1
|
Tan HL, Yin L, Tan Y, Ivanov J, Plucinska K, Ilanges A, Herb BR, Wang P, Kosse C, Cohen P, Lin D, Friedman JM. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 2024:10.1038/s41586-024-08108-2. [PMID: 39478220 DOI: 10.1038/s41586-024-08108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, whereas AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3-5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that rapidly suppresses appetite. Here we report the discovery of a new population of leptin-target neurons expressing basonuclin 2 (Bnc2) in the arcuate nucleus that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is modulated by leptin, sensory food cues and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.
Collapse
Affiliation(s)
- Han L Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Luping Yin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kaja Plucinska
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anoj Ilanges
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Brian R Herb
- Department of Pharmacology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Yang S, Li Y, Tian M, Deng W, Liu D, Chen C, Zhu Z, Zheng H, Yang G, Li L, Yang M. Hypothalamic P62 (SQSTM1) regulates energy balance by modulating leptin signaling. Theranostics 2024; 14:6605-6624. [PMID: 39479445 PMCID: PMC11519807 DOI: 10.7150/thno.96480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
RATIONALE The multifaceted functions of p62 (SQSTM1) are increasingly recognized, but its role in hypothalamic metabolism-associated neurons for energy balance has yet to be elucidated. METHODS Single-nucleus RNA sequencing (snRNA-Seq) was performed on hypothalamic tissues from db/db and db/m mice to explore p62 expression. Overexpression and knockout of p62 in hypothalamic POMC neurons were performed via AAV-mediated gene delivery and Cre-loxP systems. Metabolic outcomes were assessed under normal chow (NCD) and high-fat diet (HFD) conditions. The co-immunoprecipitation and luciferase reporter assays were used to investigate the interaction between p62 and STAT3. RESULTS The snRNA-Seq analysis found that p62 was ubiquitously expressed in hypothalamic neurons, with significantly higher levels in POMC neurons of db/db mice compared to db/m controls. Under NCD or HFD conditions, the absence of p62 in POMC neurons led to increased body weight, decreased energy expenditure and leptin sensitivity, while its overexpression in POMC neurons produced the opposite phenotype. Mechanistically, p62 interacts with STAT3, facilitating its phosphorylation to initiate POMC transcription and amplify leptin sensitivity. CONCLUSION This study demonstrated the capacity of p62 to monogenically regulate the obesity phenotype and emphasized its dual role in managing energy homeostasis through direct modulation of STAT3/POMC signaling and amplification of leptin sensitivity.
Collapse
Affiliation(s)
- Shan Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Clinical Biochemistry and the Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Jiankang Road, Yuzhong District, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Department of Clinical Biochemistry and the Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
4
|
Yuan M, Cao Z, Li Q, Liu R, Wang J, Xue W, Lyu Q. Fasting-induced miR-7a-5p in AgRP neurons regulates food intake. Metabolism 2024; 158:155959. [PMID: 38942170 DOI: 10.1016/j.metabol.2024.155959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE The molecular control of feeding after fasting is essential for maintaining energy homeostasis, while overfeeding usually leads to obesity. Identifying non-coding microRNAs (miRNAs) that control food intake could reveal new oligonucleotide-based therapeutic targets for treating obesity and its associated diseases. This study aims to identify a miRNA modulating food intake and its mechanism in neuronal regulation of food intake and energy homeostasis. METHODS A comprehensive genome-wide miRNA screening in the arcuate nucleus of the hypothalamus (ARC) of fasted mice and ad libitum mice was performed. Through stereotactic virus injections, intracerebroventricular injections, and miRNA sponge technology, miR-7a-5p was inhibited specifically in AgRP neurons and the central nervous system, and metabolic phenotypes were monitored. Quantitative real-time PCR, Western blotting, immunofluorescence, whole-cell patch-clamp recording, and luciferase reporter assay were used to investigate the mechanisms underlying miR-7a-5p's regulation of food intake. RESULTS We found a significant increase in miR-7a-5p levels after fasting. miR-7a-5p was highly expressed in the ARC, and inhibition of miR-7a-5p specifically in AgRP neurons reduced food intake and body weight gain. miR-7a-5p inhibited S6K1 gene expression by binding to its 3'-UTR. Furthermore, the knockdown of ribosomal S6 kinase 1 (S6K1) in AgRP neurons can partially reverse the effects caused by miR-7a-5p inhibition. Importantly, intracerebroventricular administration of the miR-7a-5p inhibitor could also reduce food intake and body weight gain. CONCLUSION Our findings suggest that miR-7a-5p responds to energy deficit and regulates food intake by fine-tuning mTOR1/S6K1 signaling in the AgRP neurons, which could be a promising oligonucleotide-based therapeutic target for treating obesity and its associated diseases.
Collapse
Affiliation(s)
- Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Qian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| | - Wenzhi Xue
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Qianqian Lyu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| |
Collapse
|
5
|
Ajwani J, Hwang E, Portillo B, Lieu L, Wallace B, Kabahizi A, He Z, Dong Y, Grose K, Williams KW. Upregulation of Xbp1 in NPY/AgRP neurons reverses diet-induced obesity and ameliorates leptin and insulin resistance. Neuropeptides 2024; 108:102461. [PMID: 39180950 DOI: 10.1016/j.npep.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying neuronal leptin and insulin resistance in obesity and diabetes are not fully understood. In this study, we show that induction of the unfolded protein response transcription factor, spliced X-box binding protein 1 (Xbp1s), in Agouti-Related Peptide (AgRP) neurons alone, is sufficient to not only protect against but also significantly reverse diet-induced obesity (DIO) as well as improve leptin and insulin sensitivity, despite activation of endoplasmic reticulum stress. We also demonstrate that constitutive expression of Xbp1s in AgRP neurons contributes to improved insulin sensitivity and glucose tolerance. Together, our results identify critical molecular mechanisms linking ER stress in arcuate AgRP neurons to acute leptin and insulin resistance as well as liver glucose metabolism in DIO and diabetes.
Collapse
Affiliation(s)
- Jason Ajwani
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Linh Lieu
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Briana Wallace
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Anita Kabahizi
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhenyan He
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Yanbin Dong
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
6
|
Catalbas K, Pattnaik T, Congdon S, Nelson C, Villano LC, Sweeney P. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol Metab 2024; 86:101975. [PMID: 38925247 PMCID: PMC11268337 DOI: 10.1016/j.molmet.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.
