1
|
Zhao Y, Liu K, Wang Y, Ma Y, Guo W, Shi C. Human-mouse chimeric brain models constructed from iPSC-derived brain cells: Applications and challenges. Exp Neurol 2024; 379:114848. [PMID: 38857749 DOI: 10.1016/j.expneurol.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.
Collapse
Affiliation(s)
- Ya Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ke Liu
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Yinghua Wang
- Medical College of Yan'an University, Yan'an 716000, PR China
| | - Yifan Ma
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Wenwen Guo
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
2
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Patterson BK, Guevara-Coto J, Mora J, Francisco EB, Yogendra R, Mora-Rodríguez RA, Beaty C, Lemaster G, Kaplan DO G, Katz A, Bellanti JA. Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs. Sci Rep 2024; 14:19743. [PMID: 39187577 PMCID: PMC11347643 DOI: 10.1038/s41598-024-70929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
The absence of a long COVID (LC) or post-acute sequelae of COVID-19 (PASC) diagnostic has profound implications for research and potential therapeutics given the lack of specificity with symptom-based identification of LC and the overlap of symptoms with other chronic inflammatory conditions. Here, we report a machine-learning approach to LC/PASC diagnosis on 347 individuals using cytokine hubs that are also capable of differentiating LC from chronic lyme disease (CLD). We derived decision tree, random forest, and gradient-boosting machine (GBM) classifiers and compared their diagnostic capabilities on a dataset partitioned into training (178 individuals) and evaluation (45 individuals) sets. The GBM model generated 89% sensitivity and 96% specificity for LC with no evidence of overfitting. We tested the GBM on an additional random dataset (106 LC/PASC and 18 Lyme), resulting in high sensitivity (97%) and specificity (90%) for LC. We constructed a Lyme Index confirmatory algorithm to discriminate LC and CLD.
Collapse
Affiliation(s)
- Bruce K Patterson
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA.
| | - Jose Guevara-Coto
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Javier Mora
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Edgar B Francisco
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | | | - Rodrigo A Mora-Rodríguez
- Lab of Tumor Chemosensitivity, Faculty of Microbiology, CIET/CICICA, Universidad de Costa Rica, San José, Costa Rica
| | - Christopher Beaty
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gwyneth Lemaster
- IncellDx Inc, 30920 Huntwood Ave, San Carlos, Hayward, CA, 94544, USA
| | - Gary Kaplan DO
- Department of Community and Family Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Amiram Katz
- Neurology Specialist Affiliated With Norwalk Hospital, Orange, CT, USA
| | - Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, and the International Center for Interdisciplinary Studies of Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
5
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
6
|
Marin-Rodero M, Reyes EC, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a unique compartment of regulatory T cells that bulwarks adult hippocampal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599387. [PMID: 38948783 PMCID: PMC11212874 DOI: 10.1101/2024.06.17.599387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Our knowledge about the meningeal immune system has recently burgeoned, particularly our understanding of how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains sparse. This study highlights the heterogeneous and polyfunctional regulatory-T (Treg) cell compartment in the meninges. A Treg subtype specialized in controlling Th1-cell responses and another known to control responses in B-cell follicles were substantial components of this compartment, foretelling that punctual Treg-cell ablation rapidly unleashed interferon-gamma production by meningeal lymphocytes, unlocked their access to the brain parenchyma, and altered meningeal B-cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial-cell types; within the dentate gyrus, neural stem cells showed exacerbated death and desisted from further differentiation, associated with inhibition of spatial-reference memory. Thus, meningeal Treg cells are a multifaceted bulwark to brain homeostasis at steady-state. One sentence summary A distinct population of regulatory T cells in the murine meninges safeguards homeostasis by keeping local interferon-γ-producing lymphocytes in check, thereby preventing their invasion of the parenchyma, activation of hippocampal glial cells, death of neural stem cells, and memory decay.
Collapse
|
7
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
8
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
9
|
Medina-Rodriguez EM, Han D, Lowell J, Beurel E. Stress promotes the infiltration of peripheral immune cells to the brain. Brain Behav Immun 2023; 111:412-423. [PMID: 37169132 PMCID: PMC10349920 DOI: 10.1016/j.bbi.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Immune cells and the brain have a privileged interaction. Here, we report changes in the hippocampal immune microenvironment at the single cell level after stress, uncovering the tight orchestration of immune cell infiltration into the hippocampus after stress to maintain homeostasis. We show the distribution of several immune cell types in the hippocampus associated with their susceptibility or resilience to the learned helplessness paradigm in a sex- and microbiota-dependent manner using single-cell RNA sequencing and bioinformatic tools, flow cytometry, and immunofluorescence. We uncovered the presence of tissue-resident memory T cells that accumulate over time in the hippocampus of learned helpless mice, and the presence of CD74-expressing myeloid cells. These cells were found by a knockdown approach to be critical to induce resilience to learned helplessness. Altogether, these findings provide a novel overview of the neuro-immune repertoire and its impact on the landscape of the hippocampus after learned helplessness.
Collapse
Affiliation(s)
| | - Dongmei Han
- Department of Psychiatry and Behavioral Sciences, United States
| | - Jeffrey Lowell
- Department of Psychiatry and Behavioral Sciences, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
10
|
de Sousa LP, Rosa-Gonçalves P, Ribeiro-Gomes FL, Daniel-Ribeiro CT. Interplay Between the Immune and Nervous Cognitive Systems in Homeostasis and in Malaria. Int J Biol Sci 2023; 19:3383-3394. [PMID: 37496995 PMCID: PMC10367562 DOI: 10.7150/ijbs.82556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 07/28/2023] Open
Abstract
The immune and nervous systems can be thought of as cognitive and plastic systems, since they are both involved in cognition/recognition processes and can be architecturally and functionally modified by experience, and such changes can influence each other's functioning. The immune system can affect nervous system function depending on the nature of the immune stimuli and the pro/anti-inflammatory responses they generate. Here we consider interactions between the immune and nervous systems in homeostasis and disease, including the beneficial and deleterious effects of immune stimuli on brain function and the impact of severe and non-severe malaria parasite infections on neurocognitive and behavioral parameters in human and experimental murine malaria. We also discuss the effect of immunization on the reversal of cognitive deficits associated with experimental non-severe malaria in a model susceptible to the development of the cerebral form of the illness. Finally, we consider the possibility of using human vaccines, largely exploited as immune-prophylactics for infectious diseases, as therapeutic tools to prevent or mitigate the expression of cognitive deficits in infectious and chronic degenerative diseases.
