1
|
Andronico A, Paireau J, Cauchemez S. Integrating information from historical data into mechanistic models for influenza forecasting. PLoS Comput Biol 2024; 20:e1012523. [PMID: 39475955 PMCID: PMC11524484 DOI: 10.1371/journal.pcbi.1012523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Seasonal influenza causes significant annual morbidity and mortality worldwide. In France, it is estimated that, on average, 2 million individuals consult their GP for influenza-like-illness (ILI) every year. Traditionally, mathematical models used for epidemic forecasting can either include parameters capturing the infection process (mechanistic or compartmental models) or rely on time series analysis approaches that do not make mechanistic assumptions (statistical or phenomenological models). While the latter make extensive use of past epidemic data, mechanistic models are usually independently initialized in each season. As a result, forecasts from such models can contain trajectories that are vastly different from past epidemics. We developed a mechanistic model that takes into account epidemic data from training seasons when producing forecasts. The parameters of the model are estimated via a first particle filter running on the observed data. A second particle filter is then used to produce forecasts compatible with epidemic trajectories from the training set. The model was calibrated and tested on 35 years' worth of surveillance data from the French Sentinelles Network, representing the weekly number of patients consulting for ILI over the period 1985-2019. Our results show that the new method improves upon standard mechanistic approaches. In particular, when retrospectively tested on the available data, our model provides increased accuracy for short-term forecasts (from one to four weeks into the future) and peak timing and intensity. Our new approach for epidemic forecasting allows the integration of key strengths of the statistical approach into the mechanistic modelling framework and represents an attempt to provide accurate forecasts by making full use of the rich surveillance dataset collected in France since 1985.
Collapse
Affiliation(s)
- Alessio Andronico
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France
| | - Juliette Paireau
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France
- Infectious Diseases Department, Santé publique France, Saint-Maurice, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France
| |
Collapse
|
2
|
Rotejanaprasert C, Armatrmontree P, Chienwichai P, Maude RJ. Perspectives and challenges in developing and implementing integrated dengue surveillance tools and technology in Thailand: a qualitative study. PLoS Negl Trop Dis 2024; 18:e0012387. [PMID: 39141623 PMCID: PMC11324148 DOI: 10.1371/journal.pntd.0012387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Dengue remains a persistent public health concern, especially in tropical and sub-tropical countries like Thailand. The development and utilization of quantitative tools and information technology show significant promise for enhancing public health policy decisions in integrated dengue control. However, the effective implementation of these tools faces multifaceted challenges and barriers that are relatively underexplored. METHODS This qualitative study employed in-depth interviews to gain a better understanding of the experiences and challenges of quantitative tool development and implementation with key stakeholders involved in dengue control in Thailand, using a phenomenological framework. A diverse range of participants, including public health workers and dengue control experts, participated in these interviews. The collected interview data were systematically managed and investigated using thematic analysis to extract meaningful insights. RESULTS The ability to collect dengue surveillance data and conduct ongoing analyses were contingent upon the availability of individuals possessing essential digital literacy and analytical skills, which were often in short supply. Furthermore, effective space-time early warning and precise data collection were hindered by the absence of user-friendly tools, efficient reporting systems, and complexities in data integration. Additionally, the study underscored the importance of the crucial role of community involvement and collaboration among organizations involved in integrated dengue surveillance, control and quantitative tool development. CONCLUSIONS This study employed a qualitative approach to gain a deeper understanding of the contextual intricacies surrounding the development and implementation of quantitative tools, which, despite their potential for strengthening public health policy decisions in dengue control, remain relatively unexplored in the Thai context. The findings yield valuable insights and recommendations for the development and utilization of quantitative tools to support dengue control in Thailand. This information also has the potential to support use of such tools to exert impact beyond dengue to a broader spectrum of diseases.
Collapse
Affiliation(s)
- Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
3
|
Mathis SM, Webber AE, León TM, Murray EL, Sun M, White LA, Brooks LC, Green A, Hu AJ, Rosenfeld R, Shemetov D, Tibshirani RJ, McDonald DJ, Kandula S, Pei S, Yaari R, Yamana TK, Shaman J, Agarwal P, Balusu S, Gururajan G, Kamarthi H, Prakash BA, Raman R, Zhao Z, Rodríguez A, Meiyappan A, Omar S, Baccam P, Gurung HL, Suchoski BT, Stage SA, Ajelli M, Kummer AG, Litvinova M, Ventura PC, Wadsworth S, Niemi J, Carcelen E, Hill AL, Loo SL, McKee CD, Sato K, Smith C, Truelove S, Jung SM, Lemaitre JC, Lessler J, McAndrew T, Ye W, Bosse N, Hlavacek WS, Lin YT, Mallela A, Gibson GC, Chen Y, Lamm SM, Lee J, Posner RG, Perofsky AC, Viboud C, Clemente L, Lu F, Meyer AG, Santillana M, Chinazzi M, Davis JT, Mu K, Pastore Y Piontti A, Vespignani A, Xiong X, Ben-Nun M, Riley P, Turtle J, Hulme-Lowe C, Jessa S, Nagraj VP, Turner SD, Williams D, Basu A, Drake JM, Fox SJ, Suez E, Cojocaru MG, Thommes EW, Cramer EY, Gerding A, Stark A, Ray EL, Reich NG, Shandross L, Wattanachit N, Wang Y, Zorn MW, Aawar MA, Srivastava A, Meyers LA, Adiga A, Hurt B, Kaur G, Lewis BL, Marathe M, Venkatramanan S, Butler P, Farabow A, Ramakrishnan N, Muralidhar N, Reed C, Biggerstaff M, Borchering RK. Title evaluation of FluSight influenza forecasting in the 2021-22 and 2022-23 seasons with a new target laboratory-confirmed influenza hospitalizations. Nat Commun 2024; 15:6289. [PMID: 39060259 PMCID: PMC11282251 DOI: 10.1038/s41467-024-50601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021-22 and 2022-23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021-22 and 12 out of 18 models in 2022-23. Averaging across all forecast targets, the FluSight ensemble is the 2nd most accurate model measured by WIS in 2021-22 and the 5th most accurate in the 2022-23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change.
Collapse
Affiliation(s)
| | | | - Tomás M León
- California Department of Public Health, Richmond, CA, USA
| | - Erin L Murray
- California Department of Public Health, Richmond, CA, USA
| | - Monica Sun
- California Department of Public Health, Richmond, CA, USA
| | - Lauren A White
- California Department of Public Health, Richmond, CA, USA
| | - Logan C Brooks
- Carnegie Mellon University, Pittsburgh, PA, USA
- University of California, Berkeley, Berkeley, CA, USA
| | - Alden Green
- Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | | | - Ryan J Tibshirani
- Carnegie Mellon University, Pittsburgh, PA, USA
- University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Sen Pei
- Columbia University, New York, NY, USA
| | | | | | - Jeffrey Shaman
- Columbia University, New York, NY, USA
- Columbia University School of Climate, New York, NY, USA
| | | | | | | | | | | | - Rishi Raman
- Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhiyuan Zhao
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Shalina Omar
- Guidehouse Advisory and Consulting Services, McClean, VA, USA
| | | | | | | | | | - Marco Ajelli
- Indiana University School of Public Health, Bloomington, IN, USA
| | | | - Maria Litvinova
- Indiana University School of Public Health, Bloomington, IN, USA
| | - Paulo C Ventura
- Indiana University School of Public Health, Bloomington, IN, USA
| | | | | | | | | | - Sara L Loo
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Koji Sato
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Sung-Mok Jung
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Justin Lessler
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Nikos Bosse
- London School of Health and Tropical Medicine, London, UK
| | | | - Yen Ting Lin
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Ye Chen
- Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Fred Lu
- Northeastern University, Boston, MA, USA
| | | | | | | | | | - Kunpeng Mu
- Northeastern University, Boston, MA, USA
| | | | | | | | | | - Pete Riley
- Predictive Science Inc, San Diego, CA, USA
| | | | | | | | - V P Nagraj
- Signature Science, LLC, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | - Edward W Thommes
- University of Guelph, Guelph, ON, Canada
- Sanofi, Toronto, ON, USA
| | | | - Aaron Gerding
- University of Massachusetts Amherst, Amherst, MA, USA
| | - Ariane Stark
- University of Massachusetts Amherst, Amherst, MA, USA
| | - Evan L Ray
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Li Shandross
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Yijin Wang
- University of Massachusetts Amherst, Amherst, MA, USA
| | - Martha W Zorn
- University of Massachusetts Amherst, Amherst, MA, USA
| | - Majd Al Aawar
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Carrie Reed
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
4
|
Bleichrodt A, Luo R, Kirpich A, Chowell G. Evaluating the forecasting performance of ensemble sub-epidemic frameworks and other time series models for the 2022-2023 mpox epidemic. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240248. [PMID: 39076375 PMCID: PMC11285753 DOI: 10.1098/rsos.240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
During the 2022-2023 unprecedented mpox epidemic, near real-time short-term forecasts of the epidemic's trajectory were essential in intervention implementation and guiding policy. However, as case levels have significantly decreased, evaluating model performance is vital to advancing the field of epidemic forecasting. Using laboratory-confirmed mpox case data from the Centers for Disease Control and Prevention and Our World in Data teams, we generated retrospective sequential weekly forecasts for Brazil, Canada, France, Germany, Spain, the United Kingdom, the United States and at the global scale using an auto-regressive integrated moving average (ARIMA) model, generalized additive model, simple linear regression, Facebook's Prophet model, as well as the sub-epidemic wave and n-sub-epidemic modelling frameworks. We assessed forecast performance using average mean squared error, mean absolute error, weighted interval scores, 95% prediction interval coverage, skill scores and Winkler scores. Overall, the n-sub-epidemic modelling framework outcompeted other models across most locations and forecasting horizons, with the unweighted ensemble model performing best most frequently. The n-sub-epidemic and spatial-wave frameworks considerably improved in average forecasting performance relative to the ARIMA model (greater than 10%) for all performance metrics. Findings further support sub-epidemic frameworks for short-term forecasting epidemics of emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Amanda Bleichrodt
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Ruiyan Luo
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Alexander Kirpich
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| | - Gerardo Chowell
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Shandross L, Howerton E, Contamin L, Hochheiser H, Krystalli A, Reich NG, Ray EL. hubEnsembles: Ensembling Methods in R. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309416. [PMID: 38978658 PMCID: PMC11230315 DOI: 10.1101/2024.06.24.24309416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Combining predictions from multiple models into an ensemble is a widely used practice across many fields with demonstrated performance benefits. The R package hubEnsembles provides a flexible framework for ensembling various types of predictions, including point estimates and probabilistic predictions. A range of common methods for generating ensembles are supported, including weighted averages, quantile averages, and linear pools. The hubEnsembles package fits within a broader framework of open-source software and data tools called the "hubverse", which facilitates the development and management of collaborative modelling exercises.