Collapse
Affiliation(s)
- Kerem Catalbas
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA
| | - Tanya Pattnaik
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Samuel Congdon
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Lara C Villano
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA.
| |
Collapse
|
7
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
8
|
Chung M, Imanaka K, Huang Z, Watarai A, Wang MY, Tao K, Ejima H, Aida T, Feng G, Okuyama T. Conditional knockout of Shank3 in the ventral CA1 by quantitative in vivo genome-editing impairs social memory in mice. Nat Commun 2024; 15:4531. [PMID: 38866749 PMCID: PMC11169449 DOI: 10.1038/s41467-024-48430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.
Collapse
Affiliation(s)
- Myung Chung
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Imanaka
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ziyan Huang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyuki Watarai
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mu-Yun Wang
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tao
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomomi Aida
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teruhiro Okuyama
- Laboratory of Behavioral Neuroscience, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
10
|
Wang X, Gan M, Wang Y, Wang S, Lei Y, Wang K, Zhang X, Chen L, Zhao Y, Niu L, Zhang S, Zhu L, Shen L. Comprehensive review on lipid metabolism and RNA methylation: Biological mechanisms, perspectives and challenges. Int J Biol Macromol 2024; 270:132057. [PMID: 38710243 DOI: 10.1016/j.ijbiomac.2024.132057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.
Collapse
Affiliation(s)
- Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Saihao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Heyward FD, Liu N, Jacobs C, Machado NLS, Ivison R, Uner A, Srinivasan H, Patel SJ, Gulko A, Sermersheim T, Tsai L, Rosen ED. AgRP neuron cis-regulatory analysis across hunger states reveals that IRF3 mediates leptin's acute effects. Nat Commun 2024; 15:4646. [PMID: 38821928 PMCID: PMC11143326 DOI: 10.1038/s41467-024-48885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
Collapse
Affiliation(s)
- Frankie D Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Natalia L S Machado
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachael Ivison
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suraj J Patel
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology & Hepatology, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition and Department of Internal Medicine, UT Southwestern Medical, Center, Dallas, TX, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tyler Sermersheim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
He W, Loganathan N, Tran A, Belsham DD. Npy transcription is regulated by noncanonical STAT3 signaling in hypothalamic neurons: Implication with lipotoxicity and obesity. Mol Cell Endocrinol 2024; 586:112179. [PMID: 38387703 DOI: 10.1016/j.mce.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.
Collapse
Affiliation(s)
- Wenyuan He
- Departments of Physiology, University of Toronto, Ontario, Canada
| | | | - Andy Tran
- Departments of Physiology, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Khant Aung Z, Ladyman SR, Brown RSE. Transient loss of satiety effects of leptin in middle-aged male mice. J Neuroendocrinol 2024; 36:e13386. [PMID: 38549242 DOI: 10.1111/jne.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18-22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Diao S, Chen C, Benani A, Magnan C, Van Steenwinckel J, Gressens P, Cruciani-Guglielmacci C, Jacquens A, Bokobza C. Preterm birth: A neuroinflammatory origin for metabolic diseases? Brain Behav Immun Health 2024; 37:100745. [PMID: 38511150 PMCID: PMC10950814 DOI: 10.1016/j.bbih.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.
Collapse
Affiliation(s)
- Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| |
Collapse
|
15
|
Possa-Paranhos IC, Butts J, Pyszka E, Nelson C, Cho D, Sweeney P. Neuroanatomical dissection of the MC3R circuitry regulating energy rheostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590573. [PMID: 38712101 PMCID: PMC11071362 DOI: 10.1101/2024.04.22.590573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioral response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e. impaired energy rheostasis). However, the brain regions mediating this phenotype remain incompletely understood. Here, we utilized MC3R floxed mice and viral injections of Cre-recombinase to selectively delete MC3R from medial hypothalamus (MH) in adult mice. Behavioral assays were performed on these animals to test the role of MC3R in MH in the acute response to orexigenic and anorexic challenges. Complementary chemogenetic approaches were used in MC3R-Cre mice to localize and characterize the specific medial hypothalamic brain regions mediating the role of MC3R in energy homeostasis. Finally, we performed RNAscope in situ hybridization to map changes in the mRNA expression of MC3R, POMC, and AgRP following energy rheostatic challenges. Our results demonstrate that MC3R deletion in MH increased feeding and weight gain following acute high fat diet feeding in males, and enhanced the anorexic effects of semaglutide, in a sexually dimorphic manner. Additionally, activation of DMH MC3R neurons increased energy expenditure and locomotion. Together, these results demonstrate that MC3R mediated effects on energy rheostasis result from the loss of MC3R signaling in the medial hypothalamus of adult animals and suggest an important role for DMH MC3R signaling in energy rheostasis.
Collapse
Affiliation(s)
| | - Jared Butts
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Emma Pyszka
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Dajin Cho
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| |
Collapse
|
16
|
Qiu S, Wu Q, Wang H, Liu D, Chen C, Zhu Z, Zheng H, Yang G, Li L, Yang M. AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation. Nat Commun 2024; 15:3377. [PMID: 38643150 PMCID: PMC11032411 DOI: 10.1038/s41467-024-47684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.
Collapse
Affiliation(s)
- Sheng Qiu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qinan Wu
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Hao Wang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Ling Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
17
|
Lavoie O, Turmel A, Mattoon P, Desrosiers WJ, Plamondon J, Michael NJ, Caron A. Hypothalamic GABAergic Neurons Expressing Cellular Retinoic Acid Binding Protein 1 (CRABP1) Are Sensitive to Metabolic Status and Liraglutide in Male Mice. Neuroendocrinology 2024; 114:681-697. [PMID: 38631315 PMCID: PMC11232952 DOI: 10.1159/000538716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Audrey Turmel
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Paige Mattoon
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | | | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
18
|
Wang T, Chen X, Yang G, Shi X. Selection of Leptin Surrogates by a General Phenotypic Screening Method for Receptor Agonists. Biomolecules 2024; 14:457. [PMID: 38672473 PMCID: PMC11047824 DOI: 10.3390/biom14040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
There is a high demand for agonist biomolecules such as cytokine surrogates in both biological and medicinal research fields. These are typically sourced through natural ligand engineering or affinity-based screening, followed by individual functional validation. However, efficient screening methods for identifying rare hits within immense libraries are very limited. In this research article, we introduce a phenotypic screening method utilizing biological receptor activation-dependent cell survival (BRADS). This method offers a high-throughput, low-background, and cost-effective approach that can be implemented in virtually any biochemical laboratory setting. As a proof-of-concept, we successfully identified a surrogate for human leptin following a two-week cell culture process, without the need for specialized high-throughput equipment or reagents. This surrogate effectively emulates the activity of native human leptin in cell validation assays. Our findings not only underscore the effectiveness of BRADS but also suggest its potential applicability to a broad range of biological receptors, including Notch and GPCRs.
