1
|
Singh Y, Sodhi RK, Kumar H, Bishnoi M, Bhandari R, Kuhad A. Repurposing of niclosamide, an anthelmintic, by targeting ERK/MAPK signaling pathway in the experimental paradigm of autism spectrum disorders. Eur J Pharmacol 2024; 982:176902. [PMID: 39153648 DOI: 10.1016/j.ejphar.2024.176902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
AIM The current study explores niclosamide's neuroprotective potential in an animal model of autism spectrum disorder (ASD) and goes further to understand how the ERK/MAPK signaling pathway is thought to contribute to this activity. METHODS In order to create an autism-like phenotype in rats, 4 μl of 1 M PPA was infused intracerebroventricularly. The oral treatment with niclosamide (50 and 100 mg/kg) and risperidone (1 mg/kg) (used as standard) was given from 3rd to 30th day. Between the 14th and 28th day, behavioral assessments were made for sociability, stereotypy, anxiety, depression, novelty preference, repetitive behavior, and perseverative behavior. The animals were euthanized on the 29th day, and oxidative stress markers were assessed in the brain homogenate. The levels of neuroinflammatory cytokines such as TNF-α, IL-6, NF-κB, IFN-γ and glutamate were estimated using ELISA kits. To assess the involvement of the ERK/MAPK signaling pathway, levels of Nrf2 and ERK2 were also measured. KEY FINDINGS Niclosamide therapy significantly restored behavioral, biochemical, neurological, and molecular impairments. Hence, niclosamide could be a potential neurotherapeutic candidate for further studies for use in ASD.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Hemant Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India
| | - Ranjana Bhandari
- Pharmaceutics Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
2
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Santana-Coelho D. Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? Brain Behav Immun Health 2024; 40:100839. [PMID: 39263315 PMCID: PMC11387593 DOI: 10.1016/j.bbih.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, sociability, and repetitive/stereotyped behavior. The etiology of autism is diverse, with genetic susceptibility playing an important role alongside environmental insults and conditions. Human and preclinical studies have shown that ASD is commonly accompanied by inflammation, and inhibition of the inflammatory response can ameliorate, or prevent the phenotype in preclinical studies. The kynurenine pathway, responsible for tryptophan metabolism, is upregulated by inflammation. Hence, this metabolic route has drawn the attention of investigators across different disciplines such as cancer, immunology, and neuroscience. Over the past decade, studies have identified evidence that the kynurenine pathway is also altered in autism spectrum disorders. In this mini review, we will explore the current status quo of the link between the kynurenine pathway and ASD, shedding light on the compelling but still preliminary evidence of this relationship.
Collapse
|
4
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
5
|
Bose R, Posada-Pérez M, Karvela E, Skandik M, Keane L, Falk A, Spulber S, Joseph B, Ceccatelli S. Bi-allelic NRXN1α deletion in microglia derived from iPSC of an autistic patient increases interleukin-6 production and impairs supporting function on neuronal networking. Brain Behav Immun 2024; 123:28-42. [PMID: 39243986 DOI: 10.1016/j.bbi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental conditions, with a highly diverse genetic hereditary component, including altered neuronal circuits, that has an impact on communication skills and behaviours of the affected individuals. Beside the recognised role of neuronal alterations, perturbations of microglia and the associated neuroinflammatory processes have emerged as credible contributors to aetiology and physiopathology of ASD. Mutations in NRXN1, a member of the neurexin family of cell-surface receptors that bind neuroligin, have been associated to ASD. NRXN1 is known to be expressed by neurons where it facilitates synaptic contacts, but it has also been identified in glial cells including microglia. Asserting the impact of ASD-related genes on neuronal versus microglia functions has been challenging. Here, we present an ASD subject-derived induced pluripotent stem cells (iPSC)-based in vitro system to characterise the effects of the ASD-associated NRXN1 gene deletion on neurons and microglia, as well as on the ability of microglia to support neuronal circuit formation and function. Using this approach, we demonstrated that NRXN1 deletion, impacting on the expression of the alpha isoform (NRXN1α), in microglia leads to microglial alterations and release of IL6, a pro-inflammatory interleukin associated with ASD. Moreover, microglia bearing the NRXN1α-deletion, lost the ability to support the formation of functional neuronal networks. The use of recombinant IL6 protein on control microglia-neuron co-cultures or neutralizing antibody to IL6 on their NRXN1α-deficient counterparts, supported a direct contribution of IL6 to the observed neuronal phenotype. Altogether, our data suggest that, in addition to neurons, microglia are also negatively affected by NRXN1α-deletion, and this significantly contributes to the observed neuronal circuit aberrations.
Collapse
Affiliation(s)
- Raj Bose
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Mercedes Posada-Pérez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Eleni Karvela
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Skandik
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong; Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong.
| |
Collapse
|
6
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
7
|
Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: a review. Pharmacol Rep 2024; 76:644-664. [PMID: 38904713 PMCID: PMC11294387 DOI: 10.1007/s43440-024-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.
Collapse
Affiliation(s)
| | - Cletus Ekwosi
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Apurva Anand
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-950, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland.
| |
Collapse
|
8
|
Almanaa TN, Alwetaid MY, Bakheet SA, Attia SM, Ansari MA, Nadeem A, Ahmad SF. Aflatoxin B 1 exposure deteriorates immune abnormalities in a BTBR T + Itpr3 tf/J mouse model of autism by increasing inflammatory mediators' production in CD19-expressing cells. J Neuroimmunol 2024; 391:578365. [PMID: 38723577 DOI: 10.1016/j.jneuroim.2024.578365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
10
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
11
|
Nasiry D, Khalatbary AR. Natural polyphenols for the management of autism spectrum disorder: a review of efficacy and molecular mechanisms. Nutr Neurosci 2024; 27:241-251. [PMID: 36800230 DOI: 10.1080/1028415x.2023.2180866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Natural polyphenols have been found to have some protective effects against neurodegenerative and neurodevelopmental disorders, which are attributed to a variety of biological properties, particularly antioxidant, immunomodulatory, and anti-inflammatory effects. Autism spectrum disorder is a complex neurological and neurodevelopmental disorder with no currently effective clinical treatment for its core symptoms. Regarding the management of autism spectrum disorder core symptoms, a number of experimental and clinical studies have been made using well-known dietary polyphenols with different effects and molecular mechanisms. The aim of this paper is to present the most effective natural polyphenols with the relevant molecular mechanisms in preclinical and clinical autism spectrum disorder studies.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Ross FC, Mayer DE, Gupta A, Gill CIR, Del Rio D, Cryan JF, Lavelle A, Ross RP, Stanton C, Mayer EA. Existing and Future Strategies to Manipulate the Gut Microbiota With Diet as a Potential Adjuvant Treatment for Psychiatric Disorders. Biol Psychiatry 2024; 95:348-360. [PMID: 37918459 DOI: 10.1016/j.biopsych.2023.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dylan E Mayer
- Institute of Human Nutrition, Columbia University, New York, New York
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, United Kingdom
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland.