Collapse
Affiliation(s)
- Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| | - Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
- Laboratório de Biologia, campus Duque de Caxias, Colégio Pedro II, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) from Fundação Oswaldo Cruz (Fiocruz) and the Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Brazil
| |
Collapse
|
11
|
Nadjar A. Discovery of a new type of neuroimmune interaction in the aged brain's response to energy surfeit. Brain Behav Immun 2023; 110:288-289. [PMID: 36914015 DOI: 10.1016/j.bbi.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Agnes Nadjar
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
12
|
Suzzi S, Croese T, Ravid A, Gold O, Clark AR, Medina S, Kitsberg D, Adam M, Vernon KA, Kohnert E, Shapira I, Malitsky S, Itkin M, Brandis A, Mehlman T, Salame TM, Colaiuta SP, Cahalon L, Slyper M, Greka A, Habib N, Schwartz M. N-acetylneuraminic acid links immune exhaustion and accelerated memory deficit in diet-induced obese Alzheimer's disease mouse model. Nat Commun 2023; 14:1293. [PMID: 36894557 PMCID: PMC9998639 DOI: 10.1038/s41467-023-36759-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.
Collapse
Grants
- R01 DK095045 NIDDK NIH HHS
- R01 DK099465 NIDDK NIH HHS
- the Vera and John Schwartz Family Center for Metabolic Biology.
- the National Institutes of Health (NIH) grants DK095045 and DK099465, the Cure Alzheimer’s Fund, the Chan Zuckerberg Foundation, and the Carlos Slim Foundation.
- the Israel Science Foundation (ISF) research grant no. 1709/19, the European Research Council grant 853409, the MOST-IL-China research grant no. 3-15687, and the Myers Foundation. N.H. holds the Goren-Khazzam chair in neuroscience.
- the Advanced European Research Council grants 232835 and 741744, the European Seventh Framework Program HEALTH-2011 (279017), the Israel Science Foundation (ISF)-research grant no. 991/16, the ISF-Legacy Heritage Bio-medical Science Partnership research grant no. 1354/15, and the Thompson Foundation and Adelis Foundation.
Collapse
Affiliation(s)
- Stefano Suzzi
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| | - Tommaso Croese
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Adi Ravid
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Or Gold
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Abbe R Clark
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sedi Medina
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Daniel Kitsberg
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Miriam Adam
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Katherine A Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Kohnert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Inbar Shapira
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Sergey Malitsky
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Maxim Itkin
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Alexander Brandis
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tevie Mehlman
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tomer M Salame
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Sarah P Colaiuta
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Liora Cahalon
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Naomi Habib
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel.
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| |
Collapse
|
13
|
Manjili MH. The Adaptation Model of Immunity: Signal IV Matters Most in Determining the Functional Outcomes of Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:521-530. [PMID: 36881868 PMCID: PMC10000300 DOI: 10.4049/jimmunol.2200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 03/09/2023]
Abstract
Current research in immunology and immunotherapy is fully influenced by the self-nonself model of immunity. This theoretical model suggests that alloreactivity results in graft rejection, whereas tolerance toward self-antigens expressed by malignant cells facilitates cancer development. Similarly, breakage of immunological tolerance toward self-antigens results in autoimmune diseases. Accordingly, immune suppression is recommended for the management of autoimmune diseases, allergy, and organ transplantation, whereas immune inducers are used for the treatment of cancers. Although the danger model, the discontinuity model, and the adaptation model are proposed for a better understanding of the immune system, the self-nonself model continues to dominate the field. Nevertheless, a cure for these human diseases remains elusive. This essay discusses current theoretical models of immunity, as well as their impacts and limitations, and expands on the adaptation model of immunity to galvanize a new direction for the treatment of autoimmune diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU Institute of Molecular Medicine, VCU School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Richmond, VA, USA
| |
Collapse
|
14
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Lyu W, Chen Y, Zhao K, Tan X, Wu Y, Qiu S. Alterations of peripheral cytokines, BDNF, and surface-based morphometry indices in T2DM patients without cognitive impairment. Front Neurosci 2023; 17:1141261. [PMID: 37113152 PMCID: PMC10126356 DOI: 10.3389/fnins.2023.1141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose This study aimed to investigate potential biological mechanisms underlying cognitive function alterations in Type 2 diabetes mellitus (T2DM) patients by integrating cortical morphology with peripheral cytokine levels and brain-derived neurotrophic factor (BDNF) levels, and to offer potential insights for the early detection of T2DM-related cognitive impairment. Methods This study included 16 T2DM patients with a Montreal Cognitive Assessment (MoCA) score of at least 26 points, as well as 16 healthy controls with normal cognitive function. The participants also completed the digit span test and digit symbol substitution test. Participants' serum levels of Interleukin 4 (IL-4), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and BDNF were also examined. Each subject underwent a high-resolution 3T structural brain MRI scan. Based on the aparc. a2009s atlas, we calculated the cortical thickness, sulcus depth, gyrification index, and fractal dimension for each participant using surface-based morphometry (SBM). Correlation analysis between cognitive measures, serum levels of cytokines and BDNF, and SBM indices were further performed. Results The levels of IL-4 and BDNF showed significant group differences. In the T2DM group, the sulcus depth exhibited a significant decrease in the left transverse frontopolar gyri and sulci, as well as in the right pole-occipital; the fractal dimension showed a significant increase in the right posterior-dorsal part of the cingulate gyrus; and the gyrification index significantly increased in the left inferior part of the precentral sulcus and right triangular part of the inferior frontal gyrus. Correlation analysis revealed a significant positive correlation between IL-10 levels and the sulcus depth of left transverse frontopolar gyri and sulci; a significant positive correlation between the sulcus depth of the right pole-occipital and the digit span test-forward scores, and a significant negative correlation between the gyrification index of the left inferior part of the precentral sulcus and the digit span test-backward scores among T2DM participants. Conclusion T2DM patients without cognitive impairment displayed reductions in IL 4 and BDNF levels, as well as significant alterations in their SBM indices, indicating that prior to the emergence of cognitive impairment, the SBM indices, peripheral cytokines, and BDNF may have altered in T2DM patients. IL-10 may lessen inflammation-related brain edema and preserve sulcus depth in T2DM patients through its anti-inflammatory activity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kui Zhao