Collapse
Affiliation(s)
- Tao Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xixi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| |
Collapse
|
19
|
Guan D, Men Y, Bartlett A, Hernández MAS, Xu J, Yi X, Li HS, Kong D, Mazitschek R, Ozcan U. Central inhibition of HDAC6 re-sensitizes leptin signaling during obesity to induce profound weight loss. Cell Metab 2024; 36:857-876.e10. [PMID: 38569472 DOI: 10.1016/j.cmet.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.
Collapse
Affiliation(s)
- Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuqin Men
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Bartlett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jie Xu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinchi Yi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hu-Song Li
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dong Kong
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Wei R, Chen Y, Ni Q. Jinkui Shenqi pills ameliorate diabetes by regulating hypothalamic insulin resistance and POMC/AgRP expression and activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155297. [PMID: 38342019 DOI: 10.1016/j.phymed.2023.155297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruoyu Wei
- Department of Traditional Chinese Medicine, The Fifth Hospital of Xingtai, Hebei, 054000, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
21
|
Huang Y, Wang A, Zhou W, Li B, Zhang L, Rudolf AM, Jin Z, Hambly C, Wang G, Speakman JR. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat Commun 2024; 15:2382. [PMID: 38493217 PMCID: PMC10944494 DOI: 10.1038/s41467-024-46589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor β (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Broad Institute of MIT and Harvard, Metabolism Program, Cambridge, MA, 02142, USA
| | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Linshan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Agata M Rudolf
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengguang Jin
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China.
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK.
- China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
22
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
23
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
24
|
Higgins MBA, Glendining KA, Jasoni CL. The temporal and spatial pattern of leptin receptor-expressing cells in the developing mouse hypothalamus. J Neuroendocrinol 2024; 36:e13366. [PMID: 38279680 DOI: 10.1111/jne.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
The arcuate nucleus is a crucial hypothalamic brain region involved in regulating body weight homeostasis. Neurons within the arcuate nucleus respond to peripheral metabolic signals, such as leptin, and relay these signals via neuronal projections to brain regions both within and outside the hypothalamus, ultimately causing changes in an animal's behaviour and physiology. There is a substantial amount of evidence to indicate that leptin is intimately involved with the postnatal development of arcuate nucleus melanocortin circuitry. Further, it is clear that leptin signalling directly in the arcuate nucleus is required for circuitry development. However, as leptin receptor long isoform (Leprb) mRNA is expressed in multiple nuclei within the developing hypothalamus, including the postsynaptic target regions of arcuate melanocortin projections, this raises the possibility that leptin also signals in these nuclei to promote circuitry development. Here, we used RT-qPCR and RNAscope® to reveal the spatio-temporal pattern of Leprb mRNA in the early postnatal mouse hypothalamus. We found that Leprb mRNA expression increased significantly in the arcuate nucleus, ventromedial nucleus and paraventricular nucleus of the hypothalamus from P8, in concert with the leptin surge. In the dorsomedial nucleus of the hypothalamus, increases in Leprb mRNA were slightly later, increasing significantly from P12. Using duplex RNAscope®, we found Leprb co-expressed with Sim1, Pou3f2, Mc4r and Bdnf in the paraventricular nucleus at P8. Together, these data suggest that leptin may signal in a subset of neurons postsynaptic to arcuate melanocortin neurons, as well as within the arcuate nucleus itself, to promote the formation of arcuate melanocortin circuitry during the early postnatal period.
Collapse
Affiliation(s)
- Matt B A Higgins
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Savani R, Park E, Busannagari N, Lu Y, Kwon H, Wang L, Pang Z. Metabolic and behavioral alterations associated with viral vector-mediated toxicity in the paraventricular hypothalamic nucleus. Biosci Rep 2024; 44:BSR20231846. [PMID: 38227343 PMCID: PMC10830444 DOI: 10.1042/bsr20231846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVE Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. METHODS In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. RESULTS We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. CONCLUSIONS Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.
Collapse
Affiliation(s)
- Rohan Savani
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Erin Park
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Nidhi Busannagari
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Yi Lu
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, U.S.A
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
- Department of Neuroscience and Cell Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, U.S.A
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, U.S.A
| |
Collapse
|
26
|
Savani R, Park E, Busannagari N, Lu Y, Kwon H, Wang L, Pang ZP. Metabolic and behavioral alterations associated with viral vector-mediated toxicity in the paraventricular hypothalamic nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564009. [PMID: 37961695 PMCID: PMC10634907 DOI: 10.1101/2023.10.26.564009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Combining adeno-associated virus (AAV)-mediated expression of Cre recombinase with genetically modified floxed animals is a powerful approach for assaying the functional role of genes in regulating behavior and metabolism. Extensive research in diverse cell types and tissues using AAV-Cre has shown it can save time and avoid developmental compensation as compared to using Cre driver mouse line crossings. We initially sought to study the impact of ablation of corticotropin-releasing hormone (CRH) in the paraventricular hypothalamic nucleus (PVN) using intracranial AAV-Cre injection in adult animals. Methods In this study, we stereotactically injected AAV8-hSyn-Cre or a control AAV8-hSyn-GFP both Crh-floxed and wild-type mouse PVN to assess behavioral and metabolic impacts. We then used immunohistochemical markers to systematically evaluate the density of hypothalamic peptidergic neurons and glial cells. Results We found that delivery of one specific preparation of AAV8-hSyn-Cre in the PVN led to the development of obesity, hyperphagia, and anxiety-like behaviors. This effect occurred independent of sex and in both floxed and wild-type mice. We subsequently found that AAV8-hSyn-Cre led to neuronal cell death and gliosis at the site of viral vector injections. These behavioral and metabolic deficits were dependent on injection into the PVN. An alternatively sourced AAV-Cre did not reproduce the same results. Conclusions Our findings reveal that delivery of a specific batch of AAV-Cre could lead to cellular toxicity and lesions in the PVN that cause robust metabolic and behavioral impacts. These alterations can complicate the interpretation of Cre-mediated gene knockout and highlight the need for rigorous controls.
