in airways were enhanced by endogenous or administered IL-27. Further analysis revealed a direct antihelminthic function of IL-27 on γδ T cells as adoptive intratracheal transfer of rmIL-27-treated γδ T cells during primary N. brasiliensis lung infection conferred protection in mice. In summary, this report demonstrates protective functions of IL-27 to control the early lung larval stage of hookworm infection.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jason B Noon
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lucien P Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Johannes Platten
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lee J Quinton
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joseph F Urban
- Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, U.S. Department of Agriculture, Beltsville, MD; and
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
40
|
Yu SY, Koh EJ, Kim SH, Song B, Lee JS, Son SW, Seo H, Hwang SY. Analysis of multi-omics data on the relationship between epigenetic changes and nervous system disorders caused by exposure to environmentally harmful substances. ENVIRONMENTAL TOXICOLOGY 2022; 37:802-813. [PMID: 34921580 DOI: 10.1002/tox.23444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Environmentally hazardous substances and exposure to these can cause various diseases. Volatile organic compounds can easily evaporate into the atmosphere, thereby exerting toxic effects through either the skin or respiratory tract exposures. Toluene, a neurotoxin, has been widely used in various industries. However, it has a detrimental effect on the nervous system (such as hallucinations or memory impairment), while data on the mechanism underlaying its harmful effects remain limited. Therefore, this study investigates the effect of toluene on the nervous system via epigenetic and genetic changes of toluene-exposed individuals. We identified significant epigenetic changes and confirmed that the affected abnormally expressed genes negatively influenced the nervous system. In particular, we confirmed that the miR-15 family, upregulated by toluene, downregulated ABL2, which could affect the R as signaling pathway resulting in neuronal structural abnormalities. Our study suggests that miR-15a-5p, miR-15b-5p, miR-16-5p, miR-301a-3p, and lncRNA NEAT1 may represent effective epigenomic markers associated with neurodegenerative diseases caused by toluene.
Collapse
Affiliation(s)
- So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Eun Jung Koh
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Seung Hwan Kim
- Department of Bionano Engineering, Hanyang University, Ansan, South Korea
| | - Byeongwook Song
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Ji Su Lee
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University College of Medicine, Seoul, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Seung Yong Hwang
- Department of Molecular & Life Science, Hanyang University, Ansan, South Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, South Korea
| |
Collapse
|
41
|
Karpisheh V, Ahmadi M, Abbaszadeh-Goudarzi K, Mohammadpour Saray M, Barshidi A, Mohammadi H, Yousefi M, Jadidi-Niaragh F. The role of Th17 cells in the pathogenesis and treatment of breast cancer. Cancer Cell Int 2022; 22:108. [PMID: 35248028 PMCID: PMC8897940 DOI: 10.1186/s12935-022-02528-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a severe problem worldwide due to an increase in mortality and prevalence among women. Despite early diagnostic procedures as well as advanced therapies, more investigation is required to find new treatment targets. Various factors and mechanisms, such as inflammatory conditions, can play a crucial role in cancer progression. Among them, Th17 cells are identified as effective CD4+ T cells that play an essential role in autoimmune diseases and inflammation which may be associated with anti-tumor responses. In addition, Th17 cells are one of the main factors involved in cancer, especially breast cancer via the inflammatory process. In tumor immunity, the exact mechanism of Th17 cells is not entirely understood and seems to have a dual function in tumor development. Various studies have reported that cytokines secreted by Th17 cells are in close relation to cancer stem cells and tumor microenvironment. Therefore, they play a critical role in the growth, proliferation, and invasion of tumor cells. On the other hand, most studies have reported that T cells suppress the growth of tumor cells by the induction of immune responses. In patients with breast cancer compared to normal individuals, various studies have been reported that the Th17 population dramatically increases in peripheral blood which results in cancer progression. It seems that Th17 cells by creating inflammatory conditions through the secretion of cytokines, including IL-22, IL-17, TNF-α, IL-21, and IL-6, can significantly enhance breast cancer progression. Therefore, to identify the mechanisms and factors involved in the activation and development of Th17 cells, they can provide an essential role in preventing breast cancer progression. In the present review, the role of Th17 cells in breast cancer progression and its therapeutic potential was investigated.