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Tsilioni I, Theoharides TC. Ochratoxin A stimulates release of IL-1β, IL-18 and CXCL8 from cultured human microglia. Toxicology 2024; 502:153738. [PMID: 38301823 DOI: 10.1016/j.tox.2024.153738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Exposure to mycotoxins has been associated with the development of neuropsychiatric symptoms and Ochratoxin A (OTA) has emerged as one of the main mycotoxins associated with neurotoxicity. However, the mechanism via OTA exerts its neurotoxic effects is not well understood, especially the importance of activated microglia and their contribution to neuroinflammation. Here we report the effect of OTA on cultured immortalized human microglia-SV40, as compared to the effect of neurotensin (NT) and lipopolysaccharide (LPS) used as "positive" triggers. OTA (1, 10 and 100 nM for 24 hrs) stimulated microglia to release in the supernatant fluids statistically significant amounts of IL-1β, IL-18 and CXCL8 assayed with ELISA. Preventing or inhibiting OTA-stimulated activation of microglia by luteolin could be an important way to limit mycotoxin-induced neuroinflammation and improve associated neuropsychiatric diseases.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA.
| |
Collapse
|
14
|
Abbasi H, Ghavami-Kia S, Davoodian N, Davoodian N. Maternal quercetin supplementation improved lipopolysaccharide-induced cognitive deficits and inflammatory response in a rat model of maternal immune activation. Toxicol Appl Pharmacol 2024; 483:116830. [PMID: 38246289 DOI: 10.1016/j.taap.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.
Collapse
Affiliation(s)
- Hossein Abbasi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sina Ghavami-Kia
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
15
|
Zhang Q, Li F, Li T, Lin J, Jian J, Zhang Y, Chen X, Liu T, Gou S, Zhang Y, Liu X, Ji Y, Wang X, Li Q. Nomo1 deficiency causes autism-like behavior in zebrafish. EMBO Rep 2024; 25:570-592. [PMID: 38253686 PMCID: PMC10897165 DOI: 10.1038/s44319-023-00036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.
Collapse
Affiliation(s)
- Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Fei Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jing Jian
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Ting Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Shenglan Gou
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yongxia Ji
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xu Wang
- Cancer Institute, Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China.
| |
Collapse
|
16
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Guo DD, Huang HY, Liu HE, Liu K, Luo XJ. Orientin Reduces the Effects of Repeated Procedural Neonatal Pain in Adulthood: Network Pharmacology Analysis, Molecular Docking Analysis, and Experimental Validation. Pain Res Manag 2023; 2023:8893932. [PMID: 38047157 PMCID: PMC10691896 DOI: 10.1155/2023/8893932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Background Premature infants often undergo painful procedures and consequently experience repeated procedural neonatal pain. This can elicit hyperalgesia and cognitive impairment in adulthood. Treatments for neonatal pain are limited. Orientin is a flavonoid C-glycoside that has repeatedly been shown to have pharmacological effects in the past decades. The aim of this study was to systematically explore the effect of orientin on repeated procedural neonatal pain using network pharmacology, molecular docking analysis, and experimental validation. Methods Several compound-protein databases and disease-protein databases were employed to identify proteins that were both predicted targets of orientin and involved in neonatal pain. A protein-protein interaction (PPI) network was constructed, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential mechanism of action. Molecular docking analysis was employed to calculate the binding energy and visualize the interactions between orientin and potential target proteins. Finally, a mouse model of repeated procedural neonatal pain was established and orientin was administered for 6 days. The mechanical and thermal pain thresholds were assessed in neonates and adult mice. A Morris water maze was employed to investigate cognitive impairment in adult mice. Results A total of 286 proteins that were both predicted targets of orientin and involved in neonatal pain were identified. The hub proteins were SRC, HSP90AA1, MAPK1, RHOA, EGFR, AKT1, PTPN11, ESR1, RXRA, and HRAS. GO analysis indicated that the primary biological process (BP), molecular function (MF), and cellular component (CC) were protein phosphorylation, protein kinase activity, and vesicle lumen, respectively. KEGG analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway may be the key to the mechanism of action. Molecular docking analysis showed the high binding affinities of orientin for MAPK1, MAPK8, and MAPK14. In mice, orientin inhibited the hyperalgesia in the pain threshold tests in neonates and adult mice and cognitive impairment in adult mice. Immunofluorescence showed that phosphorylated MAPK1 (p-ERK) protein levels in the hippocampus and spinal dorsal horn were downregulated by orientin. Conclusion The findings suggested that orientin alleviates neonatal pain, and the MAPK signaling pathway is involved.
Collapse
Affiliation(s)
- Dong-Dong Guo
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hai-Yan Huang
- Department of Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hai-E. Liu
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Kun Liu
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xing-Jing Luo
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
18
|
Matuleviciute R, Akinluyi ET, Muntslag TAO, Dewing JM, Long KR, Vernon AC, Tremblay ME, Menassa DA. Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathol 2023; 146:663-683. [PMID: 37656188 PMCID: PMC10564830 DOI: 10.1007/s00401-023-02629-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elizabeth T Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado Ekiti, Nigeria
| | - Tim A O Muntslag
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | | | - Katherine R Long
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - David A Menassa
- Department of Neuropathology & The Queen's College, University of Oxford, Oxford, UK.
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
19
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
20
|
Maric DM, Vojvodic D, Maric DL, Velikic G, Radomir M, Sokolovac I, Stefik D, Ivkovic N, Susnjevic S, Puletic M, Dulic O, Abazovic D. Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes. Int J Mol Sci 2023; 24:15080. [PMID: 37894761 PMCID: PMC10606637 DOI: 10.3390/ijms242015080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) has recently been linked to neuroinflammation and an aberrant immune response within the central nervous system. The intricate relationship between immune response and ASD remains elusive, with a gap in understanding the connection between specific immune mechanisms and neural manifestations in autism. In this study, we employed a comprehensive statistical approach, fusing both overarching and granular methods to examine the concentration of 16 cytokines in the cerebrospinal fluid (CSF) across each autologous bone marrow aspirate concentrate (BMAC) intrathecal administration in 63 male and 17 female autism patients. Following a six-month period post the third administration, patients were stratified into three categories based on clinical improvement: Group 1- no/mild (28 subjects), Group 2-moderate (16 subjects), and Group 3-major improvement (15 subjects). Our integrated analysis revealed pronounced disparities in CSF cytokine patterns and clinical outcomes in autism subjects pre- and post-BMAC transplantation. Crucially, our results suggest that these cytokine profiles hold promise as predictive markers, pinpointing ASD individuals who might not exhibit notable clinical amelioration post-BMAC therapy.
Collapse
Affiliation(s)
- Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (D.V.); (D.S.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Mihajlo Radomir
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
| | | | - Debora Stefik
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (D.V.); (D.S.)