Collapse
|
6
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Runge MC, Shea K, Howerton E, Yan K, Hochheiser H, Rosenstrom E, Probert WJM, Borchering R, Marathe MV, Lewis B, Venkatramanan S, Truelove S, Lessler J, Viboud C. Scenario design for infectious disease projections: Integrating concepts from decision analysis and experimental design. Epidemics 2024; 47:100775. [PMID: 38838462 DOI: 10.1016/j.epidem.2024.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.
Collapse
Affiliation(s)
- Michael C Runge
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, MD, USA.
| | - Katriona Shea
- The Pennsylvania State University, University Park, PA, USA
| | - Emily Howerton
- The Pennsylvania State University, University Park, PA, USA
| | - Katie Yan
- The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | - Bryan Lewis
- University of Virginia, Charlottesville, VA, USA
| | | | | | - Justin Lessler
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Wade-Malone LK, Howerton E, Probert WJM, Runge MC, Viboud C, Shea K. When do we need multiple infectious disease models? Agreement between projection rank and magnitude in a multi-model setting. Epidemics 2024; 47:100767. [PMID: 38714099 DOI: 10.1016/j.epidem.2024.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024] Open
Abstract
Mathematical models are useful for public health planning and response to infectious disease threats. However, different models can provide differing results, which can hamper decision making if not synthesized appropriately. To address this challenge, multi-model hubs convene independent modeling groups to generate ensembles, known to provide more accurate predictions of future outcomes. Yet, these hubs are resource intensive, and how many models are sufficient in a hub is not known. Here, we compare the benefit of predictions from multiple models in different contexts: (1) decision settings that depend on predictions of quantitative outcomes (e.g., hospital capacity planning), where assessments of the benefits of multi-model ensembles have largely focused; and (2) decisions settings that require the ranking of alternative epidemic scenarios (e.g., comparing outcomes under multiple possible interventions and biological uncertainties). We develop a mathematical framework to mimic a multi-model prediction setting, and use this framework to quantify how frequently predictions from different models agree. We further explore multi-model agreement using real-world, empirical data from 14 rounds of U.S. COVID-19 Scenario Modeling Hub projections. Our results suggest that the value of multiple models could be different in different decision contexts, and if only a few models are available, focusing on the rank of alternative epidemic scenarios could be more robust than focusing on quantitative outcomes. Although additional exploration of the sufficient number of models for different contexts is still needed, our results indicate that it may be possible to identify decision contexts where it is robust to rely on fewer models, a finding that can inform the use of modeling resources during future public health crises.
Collapse
Affiliation(s)
- La Keisha Wade-Malone
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Emily Howerton
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA.
| | | | - Michael C Runge
- US Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, MD, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Nunes MC, Thommes E, Fröhlich H, Flahault A, Arino J, Baguelin M, Biggerstaff M, Bizel-Bizellot G, Borchering R, Cacciapaglia G, Cauchemez S, Barbier--Chebbah A, Claussen C, Choirat C, Cojocaru M, Commaille-Chapus C, Hon C, Kong J, Lambert N, Lauer KB, Lehr T, Mahe C, Marechal V, Mebarki A, Moghadas S, Niehus R, Opatowski L, Parino F, Pruvost G, Schuppert A, Thiébaut R, Thomas-Bachli A, Viboud C, Wu J, Crépey P, Coudeville L. Redefining pandemic preparedness: Multidisciplinary insights from the CERP modelling workshop in infectious diseases, workshop report. Infect Dis Model 2024; 9:501-518. [PMID: 38445252 PMCID: PMC10912817 DOI: 10.1016/j.idm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
In July 2023, the Center of Excellence in Respiratory Pathogens organized a two-day workshop on infectious diseases modelling and the lessons learnt from the Covid-19 pandemic. This report summarizes the rich discussions that occurred during the workshop. The workshop participants discussed multisource data integration and highlighted the benefits of combining traditional surveillance with more novel data sources like mobility data, social media, and wastewater monitoring. Significant advancements were noted in the development of predictive models, with examples from various countries showcasing the use of machine learning and artificial intelligence in detecting and monitoring disease trends. The role of open collaboration between various stakeholders in modelling was stressed, advocating for the continuation of such partnerships beyond the pandemic. A major gap identified was the absence of a common international framework for data sharing, which is crucial for global pandemic preparedness. Overall, the workshop underscored the need for robust, adaptable modelling frameworks and the integration of different data sources and collaboration across sectors, as key elements in enhancing future pandemic response and preparedness.
Collapse
Affiliation(s)
- Marta C. Nunes
- Center of Excellence in Respiratory Pathogens (CERP), Hospices Civils de Lyon (HCL) and Centre International de Recherche en Infectiologie (CIRI), Équipe Santé Publique, Épidémiologie et Écologie Évolutive des Maladies Infectieuses (PHE3ID), Inserm U1111, CNRS UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Edward Thommes
- New Products and Innovation (NPI), Sanofi Vaccines (Global), Toronto, Ontario, Canada
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Holger Fröhlich
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Department of Bioinformatics, Schloss Birlinghoven, Sankt Augustin, Germany
- University of Bonn, Bonn-Aachen International Center for IT (b-it), Bonn, Germany
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland and Swiss School of Public Health, Zürich, Switzerland
| | - Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marc Baguelin
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew Biggerstaff
- National Center for Immunization and Respiratory Diseases (NCIRD), US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Gaston Bizel-Bizellot
- Departement of Computational Biology, Departement of Global Health, Institut Pasteur, Paris, France
| | - Rebecca Borchering
- National Center for Immunization and Respiratory Diseases (NCIRD), US Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Giacomo Cacciapaglia
- Institut de Physique des Deux Infinis de Lyon (IP2I), UMR5822, IN2P3/CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000 CNRS, Paris, France
| | - Alex Barbier--Chebbah
- Decision and Bayesian Computation, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, France
| | - Carsten Claussen
- Fraunhofer-Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Christine Choirat
- Institute of Global Health, Faculty of Medicine, University of Geneva, Switzerland
| | - Monica Cojocaru
- Mathematics & Statistics Department, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Chitin Hon
- Respiratory Disease AI Laboratory on Epidemic Intelligence and Medical Big Data Instrument Applications, Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macau, China
| | - Jude Kong
- Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Global South Artificial Intelligence for Pandemic and Epidemic Preparedness and Response Network (AI4PEP), Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | | | | | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Vincent Marechal
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
| | | | - Seyed Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, Ontario, Canada
| | - Rene Niehus
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Lulla Opatowski
- UMR 1018, Team “Anti-infective Evasion and Pharmacoepidemiology”, Université Paris-Saclay, UVSQ, INSERM, France
- Epidemiology and Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris Cité, Paris, France
| | - Francesco Parino
- Sorbonne Université, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Paris, France
| | | | - Andreas Schuppert
- Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Rodolphe Thiébaut
- Bordeaux University, Department of Public Health, Inserm UMR 1219 Bordeaux Population Health Research Center, Inria SISTM, Bordeaux, France
| | | | - Cecile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Jianhong Wu
- York Emergency Mitigation, Engagement, Response, and Governance Institute, Laboratory for Industrial and Applied Mathematics, York University, Toronto, Ontario, Canada
| | - Pascal Crépey
- EHESP, Université de Rennes, CNRS, IEP Rennes, Arènes - UMR 6051, RSMS – Inserm U 1309, Rennes, France
| | | |
Collapse
|
10
|
García-García D, Fernández-Martínez B, Bartumeus F, Gómez-Barroso D. Modeling the Regional Distribution of International Travelers in Spain to Estimate Imported Cases of Dengue and Malaria: Statistical Inference and Validation Study. JMIR Public Health Surveill 2024; 10:e51191. [PMID: 38801767 PMCID: PMC11165286 DOI: 10.2196/51191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/18/2023] [Accepted: 03/05/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Understanding the patterns of disease importation through international travel is paramount for effective public health interventions and global disease surveillance. While global airline network data have been used to assist in outbreak prevention and effective preparedness, accurately estimating how these imported cases disseminate locally in receiving countries remains a challenge. OBJECTIVE This study aimed to describe and understand the regional distribution of imported cases of dengue and malaria upon arrival in Spain via air travel. METHODS We have proposed a method to describe the regional distribution of imported cases of dengue and malaria based on the computation of the "travelers' index" from readily available socioeconomic data. We combined indicators representing the main drivers for international travel, including tourism, economy, and visits to friends and relatives, to measure the relative appeal of each region in the importing country for travelers. We validated the resulting estimates by comparing them with the reported cases of malaria and dengue in Spain from 2015 to 2019. We also assessed which motivation provided more accurate estimates for imported cases of both diseases. RESULTS The estimates provided by the best fitted model showed high correlation with notified cases of malaria (0.94) and dengue (0.87), with economic motivation being the most relevant for imported cases of malaria and visits to friends and relatives being the most relevant for imported cases of dengue. CONCLUSIONS Factual descriptions of the local movement of international travelers may substantially enhance the design of cost-effective prevention policies and control strategies, and essentially contribute to decision-support systems. Our approach contributes in this direction by providing a reliable estimate of the number of imported cases of nonendemic diseases, which could be generalized to other applications. Realistic risk assessments will be obtained by combining this regional predictor with the observed local distribution of vectors.