Collapse
Affiliation(s)
- Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehran Mohammadpour Saray
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Asal Barshidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Han L, Chen Z, Yu K, Yan J, Li T, Ba X, Lin W, Huang Y, Shen P, Huang Y, Qin K, Geng Y, Liu Y, Wang Y, Tu S. Interleukin 27 Signaling in Rheumatoid Arthritis Patients: Good or Evil? Front Immunol 2022; 12:787252. [PMID: 35058928 PMCID: PMC8764250 DOI: 10.3389/fimmu.2021.787252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence and development of rheumatoid arthritis (RA) is regulated by numerous cytokines. Interleukin 27 (IL-27) is a soluble cytokine that exerts biological effects by regulating the Janus tyrosine kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway via the IL-27 receptor. IL-27 is known for its pleiotropic roles in modulating inflammatory responses. Previous studies found that IL-27 levels are elevated in RA blood, synovial fluid, and rheumatoid nodules. Cellular and animal experiments indicated that IL-27 exerts multiple regulatory functions in RA patients via different mechanisms. IL-27 inhibits ectopic-like structure (ELS) formation and CD4+ T helper type 2 (Th2) cell, CD4+ T helper type 17 (Th17) cell, and osteoclast differentiation in RA, contributing to alleviating RA. However, IL-27 promotes Th1 cell differentiation, which may exacerbate RA synovitis. Moreover, IL-27 also acts on RA synovial fibroblasts (RA-FLSs) and regulatory T cells (Tregs), but some of its functions are unclear. There is currently insufficient evidence to determine whether IL-27 promotes or relieves RA. Targeting IL-27 signaling in RA treatment should be deliberate based on current knowledge.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Beltrán-García J, Osca-Verdegal R, Jávega B, Herrera G, O’Connor JE, García-López E, Casabó-Vallés G, Rodriguez-Gimillo M, Ferreres J, Carbonell N, Pallardó FV, García-Giménez JL. Characterization of Early Peripheral Immune Responses in Patients with Sepsis and Septic Shock. Biomedicines 2022; 10:525. [PMID: 35327327 PMCID: PMC8945007 DOI: 10.3390/biomedicines10030525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Sepsis is a life-threatening condition caused by an abnormal host response to infection that produces altered physiological responses causing tissue damage and can result in organ dysfunction and, in some cases, death. Although sepsis is characterized by a malfunction of the immune system leading to an altered immune response and immunosuppression, the high complexity of the pathophysiology of sepsis requires further investigation to characterize the immune response in sepsis and septic shock. (2) Methods: This study analyzes the immune-related responses occurring during the early stages of sepsis by comparing the amounts of cytokines, immune modulators and other endothelial mediators of a control group and three types of severe patients: critically ill non-septic patients, septic and septic shock patients. (3) Results: We showed that in the early stages of sepsis the innate immune system attempts to counteract infection, probably via neutrophils. Conversely, the adaptive immune system is not yet fully activated, either in septic or in septic shock patients. In addition, immunosuppressive responses and pro-coagulation signals are active in patients with septic shock. (4) Conclusions: The highest levels of IL-6 and pyroptosis-related cytokines (IL-18 and IL-1α) were found in septic shock patients, which correlated with D-dimer. Moreover, endothelial function may be affected as shown by the overexpression of adhesion molecules such as s-ICAM1 and E-Selectin during septic shock.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Rebeca Osca-Verdegal
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Guadalupe Herrera
- Flow Cytometry Unit, IIS INCLIVA, Fundación Investigación Hospital Clínico Valencia, 46010 Valencia, Spain;
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Eva García-López
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - Germán Casabó-Vallés
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, 46980 Paterna, Spain;
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), 46010 Valencia, Spain
| | - Federico V. Pallardó
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain; (J.B.-G.); (R.O.-V.); (E.G.-L.); (F.V.P.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.R.-G.); (J.F.); (N.C.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
44
|
Qiu SL, Sun QX, Zhou JP, Tang HJ, Chen YQ, Chen FS, Feng T, He ZQ, Qin HJ, Duan MC. IL-27 mediates anti-inflammatory effect in cigarette smoke induced emphysema by negatively regulating IFN-γ producing cytotoxic CD8 + T cells in mice. Eur J Immunol 2022; 52:222-236. [PMID: 34559883 DOI: 10.1002/eji.202049076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
Chronic airway inflammation mediated by CD8+ T lymphocytes contributes to the pathogenesis of Chronic obstructive pulmonary disease (COPD). Deciphering the fingerprint of the chronic inflammation orchestrated by CD8+ T cells may allow the development of novel approaches to COPD management. Here, the expression of IL-27 and IFN-γ+ CD8+ Tc1 cells were evaluated in patients with COPD and in cigarette smoke-exposed mice. The production of IL-27 by marrow-derived dendritic cells (mDCs) in response to cigarette smoke extract (CSE) was assessed. The role of IL-27 in IFN-γ+ CD8+ Tc1 cells was explored. We demonstrated that elevated IL-27 was accompanied by an exaggerated IFN-γ+ CD8+ Tc1 response in a smoking mouse model of emphysema. We noted that lung dendritic cells were one of the main sources of IL-27 during chronic cigarette smoke exposure. Moreover, CSE directly induced the production of IL-27 by mDCs in vitro. IL-27 negatively regulated the differentiation of IFN-γ+ CD8+ Tc1 cells isolated from cigarette smoke-exposed mice in a STAT1- and STAT3-independent manner. Systemic administration of recombinant IL-27 attenuated IFN-γ+ CD8+ Tc1 response in the late phase of cigarette smoke exposure. Our results uncovered that IL-27 negatively regulates IFN-γ+ CD8+ Tc1 response in the late stage of chronic cigarette smoke exposure, which may provide a new strategy for the anti-inflammatory treatment of smoking-related COPD/emphysema.