| | - Nemanja Ivkovic
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Sonja Susnjevic
- Department of Social Medicine and Health Statistics with Informatics, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | | |
Collapse
|
21
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S. Luteolin Mitigates Diabetic Dyslipidemia in Rats by Modulating ACAT-2, PPARα, SREBP-2 Proteins, and Oxidative Stress. Appl Biochem Biotechnol 2023; 195:4893-4914. [PMID: 37103741 DOI: 10.1007/s12010-023-04544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Diabetic dyslipidemia is a crucial link between type-2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular diseases (ASCVD). Natural biologically active substances have been advocated as complementary remedies for ASCVD and T2DM. Luteolin, a flavonoid, exhibits antioxidant, hypolipidemic, and antiatherogenic effects. Hence, we aimed to determine influence of luteolin on lipid homeostasis and hepatic damage in rats with T2DM induced by high-fat-diet (HFD) and streptozotocin (STZ). After being fed HFD for 10 days, male Wistar rats received 40 mg/kg STZ intraperitoneal injection on 11th day. Seventy-two hours later, hyperglycemic rats (fasting glucose > 200 mg/dL) were randomized into groups, and oral hydroxy-propyl-cellulose, atorvastatin (5 mg/kg), or luteolin (50 mg/kg or 100 mg/kg) administered daily, while continuing HFD for 28 days. Luteolin significantly ameliorated dyslipidemia levels and concomitantly improved atherogenic index of plasma in a dose-dependent manner. Increased levels of malondialdehyde and diminished levels of superoxide dismutase, catalase, and glutathione in HFD-STZ-diabetic rats were significantly regulated by luteolin. Luteolin significantly intensified PPARα expression while decreasing expression of acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) and sterol regulatory element binding protein-2 (SREBP-2) proteins. Moreover, luteolin effectively alleviated hepatic impairment in HFD-STZ-diabetic rats to near-normal control levels. The findings of the present study expound mechanisms by which luteolin mitigated diabetic dyslipidemia and alleviated hepatic impairment in HFD-STZ-diabetic rats by amelioration of oxidative stress, modulation of PPARα expression, and downregulation of ACAT-2 and SREBP-2. In conclusion, our results imply that luteolin may be efficacious in management of dyslipidemia in T2DM, and future research may be essential to substantiate our findings.
Collapse
Affiliation(s)
- Syed Ilyas Shehnaz
- Department of Pharmacology, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
| | - Anitha Roy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
- Department of Biosciences, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
23
|
Theoharides TC, Kempuraj D. Potential Role of Moesin in Regulating Mast Cell Secretion. Int J Mol Sci 2023; 24:12081. [PMID: 37569454 PMCID: PMC10418457 DOI: 10.3390/ijms241512081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Mast cells have existed for millions of years in species that never suffer from allergic reactions. Hence, in addition to allergies, mast cells can play a critical role in homeostasis and inflammation via secretion of numerous vasoactive, pro-inflammatory and neuro-sensitizing mediators. Secretion may utilize different modes that involve the cytoskeleton, but our understanding of the molecular mechanisms regulating secretion is still not well understood. The Ezrin/Radixin/Moesin (ERM) family of proteins is involved in linking cell surface-initiated signaling to the actin cytoskeleton. However, how ERMs may regulate secretion from mast cells is still poorly understood. ERMs contain two functional domains connected through a long α-helix region, the N-terminal FERM (band 4.1 protein-ERM) domain and the C-terminal ERM association domain (C-ERMAD). The FERM domain and the C-ERMAD can bind to each other in a head-to-tail manner, leading to a closed/inactive conformation. Typically, phosphorylation on the C-terminus Thr has been associated with the activation of ERMs, including secretion from macrophages and platelets. It has previously been shown that the ability of the so-called mast cell "stabilizer" disodium cromoglycate (cromolyn) to inhibit secretion from rat mast cells closely paralleled the phosphorylation of a 78 kDa protein, which was subsequently shown to be moesin, a member of ERMs. Interestingly, the phosphorylation of moesin during the inhibition of mast cell secretion was on the N-terminal Ser56/74 and Thr66 residues. This phosphorylation pattern could lock moesin in its inactive state and render it inaccessible to binding to the Soluble NSF attachment protein receptors (SNAREs) and synaptosomal-associated proteins (SNAPs) critical for exocytosis. Using confocal microscopic imaging, we showed moesin was found to colocalize with actin and cluster around secretory granules during inhibition of secretion. In conclusion, the phosphorylation pattern and localization of moesin may be important in the regulation of mast cell secretion and could be targeted for the development of effective inhibitors of secretion of allergic and inflammatory mediators from mast cells.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
24
|
de la Rubia Ortí JE, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, Motos-Muñoz M, Proaño B, Benlloch M. Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children with Autism Spectrum Disorder: A Comprehensive Review. Nutrients 2023; 15:3265. [PMID: 37513683 PMCID: PMC10383799 DOI: 10.3390/nu15143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.
Collapse
Affiliation(s)
| | - Costanza Moneti
- Doctoral School, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | | | - Gloria Castellano
- Centro de Investigación Traslacional San Alberto Magno (CITSAM), Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Raquel Bayona-Babiloni
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Ana Belén Carriquí-Suárez
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Motos-Muñoz
- Department of Personality Psychology, Treatment and Methodology, Catholic University of Valencia San Vicente Mártir, 46100 Valencia, Spain
- Child Neurorehabilitation Unit, Manises Hospital, 46940 Valencia, Spain
| | - Belén Proaño
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Benlloch
- Department of Basic Medical Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
25
|
Alsubaiei SRM, Alfawaz HA, Bhat RS, El-Ansary A. Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups. Metabolites 2023; 13:738. [PMID: 37367896 DOI: 10.3390/metabo13060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
Collapse
Affiliation(s)
- Sana Razhan M Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
26
|
Molina-Gonzalez I, Holloway RK, Jiwaji Z, Dando O, Kent SA, Emelianova K, Lloyd AF, Forbes LH, Mahmood A, Skripuletz T, Gudi V, Febery JA, Johnson JA, Fowler JH, Kuhlmann T, Williams A, Chandran S, Stangel M, Howden AJM, Hardingham GE, Miron VE. Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration. Nat Commun 2023; 14:3372. [PMID: 37291151 PMCID: PMC10250470 DOI: 10.1038/s41467-023-39046-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Failed regeneration of myelin around neuronal axons following central nervous system damage contributes to nerve dysfunction and clinical decline in various neurological conditions, for which there is an unmet therapeutic demand. Here, we show that interaction between glial cells - astrocytes and mature myelin-forming oligodendrocytes - is a determinant of remyelination. Using in vivo/ ex vivo/ in vitro rodent models, unbiased RNA sequencing, functional manipulation, and human brain lesion analyses, we discover that astrocytes support the survival of regenerating oligodendrocytes, via downregulation of the Nrf2 pathway associated with increased astrocytic cholesterol biosynthesis pathway activation. Remyelination fails following sustained astrocytic Nrf2 activation in focally-lesioned male mice yet is restored by either cholesterol biosynthesis/efflux stimulation, or Nrf2 inhibition using the existing therapeutic Luteolin. We identify that astrocyte-oligodendrocyte interaction regulates remyelination, and reveal a drug strategy for central nervous system regeneration centred on targeting this interaction.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Rebecca K Holloway
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Zoeb Jiwaji
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owen Dando
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sarah A Kent
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Wellcome Trust Translational Neuroscience PhD programme, Edinburgh, UK
| | - Katie Emelianova
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Amy F Lloyd
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Lindsey H Forbes
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ayisha Mahmood
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thomas Skripuletz
- Department of Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Viktoria Gudi
- Department of Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - James A Febery
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jeffrey A Johnson
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, 53705, USA
- Molecular and Environmental Toxicology Centre, University of Wisconsin, Madison, WI, 53706, USA
- Center for Neuroscience, University of Wisconsin, Madison, WI, 53705, USA
- Waisman Centre, University of Wisconsin, Madison, WI, 53705, USA
| | - Jill H Fowler
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster, D-48129, Germany
| | - Anna Williams
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 5UU, UK
| | - Siddharthan Chandran
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Martin Stangel
- Department of Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Andrew J M Howden
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Giles E Hardingham
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Veronique E Miron
- United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, EH16 4TJ, UK.
- United Kingdom Multiple Sclerosis Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
- Center for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
- BARLO Multiple Sclerosis Centre, St.Michael's Hospital, Toronto, ON, M5B 1W8, Canada.