Collapse
Affiliation(s)
- David García-García
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Public Health Biomedical Network Research Consortium (CIBERESP), Madrid, Spain
| | - Beatriz Fernández-Martínez
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Public Health Biomedical Network Research Consortium (CIBERESP), Madrid, Spain
| | - Frederic Bartumeus
- Group of Theoretical and Computational Ecology, Centre for Advanced Studies of Blanes, Spanish Research Council, Blanes, Spain
- Ecological and Forestry Applications Research Centre, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Diana Gómez-Barroso
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Public Health Biomedical Network Research Consortium (CIBERESP), Madrid, Spain
| |
Collapse
|
11
|
Jit M, Cook AR. Informing Public Health Policies with Models for Disease Burden, Impact Evaluation, and Economic Evaluation. Annu Rev Public Health 2024; 45:133-150. [PMID: 37871140 DOI: 10.1146/annurev-publhealth-060222-025149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Conducting real-world public health experiments is often costly, time-consuming, and ethically challenging, so mathematical models have a long-standing history of being used to inform policy. Applications include estimating disease burden, performing economic evaluation of interventions, and responding to health emergencies such as pandemics. Models played a pivotal role during the COVID-19 pandemic, providing early detection of SARS-CoV-2's pandemic potential and informing subsequent public health measures. While models offer valuable policy insights, they often carry limitations, especially when they depend on assumptions and incomplete data. Striking a balance between accuracy and timely decision-making in rapidly evolving situations such as disease outbreaks is challenging. Modelers need to explore the extent to which their models deviate from representing the real world. The uncertainties inherent in models must be effectively communicated to policy makers and the public. As the field becomes increasingly influential, it needs to develop reporting standards that enable rigorous external scrutiny.
Collapse
Affiliation(s)
- Mark Jit
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom;
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- National University Health System, Singapore
| |
Collapse
|
12
|
Manley H, Bayley T, Danelian G, Burton L, Finnie T, Charlett A, Watkins NA, Birrell P, De Angelis D, Keeling M, Funk S, Medley G, Pellis L, Baguelin M, Ackland GJ, Hutchinson J, Riley S, Panovska-Griffiths J. Combining models to generate consensus medium-term projections of hospital admissions, occupancy and deaths relating to COVID-19 in England. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231832. [PMID: 39076350 PMCID: PMC11285879 DOI: 10.1098/rsos.231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 07/31/2024]
Abstract
Mathematical modelling has played an important role in offering informed advice during the COVID-19 pandemic. In England, a cross government and academia collaboration generated medium-term projections (MTPs) of possible epidemic trajectories over the future 4-6 weeks from a collection of epidemiological models. In this article, we outline this collaborative modelling approach and evaluate the accuracy of the combined and individual model projections against the data over the period November 2021-December 2022 when various Omicron subvariants were spreading across England. Using a number of statistical methods, we quantify the predictive performance of the model projections for both the combined and individual MTPs, by evaluating the point and probabilistic accuracy. Our results illustrate that the combined MTPs, produced from an ensemble of heterogeneous epidemiological models, were a closer fit to the data than the individual models during the periods of epidemic growth or decline, with the 90% confidence intervals widest around the epidemic peaks. We also show that the combined MTPs increase the robustness and reduce the biases associated with a single model projection. Learning from our experience of ensemble modelling during the COVID-19 epidemic, our findings highlight the importance of developing cross-institutional multi-model infectious disease hubs for future outbreak control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul Birrell
- UK Health Security Agency, London, UK
- MRC Biostatistics Unit, University of Cambridge, , UK
| | - Daniela De Angelis
- UK Health Security Agency, London, UK
- MRC Biostatistics Unit, University of Cambridge, , UK
| | - Matt Keeling
- Department of Mathematics, University of Warwick, Coventry, UK
| | - Sebastian Funk
- London School of Hygiene and Tropical Medicine, London, UK
| | - Graham Medley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | - Jasmina Panovska-Griffiths
- UK Health Security Agency, London, UK
- Queen’s College, University of Oxford, Oxford, UK
- The Big Data Institute and the Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Lopez VK, Cramer EY, Pagano R, Drake JM, O’Dea EB, Adee M, Ayer T, Chhatwal J, Dalgic OO, Ladd MA, Linas BP, Mueller PP, Xiao J, Bracher J, Castro Rivadeneira AJ, Gerding A, Gneiting T, Huang Y, Jayawardena D, Kanji AH, Le K, Mühlemann A, Niemi J, Ray EL, Stark A, Wang Y, Wattanachit N, Zorn MW, Pei S, Shaman J, Yamana TK, Tarasewicz SR, Wilson DJ, Baccam S, Gurung H, Stage S, Suchoski B, Gao L, Gu Z, Kim M, Li X, Wang G, Wang L, Wang Y, Yu S, Gardner L, Jindal S, Marshall M, Nixon K, Dent J, Hill AL, Kaminsky J, Lee EC, Lemaitre JC, Lessler J, Smith CP, Truelove S, Kinsey M, Mullany LC, Rainwater-Lovett K, Shin L, Tallaksen K, Wilson S, Karlen D, Castro L, Fairchild G, Michaud I, Osthus D, Bian J, Cao W, Gao Z, Lavista Ferres J, Li C, Liu TY, Xie X, Zhang S, Zheng S, Chinazzi M, Davis JT, Mu K, Pastore y Piontti A, Vespignani A, Xiong X, Walraven R, Chen J, Gu Q, Wang L, Xu P, Zhang W, Zou D, Gibson GC, Sheldon D, Srivastava A, Adiga A, Hurt B, Kaur G, Lewis B, Marathe M, Peddireddy AS, Porebski P, Venkatramanan S, Wang L, Prasad PV, Walker JW, Webber AE, Slayton RB, Biggerstaff M, Reich NG, Johansson MA. Challenges of COVID-19 Case Forecasting in the US, 2020-2021. PLoS Comput Biol 2024; 20:e1011200. [PMID: 38709852 PMCID: PMC11098513 DOI: 10.1371/journal.pcbi.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/16/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.
Collapse
Affiliation(s)
- Velma K. Lopez
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Estee Y. Cramer
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Robert Pagano
- Unaffiliated, Tucson, Arizona, United States of America
| | - John M. Drake
- University of Georgia, Athens, Georgia, United States of America
| | - Eamon B. O’Dea
- University of Georgia, Athens, Georgia, United States of America
| | - Madeline Adee
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Turgay Ayer
- Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jagpreet Chhatwal
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ozden O. Dalgic
- Value Analytics Labs, Boston, Massachusetts, United States of America
| | - Mary A. Ladd
- Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Benjamin P. Linas
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter P. Mueller
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jade Xiao
- Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Johannes Bracher
- Chair of Econometrics and Statistics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Aaron Gerding
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Tilmann Gneiting
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Yuxin Huang
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Dasuni Jayawardena
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Abdul H. Kanji
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Khoa Le
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Anja Mühlemann
- Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland
| | - Jarad Niemi
- Iowa State University, Ames, Iowa, United States of America
| | - Evan L. Ray
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Ariane Stark
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Yijin Wang
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Nutcha Wattanachit
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Martha W. Zorn
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Sen Pei
- Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jeffrey Shaman
- Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Teresa K. Yamana
- Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Samuel R. Tarasewicz
- Federal Reserve Bank of San Francisco, San Francisco, California, United States of America
| | - Daniel J. Wilson
- Federal Reserve Bank of San Francisco, San Francisco, California, United States of America
| | - Sid Baccam
- IEM, Bel Air, Maryland, United States of America
| | - Heidi Gurung
- IEM, Bel Air, Maryland, United States of America
| | - Steve Stage
- IEM, Baton Rouge, Louisiana, United States of America
| | | | - Lei Gao
- George Mason University, Fairfax, Virginia, United States of America
| | - Zhiling Gu
- Iowa State University, Ames, Iowa, United States of America
| | - Myungjin Kim
- Kyungpook National University, Bukgu, Daegu, Republic of Korea
| | - Xinyi Li
- Clemson University, Clemson, South Carolina, United States of America
| | - Guannan Wang
- College of William & Mary, Williamsburg, Virginia, United States of America
| | - Lily Wang
- George Mason University, Fairfax, Virginia, United States of America
| | - Yueying Wang
- Amazon, Seattle, Washington, United States of America
| | - Shan Yu
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Lauren Gardner
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sonia Jindal
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Kristen Nixon
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Juan Dent
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alison L. Hill
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joshua Kaminsky
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elizabeth C. Lee
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Justin Lessler
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire P. Smith
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Shaun Truelove
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Matt Kinsey
- Johns Hopkins University Applied Physics Lab, Baltimore, Maryland, United States of America
| | - Luke C. Mullany
- Johns Hopkins University Applied Physics Lab, Baltimore, Maryland, United States of America
| | | | - Lauren Shin
- Johns Hopkins University Applied Physics Lab, Baltimore, Maryland, United States of America
| | - Katharine Tallaksen
- Johns Hopkins University Applied Physics Lab, Baltimore, Maryland, United States of America
| | - Shelby Wilson
- Johns Hopkins University Applied Physics Lab, Baltimore, Maryland, United States of America
| | - Dean Karlen
- University of Victoria and TRIUMF, Victoria, British Columbia, Canada
| | - Lauren Castro
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Geoffrey Fairchild
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Isaac Michaud
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dave Osthus
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jiang Bian
- Microsoft, Redmond, Washington, United States of America
| | - Wei Cao
- Microsoft, Redmond, Washington, United States of America
| | - Zhifeng Gao
- Microsoft, Redmond, Washington, United States of America
| | | | - Chaozhuo Li
- Microsoft, Redmond, Washington, United States of America
| | - Tie-Yan Liu
- Microsoft, Redmond, Washington, United States of America
| | - Xing Xie
- Microsoft, Redmond, Washington, United States of America
| | - Shun Zhang
- Microsoft, Redmond, Washington, United States of America
| | - Shun Zheng
- Microsoft, Redmond, Washington, United States of America
| | - Matteo Chinazzi
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | - Jessica T. Davis
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | - Kunpeng Mu
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | - Ana Pastore y Piontti
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | - Xinyue Xiong
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America
| | | | - Jinghui Chen
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Quanquan Gu
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lingxiao Wang
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Pan Xu
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Weitong Zhang
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Difan Zou
- University of California, Los Angeles, Los Angeles, California, United States of America
| | - Graham Casey Gibson
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Daniel Sheldon
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Ajitesh Srivastava
- University of Southern California, Los Angeles, California, United States of America
| | - Aniruddha Adiga
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin Hurt
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Gursharn Kaur
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Bryan Lewis
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Madhav Marathe
- University of Virginia, Charlottesville, Virginia, United States of America
| | | | | | | | - Lijing Wang
- New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Pragati V. Prasad
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jo W. Walker
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alexander E. Webber
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rachel B. Slayton
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew Biggerstaff
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicholas G. Reich
- University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
| | - Michael A. Johansson
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Karasinghe N, Peiris S, Jayathilaka R, Dharmasena T. Forecasting weekly dengue incidence in Sri Lanka: Modified Autoregressive Integrated Moving Average modeling approach. PLoS One 2024; 19:e0299953. [PMID: 38457405 PMCID: PMC10923413 DOI: 10.1371/journal.pone.0299953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
Dengue poses a significant and multifaceted public health challenge in Sri Lanka, encompassing both preventive and curative aspects. Accurate dengue incidence forecasting is pivotal for effective surveillance and disease control. To address this, we developed an Autoregressive Integrated Moving Average (ARIMA) model tailored for predicting weekly dengue cases in the Colombo district. The modeling process drew on comprehensive weekly dengue fever data from the Weekly Epidemiological Reports (WER), spanning January 2015 to August 2020. Following rigorous model selection, the ARIMA (2,1,0) model, augmented with an autoregressive component (AR) of order 16, emerged as the best-fitted model. It underwent initial calibration and fine-tuning using data from January 2015 to August 2020, and was validated against independent 2000 data. Selection criteria included parameter significance, the Akaike Information Criterion (AIC), and Schwarz Bayesian Information Criterion (SBIC). Importantly, the residuals of the ARIMA model conformed to the assumptions of randomness, constant variance, and normality affirming its suitability. The forecasts closely matched observed dengue incidence, offering a valuable tool for public health decision-makers. However, an increased percentage error was noted in late 2020, likely attributed to factors including potential underreporting due to COVID-19-related disruptions amid rising dengue cases. This research contributes to the critical task of managing dengue outbreaks and underscores the dynamic challenges posed by external influences on disease surveillance.