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- Ye Wu,
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Shijun Qiu,
| |
Collapse
|
16
|
Chachaj A, Gąsiorowski K, Szuba A, Sieradzki A, Leszek J. The Lymphatic System In The Brain Clearance Mechanisms - New Therapeutic Perspectives For Alzheimer's Disease. Curr Neuropharmacol 2023; 21:380-391. [PMID: 35410605 PMCID: PMC10190136 DOI: 10.2174/1570159x20666220411091332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxic proteins within the brain, such as amyloid-ß and hyperphosphorylated tau tangles, are the prominent features in AD. According to recent studies, the newly discovered brain lymphatic system was demonstrated to be crucial in the clearance of metabolic macromolecules from the brain. Meningeal lymphatic vessels located in the dura mater drain the fluid, macromolecules, and immune cells from cerebrospinal fluid (CSF) and transport them, as lymph, to the deep cervical lymph nodes. The lymphatic system provides the perivascular exchange of CSF with interstitial fluid (ISF) and ensures the homeostasis of neuronal interstitial space. In this review, we aim to summarize recent findings on the role of the lymphatic system in AD pathophysiology and discuss possible therapeutic perspectives, targeting the lymphatic clearance mechanisms within the brain.
Collapse
Affiliation(s)
- Angelika Chachaj
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - Adrian Sieradzki
- Department of Nervous System Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
17
|
Immunization with a heat-killed preparation of Mycobacterium vaccae NCTC 11659 enhances auditory-cued fear extinction in a stress-dependent manner. Brain Behav Immun 2023; 107:1-15. [PMID: 36108946 DOI: 10.1016/j.bbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.
Collapse
|
18
|
Pre-exposure cognitive performance variability is associated with severity of respiratory infection. Sci Rep 2022; 12:22589. [PMID: 36585416 PMCID: PMC9801154 DOI: 10.1038/s41598-022-26081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Using data from a longitudinal viral challenge study, we find that the post-exposure viral shedding and symptom severity are associated with a novel measure of pre-exposure cognitive performance variability (CPV), defined before viral exposure occurs. Each individual's CPV score is computed from data collected from a repeated NeuroCognitive Performance Test (NCPT) over a 3 day pre-exposure period. Of the 18 NCPT measures reported by the tests, 6 contribute materially to the CPV score, prospectively differentiating the high from the low shedders. Among these 6 are the 4 clinical measures digSym-time, digSym-correct, trail-time, and reaction-time, commonly used for assessing cognitive executive functioning. CPV is found to be correlated with stress and also with several genes previously reported to be associated with cognitive development and dysfunction. A perturbation study over the number and timing of NCPT sessions indicates that as few as 5 sessions is sufficient to maintain high association between the CPV score and viral shedding, as long as the timing of these sessions is balanced over the three pre-exposure days. Our results suggest that variations in cognitive function are closely related to immunity and susceptibility to severe infection. Further studying these relationships may help us better understand the links between neurocognitive and neuroimmune systems which is timely in this COVID-19 pandemic era.
Collapse
|
19
|
Ryan KM, Lynch M, McLoughlin DM. Blood cell ratios in mood and cognitive outcomes following electroconvulsive therapy. J Psychiatr Res 2022; 156:729-736. [PMID: 36413934 DOI: 10.1016/j.jpsychires.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Systemic inflammation is commonly reported in depression, with dysregulation of both the innate and adaptive arms of the immune system documented. Obtaining ratios of neutrophils, platelets, and monocytes to counts of lymphocytes (NLR, PLR, MLR, respectively) represents a low-cost and easily reproducible measure of an individual's inflammatory burden that can be calculated effortlessly from routine clinical full white blood cell counts. Electroconvulsive therapy (ECT) remains the most effective acute antidepressant treatment for depression but is often limited by its cognitive side-effects. Here, we examined differences in blood cell ratios in subgroups of depressed patients (unipolar/bipolar, psychotic/non-psychotic, early-onset/late-onset) and ECT-related subgroups (responder/non-responder, remitter/non-remitter). We also explored the relationships between blood cell ratios and depression severity and immediate cognitive outcomes post-ECT. Our results show baseline NLR was raised in patients with psychotic depression. In the entire group of patients, significant negative correlations were noted between the PLR and SII and baseline HAM-D24 score, signifying that lower systemic inflammation is associated with more severe depressive symptoms. Significant positive correlations were noted between various blood cell ratios and mean time to recovery of orientation in the entire group of patients and in depression subgroups, indicating that increased peripheral inflammation is linked to worse cognitive outcomes post-ECT. Overall, our results suggest that assessment of blood cell ratios could be useful for predicting mood changes in patients at risk of developing depressive episodes or relapse following successful treatment or for identifying those at risk for cognitive side-effects following ECT.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
| | - Marie Lynch
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland.
| |
Collapse
|
20
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Meningeal macrophages protect against viral neuroinfection. Immunity 2022; 55:2103-2117.e10. [PMID: 36323311 DOI: 10.1016/j.immuni.2022.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/18/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.