Collapse
Affiliation(s)
- Shi-Lin Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qi-Xiang Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jian-Peng Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Hai-Juan Tang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yan-Qiong Chen
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Fu-Shou Chen
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Tao Feng
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Zai-Qing He
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Hua-Jiao Qin
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Chao Duan
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
45
|
Ritter K, Rousseau J, Hölscher C. Interleukin-27 in Tuberculosis: A Sheep in Wolf’s Clothing? Front Immunol 2022; 12:810602. [PMID: 35116036 PMCID: PMC8803639 DOI: 10.3389/fimmu.2021.810602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
In tuberculosis (TB), protective inflammatory immune responses and the pathological sequelae of chronic inflammation significantly depend on a timely balance of cytokine expression. In contrast to other anti-inflammatory cytokines, interleukin (IL)-27 has fundamental effects in experimental Mycobacterium tuberculosis (Mtb) infection: the absence of IL-27-mediated signalling promotes a better control of mycobacterial growth on the one hand side but also leads to a chronic hyperinflammation and immunopathology later during infection. Hence, in the context of novel host-directed therapeutic approaches and vaccination strategies for the management of TB, the timely restricted blockade of IL-27 signalling may represent an advanced treatment option. In contrast, administration of IL-27 itself may allow to treat the immunopathological consequences of chronic TB. In both cases, a better knowledge of the cell type-specific and kinetic effects of IL-27 after Mtb infection is essential. This review summarizes IL-27-mediated mechanisms affecting protection and immunopathology in TB and discusses possible therapeutic applications.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, Borstel, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Borstel, Germany
- *Correspondence: Christoph Hölscher,
| |
Collapse
|
46
|
Jouhault Q, Cherqaoui B, Jobart-Malfait A, Glatigny S, Lauraine M, Hulot A, Morelle G, Hagege B, Ermoza K, El Marjou A, Izac B, Saintpierre B, Letourneur F, Rémy S, Anegon I, Boissier MC, Chiocchia G, Breban M, Araujo LM. Interleukin 27 is a novel cytokine with anti-inflammatory effects against spondyloarthritis through the suppression of Th17 responses. Front Immunol 2022; 13:1072420. [PMID: 36818477 PMCID: PMC9933703 DOI: 10.3389/fimmu.2022.1072420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Spondylarthritis (SpA) development in HLA-B27/human β2-microglobulin transgenic rat (B27-rat) is correlated with altered conventional dendritic cell (cDC) function that promotes an inflammatory pattern of CD4+T cells, including a biased expansion of pro-inflammatory Th17 population and imbalance of regulatory T cells cytokine profile. Transcriptomic analysis revealed that cDCs from B27-rats under express IL-27, an anti-inflammatory cytokine which induces the differentiation of IL-10+ regulatory T cells and inhibits Th17 cells. Methods Here, we first investigated whether in vitro addition of exogenous IL-27 could reverse the inflammatory pattern observed in CD4+ T cells. Next, we performed preclinical assay using IL-27 to investigate whether in vivo treatment could prevent SpA development in B27-rats. Results in vitro addition of IL-27 to cocultures of cDCs and CD4+ T cell subsets from B27-rats reduced IL-17 and enhanced IL-10 production by T cells. Likewise, IL-27 inhibited the production of IL-17 by CD4+ T cells from SpA patients. Interestingly, in vivo treatment with recombinant IL-27 starting before SpA onset, inhibited SpA development in B27-rats through the suppression of IL-17/TNF producing CD4+ T cells. Discussion Overall, our results reveal a potent inhibitory effect of IL-27 and highlight this cytokine as a promising new therapeutic target in SpA, especially for SpA patients non responders to currently approved biotherapies.