- Keenan Centre for Biomedical Research at St.Michael's Hospital, Toronto, ON, M5B 1T8, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
27
|
Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. J Clin Med 2023; 12:jcm12103520. [PMID: 37240625 DOI: 10.3390/jcm12103520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Although autism spectrum disorder (ASD) is a multifaceted neurodevelopmental syndrome, accumulating evidence indicates that oxidative stress and inflammation are common features of ASD. Flavonoids, one of the largest and best-investigated classes of plant-derived compounds, are known to exert antioxidant, anti-inflammatory, and neuroprotective effects. This review used a systematic search process to assess the available evidence on the effect of flavonoids on ASD. A comprehensive literature search was carried out in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. A total of 17 preclinical studies and 4 clinical investigations met our inclusion criteria and were included in the final review. Most findings from animal studies suggest that treatment with flavonoids improves oxidative stress parameters, reduces inflammatory mediators, and promotes pro-neurogenic effects. These studies also showed that flavonoids ameliorate the core symptoms of ASD, such as social deficits, repetitive behavior, learning and memory impairments, and motor coordination. However, there are no randomized placebo-controlled trials that support the clinical efficacy of flavonoids in ASD. We only found open-label studies and case reports/series, using only two flavonoids such as luteolin and quercetin. These preliminary clinical studies indicate that flavonoid administration may improve specific behavioral symptoms of ASD. Overall, this review is the first one to systematically report evidence for the putative beneficial effects of flavonoids on features of ASD. These promising preliminary results may provide the rationale for future randomized controlled trials aimed at confirming these outcomes.
Collapse
Affiliation(s)
- Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, 71122 Foggia, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
28
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
29
|
Usui N, Kobayashi H, Shimada S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24065487. [PMID: 36982559 PMCID: PMC10049423 DOI: 10.3390/ijms24065487] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by impairments in social communication, repetitive behaviors, restricted interests, and hyperesthesia/hypesthesia caused by genetic and/or environmental factors. In recent years, inflammation and oxidative stress have been implicated in the pathogenesis of ASD. In this review, we discuss the inflammation and oxidative stress in the pathophysiology of ASD, particularly focusing on maternal immune activation (MIA). MIA is a one of the common environmental risk factors for the onset of ASD during pregnancy. It induces an immune reaction in the pregnant mother’s body, resulting in further inflammation and oxidative stress in the placenta and fetal brain. These negative factors cause neurodevelopmental impairments in the developing fetal brain and subsequently cause behavioral symptoms in the offspring. In addition, we also discuss the effects of anti-inflammatory drugs and antioxidants in basic studies on animals and clinical studies of ASD. Our review provides the latest findings and new insights into the involvements of inflammation and oxidative stress in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-668-79-3124
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Suita 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
30
|
Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM. Antioxidant and Anti-Inflammatory Properties of Phytochemicals Found in the Yucca Genus. Antioxidants (Basel) 2023; 12:574. [PMID: 36978823 PMCID: PMC10044844 DOI: 10.3390/antiox12030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The Yucca genus encompasses about 50 species native to North America. Species within the Yucca genus have been used in traditional medicine to treat pathologies related to inflammation. Despite its historical use and the popular notion of its antioxidant and anti-inflammatory properties, there is a limited amount of research on this genus. To better understand these properties, this work aimed to analyze phytochemical composition through documentary research. This will provide a better understanding of the molecules and the mechanisms of action that confer such antioxidant and anti-inflammatory properties. About 92 phytochemicals present within the genus have reported antioxidant or anti-inflammatory effects. It has been suggested that the antioxidant and anti-inflammatory properties are mainly generated through its free radical scavenging activity, the inhibition of arachidonic acid metabolism, the decrease in TNF-α (Tumor necrosis factor-α), IL-6 (Interleukin-6), iNOS (Inducible nitric oxide synthase), and IL-1β (Interleukin 1β) concentration, the increase of GPx (Glutathione peroxidase), CAT (Catalase), and SOD (Superoxide dismutase) concentration, and the inhibition of the MAPK (Mitogen-Activated Protein Kinase), and NF-κB (Nuclear factor kappa B), and the activation of the Nrf2 (Nuclear factor erythroid 2-related factor) signaling pathway. These studies provide evidence of its use in traditional medicine against pathologies related to inflammation. However, more models and studies are needed to properly understand the activity of most plants within the genus, its potency, and the feasibility of its use to help manage or treat chronic inflammation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, 70010 Valenzano, Italy
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| |
Collapse
|
31
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
32
|
Exploration of the Core Pathways and Potential Targets of Luteolin Treatment on Late-Onset Depression Based on Cerebrospinal Fluid Proteomics. Int J Mol Sci 2023; 24:ijms24043485. [PMID: 36834894 PMCID: PMC9958965 DOI: 10.3390/ijms24043485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cognitive deficiency is one of the fundamental characteristics of late-onset depression (LOD). Luteolin (LUT) possesses antidepressant, anti-aging, and neuroprotective properties, which can dramatically enhance cognition. The altered composition of cerebrospinal fluid (CSF), which is involved in neuronal plasticity and neurogenesis, directly reflects the physio-pathological status of the central nervous system. It is not well known whether the effect of LUT on LOD is in association with a changed CSF composition. Therefore, this study first established a rat model of LOD and then tested the therapeutic effects of LUT using several behavioral approaches. A gene set enrichment analysis (GSEA) was used to evaluate the CSF proteomics data for KEGG pathway enrichment and Gene Ontology annotation. We combined network pharmacology and differentially expressed proteins to screen for key GSEA-KEGG pathways as well as potential targets for LUT therapy for LOD. Molecular docking was adopted to verify the affinity and binding activity of LUT to these potential targets. The outcomes demonstrated that LUT improved the cognitive and depression-like behaviors in LOD rats. LUT may exert therapeutic effects on LOD through the axon guidance pathway. Five axon guidance molecules-EFNA5, EPHB4, EPHA4, SEMA7A, and NTNG-as well as UNC5B, L1CAM, and DCC, may be candidates for the LUT treatment of LOD.
Collapse
|
33
|
Investigation of the Underlying Mechanism of Huangqi-Dangshen for Myasthenia Gravis Treatment via Molecular Docking and Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5301024. [PMID: 36818231 PMCID: PMC9935813 DOI: 10.1155/2023/5301024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/11/2023]
Abstract
The herbal pairing of Huangqi and Dangshen (HD) is traditional Chinese herbal medicine and has been widely used in China, especially to treat myasthenia gravis (MG). However, the mechanism of HD on MG is unclear. Aim of the Study. This study aims to investigate HD's possible role in MG treatment. Materials and Methods. The TCMSP database was used to identify the active chemicals and their targets. The GeneCards, DisGeNET, and OMIM databases were used to search for MG-related targets. The STRING database was employed in order to identify the common PPI network targets. We next utilised Cytoscape 3.8.2 for target identification and the DAVID database for gene ontology (GO) function analysis as well as Encyclopaedia of Genomes (KEGG) pathway enrichment analysis on the selected targets. The AutoDock Vina software was used to test the affinity of essential components with the hub gene before concluding that the primary targets were corrected through molecular docking. Results. 41 active compounds were screened from HD, and the number of putative-identified target genes screened from HD was 112. There were 21 target genes that overlapped with the targets of MG, which were postulated to be potential treatment targets. Through further analysis, the results showed that the active compounds from HD (such as 7-methoxy-2-methylisoflavone, quercetin, luteolin, Kaempferol, and isorhamnetin) may achieve the purpose of treating MG by acting on some core targets and related pathways (such as EGFR, FOS, ESR2, MYC, ESR1, CASP3, and IL-6). Molecular docking findings demonstrated that these active molecules have a near-perfect ability to attach to the primary targets. Conclusion. Through network pharmacology, the findings in this study provide light on the coordinated action of several HD formula components, targets, and pathways. It provided a theoretical basis for further study of HD pharmacological action.