Collapse
Affiliation(s)
| | - Sarath Peiris
- Department of Mathematics and Statistics, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Ruwan Jayathilaka
- Department of Information Management, SLIIT Business School, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Thanuja Dharmasena
- National Coordinator, Global Environment Facility Small Grants Programme, UNDP, Colombo, Sri Lanka
| |
Collapse
|
15
|
Loo SL, Howerton E, Contamin L, Smith CP, Borchering RK, Mullany LC, Bents S, Carcelen E, Jung SM, Bogich T, van Panhuis WG, Kerr J, Espino J, Yan K, Hochheiser H, Runge MC, Shea K, Lessler J, Viboud C, Truelove S. The US COVID-19 and Influenza Scenario Modeling Hubs: Delivering long-term projections to guide policy. Epidemics 2024; 46:100738. [PMID: 38184954 DOI: 10.1016/j.epidem.2023.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Between December 2020 and April 2023, the COVID-19 Scenario Modeling Hub (SMH) generated operational multi-month projections of COVID-19 burden in the US to guide pandemic planning and decision-making in the context of high uncertainty. This effort was born out of an attempt to coordinate, synthesize and effectively use the unprecedented amount of predictive modeling that emerged throughout the COVID-19 pandemic. Here we describe the history of this massive collective research effort, the process of convening and maintaining an open modeling hub active over multiple years, and attempt to provide a blueprint for future efforts. We detail the process of generating 17 rounds of scenarios and projections at different stages of the COVID-19 pandemic, and disseminating results to the public health community and lay public. We also highlight how SMH was expanded to generate influenza projections during the 2022-23 season. We identify key impacts of SMH results on public health and draw lessons to improve future collaborative modeling efforts, research on scenario projections, and the interface between models and policy.
Collapse
Affiliation(s)
- Sara L Loo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins, Baltimore, MD, USA.
| | - Emily Howerton
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Lucie Contamin
- Public Health Dynamics Lab, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire P Smith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca K Borchering
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Luke C Mullany
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Samantha Bents
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Erica Carcelen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins, Baltimore, MD, USA
| | - Sung-Mok Jung
- UNC Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tiffany Bogich
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Willem G van Panhuis
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Kerr
- Public Health Dynamics Lab, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessi Espino
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA
| | - Katie Yan
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Harry Hochheiser
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA
| | - Michael C Runge
- Eastern Ecological Science Center at the Patuxent Research Refuge, US Geological Survey, Laurel, MD, USA
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; UNC Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Shaun Truelove
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
16
|
Bay C, St-Onge G, Davis JT, Chinazzi M, Howerton E, Lessler J, Runge MC, Shea K, Truelove S, Viboud C, Vespignani A. Ensemble 2: Scenarios ensembling for communication and performance analysis. Epidemics 2024; 46:100748. [PMID: 38394928 DOI: 10.1016/j.epidem.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Throughout the COVID-19 pandemic, scenario modeling played a crucial role in shaping the decision-making process of public health policies. Unlike forecasts, scenario projections rely on specific assumptions about the future that consider different plausible states-of-the-world that may or may not be realized and that depend on policy interventions, unpredictable changes in the epidemic outlook, etc. As a consequence, long-term scenario projections require different evaluation criteria than the ones used for traditional short-term epidemic forecasts. Here, we propose a novel ensemble procedure for assessing pandemic scenario projections using the results of the Scenario Modeling Hub (SMH) for COVID-19 in the United States (US). By defining a "scenario ensemble" for each model and the ensemble of models, termed "Ensemble2", we provide a synthesis of potential epidemic outcomes, which we use to assess projections' performance, bypassing the identification of the most plausible scenario. We find that overall the Ensemble2 models are well-calibrated and provide better performance than the scenario ensemble of individual models. The ensemble procedure accounts for the full range of plausible outcomes and highlights the importance of scenario design and effective communication. The scenario ensembling approach can be extended to any scenario design strategy, with potential refinements including weighting scenarios and allowing the ensembling process to evolve over time.
Collapse
Affiliation(s)
- Clara Bay
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Network Science Institute, Boston, MA, USA
| | - Guillaume St-Onge
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Network Science Institute, Boston, MA, USA
| | - Jessica T Davis
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Network Science Institute, Boston, MA, USA
| | - Matteo Chinazzi
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Network Science Institute, Boston, MA, USA; The Roux Institute, Northeastern University, Portland, ME, USA
| | - Emily Howerton
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Justin Lessler
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC, USA; Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Runge
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Shaun Truelove
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cecile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Vespignani
- Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Network Science Institute, Boston, MA, USA; The Roux Institute, Northeastern University, Portland, ME, USA.
| |
Collapse
|
17
|
Alòs J, Ansótegui C, Dotu I, García-Herranz M, Pastells P, Torres E. ePyDGGA: automatic configuration for fitting epidemic curves. Sci Rep 2024; 14:784. [PMID: 38191771 PMCID: PMC10774272 DOI: 10.1038/s41598-023-43958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/30/2023] [Indexed: 01/10/2024] Open
Abstract
Many epidemiological models and algorithms are used to fit the parameters of a given epidemic curve. On many occasions, fitting algorithms are interleaved with the actual epidemic models, which yields combinations of model-parameters that are hard to compare among themselves. Here, we provide a model-agnostic framework for epidemic parameter fitting that can (fairly) compare different epidemic models without jeopardizing the quality of the fitted parameters. Briefly, we have developed a Python framework that expects a Python function (epidemic model) and epidemic data and performs parameter fitting using automatic configuration. Our framework is capable of fitting parameters for any type of epidemic model, as long as it is provided as a Python function (or even in a different programming language). Moreover, we provide the code for different types of models, as well as the implementation of 4 concrete models with data to fit them. Documentation, code and examples can be found at https://ulog.udl.cat/static/doc/epidemic-gga/html/index.html .
Collapse
Affiliation(s)
- Josep Alòs
- Logic and Optimization Group, University of Lleida, Lleida, Spain.
| | - Carlos Ansótegui
- Logic and Optimization Group, University of Lleida, Lleida, Spain.
| | | | | | | | - Eduard Torres
- Logic and Optimization Group, University of Lleida, Lleida, Spain
| |
Collapse
|
18
|
Howerton E, Contamin L, Mullany LC, Qin M, Reich NG, Bents S, Borchering RK, Jung SM, Loo SL, Smith CP, Levander J, Kerr J, Espino J, van Panhuis WG, Hochheiser H, Galanti M, Yamana T, Pei S, Shaman J, Rainwater-Lovett K, Kinsey M, Tallaksen K, Wilson S, Shin L, Lemaitre JC, Kaminsky J, Hulse JD, Lee EC, McKee CD, Hill A, Karlen D, Chinazzi M, Davis JT, Mu K, Xiong X, Pastore Y Piontti A, Vespignani A, Rosenstrom ET, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore S, Perkins A, Hladish T, Pillai A, Ben Toh K, Longini I, Chen S, Paul R, Janies D, Thill JC, Bouchnita A, Bi K, Lachmann M, Fox SJ, Meyers LA, Srivastava A, Porebski P, Venkatramanan S, Adiga A, Lewis B, Klahn B, Outten J, Hurt B, Chen J, Mortveit H, Wilson A, Marathe M, Hoops S, Bhattacharya P, Machi D, Cadwell BL, Healy JM, Slayton RB, Johansson MA, Biggerstaff M, Truelove S, Runge MC, Shea K, Viboud C, Lessler J. Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty. Nat Commun 2023; 14:7260. [PMID: 37985664 PMCID: PMC10661184 DOI: 10.1038/s41467-023-42680-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.
Collapse
Affiliation(s)
- Emily Howerton
- The Pennsylvania State University, University Park, PA, USA.
| | | | - Luke C Mullany
- Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | | | | | - Samantha Bents
- National Institutes of Health Fogarty International Center, Bethesda, MD, USA
| | - Rebecca K Borchering
- The Pennsylvania State University, University Park, PA, USA
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sung-Mok Jung
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara L Loo
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | - J Espino
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | - Sen Pei
- Columbia University, New York, NY, USA
| | | | | | - Matt Kinsey
- Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | - Kate Tallaksen
- Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | - Shelby Wilson
- Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | - Lauren Shin
- Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | | | | | | | | | | | - Alison Hill
- Johns Hopkins University, Baltimore, MD, USA
| | - Dean Karlen
- University of Victoria, Victoria, BC, Canada
| | | | | | - Kunpeng Mu
- Northeastern University, Boston, MA, USA
| | | | | | | | | | - Julie S Ivy
- North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Sean Cavany
- University of Notre Dame, Notre Dame, IN, USA
| | - Sean Moore
- University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | | | | - Shi Chen
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Rajib Paul
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Kaiming Bi
- University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | | | - Bryan Lewis
- University of Virginia, Charlottesville, VA, USA
| | - Brian Klahn
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | - Stefan Hoops
- University of Virginia, Charlottesville, VA, USA
| | | | - Dustin Machi
- University of Virginia, Charlottesville, VA, USA
| | - Betsy L Cadwell
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica M Healy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | - Michael C Runge
- U.S. Geological Survey Eastern Ecological Science Center, Laurel, MD, USA
| | - Katriona Shea
- The Pennsylvania State University, University Park, PA, USA
| | - Cécile Viboud
- National Institutes of Health Fogarty International Center, Bethesda, MD, USA.
| | - Justin Lessler
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Aogo RA, Zambrana JV, Sanchez N, Ojeda S, Kuan G, Balmaseda A, Gordon A, Harris E, Katzelnick LC. Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Sci Transl Med 2023; 15:eadi1734. [PMID: 37967199 PMCID: PMC11001200 DOI: 10.1126/scitranslmed.adi1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults (n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.