Collapse
|
22
|
Williams DW, Flores BR, Xu Y, Wang Y, Yu D, Peters BA, Adedimeji A, Wilson TE, Merenstein D, Tien PC, Cohen MH, Weber KM, Adimora AA, Ofotokun I, Fischl M, Turan J, Turan B, Laumet G, Landay AL, Dastgheyb RM, Gange SJ, Weiser SD, Rubin LH. T-cell activation state differentially contributes to neuropsychiatric complications in women with HIV. Brain Behav Immun Health 2022; 25:100498. [PMID: 36097532 PMCID: PMC9463560 DOI: 10.1016/j.bbih.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 08/13/2022] [Indexed: 02/02/2023] Open
Abstract
Neuropsychiatric complications are common among women with HIV (WWH). The pathophysiological mechanisms underlying these complications are not fully known but likely driven in part by immune modulation. We examined associations between T-cell activation states which are required to mount an effective immune response (activation, co-stimulation/normal function, exhaustion, senescence) and neuropsychiatric complications in WWH. 369 WWH (78% HIV RNA undetectable/<20cp/mL) enrolled in the Women's Interagency HIV Study completed neuropsychological testing and measures of depression (Center for Epidemiological Studies Depression Scale-CES-D), self-reported stress levels (Perceived Stress Scale-10), and post-traumatic stress (PTSD Checklist-Civilian Scale). Multiparametric flow cytometry evaluated T-cell activation state. Partial least squares regressions were used to examine T-cell phenotypes and neuropsychiatric outcome associations after confounder adjustment. In the total sample and among virally suppressed (VS)-WWH, CD4+ T-cell exhaustion was associated with poorer learning and attention/working memory (P's < 0.05). In the total sample, CD4+ T-cell activation was associated with better attention/working memory and CD8+ T-cell co-stimulation and senescence was associated with poorer executive function (P's < 0.05). For mental health outcomes, in the total sample, CD4+ T-cell activation was associated with more perceived stress and CD4+ T-cell exhaustion was associated with less depressive symptoms (P's < 0.05). Among VS-WWH, CD4+ senescence was associated with less perceive stress and CD8+ T-cell co-stimulation and senescence was associated with higher depression (P's < 0.05). Together, results suggest the contribution of peripheral CD4+ and CD8+ T-cell activation status to neuropsychiatric complications in WWH.
Collapse
Affiliation(s)
- Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanxun Xu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuezhe Wang
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Danyang Yu
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adebola Adedimeji
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tracey E. Wilson
- Department of Community Health Sciences, State University of New York Downstate Health Science University, School of Public Health, Brooklyn, NY, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Phyllis C. Tien
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
| | | | | | - Adaora A. Adimora
- Division of Infectious Disease, University of North Carolina at Chapel Hill, NC, USA
| | - Igho Ofotokun
- Department of Medicine, Emory University and Grady Healthcare System, Atlanta, Georgia Mailman School of Public Health, Columbia University, NY, NY, USA
| | - Margaret Fischl
- Department of Medicine, University of Miami Health System, Miami, FL, USA
| | - Janet Turan
- Departments of Health Policy and Organization, School of Public Health, University of Alabama at Birmingham, USA
| | - Bülent Turan
- Department of Psychology, Koc University, Istanbul, Turkey
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Raha M. Dastgheyb
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Gange
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sheri D. Weiser
- Department of Medicine, UCSF and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, USA
- Division of HIV, ID and Global Medicine, Department of Medicine, UCSF, San Francisco, CA, USA
| | - Leah H. Rubin
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
24
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
25
|
Jhan KY, Cheng CJ, Chou CJ, Jung SM, Lai GJ, Chen KY, Wang LC. Improvements of cognitive functions in mice heavily infected by Angiostrongylus cantonensis after treatment with albendazole, dexamethasone, or co-therapy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:935-945. [PMID: 35484079 DOI: 10.1016/j.jmii.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Angiostrongylus cantonensis, the causative agent of human eosinophilic meningitis and eosinophilic meningoencepalitis, has been reported to cause cognitive impairments in the host. To determine whether drug treatment improves the cognitive functions, BALB/c mice infected with 50 third-stage larvae were treated with albendazole, dexamethasone, or co-therapy since day 7 or 14 post-infection for one or two weeks. Abilities of spatial memory and learning of these animals were assessed with the Morris water maze. Our results showed that body weight was significant higher then infected group in the albendazole and combined therapy groups. Significantly lower worm recovery rates were found in mice treated with the same groups. The mice treated with dexamethasone since day 7 for 14 day had significant longer time in the remaining groups were found in forced swimming test. The animals treated with albendazole and combined therapy since day 7 for 14 days was demonstrated to have significantly shorter latencies to the platform in learning memory on day 3 and 4. Mice in these two groups were demonstrated to have significantly higher sores in spatial memory tests. These results indicate that treatment with albendazole or combined therapy may be more efficient in preventing brain damages and depression as well as preserving their capabilities in learning and memory. Therefore, administration of albendazole alone or combined with dexamethasone should have higher efficacies than dexamethasone alone in treatment of BALB/c mice infected with a heavy dose of 50 third-stage larvae of A. cantonensis.
Collapse
Affiliation(s)
- Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Jen Chou
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital at Linkou and Chang-Gung University, Taoyuan 333, Taiwan
| | - Guan-Jhih Lai
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Lian-Chen Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| |
Collapse
|
26
|
Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev 2022; 311:187-204. [PMID: 35656941 PMCID: PMC10120860 DOI: 10.1111/imr.13092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023]
Abstract
The IFN-γ/STAT1 immune signaling pathway impacts many homeostatic and pathological aspects of neurons, beyond its canonical role in controlling intracellular pathogens. Well known for its potent pro-inflammatory and anti-viral functions in the periphery, the IFN-γ/STAT1 pathway is rapidly activated then deactivated to prevent excessive inflammation; however, neurons utilize unique IFN-γ/STAT1 activation patterns, which may contribute to the non-canonical neuron-specific downstream effects. Though it is now well-established that the immune system interacts and supports the CNS in health and disease, many aspects regarding IFN-γ production in the CNS and how neurons respond to IFN-γ are unclear. Additionally, it is not well understood how the diversity of the IFN-γ/STAT1 pathway is regulated in neurons to control homeostatic functions, support immune surveillance, and prevent pathologies. In this review, we discuss the neuron-specific mechanisms and kinetics of IFN-γ/STAT1 activation, the potential sources and entry sites of IFN-γ in the CNS, and the diverse set of homeostatic and pathological effects IFN-γ/STAT1 signaling in neurons has on CNS health and disease. We will also highlight the different contexts and conditions under which IFN-γ-induced STAT1 activation has been studied in neurons, and how various factors might contribute to the vast array of downstream effects observed.