Collapse
|
34
|
Singh R, Kisku A, Kungumaraj H, Nagaraj V, Pal A, Kumar S, Sulakhiya K. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 2023; 11:115. [PMID: 36672623 PMCID: PMC9856079 DOI: 10.3390/biomedicines11010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous category of developmental psychiatric disorders which is characterized by inadequate social interaction, less communication, and repetitive phenotype behavior. ASD is comorbid with various types of disorders. The reported prevalence is 1% in the United Kingdom, 1.5% in the United States, and ~0.2% in India at present. The natural anti-inflammatory agents on brain development are linked to interaction with many types of inflammatory pathways affected by genetic, epigenetic, and environmental variables. Inflammatory targeting pathways have already been linked to ASD. However, these routes are diluted, and new strategies are being developed in natural anti-inflammatory medicines to treat ASD. This review summarizes the numerous preclinical and clinical studies having potential protective effects and natural anti-inflammatory agents on the developing brain during pregnancy. Inflammation during pregnancy activates the maternal infection that likely leads to the development of neuropsychiatric disorders in the offspring. The inflammatory pathways have been an effective target for the subject of translational research studies on ASD.
Collapse
Affiliation(s)
- Ramu Singh
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Anglina Kisku
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Haripriya Kungumaraj
- Department of Kinesiology and Health, School of Art and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vini Nagaraj
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Ajay Pal
- Shriners Hospitals Pediatric Research Center (Center for Neural Rehabilitation and Repair), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
35
|
Gesundheit B, Zisman PD, Hochbaum L, Posen Y, Steinberg A, Friedman G, Ravkin HD, Rubin E, Faktor O, Ellis R. Autism spectrum disorder diagnosis using a new panel of immune- and inflammatory-related serum biomarkers: A case-control multicenter study. Front Pediatr 2023; 11:967954. [PMID: 36896401 PMCID: PMC9989209 DOI: 10.3389/fped.2023.967954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Background and objectives Children with autism spectrum disorder (ASD) present with distinctive clinical features. No objective laboratory assay has been developed to establish a diagnosis of ASD. Considering the known immunological associations with ASD, immunological biomarkers might enable ASD diagnosis and intervention at an early age when the immature brain has the highest degree of plasticity. This work aimed to identify diagnostic biomarkers discriminating between children with ASD and typically developing (TD) children. Methods A multicenter, diagnostic case-control study trial was conducted in Israel and Canada between 2014 and 2021. In this trial, a single blood sample was collected from 102 children with ASD as defined in Diagnostic Statistical Manual of Mental Disorders [DSM)-IV (299.00) or DSM-V (299.00)], and from 97 typically developing control children aged 3-12 years. Samples were analyzed using a high-throughput, multiplexed ELISA array which quantifies 1,000 human immune/inflammatory-related proteins. Multiple logistic regression analysis was used to obtain a predictor from these results using 10-fold cross validation. Results Twelve biomarkers were identified that provided an overall accuracy of 0.82 ± 0.09 (sensitivity: 0.87 ± 0.08; specificity: 0.77 ± 0.14) in diagnosing ASD with a threshold of 0.5. The resulting model had an area under the curve of 0.86 ± 0.06 (95% CI: 0.811-0.889). Of the 102 ASD children included in the study, 13% were negative for this signature. Most of the markers included in all models have been reported to be associated with ASD and/or autoimmune diseases. Conclusion The identified biomarkers may serve as the basis of an objective assay for early and accurate diagnosis of ASD. In addition, the markers may shed light on ASD etiology and pathogenesis. It should be noted that this was only a pilot, case-control diagnostic study, with a high risk of bias. The findings should be validated in larger prospective cohorts of consecutive children suspected of ASD.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerald Friedman
- Department of Pediatrics Mackenzie Health, Children's Treatment Network, Diagnostic Autism Clinical Services, Ontario, Canada
| | - Hersh D Ravkin
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eitan Rubin
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Ouriel Faktor
- Faktor Life Sciences & Diagnostics Consultations, Rehovot, Israel
| | | |
Collapse
|
36
|
Ntalouka F, Tsirivakou A. Luteolin: A promising natural agent in management of pain in chronic conditions. FRONTIERS IN PAIN RESEARCH 2023; 4:1114428. [PMID: 36937566 PMCID: PMC10016360 DOI: 10.3389/fpain.2023.1114428] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Pain due to chronic conditions is a frequent and insufficiently addressed problem. Current drug options for pain management (either in cases of chronic inflammatory conditions or neuropathy) do not adequately treat pain. Moreover, they are associated with important adverse events in long term use. Luteolin is a flavonoid widely present in the plant kingdom and its sources have been assembled in a comprehensive list of this paper. Luteolin has shown in several research studies a range of pharmacological properties; anti-inflammatory, antioxidant, neuroprotective, and analgesic. In this article, we summarize the effects and potential benefits from introducing luteolin as an adjuvant agent in established protocols for pain management. We review the most indicative in vivo and in vitro evidence of how luteolin can target the molecular pathways involved in pathogenesis of chronic inflammatory and neuropathic pain. The data reviewed strongly support luteolin's promising benefits in pain management and raise the need for further clinical trials that can establish its role in clinical practice.