Collapse
Affiliation(s)
- Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| |
Collapse
|
20
|
Bhatia S, Parag KV, Wardle J, Nash RK, Imai N, Elsland SLV, Lassmann B, Brownstein JS, Desai A, Herringer M, Sewalk K, Loeb SC, Ramatowski J, Cuomo-Dannenburg G, Jauneikaite E, Unwin HJT, Riley S, Ferguson N, Donnelly CA, Cori A, Nouvellet P. Retrospective evaluation of real-time estimates of global COVID-19 transmission trends and mortality forecasts. PLoS One 2023; 18:e0286199. [PMID: 37851661 PMCID: PMC10584190 DOI: 10.1371/journal.pone.0286199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/11/2023] [Indexed: 10/20/2023] Open
Abstract
Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.
Collapse
Affiliation(s)
- Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling and Health Economics, Modelling & Economics Unit, UK Health Security Agency, London, United Kingdom
| | - Kris V. Parag
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Jack Wardle
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Rebecca K. Nash
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Sabine L. Van Elsland
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Britta Lassmann
- ProMED-mail, International Society for Infectious Diseases, Brookline, MA, United States of America
| | - John S. Brownstein
- Boston Children’s Hospital, Computational Epidemiology Lab, Boston, MA, United States of America
| | - Angel Desai
- ProMED-mail, International Society for Infectious Diseases, Brookline, MA, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis, Sacramento, California, United States of America
| | - Mark Herringer
- Healthsites.io, The Global Healthsites Mapping Project, London, United Kingdom
| | - Kara Sewalk
- Boston Children’s Hospital, Computational Epidemiology Lab, Boston, MA, United States of America
| | - Sarah Claire Loeb
- ProMED-mail, International Society for Infectious Diseases, Brookline, MA, United States of America
| | - John Ramatowski
- ProMED-mail, International Society for Infectious Diseases, Brookline, MA, United States of America
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Elita Jauneikaite
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - H. Juliette T. Unwin
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Pierre Nouvellet
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
21
|
Bleichrodt A, Luo R, Kirpich A, Chowell G. Retrospective evaluation of short-term forecast performance of ensemble sub-epidemic frameworks and other time-series models: The 2022-2023 mpox outbreak across multiple geographical scales, July 14 th, 2022, through February 26th, 2023. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289989. [PMID: 37905035 PMCID: PMC10615009 DOI: 10.1101/2023.05.15.23289989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In May 2022, public health officials noted an unprecedented surge in mpox cases in non-endemic countries worldwide. As the epidemic accelerated, multi-model forecasts of the epidemic's trajectory were critical in guiding the implementation of public health interventions and determining policy. As the case levels have significantly decreased as of early September 2022, evaluating model performance is essential to advance the growing field of epidemic forecasting. Using laboratory-confirmed mpox case data from the Centers for Disease Control and Prevention (CDC) and Our World in Data (OWID) teams through the week of January 26th, 2023, we generated retrospective sequential weekly forecasts (e.g., 1-4-weeks) for Brazil, Canada, France, Germany, Spain, the United Kingdom, the USA, and at the global scale using models that require minimal input data including the auto-regressive integrated moving average (ARIMA), general additive model (GAM), simple linear regression (SLR), Facebook's Prophet model, as well as the sub-epidemic wave (spatial-wave) and n -sub-epidemic modeling frameworks. We assess forecast performance using average mean squared error (MSE), mean absolute error (MAE), weighted interval score (WIS), 95% prediction interval coverage (95% PI coverage), and skill scores. Average Winkler scores were used to calculate skill scores for 95% PI coverage. Overall, the n -sub-epidemic modeling framework outcompeted other models across most locations and forecasting horizons, with the unweighted ensemble model performing best across all forecasting horizons for most locations regarding average MSE, MAE, WIS, and 95% PI coverage. However, many locations had multiple models performing equally well for the average 95% PI coverage. The n -sub-epidemic and spatial-wave frameworks improved considerably in average MSE, MAE, and WIS, and Winkler scores (95% PI coverage) relative to the ARIMA model. Findings lend further support to sub-epidemic frameworks for short-term forecasting epidemics of emerging and re-emerging infectious diseases.
Collapse
|
22
|
Runge MC, Shea K, Howerton E, Yan K, Hochheiser H, Rosenstrom E, Probert WJM, Borchering R, Marathe MV, Lewis B, Venkatramanan S, Truelove S, Lessler J, Viboud C. Scenario Design for Infectious Disease Projections: Integrating Concepts from Decision Analysis and Experimental Design. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296887. [PMID: 37873156 PMCID: PMC10592999 DOI: 10.1101/2023.10.11.23296887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, value of information, situational awareness, horizon scanning, and forecasting) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.
Collapse
Affiliation(s)
- Michael C Runge
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, Maryland, USA
| | - Katriona Shea
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Emily Howerton
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katie Yan
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Erik Rosenstrom
- North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | - Bryan Lewis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Justin Lessler
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Cazelles B, Cazelles K, Tian H, Chavez M, Pascual M. Disentangling local and global climate drivers in the population dynamics of mosquito-borne infections. SCIENCE ADVANCES 2023; 9:eadf7202. [PMID: 37756402 PMCID: PMC10530079 DOI: 10.1126/sciadv.adf7202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Identifying climate drivers is essential to understand and predict epidemics of mosquito-borne infections whose population dynamics typically exhibit seasonality and multiannual cycles. Which climate covariates to consider varies across studies, from local factors such as temperature to remote drivers such as the El Niño-Southern Oscillation. With partial wavelet coherence, we present a systematic investigation of nonstationary associations between mosquito-borne disease incidence and a given climate factor while controlling for another. Analysis of almost 200 time series of dengue and malaria around the globe at different geographical scales shows a systematic effect of global climate drivers on interannual variability and of local ones on seasonality. This clear separation of time scales of action enhances detection of climate drivers and indicates those best suited for building early-warning systems.
Collapse
Affiliation(s)
- Bernard Cazelles
- UMMISCO, Sorbonne Université, Paris, France
- Eco-Evolution Mathématique, IBENS, CNRS UMR-8197, Ecole Normale Supérieure, Paris, France
| | - Kévin Cazelles
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- inSileco Inc., 2-775 Avenue Monk, Québec, Québec, Canada
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Mario Chavez
- Hôpital de la Pitié-Salpêtrière, CNRS UMR-7225, Paris, France
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
24
|
Rocklöv J, Semenza JC, Dasgupta S, Robinson EJ, Abd El Wahed A, Alcayna T, Arnés-Sanz C, Bailey M, Bärnighausen T, Bartumeus F, Borrell C, Bouwer LM, Bretonnière PA, Bunker A, Chavardes C, van Daalen KR, Encarnação J, González-Reviriego N, Guo J, Johnson K, Koopmans MP, Máñez Costa M, Michaelakis A, Montalvo T, Omazic A, Palmer JR, Preet R, Romanello M, Shafiul Alam M, Sikkema RS, Terrado M, Treskova M, Urquiza D, Lowe R. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. THE LANCET REGIONAL HEALTH. EUROPE 2023; 32:100701. [PMID: 37583927 PMCID: PMC10424206 DOI: 10.1016/j.lanepe.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health-Climate Risk framework.
Collapse
Affiliation(s)
- Joacim Rocklöv
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jan C. Semenza
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Shouro Dasgupta
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
- Graham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, United Kingdom
| | - Elizabeth J.Z. Robinson
- Graham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, United Kingdom
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Tilly Alcayna
- Red Cross Red Crescent Centre on Climate Change and Disaster Preparedness, The Hague, the Netherlands
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Health in Humanitarian Crises Centre, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Cristina Arnés-Sanz
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Meghan Bailey
- Red Cross Red Crescent Centre on Climate Change and Disaster Preparedness, The Hague, the Netherlands
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frederic Bartumeus
- Theoretical and Computational Ecology Group, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain
| | - Carme Borrell
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), Barcelona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Laurens M. Bouwer
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany
| | | | - Aditi Bunker
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Climate, Health and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kim R. van Daalen
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Junwen Guo
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katie Johnson
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
| | - Marion P.G. Koopmans
- Department of Viroscience, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - María Máñez Costa
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany
| | - Antonios Michaelakis
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute (BPI), Attica, Greece
| | - Tomás Montalvo
- Agència de Salut Pública de Barcelona (ASPB), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Anna Omazic
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| | - John R.B. Palmer
- Department of Political and Social Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raman Preet
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Marina Romanello
- Institute for Global Health, University College London (UCL), London, United Kingdom
| | - Mohammad Shafiul Alam
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Marta Terrado
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Marina Treskova
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Diana Urquiza
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Rachel Lowe
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| |
Collapse
|
25
|
Borchering RK, Healy JM, Cadwell BL, Johansson MA, Slayton RB, Wallace M, Biggerstaff M. Public health impact of the U.S. Scenario Modeling Hub. Epidemics 2023; 44:100705. [PMID: 37579585 DOI: 10.1016/j.epidem.2023.100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/16/2023] Open
Abstract
Beginning in December 2020, the COVID-19 Scenario Modeling Hub has provided quantitative scenario-based projections for cases, hospitalizations, and deaths, aggregated across up to nine modeling groups. Projections spanned multiple months into the future and provided timely information on potential impacts of epidemiological uncertainties and interventions. Projections results were shared with the public, public health partners, and the Centers for Disease Control COVID-19 Response Team. The projections provided insights on situational awareness and informed decision-making to mitigate COVID-19 disease burden (e.g., vaccination strategies). By aggregating projections from multiple modeling teams, the Scenario Modeling Hub provided rapidly synthesized information in times of great uncertainty and conveyed possible trajectories in the presence of emerging variants. Here we detail several use cases of these projections in public health practice and communication, including assessments of whether modeling results directly or indirectly informed public health communication or guidance. These include multiple examples where comparisons of projected COVID-19 disease outcomes under different vaccination scenarios were used to inform Advisory Committee for Immunization Practices recommendations. We also describe challenges and lessons learned during this highly beneficial collaboration.