Collapse
Affiliation(s)
- Rohan Savani
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Erin Park
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nidhi Busannagari
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Cell Biology and Neuroscience, Undergraduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yi Lu
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Gong W, Liu X, Lv X, Zhang Y, Niu Y, Jin K, Li B, Zuo Q. Ubiquitination plays an important role during the formation of chicken primordial germ cells. J Anim Sci 2024; 102:skae251. [PMID: 39187982 PMCID: PMC11452721 DOI: 10.1093/jas/skae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024] Open
Abstract
As an important posttranslational modification, ubiquitination plays an important role in regulating protein homeostasis in eukaryotic cells. In our previous studies, both the transcriptome and proteome suggested that ubiquitination is involved in the formation of chicken primordial germ cells (PGCs). Here, affinity enrichment combined with liquid chromatography-tandem mass spectrometry (MS/MS) was used to analyze the ubiquitome during the differentiation from embryonic stem cells to PGCs, and we identify that 724 lysine ubiquitinated sites were up-regulated in 558 proteins and 138 lysine ubiquitinated sites were down-regulated in 109 proteins. Furthermore, GO and KEGG enrichment analysis showed that ubiquitination regulates key proteins to participate in the progression of key events related to PGC formation and the transduction of key signals such as Wnt, MAPK, and insulin signals, followed by the detailed explanation of the specific regulatory mechanism of ubiquitination through the combined proteome and ubiquitome analysis. Moreover, both the activation and inhibition of neddylation were detrimental to the maintenance of the biological characteristics of PGCs, which also verified the importance of ubiquitination. In conclusion, this study provides a global view of the ubiquitome during the formation of PGCs by label-free quantitative ubiquitomics, which lays a theoretical foundation for the formation mechanism and specific application of chicken PGCs.
Collapse
Affiliation(s)
- Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xin Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaoqian Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
28
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Guo W, Xiong W. From gut microbiota to brain: implications on binge eating disorders. Gut Microbes 2024; 16:2357177. [PMID: 38781112 PMCID: PMC11123470 DOI: 10.1080/19490976.2024.2357177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The prevalence of eating disorders has been increasing over the last 50 years. Binge eating disorder (BED) and bulimia nervosa (BN) are two typical disabling, costly and life-threatening eating disorders that substantially compromise the physical well-being of individuals while undermining their psychological functioning. The distressing and recurrent episodes of binge eating are commonly observed in both BED and BN; however, they diverge as BN often involves the adoption of inappropriate compensatory behaviors aimed at averting weight gain. Normal eating behavior is coordinated by a well-regulated trade-off between intestinal and central ingestive mechanism. Conversely, despite the fact that the etiology of BED and BN remains incompletely resolved, emerging evidence corroborates the notion that dysbiosis of gastrointestinal microbiome and its metabolites, alteration of gut-brain axis, as well as malfunctioning central circuitry regulating motivation, execution and reward all contribute to the pathology of binge eating. In this review, we aim to outline the current state of knowledge pertaining to the potential mechanisms through which each component of the gut-brain axis participates in binge eating behaviors, and provide insight for the development of microbiome-based therapeutic interventions that hold promise in ameliorating patients afflicted with binge eating disorders.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- CAS Key Laboratory of Brain Function and Disease, Hefei, China
| |
Collapse
|
30
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
31
|
Tang M, Zhang Y, Zhang R, Zhang Y, Zheng J, Wang D, Wang X, Yan J, Hu C. GPSM1 in POMC neurons impairs brown adipose tissue thermogenesis and provokes diet-induced obesity. Mol Metab 2024; 79:101839. [PMID: 37979657 PMCID: PMC10698273 DOI: 10.1016/j.molmet.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023] Open
Abstract
OBJECTIVE G-protein-signaling modulator 1 (GPSM1) has been proved the potential role in brain tissues, however, whether GPSM1 in hypothalamic nuclei, especially in POMC neurons is essential for the proper regulation of whole-body energy balance remains unknown. The aim of our current study was to explore the role of GPSM1 in POMC neurons in metabolic homeostasis. METHODS We generated POMC neuron specific GPSM1 deficiency mice and subjected them to a High Fat Diet to monitor metabolic phenotypes in vivo. By using various molecular, biochemical, immunofluorescent, immunohistochemical analyses, and cell culture studies to reveal the pathophysiological role of GPSM1 in POMC neurons and elucidate the underlying mechanisms of GPSM1 regulating POMC neurons activity. RESULTS We demonstrated that mice lacking GPSM1 in POMC neurons were protected against diet-induced obesity, glucose dysregulation, insulin resistance, and hepatic steatosis. Mechanistically, GPSM1 deficiency in POMC neurons induced enhanced autophagy and improved leptin sensitivity through PI3K/AKT/mTOR signaling, thereby increasing POMC expression and α-MSH production, and concurrently enhancing sympathetic innervation and activity, thus resulting in decreased food intake and increased brown adipose tissue thermogenesis. CONCLUSIONS Our findings identify a novel function of GPSM1 expressed in POMC neurons in the regulation of whole-body energy balance and metabolic homeostasis by regulating autophagy and leptin sensitivity, which suggests that GPSM1 in the POMC neurons could be a promising therapeutic target to combat obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Mengyang Tang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuemei Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangfei Zheng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daixi Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wang
- School of Life Science and Technology of ShanghaiTech University, Shanghai, China
| | - Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng Hu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci 2023; 17:1238528. [PMID: 38027481 PMCID: PMC10644276 DOI: 10.3389/fnins.2023.1238528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Leptin plays a critical role in regulating appetite, energy expenditure and body weight, making it a key factor in maintaining a healthy balance. Despite numerous efforts to develop therapeutic interventions targeting leptin signaling, their effectiveness has been limited, underscoring the importance of gaining a better understanding of the mechanisms through which leptin exerts its functions. While the hypothalamus is widely recognized as the primary site responsible for the appetite-suppressing and weight-reducing effects of leptin, other brain regions have also been increasingly investigated for their involvement in mediating leptin's action. In this review, we summarize leptin signaling pathways and the neural networks that mediate the effects of leptin, with a specific emphasis on energy homeostasis.