Collapse
|
37
|
Unnisa A, Greig NH, Kamal MA. Modelling the Interplay Between Neuron-Glia Cell Dysfunction and Glial Therapy in Autism Spectrum Disorder. Curr Neuropharmacol 2023; 21:547-559. [PMID: 36545725 PMCID: PMC10207919 DOI: 10.2174/1570159x21666221221142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complicated, interpersonally defined, static condition of the underdeveloped brain. Although the aetiology of autism remains unclear, disturbance of neuronglia interactions has lately been proposed as a significant event in the pathophysiology of ASD. In recent years, the contribution of glial cells to autism has been overlooked. In addition to neurons, glial cells play an essential role in mental activities, and a new strategy that emphasises neuron-glia interactions should be applied. Disturbance of neuron-glia connections has lately been proposed as a significant event in the pathophysiology of ASD because aberrant neuronal network formation and dysfunctional neurotransmission are fundamental to the pathology of the condition. In ASD, neuron and glial cell number changes cause brain circuits to malfunction and impact behaviour. A study revealed that reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Recent discoveries also suggest that dysfunction or changes in the ability of microglia to carry out physiological and defensive functions (such as failure in synaptic elimination or aberrant microglial activation) may be crucial for developing brain diseases, especially autism. The cerebellum, white matter, and cortical regions of autistic patients showed significant microglial activation. Reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory conditions. Replacement of defective glial cells (Cell-replacement treatment), glial progenitor cell-based therapy, and medication therapy (inhibition of microglia activation) are all utilised to treat glial dysfunction. This review discusses the role of glial cells in ASD and the various potential approaches to treating glial cell dysfunction.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Peterlee place, Hebersham, NSW 2770, Australia
| |
Collapse
|
38
|
Preparation and Evaluation of Amorphous Solid Dispersions for Enhancing Luteolin's Solubility in Simulated Saliva. Polymers (Basel) 2022; 15:polym15010169. [PMID: 36616519 PMCID: PMC9824002 DOI: 10.3390/polym15010169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Luteolin (LUT), a bioactive flavonoid, possesses various pharmacological properties, including antioxidant, antimicrobial, anti-allergic, cardio-protective, and anti-cancer activity. Among them, LUT's administration for the treatment of periodontal disease is very promising. However, its low water solubility magnifies the challenge of formulating LUT into an effective dosage form. In this vein, the aim of the present study examines the preparation of amorphous solid dispersions (ASD) for the solubility improvement of LUT in saliva. At first, the physicochemical properties of the active pharmaceutical ingredient (API) were studied before the selection of the most suitable ASD matrix/carrier. For this reason, six commonly used polymeric ASD matrix/carriers (namely, povidone, PVP; copovidone, coPVP; hydroxypropyl cellulose, HPC-SL; hydroxypropyl methyl cellulose acetate succinate, HPMC-AS; Eudragit® RS, Eud-RS; and Soluplus®, SOL) were screened via the film casting method, as to whether they could suspend the drug's recrystallization. The most promising matrix/carriers were then evaluated, based on their ability to inhibit LUT's precipitation after its solubilization, via the solvent shift method. Based on both screening methods, it was determined that PVP was the most promising matrix/carrier for the preparation of LUT's ASDs. Hence, in a further step, after the successful testing of components' miscibility, LUT-PVP ASDs were prepared via the solvent evaporation method. These systems (examined via powder X-ray diffractometry, pXRD) showed full API amorphization immediately after preparation and excellent physical stability (since they were stable after 3 months of storage). The study of LUT-PVP ASD's ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra demonstrated strong H-bonds between the molecules of the drug and the matrix/carrier, while molecular dynamics (MD) simulations were able to shed light on these drug-matrix/carrier interactions, at a molecular level. Finally, in vitro dissolution studies in simulated saliva proved that the prepared ASDs were able to significantly enhance LUT's dissolution profile. Hence, according to findings of the present work, the preparation of LUT-ASDs utilizing PVP as the polymeric matrix/carrier is regarded as a highly promising technique for the improvement of API's solubility in the oral cavity.
Collapse
|
39
|
Nakhal MM, Aburuz S, Sadek B, Akour A. Repurposing SGLT2 Inhibitors for Neurological Disorders: A Focus on the Autism Spectrum Disorder. Molecules 2022; 27:7174. [PMID: 36364000 PMCID: PMC9653623 DOI: 10.3390/molecules27217174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a substantially increasing incidence rate. It is characterized by repetitive behavior, learning difficulties, deficits in social communication, and interactions. Numerous medications, dietary supplements, and behavioral treatments have been recommended for the management of this condition, however, there is no cure yet. Recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental diseases, based on their proved anti-inflammatory effects, such as downregulating the expression of several proteins, including the transforming growth factor beta (TGF-β), interleukin-6 (IL-6), C-reactive protein (CRP), nuclear factor κB (NF-κB), tumor necrosis factor alpha (TNF-α), and the monocyte chemoattractant protein (MCP-1). Furthermore, numerous previous studies revealed the potential of the SGLT2 inhibitors to provide antioxidant effects, due to their ability to reduce the generation of free radicals and upregulating the antioxidant systems, such as glutathione (GSH) and superoxide dismutase (SOD), while crossing the blood brain barrier (BBB). These properties have led to significant improvements in the neurologic outcomes of multiple experimental disease models, including cerebral oxidative stress in diabetes mellitus and ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and epilepsy. Such diseases have mutual biomarkers with ASD, which potentially could be a link to fill the gap of the literature studying the potential of repurposing the SGLT2 inhibitors' use in ameliorating the symptoms of ASD. This review will look at the impact of the SGLT2 inhibitors on neurodevelopmental disorders on the various models, including humans, rats, and mice, with a focus on the SGLT2 inhibitor canagliflozin. Furthermore, this review will discuss how SGLT2 inhibitors regulate the ASD biomarkers, based on the clinical evidence supporting their functions as antioxidant and anti-inflammatory agents capable of crossing the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
40
|
Kim KN, Sohn JH, Cho SJ, Seo HY, Kim S, Hong YC. Effects of short-term exposure to air pollution on hospital admissions for autism spectrum disorder in Korean school-aged children: a nationwide time-series study. BMJ Open 2022; 12:e058286. [PMID: 36127101 PMCID: PMC9535151 DOI: 10.1136/bmjopen-2021-058286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES This study explored the effects of short-term exposure to air pollution on hospital admissions for autism spectrum disorder (ASD), a proxy for symptom aggravation, among Korean children aged 5-14 years. DESIGN Time-series study. SETTING, PARTICIPANTS AND OUTCOME MEASURES We used data from the National Health Insurance Service (2011-2015). Daily concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) levels in each region were used as exposures. ASD cases were defined based on a principal admission diagnosis of the claims data. We applied distributed lag non-linear models and a generalised difference-in-differences method to the quasi-Poisson models to estimate the causal effects of air pollution for up to 6 days. We also performed weighted quantile sum regression analyses to assess the combined effects of air pollution mixtures. RESULTS PM2.5 levels at lag day 1, NO2 levels at lag day 5 and O3 levels at lag day 4 increased the risks of hospital admissions for ASD (relative risk (RR)=1.17, 95% CI 1.10 to 1.25 for PM2.5; RR=1.09, 95% CI 1.01 to 1.18 for NO2 and RR=1.03, 95% CI 1.00 to 1.06 for O3). The mean daily count of hospital admissions for ASD was 8.5, and it would be 7.3, 7.8 and 8.3 when the PM2.5 levels would be decreased by 10.0 µg/m3, NO2 by 10 ppb and O3 by 10 ppb, respectively. The weighted quantile sum index, constructed from PM2.5, NO2 and O3 levels, was associated with a higher risk of hospital admissions for ASD (RR 1.29, 95% CI 1.14 to 1.46), where NO2 was found to contribute to the effects most (the weight of 0.80). CONCLUSIONS These results emphasise that reduction of air pollution exposure should be considered for ASD symptom management, with important implications for the quality of life and economic costs.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Korea (the Republic of)
| | - Ji Hoon Sohn
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Department of Neuropsychiatry, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Public Healthcare Center, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Jongno-gu, Korea (the Republic of)
| | - Hwo Yeon Seo
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Korea (the Republic of)
| | - Yun-Chul Hong
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
41
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
42
|
Tartaglione AM, Villani A, Ajmone-Cat MA, Minghetti L, Ricceri L, Pazienza V, De Simone R, Calamandrei G. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatry 2022; 12:384. [PMID: 36104346 PMCID: PMC9474453 DOI: 10.1038/s41398-022-02149-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a sex-biased neurodevelopmental disorder with a male to female prevalence of 4:1, characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests or activities. Microbiota alterations as well as signs of neuroinflammation have been also reported in ASD. The involvement of immune dysregulation in ASD is further supported by evidence suggesting that maternal immune activation (MIA), especially during early pregnancy, may be a risk factor for ASD. The present study was aimed at characterizing the effects of MIA on behavior, gut microbiota and neuroinflammation in the mouse offspring also considering the impact of MIA in the two sexes. MIA offspring exhibited significant ASD-like behavioral alterations (i.e., deficits in sociability and sensorimotor gating, perseverative behaviors). The analysis of microbiota revealed changes in specific microbial taxa that recapitulated those seen in ASD children. In addition, molecular analyses indicated sex-related differences in the neuroinflammatory responses triggered by MIA, with a more prominent effect in the cerebellum. Our data suggest that both sexes should be included in the experimental designs of preclinical studies in order to identify those mechanisms that confer different vulnerability to ASD to males and females.