Collapse
Affiliation(s)
- Rebecca K Borchering
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jessica M Healy
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Betsy L Cadwell
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael A Johansson
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rachel B Slayton
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Megan Wallace
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew Biggerstaff
- CDC COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
26
|
Lim JT, Choo ELW, Janhavi A, Tan KB, Abisheganaden J, Dickens B. Density forecasting of conjunctivitis burden using high-dimensional environmental time series data. Epidemics 2023; 44:100694. [PMID: 37413888 DOI: 10.1016/j.epidem.2023.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
As one of the most common eye conditions being presented at clinics, acute conjunctivitis puts substantial strain on primary health resources. To reduce this public health burden, it is important to forecast and provide forward guidance to policymakers by estimating conjunctivitis trends, taking into account factors which influence transmission. Using a high-dimensional set of ambient air pollution and meteorological data, this study describes new approaches to point and probabilistic forecasting of conjunctivitis burden which can be readily translated to other infectious diseases. Over the period of 2012 - 2022, we show that simple models without environmental data provided better point forecasts but the more complex models which optimized predictive accuracy and combined multiple predictors demonstrated superior density forecast performance. These results were shown to be consistent over periods with and without structural breaks in transmission. Furthermore, ecological analysis using post-selection inference showed that increases in SO2, O3 surface concentration and total precipitation were associated to increased conjunctivitis attendance. The methods proposed can provide rich and informative forward guidance for outbreak preparedness and help guide healthcare resource planning in both stable periods of transmission and periods where structural breaks in data occur.
Collapse
Affiliation(s)
- Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Esther Li Wen Choo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - A Janhavi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | - John Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Tan Tock Seng Hospital, Singapore
| | - Borame Dickens
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
27
|
Bosse NI, Abbott S, Cori A, van Leeuwen E, Bracher J, Funk S. Scoring epidemiological forecasts on transformed scales. PLoS Comput Biol 2023; 19:e1011393. [PMID: 37643178 PMCID: PMC10495027 DOI: 10.1371/journal.pcbi.1011393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/11/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Forecast evaluation is essential for the development of predictive epidemic models and can inform their use for public health decision-making. Common scores to evaluate epidemiological forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Interval Score (WIS), which can be seen as measures of the absolute distance between the forecast distribution and the observation. However, applying these scores directly to predicted and observed incidence counts may not be the most appropriate due to the exponential nature of epidemic processes and the varying magnitudes of observed values across space and time. In this paper, we argue that transforming counts before applying scores such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologically meaningful and easily interpretable results. Using the CRPS on log-transformed values as an example, we list three attractive properties: Firstly, it can be interpreted as a probabilistic version of a relative error. Secondly, it reflects how well models predicted the time-varying epidemic growth rate. And lastly, using arguments on variance-stabilizing transformations, it can be shown that under the assumption of a quadratic mean-variance relationship, the logarithmic transformation leads to expected CRPS values which are independent of the order of magnitude of the predicted quantity. Applying a transformation of log(x + 1) to data and forecasts from the European COVID-19 Forecast Hub, we find that it changes model rankings regardless of stratification by forecast date, location or target types. Situations in which models missed the beginning of upward swings are more strongly emphasised while failing to predict a downturn following a peak is less severely penalised when scoring transformed forecasts as opposed to untransformed ones. We conclude that appropriate transformations, of which the natural logarithm is only one particularly attractive option, should be considered when assessing the performance of different models in the context of infectious disease incidence.
Collapse
Affiliation(s)
- Nikos I. Bosse
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling & Health Economics
| | - Sam Abbott
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London, United Kingdom
| | - Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Edwin van Leeuwen
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling & Health Economics
- Modelling & Economics Unit and NIHR Health Protection Research Unit in Modelling & Health Economics, UK Health Security Agency, London, United Kingdom
| | - Johannes Bracher
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Sebastian Funk
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London, United Kingdom
- NIHR Health Protection Research Unit in Modelling & Health Economics
| |
Collapse
|
28
|
Panja M, Chakraborty T, Kumar U, Liu N. Epicasting: An Ensemble Wavelet Neural Network for forecasting epidemics. Neural Netw 2023; 165:185-212. [PMID: 37307664 DOI: 10.1016/j.neunet.2023.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/11/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use vaccines to prevent most of these epidemics worsens the situation. These force public health officials and policymakers to rely on early warning systems generated by accurate and reliable epidemic forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-world epidemic datasets with three test horizons using four key performance indicators. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods.
Collapse
Affiliation(s)
- Madhurima Panja
- Spatial Computing Laboratory, Center for Data Sciences, International Institute of Information Technology Bangalore, India
| | - Tanujit Chakraborty
- Department of Science and Engineering, Sorbonne University Abu Dhabi, United Arab Emirates; Spatial Computing Laboratory, Center for Data Sciences, International Institute of Information Technology Bangalore, India; School of Business, Woxsen University, Telengana, India.
| | - Uttam Kumar
- Spatial Computing Laboratory, Center for Data Sciences, International Institute of Information Technology Bangalore, India
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
29
|
Howerton E, Contamin L, Mullany LC, Qin M, Reich NG, Bents S, Borchering RK, Jung SM, Loo SL, Smith CP, Levander J, Kerr J, Espino J, van Panhuis WG, Hochheiser H, Galanti M, Yamana T, Pei S, Shaman J, Rainwater-Lovett K, Kinsey M, Tallaksen K, Wilson S, Shin L, Lemaitre JC, Kaminsky J, Hulse JD, Lee EC, McKee C, Hill A, Karlen D, Chinazzi M, Davis JT, Mu K, Xiong X, Piontti APY, Vespignani A, Rosenstrom ET, Ivy JS, Mayorga ME, Swann JL, España G, Cavany S, Moore S, Perkins A, Hladish T, Pillai A, Toh KB, Longini I, Chen S, Paul R, Janies D, Thill JC, Bouchnita A, Bi K, Lachmann M, Fox S, Meyers LA, Srivastava A, Porebski P, Venkatramanan S, Adiga A, Lewis B, Klahn B, Outten J, Hurt B, Chen J, Mortveit H, Wilson A, Marathe M, Hoops S, Bhattacharya P, Machi D, Cadwell BL, Healy JM, Slayton RB, Johansson MA, Biggerstaff M, Truelove S, Runge MC, Shea K, Viboud C, Lessler J. Informing pandemic response in the face of uncertainty. An evaluation of the U.S. COVID-19 Scenario Modeling Hub. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291998. [PMID: 37461674 PMCID: PMC10350156 DOI: 10.1101/2023.06.28.23291998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.
Collapse
Affiliation(s)
| | | | | | | | | | - Samantha Bents
- National Institutes of Health Fogarty International Center (NIH)
| | | | | | - Sara L Loo
- Johns Hopkins University Infectious Disease Dynamics (JHU-IDD)
| | - Claire P Smith
- Johns Hopkins University Infectious Disease Dynamics (JHU-IDD)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shi Chen
- University of North Carolina at Charlotte (UNCC)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ray EL, Brooks LC, Bien J, Biggerstaff M, Bosse NI, Bracher J, Cramer EY, Funk S, Gerding A, Johansson MA, Rumack A, Wang Y, Zorn M, Tibshirani RJ, Reich NG. Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States. INTERNATIONAL JOURNAL OF FORECASTING 2023; 39:1366-1383. [PMID: 35791416 PMCID: PMC9247236 DOI: 10.1016/j.ijforecast.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policymakers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision-makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.
Collapse
Affiliation(s)
- Evan L Ray
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| | - Logan C Brooks
- Machine Learning Department, Carnegie Mellon University, United States of America
| | - Jacob Bien
- Department of Data Sciences and Operations, University of Southern California, United States of America
| | - Matthew Biggerstaff
- COVID-19 Response, U.S. Centers for Disease Control and Prevention, United States of America
| | - Nikos I Bosse
- London School of Hygiene & Tropical Medicine, United Kingdom
| | - Johannes Bracher
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology, Germany
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies, Germany
| | - Estee Y Cramer
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| | - Sebastian Funk
- London School of Hygiene & Tropical Medicine, United Kingdom
| | - Aaron Gerding
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| | - Michael A Johansson
- COVID-19 Response, U.S. Centers for Disease Control and Prevention, United States of America
| | - Aaron Rumack
- Machine Learning Department, Carnegie Mellon University, United States of America
| | - Yijin Wang
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| | - Martha Zorn
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| | - Ryan J Tibshirani
- Machine Learning Department, Carnegie Mellon University, United States of America
| | - Nicholas G Reich
- School of Public Health and Health Sciences, University of Massachusetts Amherst, United States of America
| |
Collapse
|
31
|
Pei S. Challenges in Forecasting Antimicrobial Resistance (Response). Emerg Infect Dis 2023; 29:1496-1497. [PMID: 37347935 PMCID: PMC10310398 DOI: 10.3201/eid2907.230617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
|
32
|
Chen D, Sun X, Cheke RA. Inferring a Causal Relationship between Environmental Factors and Respiratory Infections Using Convergent Cross-Mapping. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050807. [PMID: 37238562 DOI: 10.3390/e25050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The incidence of respiratory infections in the population is related to many factors, among which environmental factors such as air quality, temperature, and humidity have attracted much attention. In particular, air pollution has caused widespread discomfort and concern in developing countries. Although the correlation between respiratory infections and air pollution is well known, establishing causality between them remains elusive. In this study, by conducting theoretical analysis, we updated the procedure of performing the extended convergent cross-mapping (CCM, a method of causal inference) to infer the causality between periodic variables. Consistently, we validated this new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the refined method is applicable by investigating the periodicity of influenza-like illness cases, an air quality index, temperature, and humidity through wavelet analysis. We next illustrated that air quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases, and, in particular, the respiratory infection cases increased progressively with increased AQI with a time delay of 11 days.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
- Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| | - Xiaodan Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham ME4 4TB, Kent, UK
| |
Collapse
|
33
|
de Araújo RGS, Jorge DCP, Dorn RC, Cruz-Pacheco G, Esteva MLM, Pinho STR. Applying a multi-strain dengue model to epidemics data. Math Biosci 2023; 360:109013. [PMID: 37127090 DOI: 10.1016/j.mbs.2023.109013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Dengue disease transmission is a complex vector-borne disease, mainly due to the co-circulation of four serotypes of the virus. Mathematical models have proved to be a useful tool to understand the complexity of this disease. In this work, we extend the model studied by Esteva et al., 2003, originally proposed for two serotypes, to four circulating serotypes. Using epidemic data of dengue fever in Iquitos (Peru) and San Juan (Puerto Rico), we estimate numerically the co-circulation parameter values for selected outbreaks using a bootstrap method, and we also obtained the Basic Reproduction Number, R0, for each serotype, using both analytical calculations and numerical simulations. Our results indicate that the impact of co-circulation of serotypes in population dynamics of dengue infection is such that there is a reduced effect from DENV-3 to DENV-4 in comparison to no-cross effect for epidemics in Iquitos. Concerning San Juan epidemics, also comparing to no-cross effect, we also observed a reduced effect from the predominant serotype DENV-3 to both DENV-2 and DENV-1 epidemics neglecting the very small number of cases of DENV-4.