Collapse
Affiliation(s)
- Danielle N. Clark
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Lauren R. Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anthony J. Filiano
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
27
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
30
|
Gao Y, Mei C, Chen P, Chen X. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord. Int Immunopharmacol 2022; 107:108700. [DOI: 10.1016/j.intimp.2022.108700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
31
|
Perner C, Krüger E. Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 2022; 13:859703. [PMID: 35572517 PMCID: PMC9092946 DOI: 10.3389/fimmu.2022.859703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Neuronal cells are specialists for rapid transfer and translation of information. Their electrical properties relay on a precise regulation of ion levels while their communication via neurotransmitters and neuropeptides depends on a high protein and lipid turnover. The endoplasmic Reticulum (ER) is fundamental to provide these necessary requirements for optimal neuronal function. Accumulation of misfolded proteins in the ER lumen, reactive oxygen species and exogenous stimulants like infections, chemical irritants and mechanical harm can induce ER stress, often followed by an ER stress response to reinstate cellular homeostasis. Imbedded between glial-, endothelial-, stromal-, and immune cells neurons are constantly in communication and influenced by their local environment. In this review, we discuss concepts of tissue homeostasis and innate immunity in the central and peripheral nervous system with a focus on its influence on ER stress, the unfolded protein response, and implications for health and disease.
Collapse
Affiliation(s)
- Caroline Perner
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Zhang Y, Chu JMT, Wong GTC. Cerebral Glutamate Regulation and Receptor Changes in Perioperative Neuroinflammation and Cognitive Dysfunction. Biomolecules 2022; 12:biom12040597. [PMID: 35454185 PMCID: PMC9029551 DOI: 10.3390/biom12040597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is intricately linked to learning and memory. Its activity depends on the expression of AMPA and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical trauma and contributes to the development of perioperative neurocognitive disorders, which are characterized by impairment in multiple cognitive domains. In this review, we aim to examine how glutamate handling and glutamatergic function are affected by neuroinflammation and their contribution to cognitive impairment. We will first summarize the current data regarding glutamate in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative neuroinflammation and the implications they have for perioperative neurocognitive disorders.
Collapse
|
33
|
Winkler CW, Clancy CS, Rosenke R, Peterson KE. Zika virus vertical transmission in interferon receptor1-antagonized Rag1 -/- mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathol Commun 2022; 10:46. [PMID: 35379362 PMCID: PMC8981715 DOI: 10.1186/s40478-022-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The mechanisms by which vertically transmitted Zika virus (ZIKV) causes postnatal brain development abnormalities and congenital disease remain poorly understood. Here, we optimized the established anti-IFNAR1 treated, Rag1-/- (AIR) mouse model of ZIKV infection to examine the consequence of vertical transmission on neonate survival and postnatal brain development. We found that modulating the infectious dose and the frequency of anti-IFNAR1 treatment of pregnant mice (termed AIRlow mice) prolonged neonatal survival allowing for pathogenesis studies of brain tissues at critical postnatal time points. Postnatal AIRlow mice all had chronic ZIKV infection in the brain that was associated with decreased cortical thickness and cerebellar volume, increased gliosis, and higher levels of cell death in many brain areas including cortex, hippocampus and cerebellum when compared to controls. Interestingly, despite active infection and brain abnormalities, the neurodevelopmental program remained active in AIRlow mice as indicated by elevated mRNA expression of critical neurodevelopmental genes in the brain and enlargement of neural-progenitor rich regions of the cerebellum at a developmental time point analogous to birth in humans. Nevertheless, around the developmental time point when the brain is fully populated by neurons, AIRlow mice developed neurologic disease associated with persistent ZIKV infection in the brain, gliosis, and increased cell death. Together, these data show that vertically transmitted ZIKV infection in the brain of postnatal AIRlow mice strongly influences brain development resulting in structural abnormalities and cell death in multiple regions of the brain.
Collapse
|
34
|
McKenzie DR, Hart R, Bah N, Ushakov DS, Muñoz-Ruiz M, Feederle R, Hayday AC. Normality sensing licenses local T cells for innate-like tissue surveillance. Nat Immunol 2022; 23:411-422. [PMID: 35165446 PMCID: PMC8901436 DOI: 10.1038/s41590-021-01124-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The increasing implication of lymphocytes in general physiology and immune surveillance outside of infection poses the question of how their antigen receptors might be involved. Here, we show that macromolecular aggregates of intraepidermal γδ T cell antigen receptors (TCRs) in the mouse skin aligned with and depended on Skint1, a butyrophilin-like (BTNL) protein expressed by differentiated keratinocytes (KCs) at steady state. Interruption of TCR-mediated 'normality sensing' had no impact on γδ T cell numbers but altered their signature phenotype, while the epidermal barrier function was compromised. In addition to the regulation of steady-state physiology, normality sensing licensed intraepidermal T cells to respond rapidly to subsequent tissue perturbation by using innate tumor necrosis factor (TNF) superfamily receptors. Thus, interfering with Skint1-dependent interactions between local γδ T cells and KCs at steady state increased the susceptibility to ultraviolet B radiation (UVR)-induced DNA damage and inflammation, two cancer-disposing factors.
Collapse
Affiliation(s)
| | | | | | - Dmitry S Ushakov
- The Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany
| | - Adrian C Hayday
- The Francis Crick Institute, London, UK.