Collapse
Affiliation(s)
- Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xiao
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
33
|
Speakman JR, Hall KD. Models of body weight and fatness regulation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220231. [PMID: 37661735 PMCID: PMC10475878 DOI: 10.1098/rstb.2022.0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Body weight and fatness appear to be regulated phenomena. Several different theoretical models are available to capture the essence of this idea. These include the set-point, dynamic equilibrium, adiposity force, control theory-settling point, Hall-Guo, operation point and dual intervention point (DIP) models. The set-point model posits a single reference point around which levels of fat are regulated. The dynamic equilibrium model suggests that the apparent regulation of body fat around a reference point is an illusion owing to the necessary impacts of weight change on energy expenditure. Control theory focuses on the importance of feedback gain and suggests set-point and dynamic equilibrium are ends of a continuum of feedback gain. Control theory models have also been called 'settling point' models. The Hall-Guo, operation point and DIP models also bring together the set-point and dynamic equilibrium ideas into a single framework. The DIP proposes a zone of indifference where dynamic equilibrium 'regulation' predominates, bounded by upper and lower intervention points beyond which physiological mechanisms are activated. The drifty gene hypothesis is an idea explaining where this individual variation in the upper intervention point might come from. We conclude that further experiments to test between the models are sorely required. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- John R. Speakman
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, People's Republic of China
- School of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Kevin D. Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
de Souza GO, Teixeira PDS, Câmara NOS, Donato J. mTORC1 Signaling in AgRP Neurons Is Not Required to Induce Major Neuroendocrine Adaptations to Food Restriction. Cells 2023; 12:2442. [PMID: 37887286 PMCID: PMC10605346 DOI: 10.3390/cells12202442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and exteroceptive signals to control food intake, energy expenditure, and other metabolic responses. To determine whether mTORC1 signaling in AgRP neurons is necessary for regulating energy and glucose homeostasis, especially in situations of negative energy balance, mice carrying ablation of the Raptor gene exclusively in AgRP-expressing cells were generated. AgRPΔRaptor mice showed no differences in body weight, fat mass, food intake, or energy expenditure; however, a slight improvement in glucose homeostasis was observed compared to the control group. When subjected to 5 days of food restriction (40% basal intake), AgRPΔRaptor female mice lost less lean body mass and showed a blunted reduction in energy expenditure, whereas AgRPΔRaptor male mice maintained a higher energy expenditure compared to control mice during the food restriction and 5 days of refeeding period. AgRPΔRaptor female mice did not exhibit the food restriction-induced increase in serum corticosterone levels. Finally, although hypothalamic fasting- or refeeding-induced Fos expression showed no differences between the groups, AgRPΔRaptor mice displayed increased hyperphagia during refeeding. Thus, some metabolic and neuroendocrine responses to food restriction are disturbed in AgRPΔRaptor mice.
Collapse
Affiliation(s)
- Gabriel O. de Souza
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| | - Pryscila D. S. Teixeira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| | - Niels O. S. Câmara
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (G.O.d.S.); (P.D.S.T.)
| |
Collapse
|
35
|
Elshareif N, Gornick E, Gavini CK, Aubert G, Mansuy-Aubert V. Comparison of western diet-induced obesity and streptozotocin mouse models: insights into energy balance, somatosensory dysfunction, and cardiac autonomic neuropathy. Front Physiol 2023; 14:1238120. [PMID: 37885804 PMCID: PMC10598778 DOI: 10.3389/fphys.2023.1238120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Metabolic disorders such as obesity and type 2 diabetes (T2D) are increasingly prevalent worldwide, necessitating a deeper comprehension of their underlying mechanisms. However, translating findings from animal research to human patients remains challenging. This study aimed to investigate the long-term effects of Streptozotocin (STZ) on metabolic, cardiac, and somatosensory function in mice fed a Western diet (WD) of high fat, sucrose, and cholesterol with low doses of STZ administration compared to mice fed WD alone. In our research, we thoroughly characterized energy balance and glucose homeostasis, as well as allodynia and cardiac function, all of which have been previously shown to be altered by WD feeding. Notably, our findings revealed that the treatment of WD-fed mice with STZ exacerbated dysfunction in glucose homeostasis via reduced insulin secretion in addition to impaired peripheral insulin signaling. Furthermore, both WD and WD + STZ mice exhibited the same degree of cardiac autonomic neuropathy, such as reduced heart rate variability and decreased protein levels of cardiac autonomic markers. Furthermore, both groups developed the same symptoms of neuropathic pain, accompanied by elevated levels of activating transcription factor 3 (Atf3) in the dorsal root ganglia. These discoveries enhance our understanding of metabolic activity, insulin resistance, neuropathy, and cardiac dysfunction of diet-induced models of obesity and diabetes. The exacerbation of impaired insulin signaling pathways by STZ did not lead to or worsen cardiac and somatosensory dysfunction. Additionally, they offer valuable insights into suitable diet induced translational mouse models, thereby advancing the development of potential interventions for associated conditions.
Collapse
Affiliation(s)
- Nadia Elshareif
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Gornick
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Chaitanya K. Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Aubert
- Division of Cardiology, Department of Internal Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Clinical Development, CSL Vifor, Glattbrugg, Switzerland
| | - Virginie Mansuy-Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Rupp AC, Tomlinson AJ, Affinati AH, Yacawych WT, Duensing AM, True C, Lindsley SR, Kirigiti MA, MacKenzie A, Polex-Wolf J, Li C, Knudsen LB, Seeley RJ, Olson DP, Kievit P, Myers MG. Suppression of food intake by Glp1r/Lepr-coexpressing neurons prevents obesity in mouse models. J Clin Invest 2023; 133:e157515. [PMID: 37581939 PMCID: PMC10541203 DOI: 10.1172/jci157515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
The adipose-derived hormone leptin acts via its receptor (LepRb) in the brain to control energy balance. A potentially unidentified population of GABAergic hypothalamic LepRb neurons plays key roles in the restraint of food intake and body weight by leptin. To identify markers for candidate populations of LepRb neurons in an unbiased manner, we performed single-nucleus RNA-Seq of enriched mouse hypothalamic LepRb cells, identifying several previously unrecognized populations of hypothalamic LepRb neurons. Many of these populations displayed strong conservation across species, including GABAergic Glp1r-expressing LepRb (LepRbGlp1r) neurons, which expressed more Lepr than other LepRb cell populations. Ablating Lepr from LepRbGlp1r cells provoked hyperphagic obesity without impairing energy expenditure. Similarly, improvements in energy balance caused by Lepr reactivation in GABA neurons of otherwise Lepr-null mice required Lepr expression in GABAergic Glp1r-expressing neurons. Furthermore, restoration of Glp1r expression in LepRbGlp1r neurons in otherwise Glp1r-null mice enabled food intake suppression by the GLP1R agonist, liraglutide. Thus, the conserved GABAergic LepRbGlp1r neuron population plays crucial roles in the suppression of food intake by leptin and GLP1R agonists.