Collapse
Affiliation(s)
| | - Daniel C P Jorge
- Instituto de Física, Universidade Federal da Bahia, Salvador, Brazil; Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil.
| | - Rejane C Dorn
- Instituto de Física, Universidade Federal da Bahia, Salvador, Brazil.
| | - Gustavo Cruz-Pacheco
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Autónoma de México, Cuidad de México, Mexico.
| | - M Lourdes M Esteva
- Facultad de Ciências, Universidad Autónoma de México, Cuidad de México, Mexico.
| | - Suani T R Pinho
- Instituto de Física, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Ciência e Tecnologia - Sistemas Complexos, Brazil.
| |
Collapse
|
34
|
Sherratt K, Gruson H, Grah R, Johnson H, Niehus R, Prasse B, Sandmann F, Deuschel J, Wolffram D, Abbott S, Ullrich A, Gibson G, Ray EL, Reich NG, Sheldon D, Wang Y, Wattanachit N, Wang L, Trnka J, Obozinski G, Sun T, Thanou D, Pottier L, Krymova E, Meinke JH, Barbarossa MV, Leithauser N, Mohring J, Schneider J, Wlazlo J, Fuhrmann J, Lange B, Rodiah I, Baccam P, Gurung H, Stage S, Suchoski B, Budzinski J, Walraven R, Villanueva I, Tucek V, Smid M, Zajicek M, Perez Alvarez C, Reina B, Bosse NI, Meakin SR, Castro L, Fairchild G, Michaud I, Osthus D, Alaimo Di Loro P, Maruotti A, Eclerova V, Kraus A, Kraus D, Pribylova L, Dimitris B, Li ML, Saksham S, Dehning J, Mohr S, Priesemann V, Redlarski G, Bejar B, Ardenghi G, Parolini N, Ziarelli G, Bock W, Heyder S, Hotz T, Singh DE, Guzman-Merino M, Aznarte JL, Morina D, Alonso S, Alvarez E, Lopez D, Prats C, Burgard JP, Rodloff A, Zimmermann T, Kuhlmann A, Zibert J, Pennoni F, Divino F, Catala M, Lovison G, Giudici P, Tarantino B, Bartolucci F, Jona Lasinio G, Mingione M, Farcomeni A, Srivastava A, Montero-Manso P, Adiga A, Hurt B, Lewis B, Marathe M, Porebski P, Venkatramanan S, Bartczuk RP, Dreger F, Gambin A, Gogolewski K, Gruziel-Slomka M, Krupa B, Moszyński A, Niedzielewski K, Nowosielski J, Radwan M, Rakowski F, Semeniuk M, Szczurek E, Zielinski J, Kisielewski J, Pabjan B, Holger K, Kheifetz Y, Scholz M, Przemyslaw B, Bodych M, Filinski M, Idzikowski R, Krueger T, Ozanski T, Bracher J, Funk S. Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations. eLife 2023; 12:e81916. [PMID: 37083521 PMCID: PMC10238088 DOI: 10.7554/elife.81916] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/20/2023] [Indexed: 04/22/2023] Open
Abstract
Background Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).
Collapse
|
35
|
Pei S, Blumberg S, Vega JC, Robin T, Zhang Y, Medford RJ, Adhikari B, Shaman J. Challenges in Forecasting Antimicrobial Resistance. Emerg Infect Dis 2023; 29:679-685. [PMID: 36958029 PMCID: PMC10045679 DOI: 10.3201/eid2904.221552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective, we discuss the utility of AMRO forecasting at different scales, highlight the challenges in this field, and suggest future research priorities. We also discuss challenges in scientific understanding, access to high-quality data, model calibration, and implementation and evaluation of forecasting models. We further highlight the need to initiate research on AMRO forecasting using currently available data and resources to galvanize the research community and address initial practical questions.
Collapse
|
36
|
Ernst KC, Walker KR, Castro-Luque AL, Schmidt C, Joy TK, Brophy M, Reyes-Castro P, Díaz-Caravantes RE, Encinas VO, Aguilera A, Gameros M, Cuevas Ruiz RE, Hayden MH, Alvarez G, Monaghan A, Williamson D, Arnbrister J, Gutiérrez EJ, Carrière Y, Riehle MA. Differences in Longevity and Temperature-Driven Extrinsic Incubation Period Correlate with Varying Dengue Risk in the Arizona-Sonora Desert Region. Viruses 2023; 15:851. [PMID: 37112832 PMCID: PMC10146351 DOI: 10.3390/v15040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Dengue transmission is determined by a complex set of interactions between the environment, Aedes aegypti mosquitoes, dengue viruses, and humans. Emergence in new geographic areas can be unpredictable, with some regions having established mosquito populations for decades without locally acquired transmission. Key factors such as mosquito longevity, temperature-driven extrinsic incubation period (EIP), and vector-human contact can strongly influence the potential for disease transmission. To assess how these factors interact at the edge of the geographical range of dengue virus transmission, we conducted mosquito sampling in multiple urban areas located throughout the Arizona-Sonora desert region during the summer rainy seasons from 2013 to 2015. Mosquito population age structure, reflecting mosquito survivorship, was measured using a combination of parity analysis and relative gene expression of an age-related gene, SCP-1. Bloodmeal analysis was conducted on field collected blood-fed mosquitoes. Site-specific temperature was used to estimate the EIP, and this predicted EIP combined with mosquito age were combined to estimate the abundance of "potential" vectors (i.e., mosquitoes old enough to survive the EIP). Comparisons were made across cities by month and year. The dengue endemic cities Hermosillo and Ciudad Obregon, both in the state of Sonora, Mexico, had higher abundance of potential vectors than non-endemic Nogales, Sonora, Mexico. Interestingly, Tucson, Arizona consistently had a higher estimated abundance of potential vectors than dengue endemic regions of Sonora, Mexico. There were no observed city-level differences in species composition of blood meals. Combined, these data offer insights into the critical factors required for dengue transmission at the ecological edge of the mosquito's range. However, further research is needed to integrate an understanding of how social and additional environmental factors constrain and enhance dengue transmission in emerging regions.
Collapse
Affiliation(s)
- Kacey C. Ernst
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ 85721, USA
| | - Kathleen R. Walker
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - A Lucia Castro-Luque
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Chris Schmidt
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
| | - Teresa K. Joy
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Maureen Brophy
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Pablo Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo 83000, Sonora, Mexico
| | | | - Veronica Ortiz Encinas
- Veterinary Molecular Biology Laboratory, Instituto Tecnológico de Sonora, Obregon 85059, Sonora, Mexico
| | - Alfonso Aguilera
- Veterinary Molecular Biology Laboratory, Instituto Tecnológico de Sonora, Obregon 85059, Sonora, Mexico
| | - Mercedes Gameros
- Centro de Salud Urbano de Nogales, Nogales 84100, Sonora, Mexico
| | | | - Mary H. Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado, Colorado Springs, CO 80918, USA
| | - Gerardo Alvarez
- División de Ciencias Biológicas y de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Andrew Monaghan
- Center for Research Data & Digital Scholarship, University of Colorado, Boulder, CO 80309, USA
| | - Daniel Williamson
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Josh Arnbrister
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Eileen Jeffrey Gutiérrez
- Divisions of Biostatistics & Epidemiology, School of Public Health, Innovative Genomics Institute, University of California Berkeley, Berkely, CA 94720, USA
| | - Yves Carrière
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Michael A. Riehle
- Department of Entomology, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
37
|
Ezanno P, Picault S, Vergne T. Preface of the African swine fever modelling challenge special issue. Epidemics 2023; 42:100669. [PMID: 36642584 DOI: 10.1016/j.epidem.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | | | - Timothée Vergne
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
38
|
Kandula S, Olfson M, Gould MS, Keyes KM, Shaman J. Hindcasts and forecasts of suicide mortality in US: A modeling study. PLoS Comput Biol 2023; 19:e1010945. [PMID: 36913441 PMCID: PMC10047563 DOI: 10.1371/journal.pcbi.1010945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/28/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Deaths by suicide, as well as suicidal ideations, plans and attempts, have been increasing in the US for the past two decades. Deployment of effective interventions would require timely, geographically well-resolved estimates of suicide activity. In this study, we evaluated the feasibility of a two-step process for predicting suicide mortality: a) generation of hindcasts, mortality estimates for past months for which observational data would not have been available if forecasts were generated in real-time; and b) generation of forecasts with observational data augmented with hindcasts. Calls to crisis hotline services and online queries to the Google search engine for suicide-related terms were used as proxy data sources to generate hindcasts. The primary hindcast model (auto) is an Autoregressive Integrated Moving average model (ARIMA), trained on suicide mortality rates alone. Three regression models augment hindcast estimates from auto with call rates (calls), GHT search rates (ght) and both datasets together (calls_ght). The 4 forecast models used are ARIMA models trained with corresponding hindcast estimates. All models were evaluated against a baseline random walk with drift model. Rolling monthly 6-month ahead forecasts for all 50 states between 2012 and 2020 were generated. Quantile score (QS) was used to assess the quality of the forecast distributions. Median QS for auto was better than baseline (0.114 vs. 0.21. Median QS of augmented models were lower than auto, but not significantly different from each other (Wilcoxon signed-rank test, p > .05). Forecasts from augmented models were also better calibrated. Together, these results provide evidence that proxy data can address delays in release of suicide mortality data and improve forecast quality. An operational forecast system of state-level suicide risk may be feasible with sustained engagement between modelers and public health departments to appraise data sources and methods as well as to continuously evaluate forecast accuracy.