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
35
|
Levite M, Goldberg H. Autoimmune Epilepsy - Novel Multidisciplinary Analysis, Discoveries and Insights. Front Immunol 2022; 12:762743. [PMID: 35095841 PMCID: PMC8790247 DOI: 10.3389/fimmu.2021.762743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) 'Perspective' article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and β2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have 'frenetic character'- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different 'faces' in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Hadassa Goldberg
- Epilepsy Center, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Mohamed SH, Nyazika TK, Ssebambulidde K, Lionakis MS, Meya DB, Drummond RA. Fungal CNS Infections in Africa: The Neuroimmunology of Cryptococcal Meningitis. Front Immunol 2022; 13:804674. [PMID: 35432326 PMCID: PMC9010970 DOI: 10.3389/fimmu.2022.804674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 01/13/2023] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of central nervous system (CNS) fungal infections in humans, with the majority of cases reported from the African continent. This is partly due to the high burden of HIV infection in the region and reduced access to standard-of-care including optimal sterilising antifungal drug treatments. As such, CM is responsible for 10-15% of all HIV-related mortality, with a large proportion being preventable. Immunity to the causative agent of CM, Cryptococcus neoformans, is only partially understood. IFNγ producing CD4+ T-cells are required for the activation of myeloid cells, especially macrophages, to enable fungal killing and clearance. However, macrophages may also act as a reservoir of the fungal yeast cells, shielding them from host immune detection thus promoting latent infection or persistent chronic inflammation. In this chapter, we review the epidemiology and pathogenesis of CNS fungal infections in Africa, with a major focus on CM, and the antifungal immune pathways operating to protect against C. neoformans infection. We also highlight the areas of research and policy that require prioritisation to help reduce the burden of CNS fungal diseases in Africa.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tinashe K Nyazika
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kenneth Ssebambulidde
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David B Meya
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
A new suspect in the unsolved case of neuroinflammation in schizophrenia. Mol Psychiatry 2021; 26:7105-7106. [PMID: 34285346 DOI: 10.1038/s41380-021-01225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022]
|
38
|
Van Hoecke L, Van Cauwenberghe C, Dominko K, Van Imschoot G, Van Wonterghem E, Castelein J, Xie J, Claeys W, Vandendriessche C, Kremer A, Borghgraef P, De Rycke R, Hecimovic S, Vandenbroucke RE. Involvement of the Choroid Plexus in the Pathogenesis of Niemann-Pick Disease Type C. Front Cell Neurosci 2021; 15:757482. [PMID: 34720883 PMCID: PMC8555471 DOI: 10.3389/fncel.2021.757482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer’s, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer’s disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1–/– mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1–/– choroid plexus explants are able to induce typical brain pathology characteristics of NPC1–/–, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.
Collapse
Affiliation(s)
- Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kristina Dominko
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wouter Claeys
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anna Kremer
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Peter Borghgraef
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium
| | - Riet De Rycke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB BioImaging Core Ghent, VIB, Ghent, Belgium.,Ghent University Expertise Centre for Transmission Electron Microscopy, Ghent, Belgium
| | - Silva Hecimovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Johnson E, J M, I L, R S. Asthma and posttraumatic stress disorder (PTSD): Emerging links, potential models and mechanisms. Brain Behav Immun 2021; 97:275-285. [PMID: 34107349 PMCID: PMC8453093 DOI: 10.1016/j.bbi.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a highly prevalent, debilitating mental health condition. A better understanding of contributory neurobiological mechanisms will lead to effective treatments, improving quality of life for patients. Given that not all trauma-exposed individuals develop PTSD, identification of pre-trauma susceptibility factors that can modulate posttraumatic outcomes is important. Recent clinical evidence supports a strong link between inflammatory conditions and PTSD. A particularly strong association has been reported between asthma and PTSD prevalence and severity. Unlike many other PTSD-comorbid inflammatory conditions, asthma often develops in children, sensitizing them to subsequent posttraumatic pathology throughout their lifetime. Currently, there is a significant need to understand the neurobiology, shared mechanisms, and inflammatory mediators that may contribute to comorbid asthma and PTSD. Here, we provide a translational perspective of asthma and PTSD risk and comorbidity, focusing on clinical associations, relevant rodent paradigms and potential mechanisms that may translate asthma-associated inflammation to PTSD development.
Collapse
Affiliation(s)
- Emily Johnson
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati OH, 45220,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH, 45220
| | - McAlees J
- Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati OH, 45220
| | - Lewkowich I
- Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati OH, 45220,Department of Pediatrics, University of Cincinnati, Cincinnati OH, 45220
| | - Sah R
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati OH, 45220,Neuroscience Graduate Program, University of Cincinnati, Cincinnati OH, 45220,VA Medical Center, Cincinnati, OH, 45220
| |
Collapse
|
40
|
Levite M, Safadi R, Milgrom Y, Massarwa M, Galun E. Neurotransmitters and Neuropeptides decrease PD-1 in T cells of healthy subjects and patients with hepatocellular carcinoma (HCC), and increase their proliferation and eradication of HCC cells. Neuropeptides 2021; 89:102159. [PMID: 34293596 DOI: 10.1016/j.npep.2021.102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/29/2023]
Abstract
T cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects. Therefore, we performed an individual-based study on T cells of 3 healthy subjects, and 3 Hepatocellular Carcinoma (HCC) patients. HCC usually develops due to chronic inflammation. The inflamed liver induces reduction and inhibition of CD4+ T cells and Natural Killer (NK) cells. Immune-based therapies for HCC are urgently needed. We tested if selected Neurotransmitters and Neuropeptides decrease the key checkpoint protein PD-1 in human T cells, and increase proliferation and killing of HCC cells. First, we confirmed human T cells express all dopamine receptors (DRs), and glutamate receptors (GluRs): AMPA-GluR3, NMDA-R and mGluR. Second, we discovered that either Dopamine, Glutamate, GnRH-II, Neuropeptide Y and/or CGRP (10nM), as well as DR and GluR agonists, induced the following effects: 1. Decreased significantly both %PD-1+ T cells and PD-1 expression level per cell (up to 60% decrease, within 1 h only); 2. Increased significantly the number of T cells that proliferated in the presence of HCC cells (up to 7 fold increase), 3. Increased significantly T cell killing of HCC cells (up to 2 fold increase). 4. Few non-conventional combinations of Neurotransmitters and Neuropeptides had surprising synergistic beneficial effects. We conclude that Dopamine, Glutamate, GnRH-II, Neuropeptide Y and CGRP, alone or in combinations, can decrease % PD-1+ T cells and PD-1 expression per cell, in T cells of both healthy subjects and HCC patients, and increase their proliferation in response to HCC cells and killing of HCC cells. Yet, testing T cells of many more cancer patients is absolutely needed. Based on these findings and previous ones, we designed a novel "Personalized Adoptive Neuro-Immunotherapy", calling for validation of safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel.