Collapse
Affiliation(s)
| | | | | | - Warren T. Yacawych
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison M. Duensing
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cadence True
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | - Chien Li
- Novo Nordisk, Copenhagen, Denmark
| | | | | | - David P. Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Martin G. Myers
- Department of Internal Medicine and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Abstract
Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
38
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Wen YX, Fan LY, Yang AY, Zhang YC, Xu C, Wang ZH, Xie WJ, Lu Y, Zhang XY, Zhu JN, Sun A, Li L, Zhang QP. Oxytocinergic neurons, but not oxytocin, are crucial for male penile erection. Neuropharmacology 2023; 235:109576. [PMID: 37164226 DOI: 10.1016/j.neuropharm.2023.109576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
The cumulative evidence suggests that oxytocin is involved in the male sexual behaviors. However, no significant sexual impairments were observed in oxytocin gene knock-out (KO) mice, suggesting that oxytocin is not necessary for sexual behavior in male mice. To better understand the role of oxytocin in male erection, two types of oxytocin gene KO mice were created. In the first type, the oxytocin gene was deleted in the zygote, while in the second type, the oxytocin gene was mutated in adulthood by injecting the CRISPR/Cas9 AAVs. The results showed that disrupting the oxytocin gene at either the embryonic or adult stage did not affect erection, indicating that oxytocin is not necessary for penile erection. Pharmacologically, injecting oxytocin receptor agonist Carbetocin into the VTA of the oxytocin gene KO mice still evoked penile erection. By employing the Oxt-Ires-Cre mice, we found that specifically activating oxytocinergic neurons through chemogenetics strongly induced penile erection, while inhibiting these neurons blocked the erection responses. Furthermore, ablating PVN oxytocinergic neurons abolished the male erection response. In conclusion, although the neuropeptide oxytocin is not essential for male erection, the activity of oxytocinergic neurons is required. Our results might reflect the redundancy in the central nerve system in the sense that many signals contribute to the activation of oxytocinergic neurons to evoke penile erection during sexual behaviors.
Collapse
Affiliation(s)
- Yu-Xiang Wen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lin-Yao Fan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - An-Yong Yang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yan-Chufei Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chang Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zi-Hui Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Wen-Jiong Xie
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yang Lu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jing-Ning Zhu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Anyang Sun
- Laboratory of Neurodegenerative Diseases & Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Qi-Peng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
40
|
Fan X, Yuan W, Huang W, Lin Z. Recent progress in leptin signaling from a structural perspective and its implications for diseases. Biochimie 2023; 212:60-75. [PMID: 37080418 DOI: 10.1016/j.biochi.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
As a multi-potency cytokine, leptin not only plays a crucial role in controlling weight and energy homeostasis but also participates in the metabolic balance in the human body. Leptin is a small helical protein with a molecular weight of 16 kDa. It can interact with multiple subtypes of its receptors to initiate intracellular signal transduction and exerts physiological effects. Disturbances in leptin signaling may lead to obesity and a variety of metabolic diseases. Leptin was also found to be a critical factor in many diseases of the elderly. In this review, we focus on recent advances in the structural and molecular mechanisms of leptin signaling through its receptors with the aim of a deeper understanding of leptin-related diseases.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
41
|
Zapata RC, Nasamran CA, Chilin-Fuentes DR, Dulawa SC, Osborn O. Identification of adipose tissue transcriptomic memory of anorexia nervosa. Mol Med 2023; 29:109. [PMID: 37582711 PMCID: PMC10428576 DOI: 10.1186/s10020-023-00705-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a complex debilitating disease characterized by intense fear of weight gain and excessive exercise. It is the deadliest of any psychiatric disorder with a high rate of recidivism, yet its pathophysiology is unclear. The Activity-Based Anorexia (ABA) paradigm is a widely accepted mouse model of AN that recapitulates hypophagia and hyperactivity despite reduced body weight, however, not the chronicity. METHODS Here, we modified the prototypical ABA paradigm to increase the time to lose 25% of baseline body weight from less than 7 days to more than 2 weeks. We used this paradigm to identify persistently altered genes after weight restoration that represent a transcriptomic memory of under-nutrition and may contribute to AN relapse using RNA sequencing. We focused on adipose tissue as it was identified as a major location of transcriptomic memory of over-nutririon. RESULTS We identified 300 dysregulated genes that were refractory to weight restroration after ABA, including Calm2 and Vps13d, which could be potential global regulators of transcriptomic memory in both chronic over- and under-nutrition. CONCLUSION We demonstrated the presence of peristent changes in the adipose tissue transcriptome in the ABA mice after weight restoration. Despite being on the opposite spectrum of weight perturbations, majority of the transcriptomic memory genes of under- and over-nutrition did not overlap, suggestive of the different mechanisms involved in these extreme nutritional statuses.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, San Diego, USA.
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, School of Medicine, University of California San Diego, San Diego, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, School of Medicine, University of California San Diego, San Diego, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, 92093, San Diego, CA, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, San Diego, USA
| |
Collapse
|
42
|
Walton NL, Antonoudiou P, Barros L, Dargan T, DiLeo A, Evans-Strong A, Gabby J, Howard S, Paracha R, Sánchez EJ, Weiss GL, Kong D, Maguire JL. Impaired Endogenous Neurosteroid Signaling Contributes to Behavioral Deficits Associated With Chronic Stress. Biol Psychiatry 2023; 94:249-261. [PMID: 36736870 PMCID: PMC10363189 DOI: 10.1016/j.biopsych.2023.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic stress is a major risk factor for psychiatric illnesses, including depression. However, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. Allopregnanolone acts as a positive allosteric modulator preferentially on δ subunit-containing GABAA (gamma-aminobutyric acid A) receptors. Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone analogs; yet, the role of endogenous allopregnanolone in the pathophysiology of depression remains unknown. METHODS We utilized a chronic unpredictable stress (CUS) mouse model, followed by behavioral and biochemical assays, to examine whether altered neurosteroid signaling contributes to behavioral outcomes following CUS. We subsequently performed in vivo CRISPR (clustered regularly interspaced short palindromic repeats) knockdown of rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2 (5α1/2), in addition to lentiviral overexpression of 5α1/2 in the basolateral amygdala (BLA) of mice that underwent CUS to assess the impact of 5α1/2 on behavioral outcomes. RESULTS The expression of δ subunit-containing GABAA receptors and endogenous levels of allopregnanolone were reduced in the BLA following CUS. Treatment with an exogenous allopregnanolone analog, SGE-516, was sufficient to increase allopregnanolone levels in the BLA following CUS. Knockdown of 5α1/2 in the BLA mimicked the behavioral outcomes associated with CUS. Conversely, overexpression of 5α1/2 in the BLA improved behavioral outcomes following CUS. CONCLUSIONS Our findings demonstrate that chronic stress impairs endogenous neurosteroid signaling in the BLA, which is sufficient to induce behavioral deficits. Further, these studies suggest that allopregnanolone-based treatments may directly target the underlying pathophysiology of mood disorders suggesting that targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Najah L Walton
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Pantelis Antonoudiou
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lea Barros
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Biology, Hamilton College, Clinton, New York
| | - Tauryn Dargan
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Alyssa DiLeo
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Aidan Evans-Strong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Jenah Gabby
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Louis Stokes Alliance for Minority Participation, Tufts University, Medford, Massachusetts
| | - Samantha Howard
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rumzah Paracha
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Edgardo J Sánchez
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Chemistry, University of Puerto Rico, Cayey, Puerto Rico
| | - Grant L Weiss
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Dong Kong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
43
|
Oh Y, Yoo ES, Ju SH, Kim E, Lee S, Kim S, Wickman K, Sohn JW. GIRK2 potassium channels expressed by the AgRP neurons decrease adiposity and body weight in mice. PLoS Biol 2023; 21:e3002252. [PMID: 37594983 PMCID: PMC10468093 DOI: 10.1371/journal.pbio.3002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 08/30/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
It is well known that the neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons increase appetite and decrease thermogenesis. Previous studies demonstrated that optogenetic and/or chemogenetic manipulations of NPY/AgRP neuronal activity alter food intake and/or energy expenditure (EE). However, little is known about intrinsic molecules regulating NPY/AgRP neuronal excitability to affect long-term metabolic function. Here, we found that the G protein-gated inwardly rectifying K+ (GIRK) channels are key to stabilize NPY/AgRP neurons and that NPY/AgRP neuron-selective deletion of the GIRK2 subunit results in a persistently increased excitability of the NPY/AgRP neurons. Interestingly, increased body weight and adiposity observed in the NPY/AgRP neuron-selective GIRK2 knockout mice were due to decreased sympathetic activity and EE, while food intake remained unchanged. The conditional knockout mice also showed compromised adaptation to coldness. In summary, our study identified GIRK2 as a key determinant of NPY/AgRP neuronal excitability and driver of EE in physiological and stress conditions.