Collapse
Affiliation(s)
- Quentin Jouhault
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Bilade Cherqaoui
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Aude Jobart-Malfait
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Marc Lauraine
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Audrey Hulot
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Guillaume Morelle
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Benjamin Hagege
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Kétia Ermoza
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| | - Ahmed El Marjou
- Plateforme de production d'anticorps et de protéines recombinantes-Institut Curie/CNRS UMR144, Paris, France
| | - Brigitte Izac
- Plateforme GenomIC- Université de Paris, Institut Cochin, INSERM-CNRS, Paris, France
| | - Benjamin Saintpierre
- Plateforme GenomIC- Université de Paris, Institut Cochin, INSERM-CNRS, Paris, France
| | - Franck Letourneur
- Plateforme GenomIC- Université de Paris, Institut Cochin, INSERM-CNRS, Paris, France
| | - Séverine Rémy
- Platform Transgenic Rats and ImmunoPhenomics, INSERM UMR 1064-CRTI, Nantes, France
| | - Ignacio Anegon
- Platform Transgenic Rats and ImmunoPhenomics, INSERM UMR 1064-CRTI, Nantes, France
| | - Marie-Christophe Boissier
- Inserm UMR1125-Université Sorbonne Paris Nord, Rheumatology Division, Avicenne Hospital (AP-HP), Bobigny, France
| | - Gilles Chiocchia
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France.,Haematology-Immunology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France.,Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris-Centre, Paris, France
| |
Collapse
|
47
|
Valencia JC, Erwin-Cohen RA, Clavijo PE, Allen C, Sanford ME, Day CP, Hess MM, Johnson M, Yin J, Fenimore JM, Bettencourt IA, Tsuneyama K, Romero ME, Klarmann KD, Jiang P, Bae HR, McVicar DW, Merlino G, Edmondson EF, Anandasabapathy N, Young HA. Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Res 2021; 81:5977-5990. [PMID: 34642183 PMCID: PMC8639618 DOI: 10.1158/0008-5472.can-21-1148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.
Collapse
Affiliation(s)
- Julio C Valencia
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland.
| | | | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland
| | - Clint Allen
- Head and Neck Surgery Branch, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland
| | | | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, Maryland
| | - Megan M Hess
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Morgan Johnson
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Jie Yin
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - John M Fenimore
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | | | | | | | | | - Peng Jiang
- Cancer Data Science laboratory, CCR, NCI, Bethesda, Maryland
| | - Heekyong R Bae
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Daniel W McVicar
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, Maryland
| | | | | | - Howard A Young
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| |
Collapse
|
48
|
IL-27-producing B-1a cells suppress neuroinflammation and CNS autoimmune diseases. Proc Natl Acad Sci U S A 2021; 118:2109548118. [PMID: 34782464 DOI: 10.1073/pnas.2109548118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
Regulatory B cells (Breg cells) that secrete IL-10 or IL-35 (i35-Breg) play key roles in regulating immunity in tumor microenvironment or during autoimmune and infectious diseases. Thus, loss of Breg function is implicated in development of autoimmune diseases while aberrant elevation of Breg prevents sterilizing immunity, exacerbates infectious diseases, and promotes cancer metastasis. Breg cells identified thus far are largely antigen-specific and derive mainly from B2-lymphocyte lineage. Here, we describe an innate-like IL-27-producing natural regulatory B-1a cell (i27-Breg) in peritoneal cavity and human umbilical cord blood. i27-Bregs accumulate in CNS and lymphoid tissues during neuroinflammation and confers protection against CNS autoimmune disease. i27-Breg immunotherapy ameliorated encephalomyelitis and uveitis through up-regulation of inhibitory receptors (Lag3, PD-1), suppression of Th17/Th1 responses, and propagating inhibitory signals that convert conventional B cells to regulatory lymphocytes that secrete IL-10 and/or IL-35 in eye, brain, or spinal cord. Furthermore, i27-Breg proliferates in vivo and sustains IL-27 secretion in CNS and lymphoid tissues, a therapeutic advantage over administering biologics (IL-10, IL-35) that are rapidly cleared in vivo. Mutant mice lacking irf4 in B cells exhibit exaggerated increase of i27-Bregs with few i35-Bregs, while mice with loss of irf8 in B cells have abundance of i35-Bregs but defective in generating i27-Bregs, identifying IRF8/BATF and IRF4/BATF axis in skewing B cell differentiation toward i27-Breg and i35-Breg developmental programs, respectively. Consistent with its developmental origin, disease suppression by innate i27-Bregs is neither antigen-specific nor disease-specific, suggesting that i27-Breg would be effective immunotherapy for a wide spectrum of autoimmune diseases.