| | - Rifaat Safadi
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Yael Milgrom
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Muhammad Massarwa
- The Liver Unit, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| | - Eithan Galun
- Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem 91120, Israel
| |
Collapse
|
41
|
Suo L, Wang M. Dexmedetomidine facilitates the expression of nNOS in the hippocampus to alleviate surgery-induced neuroinflammation and cognitive dysfunction in aged rats. Exp Ther Med 2021; 22:1038. [PMID: 34373724 PMCID: PMC8343769 DOI: 10.3892/etm.2021.10470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in the postoperative nervous system of elderly patients. Surgery-induced hippocampal neuroinflammation is closely associated with POCD. Dexmedetomidine (DEX) is an effective α2-adrenergic receptor agonist, which can reduce inflammation and has neuroprotective effects, thereby improving postoperative cognitive dysfunction. However, the mechanism by which DEX improves POCD is currently unclear. The purpose of the present study was therefore to identify how DEX acted on POCD. Male Sprague Dawley rats with exposed carotid arteries were used to mimic POCD. Locomotor activity was accessed by the open field test and the Morris water maze was performed to estimate spatial learning, memory and cognitive flexibility. Following animal sacrifice, the hippocampus was collected and cell apoptosis was determined by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining. Subsequently, the expression of apoptosis-related proteins Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9 was determined by western blotting and the concentrations of TNF-α, IL-6, IL-1β and IL-10 were measured in serum using ELISA. Nitric oxide synthase and neuronal nitric oxide synthase activities in the hippocampus were also measured. The T lymphocyte subsets were analyzed by flow cytometry to evaluate the immune function in each group. Compared with the surgery group, DEX ameliorated POCD by improving cognitive dysfunctions and immune function loss, and attenuated neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Mingyu Wang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
42
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
43
|
de Sousa LP, Ribeiro-Gomes FL, de Almeida RF, Souza TME, Werneck GL, Souza DO, Daniel-Ribeiro CT. Immune system challenge improves recognition memory and reverses malaria-induced cognitive impairment in mice. Sci Rep 2021; 11:14857. [PMID: 34290279 PMCID: PMC8295320 DOI: 10.1038/s41598-021-94167-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The immune system plays a role in the maintenance of healthy neurocognitive function. Different patterns of immune response triggered by distinct stimuli may affect nervous functions through regulatory or deregulatory signals, depending on the properties of the exogenous immunogens. Here, we investigate the effect of immune stimulation on cognitive-behavioural parameters in healthy mice and its impact on cognitive sequelae resulting from non-severe experimental malaria. We show that immune modulation induced by a specific combination of immune stimuli that induce a type 2 immune response can enhance long-term recognition memory in healthy adult mice subjected to novel object recognition task (NORT) and reverse a lack of recognition ability in NORT and anxiety-like behaviour in a light/dark task that result from a single episode of mild Plasmodium berghei ANKA malaria. Our findings suggest a potential use of immunogens for boosting and recovering recognition memory that may be impaired by chronic and infectious diseases and by the effects of ageing.
Collapse
Affiliation(s)
- Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Fiocruz. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 2104-360, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Fiocruz. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 2104-360, Brazil
| | - Roberto Farina de Almeida
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Tadeu Mello E Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loureiro Werneck
- Departamento de Epidemiologia of Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro and Instituto de Estudos de Saúde Coletiva da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) of Fundação Oswaldo Cruz (Fiocruz) and of Secretaria de Vigilância em Saúde (SVS), Ministério da Saúde, Fiocruz. Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, CEP 2104-360, Brazil.
| |
Collapse
|
44
|
Jones GH, Vecera CM, Pinjari OF, Machado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci 2021; 28:45. [PMID: 34112182 PMCID: PMC8194019 DOI: 10.1186/s12929-021-00742-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with a high individual and societal burden. While not all patients display overt markers of elevated inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease, and likely explains the elevated rates of comorbid inflammatory illnesses seen in this population. While individual systems have been intensely studied and targeted, a relative paucity of attention has been given to the interconnecting role of inflammatory signals therein. This review presents an updated overview of some of the most prominent pathophysiologic mechanisms in bipolar disorder, from mitochondrial, endoplasmic reticular, and calcium homeostasis, to purinergic, kynurenic, and hormonal/neurotransmitter signaling, showing inflammation to act as a powerful nexus between these systems. Several areas with a high degree of mechanistic convergence within this paradigm are highlighted to present promising future targets for therapeutic development and screening.
Collapse
Affiliation(s)
- Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA.
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Omar F Pinjari
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| |
Collapse
|
45
|
Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal T reg cells. Nat Neurosci 2021; 24:818-830. [PMID: 33859437 DOI: 10.1038/s41593-021-00837-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/10/2021] [Indexed: 02/01/2023]
Abstract
Maternal immune activation (MIA) induced by lipopolysaccharides or polyinosinic:polycytidylic acid injections can induce behavioral abnormalities in adult mouse offspring. Here, we used the soluble tachyzoite antigen from Toxoplasma gondii, a parasite that infects approximately two billion people, to induce MIA in mice. The adult male offspring showed autism-relevant behaviors and abnormal brain microstructure, along with a pro-inflammatory T-cell immune profile in the periphery and upregulation of interleukin-6 in brain astrocytes. We show that adoptive transfer of regulatory T (Treg) cells largely reversed these MIA-induced phenotypes. Notably, pathogen-activated maternal Treg cells showed greater rescue efficacy than those from control donors. Single-cell RNA sequencing identified and characterized a unique group of pathogen-activated Treg cells that constitute 32.6% of the pathogen-activated maternal Treg population. Our study establishes a new preclinical parasite-mimicking MIA model and suggests therapeutic potential of adoptive Treg cell transfer in neuropsychiatric disorders associated with immune alterations.