Collapse
Affiliation(s)
- Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
44
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
45
|
Cai J, Chen J, Ortiz-Guzman J, Huang J, Arenkiel BR, Wang Y, Zhang Y, Shi Y, Tong Q, Zhan C. AgRP neurons are not indispensable for body weight maintenance in adult mice. Cell Rep 2023; 42:112789. [PMID: 37422762 PMCID: PMC10909125 DOI: 10.1016/j.celrep.2023.112789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
In addition to their role in promoting feeding and obesity development, hypothalamic arcuate agouti-related protein/neuropeptide Y (AgRP/NPY) neurons are widely perceived to be indispensable for maintaining normal feeding and body weight in adults, and consistently, acute inhibition of AgRP neurons is known to reduce short-term food intake. Here, we adopted complementary methods to achieve nearly complete ablation of arcuate AgRP/NPY neurons in adult mice and report that lesioning arcuate AgRP/NPY neurons in adult mice causes no apparent alterations in ad libitum feeding or body weight. Consistent with previous studies, loss of AgRP/NPY neurons blunts fasting refeeding. Thus, our studies show that AgRP/NPY neurons are not required for maintaining ad libitum feeding or body weight homeostasis in adult mice.
Collapse
Affiliation(s)
- Jing Cai
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Chen
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Joshua Ortiz-Guzman
- Duncan Institute of Neurological Research and Department of Neuroscience and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica Huang
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Duncan Institute of Neurological Research and Department of Neuroscience and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yan Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuyan Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qingchun Tong
- Brown Institute of Molecular Medicine at McGovern Medical School and Neuroscience Program of MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Cheng Zhan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Hematology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Brain Function and Disease, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
46
|
Nakagawa T, Hosoi T. Recent progress on action and regulation of anorexigenic adipokine leptin. Front Endocrinol (Lausanne) 2023; 14:1172060. [PMID: 37547309 PMCID: PMC10399691 DOI: 10.3389/fendo.2023.1172060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Organismal energy balance is controlled by inter-tissue communication mediated by the nervous system and hormones, the disruption of which causes metabolic syndrome exemplified by diabetes and obesity. Fat-storing adipose tissue, especially those located in subcutaneous white adipose tissue, secretes leptin in a proportion of fat mass, inhibiting the accumulation of organismal fat by suppressing appetite and promoting energy expenditure. With a prevalence of obesity that exhibits hyperleptinemia, most of the investigation on leptin has been focused on how it works and how it does not, which is expected to be a clue for treating obesity. In contrast, how it is synthesized, transported, and excreted, all of which are relevant to the homeostasis of blood leptin concentration, are not much understood. Of note, acute leptin reduction after hyperleptinemia in the context of obesity exhibited a beneficial effect on obesity and insulin sensitivity, indicating that manipulation of circulating leptin level may provide a therapeutic strategy. Technological advances such as "omics" analysis combined with sophisticated gene-engineered mice studies in the past decade enabled a deeper understanding of leptin's action in more detail. Here, we summarize the updated understanding of the action as well as regulation of leptin and point out the emerging direction of research on leptin.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| |
Collapse
|
47
|
Harris RBS. Low-dose peripheral leptin infusion produces selective activation of ventromedial hypothalamic and hindbrain STAT3. Am J Physiol Endocrinol Metab 2023; 325:E72-E82. [PMID: 37285599 PMCID: PMC10292972 DOI: 10.1152/ajpendo.00083.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Previous studies have shown that very low dose, acute, single peripheral leptin injections fully activate arcuate nucleus signal transducer and activator of transcription 3 (STAT3), but ventromedial hypothalamus (VMH) pSTAT3 continues to increase with higher doses of leptin that inhibit food intake. The lowest dose that inhibited intake increased circulating leptin 300-fold whereas food intake is inhibited by chronic peripheral leptin infusions that only double circulating leptin. This study examined whether the pattern of hypothalamic pSTAT3 was the same in leptin-infused rats as in leptin-injected rats. Male Sprague-Dawley rats received intraperitoneal infusions of 0, 5, 10, 20, or 40 µg leptin/day for 9 days. The highest dose of leptin increased serum leptin by 50-100%, inhibited food intake for 5 days, but inhibited weight gain and retroperitoneal fat mass for 9 days. Energy expenditure, respiratory exchange ratio, and brown fat temperature did not change. pSTAT3 was quantified in hypothalamic nuclei and the nucleus of the solitary tract (NTS) when food intake was inhibited and when it had returned to control levels. There was no effect of leptin on pSTAT3 in the medial or lateral arcuate nucleus or in the dorsomedial nucleus of the hypothalamus. VMH pSTAT3 was increased only at day 4 when food intake was inhibited, but NTS pSTAT3 was increased at both 4 and 9 days of infusion. These results suggest that activation of leptin VMH receptors contributes to the suppression of food intake, but that hindbrain receptors contribute to a sustained change in metabolism that maintains a reduced weight and fat mass.NEW & NOTEWORTHY Low-dose, chronic peripheral infusions of leptin produced an initial, transient inhibition of food intake that correlated with signal transducer and activator of transcription 3 (STAT3) activation in the ventromedial hypothalamus (VMH) and nucleus of the solitary tract (NTS). When intake normalized, but weight remained suppressed, the NTS was the only area that remained activated. These data suggest that leptin's primary function is to reduce body fat, that hypophagia is a means of achieving this and that different areas of the brain are responsible for the progressive response.