Collapse
|
49
|
Elevated Levels of IL-27 Are Associated with Disease Activity in Patients with Crohn's Disease. Mediators Inflamm 2021; 2021:5527627. [PMID: 34744512 PMCID: PMC8564213 DOI: 10.1155/2021/5527627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Immune disorders play an important role in the pathogenesis of Crohn's disease (CD). Notably, the increased immune response of Th1 cells and related cytokines is associated with the onset of CD. IL-27 is a newly discovered IL-12-related cytokine, but its expression and clinical significance in CD patients are still controversial. This study is aimed at evaluating the serum levels of IL-27 in CD patients and analyzing their clinical significance. The results indicated that serum levels of IL-27 in CD patients were significantly higher than those in control subjects (median (interquartile range (IQR)): 110.0 (95.0, 145.0) vs. 85.0 (80.0, 95.0) pg/ml, P < 0.001). Furthermore, the IL-27 levels significantly increased in CD patients at the active stage compared with CD patients in remission (CDR) (127.5 (100.0, 150.0) vs. 90 (80.0, 110.0) pg/ml, P < 0.001). However, there was no difference in IL-27 levels between CDR and control subjects. The levels of IL-27 were positively correlated with Crohn's disease activity index (CDAI), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), fecal calprotectin (FC), and Simple Endoscopic Score for Crohn's Disease (SES-CD) and negatively correlated with hemoglobin (Hb) and serum albumin (ALB). IL-27 combined with CRP favored the prediction of CD activity (area under the curve (AUC): 0.88). Additionally, the proportions of Th17 and Th1 cells in peripheral blood were higher in CD patients than in control subjects. Active CD patients exhibited significantly higher proportions of Th17 and Th1 cells than those in remission. Moreover, correlation analysis indicated that the serum levels of IL-27 were positively associated with the frequency of Th17 cells in CD patients (r = 0.519, P = 0.013) but not associated with the frequency of Th1 cells in CD patients. IL-27 is positively associated with multiple inflammation indicators and may exert a proinflammatory profile by regulating Th17 cell differentiation in the development of Crohn's disease. In the future, IL-27 combined with CRP is expected to become an important biological marker of CD activity.
Collapse
|
50
|
Lin CH, Chen MC, Lin LL, Christian DA, Min B, Hunter CA, Lu LF. Gut epithelial IL-27 confers intestinal immunity through the induction of intraepithelial lymphocytes. J Exp Med 2021; 218:212659. [PMID: 34554189 PMCID: PMC8480671 DOI: 10.1084/jem.20210021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/04/2022] Open
Abstract
IL-27 controls a diverse range of immune responses in many disease settings. Here, we identify intestinal epithelial cells (IECs) as one of the major IL-27 cellular sources in the gut-associated tissue. Unlike IL-27 secreted by innate immune cells, gut epithelial IL-27 is dispensable for T-bet+ regulatory T cell (T reg cell) differentiation or IL-10 induction. Rather, IEC-derived IL-27 specifically promotes a distinct CD8αα+CD4+ intraepithelial lymphocyte (IEL) population that acquires their functional differentiation at the intestinal epithelium. Loss of IL-27 in IECs leads to a selective defect in CD8αα+CD4+ IELs over time. Consequently, mice with IEC-specific IL-27 ablation exhibited elevated pathogen burden during parasitic infection, and this could be rescued by transfer of exogenous CD8αα+CD4+ IELs. Collectively, our data reveal that in addition to its known regulatory properties in preventing immune hyperactivity, gut epithelial IL-27 confers barrier immunity by inducing a specific IEL subset and further suggest that IL-27 produced by different cell types plays distinct roles in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ling-Li Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Booki Min
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| |
Collapse
|