Collapse
|
46
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
47
|
Maternal autoimmunity and inflammation are associated with childhood tics and obsessive-compulsive disorder: Transcriptomic data show common enriched innate immune pathways. Brain Behav Immun 2021; 94:308-317. [PMID: 33422639 DOI: 10.1016/j.bbi.2020.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Although genetic variation is a major risk factor of neurodevelopmental disorders, environmental factors during pregnancy and early life are also important in disease expression. Animal models demonstrate that maternal inflammation causes fetal neuroinflammation and neurodevelopmental deficits, and brain transcriptomics of neurodevelopmental disorders in humans show upregulated differentially expressed genes are enriched in immune pathways. We prospectively recruited 200 sequentially referred children with tic disorders/obsessive-compulsive disorder (OCD), 100 autoimmune neurological controls, and 100 age-matched healthy controls. A structured interview captured the maternal and family history of autoimmune disease and other pro-inflammatory states. Maternal blood and published Tourette brain transcriptomes were analysed for overlapping enriched pathways. Mothers of children with tics/OCD had a higher rate of autoimmune disease compared with mothers of children with autoimmune neurological conditions (p = 0.054), and mothers of healthy controls (p = 0.0004). Autoimmunity was similarly elevated in first- and second-degree maternal relatives of children with tics/OCD (p < 0.0001 and p = 0.014 respectively). Other pro-inflammatory states were also more common in mothers of children with tics/OCD than controls (p < 0.0001). Upregulated differentially expressed genes in maternal autoimmune disease and Tourette brain transcriptomes were commonly enriched in innate immune processes. Pro-inflammatory states, including autoimmune disease, are more common in the mothers and families of children with tics/OCD. Exploratory transcriptome analysis indicates innate immune signalling may link maternal inflammation and childhood tics/OCD. Targeting inflammation may represent preventative strategies in pregnancy and treatment opportunities for children with neurodevelopmental disorders.
Collapse
|
48
|
Cyr B, de Rivero Vaccari JP. Age-Dependent Microglial Response to Systemic Infection. Cells 2021; 10:cells10051037. [PMID: 33924771 PMCID: PMC8145069 DOI: 10.3390/cells10051037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is part of the aging process, and the inflammatory innate immune response is more exacerbated in older individuals when compared to younger individuals. Similarly, there is a difference in the response to systemic infection that varies with age. In a recent article by Hoogland et al., the authors studied the microglial response to systemic infection in young (2 months) and middle-aged mice (13–14 months) that were challenged with live Escherichia coli to investigate whether the pro- and anti-inflammatory responses mounted by microglia after systemic infection varies with age. Here, we comment on this study and its implications on how inflammation in the brain varies with age.
Collapse
Affiliation(s)
- Brianna Cyr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Center for Cognitive Neuroscience and Aging, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
49
|
de Vries H, Khoury-Hanold W. How the Immune System Deploys Creativity: Why We Can Learn From Astronauts and Cosmonauts. Front Psychol 2021; 12:582083. [PMID: 33981265 PMCID: PMC8107273 DOI: 10.3389/fpsyg.2021.582083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
In this interdisciplinary article, we investigate the relationship between creativity and the immune system; the creative features of the immune system and how the immune system and its role in regulating homeostasis might be related to creative cognition. We argue that within a multivariate approach of creativity, the immune system is a contributing factor. New directions for research are also discussed. When astronauts and cosmonauts venture into the new and extreme environment of outer space, their immune system needs to instantly adapt and find new answers to survive biologically and psychologically. Many astronauts report interest in creative activities and therefore represent an interesting group to investigate creativity in relation with the immune system. Little is known regarding (1) how the immune system interacts with and supports creative cognition and behavior, (2) if an individual's immune system, interacting with cognition, adapts more originally to a new environment compared to another's; in other words, if there is creativity in the domain of the immune system, and (3) the creative properties and functions of the immune system itself.
Collapse
Affiliation(s)
- Henderika de Vries
- Yale Center for Emotional Intelligence, Yale Child Study Center, Yale University, New Haven, CT, United States
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
50
|
Cui M, Dai W, Kong J, Chen H. Th17 Cells in Depression: Are They Crucial for the Antidepressant Effect of Ketamine? Front Pharmacol 2021; 12:649144. [PMID: 33935753 PMCID: PMC8082246 DOI: 10.3389/fphar.2021.649144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Major depressive disorder is associated with inflammation and immune processes. Depressive symptoms correlate with inflammatory markers and alterations in the immune system including cytokine levels and immune cell function. Th17 cells are a T cell subset which exerts proinflammatory effects. Th17 cell accumulation and Th17/Treg imbalances have been reported to be critical in the pathophysiology of major depressive disorder and depressive-like behaviors in animal models. Th17 cells are thought to interfere with glutamate signaling, dopamine production, and other immune processes. Ketamine is a newly characterized antidepressant medication which has proved to be effective in rapidly reducing depressive symptoms. However, the mechanisms behind these antidepressant effects have not been fully elucidated. Method: Literature about Th17 cells and their role in depression and the antidepressant effect of ketamine are reviewed, with the possible interaction networks discussed. Result: The immune-modulating role of Th17 cells may participate in the antidepressant effect of ketamine. Conclusion: As Th17 cells play multiple roles in depression, it is important to explore the mechanisms of action of ketamine on Th17 cells and Th17/Treg cell balance. This provides new perspectives for strengthening the antidepressant effect of ketamine while reducing its side effects and adverse reactions.
Collapse
Affiliation(s)
- Meiying Cui
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongzhi Chen
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|