Collapse
Affiliation(s)
- Ruth B S Harris
- Center for Neuroinflammation and Cardiometabolic Disease, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
48
|
Zolotarev VA, Murovets VO, Sepp AL, Sozontov EA, Lukina EA, Khropycheva RP, Pestereva NS, Ivleva IS, El Mehdi M, Lahaye E, Chartrel N, Fetissov SO. Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. Int J Mol Sci 2023; 24:10590. [PMID: 37445766 DOI: 10.3390/ijms241310590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A commercial strain of Hafnia alvei (H. alvei) 4597 bacteria was shown to reduce food intake and promote weight loss, effects possibly induced by the bacterial protein ClpB, an antigen-mimetic of the anorexigenic α-melanocyte-stimulating hormone. A decrease in the basal plasma glucose levels was also observed in overweight fasted humans and mice receiving H. alvei. However, it is not known whether H. alvei influences sweet taste preference and whether its protein extract or ClpB are sufficient to increase glucose tolerance; these are the objectives tested in the present study. C57BL/6J male mice were kept under standard diet and were gavaged daily for 17 days with a suspension of H. alvei (4.5 × 107 CFU/animal) or with H. alvei total protein extract (5 μg/animal) or saline as a control. Sweet taste preference was analyzed via a brief-access licking test with sucrose solution. Glucose tolerance tests (GTT) were performed after the intraperitoneal (IP) or intragastric (IG) glucose administration at the 9th and 15th days of gavage, respectively. The expression of regulatory peptides' mRNA levels was assayed in the hypothalamus. In another experiment performed in non-treated C57BL/6J male mice, effects of acute IP administration of recombinant ClpB protein on glucose tolerance were studied by both IP- and IG-GTT. Mice treated with the H. alvei protein extract showed an improved glucose tolerance in IP-GTT but not in IG-GTT. Both groups treated with H. alvei bacteria or protein extract showed a reduction of pancreatic tissue weight but without significant changes to basal plasma insulin. No significant effects of H. alvei bacteria or its total protein extract administration were observed on the sweet taste preference, insulin tolerance and expression of regulatory peptides' mRNA in the hypothalamus. Acute administration of ClpB in non-treated mice increased glucose tolerance during the IP-GTT but not the IG-GTT, and reduced basal plasma glucose levels. We conclude that both the H. alvei protein extract introduced orally and the ClpB protein administered via IP improve glucose tolerance probably by acting at the glucose postabsorptive level. Moreover, H. alvei probiotic does not seem to influence the sweet taste preference. These results justify future testing of both the H. alvei protein extract and ClpB protein in animal models of diabetes.
Collapse
Affiliation(s)
- Vasiliy A Zolotarev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Vladimir O Murovets
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Anastasiya L Sepp
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Egor A Sozontov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Ekaterina A Lukina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Raisa P Khropycheva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Nina S Pestereva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Ivleva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Mouna El Mehdi
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Emilie Lahaye
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Nicolas Chartrel
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Sergueï O Fetissov
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| |
Collapse
|
49
|
Eo H, Kim SH, Ju IG, Huh E, Kim S, Choi JG, Kim SW, Son M, Oh MS. Longan extract suppresses food intake through regulation of POMC/AgRP neuronal activities and endoplasmic reticulum stress in hypothalamus of db/db mice. Front Nutr 2023; 10:1143613. [PMID: 37415911 PMCID: PMC10322219 DOI: 10.3389/fnut.2023.1143613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the biggest public health issues worldwide and closely related to development of other chronic diseases such as cardiovascular diseases, cancer and neurodegenerative diseases. Considerable percentage of T2DM patients undergo have suffered from binge eating disorder which exacerbates insulin resistance and metabolic challenges. Longan (Dimocarpus longan L.) and its constituents are reported for their various health benefits. However, it is still unknown whether longan fruit supplementation can ameliorate glucose homeostasis and binge eating disorder found in T2DM. The current study aimed to investigate whether longan fruit extract (LE) supplementation can improve diabetic hyperglycemia through modulation of feeding center located in hypothalamus of db/db T2DM mice. As a result, LE supplementation ameliorated fasting blood glucose levels and reduced excessive epididymal fat accumulation. In addition, LE administration improved glucose tolerance and insulin sensitivity in db/db mice. Especially, LE supplemented mice showed less food consumption which was in line with increase of pro-opiomelanocortin (POMC) neuronal activities and decrease of agouti-related peptide (AgRP) neuronal activities. Furthermore, LE supplementation reduced hypothalamic endoplasmic reticulum (ER) stress which was stimulated in db/db mice. As ER stress is a crucial factor involving in appetite control and glucose homeostasis, the effect of LE supplementation on circulating glucose levels and feeding behavior might be mediated by suppression of hypothalamic ER stress. Collectively, these findings suggest that LE could be a potential nutraceutical for improvement of T2DM as well as patients with satiety issues.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | - Miwon Son
- MThera Pharma Co., Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Çerçi B, Gök A, Akyol A. Brain-derived neurotrophic factor: Its role in energy balance and cancer cachexia. Cytokine Growth Factor Rev 2023; 71-72:105-116. [PMID: 37500391 DOI: 10.1016/j.cytogfr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the development of the central and peripheral nervous system during embryogenesis. In the mature central nervous system, BDNF is required for the maintenance and enhancement of synaptic transmissions and the survival of neurons. Particularly, it is involved in the modulation of neurocircuits that control energy balance through food intake, energy expenditure, and locomotion. Regulation of BDNF in the central nervous system is complex and environmental factors affect its expression in murine models which may reflect to phenotype dramatically. Furthermore, BDNF and its high-affinity receptor tropomyosin receptor kinase B (TrkB), as well as pan-neurotrophin receptor (p75NTR) is expressed in peripheral tissues in adulthood and their signaling is associated with regulation of energy balance. BDNF/TrkB signaling is exploited by cancer cells as well and BDNF expression is increased in tumors. Intriguingly, previously demonstrated roles of BDNF in regulation of food intake, adipose tissue and muscle overlap with derangements observed in cancer cachexia. However, data about the involvement of BDNF in cachectic cancer patients and murine models are scarce and inconclusive. In the future, knock-in and/or knock-out experiments with murine cancer models could be helpful to explore potential new roles for BDNF in the development of cancer cachexia.
Collapse
Affiliation(s)
- Barış Çerçi
- Medical School, Hacettepe University, Ankara, Turkey.
| | - Ayşenur Gök
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| | - Aytekin Akyol
- Departmant of Pathology, Medical School, Hacettepe University, Ankara, Turkey; Hacettepe University Transgenic Animal Technologies Research and Application Center, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|