Collapse
Affiliation(s)
- Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy.
| | - Annacandida Villani
- grid.413503.00000 0004 1757 9135Gastroenterology Unit IRCCS “Casa Sollievo della Sofferenza”, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Maria Antonietta Ajmone-Cat
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Italian National Institute of Health (ISS), Rome, Italy
| | - Luisa Minghetti
- grid.416651.10000 0000 9120 6856Research Coordination and Support Service, Italian National Institute of Health (ISS), Rome, Italy
| | - Laura Ricceri
- grid.416651.10000 0000 9120 6856Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy
| | - Valerio Pazienza
- grid.413503.00000 0004 1757 9135Gastroenterology Unit IRCCS “Casa Sollievo della Sofferenza”, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Roberta De Simone
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Italian National Institute of Health (ISS), Rome, Italy
| | - Gemma Calamandrei
- grid.416651.10000 0000 9120 6856Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy
| |
Collapse
|
43
|
Tassinari M, Mottolese N, Galvani G, Ferrara D, Gennaccaro L, Loi M, Medici G, Candini G, Rimondini R, Ciani E, Trazzi S. Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder. Int J Mol Sci 2022; 23:ijms23158719. [PMID: 35955854 PMCID: PMC9369425 DOI: 10.3390/ijms23158719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/−) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/− mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/− brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Domenico Ferrara
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
44
|
Chen DTL, Cheng SW, Chen T, Chang JPC, Hwang BF, Chang HH, Chuang EY, Chen CH, Su KP. Identification of Genetic Variations in the NAD-Related Pathways for Patients with Major Depressive Disorder: A Case-Control Study in Taiwan. J Clin Med 2022; 11:3622. [PMID: 35806906 PMCID: PMC9267440 DOI: 10.3390/jcm11133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Background and Objectives: Nicotinamide adenine dinucleotide (NAD) is an important coenzyme in various physiological processes, including sirtuins (SIRTs) and kynurenine pathway (KP). Previous studies have shown that lower NAD levels can be indicative of increased risks of cancer and psychiatric disorders. However, there has been no prior study exploring the link between NAD homeostasis and psychiatric disorders from a genetic perspective. Therefore, we aimed to investigate the association of genetic polymorphism in the pathways of NAD biosynthesis with major depressive disorder (MDD). Methods: A total of 317 patients were included in the case group and were compared with sex-matched control group of 1268 participants (1:4 ratio) from Taiwan Biobank (TWB). All subjects in the control group were over 65 years old, which is well past the average age of onset of MDD. Genomic DNA extracted from patients' blood buffy coat was analyzed using the Affymetrix TWB array. Full-model tests were conducted for the analysis of single nucleotide polymorphism (SNPs) in all candidate genes. We focused on genes within the NAD-related candidate pathways, including 15 in KP, 12 in nicotinate metabolism, 7 in SIRTs, and 19 in aldehyde dehydrogenases (ALDHs). A total of 508 SNPs were analyzed in this study. After significant SNPs were determined, 5000 genome-wide max(T) permutations were performed in Plink. Finally, we built a predictive model with logistic regression and assessed the interactions of SNPs with the haplotype association tests. Results: We found three SNPs that were significantly associated with MDD in our NAD-related candidate pathways, one within the KP (rs12622574 in ACMSD) and two within the nicotinate metabolism (rs28532698 in BST1 and rs3733593 in CD38). The observed association with MDD was significant in the dominant model of inheritance with marital status, education level, and body mass index (BMI) adjusted as covariates. Lastly, in haplotype analysis, the three associated SNPs consisted of one haploblock in ACMSD, four haploblocks in BST1, and two haploblocks in CD38. Conclusions: This study provides the first evidence that genetic variations involved in NAD homeostasis in the KP and nicotinate metabolism may be associated with the occurrence of MDD.
Collapse
Affiliation(s)
- Daniel Tzu-Li Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Szu-Wei Cheng
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tiffany Chen
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 404, Taiwan;
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Eric Y. Chuang
- Master Program for Biomedical Engineering, China Medical University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 100, Taiwan
| | - Che-Hong Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| |
Collapse
|
45
|
Sachdeva P, Mehdi I, Kaith R, Ahmad F, Anwar MS. Potential natural products for the management of autism spectrum disorder. IBRAIN 2022; 8:365-376. [PMID: 37786737 PMCID: PMC10528773 DOI: 10.1002/ibra.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/04/2023]
Abstract
Autism in a broader sense is a neurodevelopmental disorder, which frequently occurs during early childhood and can last for a lifetime. This condition is primarily defined by difficulties with social engagement, with individuals displaying repetitive and stereotyped behaviors. Numerous neuroanatomical investigations on autistic children have revealed that their brains grow atypically, resulting in atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech therapy, and occupational therapy have all been used to address autism-related behavioral problems. While widely prescribed antidepressant drugs, antipsychotics, anticonvulsants, and stimulants have demonstrated response in autistic individuals. However, these medications do not fully reverse the core symptoms associated with autism spectrum disorder (ASD). The adverse reactions of ASD medicines and an increased risk of developing various other problems, such as obesity, dyslipidemia, diabetes mellitus, and thyroid disorders, prompted the researchers to investigate herbal medicines for the treatment of autistic individuals. Clinical trials are now being done to establish the efficacy of alternative techniques based on natural substances and to understand better the context in which they may be used to treat autism. This review of literature will look at crucial natural compounds derived from animals and plants that have shown promise as safe and effective autism treatment strategies.
Collapse
Affiliation(s)
- Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Intizaar Mehdi
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Rohit Kaith
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Md Sheeraz Anwar
- Department of PsychologyUniversity of CampaniaLuigi VanvitelliCasertaItaly
| |
Collapse
|
46
|
Cai C, Yin Z, Liu A, Wang H, Zeng S, Wang Z, Qiu H, Li S, Zhou J, Wang M. Identifying Rare Genetic Variants of Immune Mediators as Risk Factors for Autism Spectrum Disorder. Genes (Basel) 2022; 13:1098. [PMID: 35741860 PMCID: PMC9223212 DOI: 10.3390/genes13061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) affects more than 1% of children, and there is no viable pharmacotherapeutic agent to treat the core symptoms of ASD. Studies have shown that children with ASD show changes in their levels of immune response molecules. Our previous studies have shown that ASD is more common in children with folate receptor autoantibodies. We also found that children with ASD have abnormal gut immune function, which was characterized by a significant increase in the content of immunoglobulin A and an increase in gut-microbiota-associated epitope diversity. These studies suggest that the immune mechanism plays an important role in the occurrence of ASD. The present study aims to systematically assess gene mutations in immune mediators in patients with ASD. We collected genetic samples from 72 children with ASD (2−12 years old) and 107 healthy controls without ASD (20−78 years old). We used our previously-designed immune gene panel, which can capture cytokine and receptor genes, the coding regions of MHC genes, and genes of innate immunity. Target region sequencing (500×) and bioinformatics analytical methods were used to identify variants in immune response genes associated with patients with ASD. A total of 4 rare variants were found to be associated with ASD, including HLA-B: p.A93G, HLA-DQB1: p.S229N, LILRB2: p.R322H, and LILRB2: c.956-4C>T. These variants were present in 44.44% (32/72) of the ASD patients and were detected in 3.74% (4/107) of the healthy controls. We expect these genetic variants will serve as new targets for the clinical genetic assessment of ASD, and our findings suggest that immune abnormalities in children with ASD may have a genetic basis.
Collapse
Affiliation(s)
- Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China;
| | - Zhaoqing Yin
- Division of Neonatology, The People’s Hospital of Dehong Autonomous Prefecture, Mangshi 678400, China;
| | - Aiping Liu
- The Department of Laboratory, Public Health Service Center of Bao’an District, Bao’an District, Shenzhen 518018, China;
| | - Hui Wang
- Xiamen Branch of Children’s Hospital of Fudan University (Xiamen Children’s Hospital), Xiamen 361006, China;
| | - Shujuan Zeng
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China;
| | - Huixian Qiu
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Shijun Li
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiaxiu Zhou
- Division of Psychology, Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital of Shenzhen University, Shenzhen 518111, China
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
47
|
Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 2022; 12:164. [PMID: 35443740 PMCID: PMC9021202 DOI: 10.1038/s41398-022-01922-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that diet has a major modulatory influence on brain-gut-microbiome (BGM) interactions with important implications for brain health, and for several brain disorders. The BGM system is made up of neuroendocrine, neural, and immune communication channels which establish a network of bidirectional interactions between the brain, the gut and its microbiome. Diet not only plays a crucial role in shaping the gut microbiome, but it can modulate structure and function of the brain through these communication channels. In this review, we summarize the evidence available from preclinical and clinical studies on the influence of dietary habits and interventions on a selected group of psychiatric and neurologic disorders including depression, cognitive decline, Parkinson's disease, autism spectrum disorder and epilepsy. We will particularly address the role of diet-induced microbiome changes which have been implicated in these effects, and some of which are shared between different brain disorders. While the majority of these findings have been demonstrated in preclinical and in cross-sectional, epidemiological studies, to date there is insufficient evidence from mechanistic human studies to make conclusions about causality between a specific diet and microbially mediated brain function. Many of the dietary benefits on microbiome and brain health have been attributed to anti-inflammatory effects mediated by the microbial metabolites of dietary fiber and polyphenols. The new attention given to dietary factors in brain disorders has the potential to improve treatment outcomes with currently available pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- J Horn
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D E Mayer
- MayerInterconnected, LLC, Los Angeles, CA, USA
| | - S Chen
- University of California, San Francisco, CA, USA
| | - E A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Wang B, Qin Y, Wu Q, Li X, Xie D, Zhao Z, Duan S. mTOR Signaling Pathway Regulates the Release of Proinflammatory Molecule CCL5 Implicated in the Pathogenesis of Autism Spectrum Disorder. Front Immunol 2022; 13:818518. [PMID: 35422816 PMCID: PMC9002353 DOI: 10.3389/fimmu.2022.818518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex pervasive neurodevelopmental disorder and neuroinflammation may contribute to the pathogenesis of ASD. However, the exact mechanisms of abnormal release of proinflammatory mediators in ASD remain poorly understood. This study reports elevated plasma levels of the proinflammatory chemokine (C-C motif) ligand 5 (CCL5) in children with ASD, suggesting an aberrant inflammatory response appearing in the development of ASD. Mining of the expression data of brain or blood tissue from individuals with ASD reveals that mTOR signaling is aberrantly activated in ASD patients. Our in vitro study shows that suppression of mTOR reduces the gene expression and release of CCL5 from human microglia, supporting that CCL5 expression is regulated by mTOR activity. Furthermore, bacterial lipopolysaccharide (LPS)-induced CCL5 expression can be counteracted by siRNA against NF-κB, suggests a determining role of NF-κB in upregulating CCL5 expression. However, a direct regulatory relationship between the NF-κB element and the mTOR signaling pathway was not observed in rapamycin-treated cells. Our results show that the phosphorylated CREB can be induced to suppress CCL5 expression by outcompeting NF-κB in binding to CREB-binding protein (CREBBP) once the mTOR signaling pathway is inhibited. We propose that the activation of mTOR signaling in ASD may induce the suppression of phosphorylation of CREB, which in turn results in the increased binding of CREBBP to NF-κB, a competitor of phosphorylated CREB to drive expression of CCL5. Our study sheds new light on the inflammatory mechanisms of ASD and paves the way for the development of therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Baojiang Wang
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.,Laboratory of Medical Genetics, Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yueyuan Qin
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Qunyan Wu
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xi Li
- Laboratory of Medical Genetics, Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Dongying Xie
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Shan Duan
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
49
|
Zheng M, Schultz MB, Sinclair DA. NAD + in COVID-19 and viral infections. Trends Immunol 2022; 43:283-295. [PMID: 35221228 PMCID: PMC8831132 DOI: 10.1016/j.it.2022.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
NAD+, as an emerging regulator of immune responses during viral infections, may be a promising therapeutic target for coronavirus disease 2019 (COVID-19). In this Opinion, we suggest that interventions that boost NAD+ levels might promote antiviral defense and suppress uncontrolled inflammation. We discuss the association between low NAD+ concentrations and risk factors for poor COVID-19 outcomes, including aging and common comorbidities. Mechanistically, we outline how viral infections can further deplete NAD+ and its roles in antiviral defense and inflammation. We also describe how coronaviruses can subvert NAD+-mediated actions via genes that remove NAD+ modifications and activate the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Finally, we explore ongoing approaches to boost NAD+ concentrations in the clinic to putatively increase antiviral responses while curtailing hyperinflammation.
Collapse
Affiliation(s)
- Minyan Zheng
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Michael B Schultz
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Che X, Hornig M, Bresnahan M, Stoltenberg C, Magnus P, Surén P, Mjaaland S, Reichborn-Kjennerud T, Susser E, Lipkin WI. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol Psychiatry 2022; 27:1527-1541. [PMID: 34987169 PMCID: PMC9106807 DOI: 10.1038/s41380-021-01415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022]
Abstract
Epidemiological studies and work in animal models indicate that immune activation may be a risk factor for autism spectrum disorders (ASDs). We measured levels of 60 cytokines and growth factors in 869 maternal mid-gestational (MMG) and 807 child cord blood (CB) plasma samples from 457 ASD (385 boys, 72 girls) and 497 control children (418 boys, 79 girls) from the Norwegian Autism Birth Cohort. We analyzed associations first using sex-stratified unadjusted and adjusted logistic regression models, and then employed machine learning strategies (LASSO + interactions, Random Forests, XGBoost classifiers) with cross-validation and randomly sampled test set evaluation to assess the utility of immune signatures as ASD biomarkers. We found prominent case-control differences in both boys and girls with alterations in a wide range of analytes in MMG and CB plasma including but not limited to IL1RA, TNFα, Serpin E1, VCAM1, VEGFD, EGF, CSF1, and CSF2. MMG findings were most striking, with particularly strong effect sizes in girls. Models did not change appreciably upon adjustment for maternal conditions, medication use, or emotional distress ratings. Findings were corroborated using machine learning approaches, with area under the receiver operating characteristic curve values in the test sets ranging from 0.771 to 0.965. Our results are consistent with gestational immunopathology in ASD, may provide insights into sex-specific differences, and have the potential to lead to biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michaeline Bresnahan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Camilla Stoltenberg
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health, University of Bergen, Bergen, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Surén
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Ted Reichborn-Kjennerud
- Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|