Collapse
Affiliation(s)
- Sasikiran Kandula
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
| | - Mark Olfson
- Department of Epidemiology, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Madelyn S. Gould
- Department of Epidemiology, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
| | - Katherine M. Keyes
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
39
|
Leung XY, Islam RM, Adhami M, Ilic D, McDonald L, Palawaththa S, Diug B, Munshi SU, Karim MN. A systematic review of dengue outbreak prediction models: Current scenario and future directions. PLoS Negl Trop Dis 2023; 17:e0010631. [PMID: 36780568 PMCID: PMC9956653 DOI: 10.1371/journal.pntd.0010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/24/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
Dengue is among the fastest-spreading vector-borne infectious disease, with outbreaks often overwhelm the health system and result in huge morbidity and mortality in its endemic populations in the absence of an efficient warning system. A large number of prediction models are currently in use globally. As such, this study aimed to systematically review the published literature that used quantitative models to predict dengue outbreaks and provide insights about the current practices. A systematic search was undertaken, using the Ovid MEDLINE, EMBASE, Scopus and Web of Science databases for published citations, without time or geographical restrictions. Study selection, data extraction and management process were devised in accordance with the 'Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies' ('CHARMS') framework. A total of 99 models were included in the review from 64 studies. Most models sourced climate (94.7%) and climate change (77.8%) data from agency reports and only 59.6% of the models adjusted for reporting time lag. All included models used climate predictors; 70.7% of them were built with only climate factors. Climate factors were used in combination with climate change factors (13.4%), both climate change and demographic factors (3.1%), vector factors (6.3%), and demographic factors (5.2%). Machine learning techniques were used for 39.4% of the models. Of these, random forest (15.4%), neural networks (23.1%) and ensemble models (10.3%) were notable. Among the statistical (60.6%) models, linear regression (18.3%), Poisson regression (18.3%), generalized additive models (16.7%) and time series/autoregressive models (26.7%) were notable. Around 20.2% of the models reported no validation at all and only 5.2% reported external validation. The reporting of methodology and model performance measures were inadequate in many of the existing prediction models. This review collates plausible predictors and methodological approaches, which will contribute to robust modelling in diverse settings and populations.
Collapse
Affiliation(s)
- Xing Yu Leung
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rakibul M. Islam
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Mohammadmehdi Adhami
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Dragan Ilic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Lara McDonald
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shanika Palawaththa
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Basia Diug
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Saif U. Munshi
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Nazmul Karim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
Holcomb KM, Mathis S, Staples JE, Fischer M, Barker CM, Beard CB, Nett RJ, Keyel AC, Marcantonio M, Childs ML, Gorris ME, Rochlin I, Hamins-Puértolas M, Ray EL, Uelmen JA, DeFelice N, Freedman AS, Hollingsworth BD, Das P, Osthus D, Humphreys JM, Nova N, Mordecai EA, Cohnstaedt LW, Kirk D, Kramer LD, Harris MJ, Kain MP, Reed EMX, Johansson MA. Evaluation of an open forecasting challenge to assess skill of West Nile virus neuroinvasive disease prediction. Parasit Vectors 2023; 16:11. [PMID: 36635782 PMCID: PMC9834680 DOI: 10.1186/s13071-022-05630-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).
Collapse
Affiliation(s)
- Karen M. Holcomb
- Global Systems Laboratory, National Atmospheric and Oceanic Administration, Boulder, CO USA
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Sarabeth Mathis
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - J. Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Marc Fischer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Charles B. Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Randall J. Nett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Alexander C. Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY USA
| | - Matteo Marcantonio
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
- Evolutionary Ecology and Genetics Group, Earth & Life Institute-UCLouvain, Louvain-La-Neuve, Belgium
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA USA
| | - Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ USA
| | | | - Evan L. Ray
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA USA
| | - Johnny A. Uelmen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Nicholas DeFelice
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Global Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Andrew S. Freedman
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC USA
| | | | - Praachi Das
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC USA
| | - Dave Osthus
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM USA
| | - John M. Humphreys
- Agricultural Research Service, United States Department of Agriculture, Sidney, MT USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA USA
| | | | - Lee W. Cohnstaedt
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS USA
| | - Devin Kirk
- Department of Biology, Stanford University, Stanford, CA USA
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY USA
| | | | - Morgan P. Kain
- Department of Biology, Stanford University, Stanford, CA USA
| | - Emily M. X. Reed
- Invasive Species Working Group, Global Change Center, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, NC USA
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR USA
| |
Collapse
|
41
|
Howerton E, Runge MC, Bogich TL, Borchering RK, Inamine H, Lessler J, Mullany LC, Probert WJM, Smith CP, Truelove S, Viboud C, Shea K. Context-dependent representation of within- and between-model uncertainty: aggregating probabilistic predictions in infectious disease epidemiology. J R Soc Interface 2023; 20:20220659. [PMID: 36695018 PMCID: PMC9874266 DOI: 10.1098/rsif.2022.0659] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Probabilistic predictions support public health planning and decision making, especially in infectious disease emergencies. Aggregating outputs from multiple models yields more robust predictions of outcomes and associated uncertainty. While the selection of an aggregation method can be guided by retrospective performance evaluations, this is not always possible. For example, if predictions are conditional on assumptions about how the future will unfold (e.g. possible interventions), these assumptions may never materialize, precluding any direct comparison between predictions and observations. Here, we summarize literature on aggregating probabilistic predictions, illustrate various methods for infectious disease predictions via simulation, and present a strategy for choosing an aggregation method when empirical validation cannot be used. We focus on the linear opinion pool (LOP) and Vincent average, common methods that make different assumptions about between-prediction uncertainty. We contend that assumptions of the aggregation method should align with a hypothesis about how uncertainty is expressed within and between predictions from different sources. The LOP assumes that between-prediction uncertainty is meaningful and should be retained, while the Vincent average assumes that between-prediction uncertainty is akin to sampling error and should not be preserved. We provide an R package for implementation. Given the rising importance of multi-model infectious disease hubs, our work provides useful guidance on aggregation and a deeper understanding of the benefits and risks of different approaches.
Collapse
Affiliation(s)
- Emily Howerton
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Michael C. Runge
- Eastern Ecological Science Center at the Patuxent Research Refuge, U.S. Geological Survey, Laurel, MD, USA
| | - Tiffany L. Bogich
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca K. Borchering
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Hidetoshi Inamine
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Justin Lessler
- Department of Epidemiology and Carolina Population Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke C. Mullany
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - William J. M. Probert
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| | - Claire P. Smith
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Shaun Truelove
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Katriona Shea
- Department of Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
42
|
Keyel AC, Kilpatrick AM. Better null models for assessing predictive accuracy of disease models. PLoS One 2023; 18:e0285215. [PMID: 37146010 PMCID: PMC10162537 DOI: 10.1371/journal.pone.0285215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Null models provide a critical baseline for the evaluation of predictive disease models. Many studies consider only the grand mean null model (i.e. R2) when evaluating the predictive ability of a model, which is insufficient to convey the predictive power of a model. We evaluated ten null models for human cases of West Nile virus (WNV), a zoonotic mosquito-borne disease introduced to the United States in 1999. The Negative Binomial, Historical (i.e. using previous cases to predict future cases) and Always Absent null models were the strongest overall, and the majority of null models significantly outperformed the grand mean. The length of the training timeseries increased the performance of most null models in US counties where WNV cases were frequent, but improvements were similar for most null models, so relative scores remained unchanged. We argue that a combination of null models is needed to evaluate the forecasting performance of predictive models for infectious diseases and the grand mean is the lowest bar.
Collapse
Affiliation(s)
- Alexander C Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
- Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, Albany, NY, United States of America
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
43
|
Gunning CE, Morrison AC, Okamoto KW, Scott TW, Astete H, Vásquez GM, Gould F, Lloyd AL. A critical assessment of the detailed Aedes aegypti simulation model Skeeter Buster 2 using field experiments of indoor insecticidal control in Iquitos, Peru. PLoS Negl Trop Dis 2022; 16:e0010863. [PMID: 36548248 PMCID: PMC9778528 DOI: 10.1371/journal.pntd.0010863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
The importance of mosquitoes in human pathogen transmission has motivated major research efforts into mosquito biology in pursuit of more effective vector control measures. Aedes aegypti is a particular concern in tropical urban areas, where it is the primary vector of numerous flaviviruses, including the yellow fever, Zika, and dengue viruses. With an anthropophilic habit, Ae. aegypti prefers houses, human blood meals, and ovipositioning in water-filled containers. We hypothesized that this relatively simple ecological niche should allow us to predict the impacts of insecticidal control measures on mosquito populations. To do this, we use Skeeter Buster 2 (SB2), a stochastic, spatially explicit, mechanistic model of Ae. aegypti population biology. SB2 builds on Skeeter Buster, which reproduced equilibrium dynamics of Ae. aegypti in Iquitos, Peru. Our goal was to validate SB2 by predicting the response of mosquito populations to perturbations by indoor insecticidal spraying and widespread destructive insect surveys. To evaluate SB2, we conducted two field experiments in Iquitos, Peru: a smaller pilot study in 2013 (S-2013) followed by a larger experiment in 2014 (L-2014). Here, we compare model predictions with (previously reported) empirical results from these experiments. In both simulated and empirical populations, repeated spraying yielded substantial yet temporary reductions in adult densities. The proportional effects of spraying were broadly comparable between simulated and empirical results, but we found noteworthy differences. In particular, SB2 consistently over-estimated the proportion of nulliparous females and the proportion of containers holding immature mosquitoes. We also observed less temporal variation in simulated surveys of adult abundance relative to corresponding empirical observations. Our results indicate the presence of ecological heterogeneities or sampling processes not effectively represented by SB2. Although additional empirical research could further improve the accuracy and precision of SB2, our results underscore the importance of non-linear dynamics in the response of Ae. aegypti populations to perturbations, and suggest general limits to the fine-grained predictability of its population dynamics over space and time.
Collapse
Affiliation(s)
- Christian E. Gunning
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Amy C. Morrison
- Department of Virology and Emerging Infections and Department of Entomology, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Kenichi W. Okamoto
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete
- Department of Virology and Emerging Infections and Department of Entomology, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Gissella M. Vásquez
- Department of Virology and Emerging Infections and Department of Entomology, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alun L. Lloyd
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bracher J, Wolffram D, Deuschel J, Görgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa MV, Bertsimas D, Bhatia S, Bodych M, Bosse NI, Burgard JP, Castro L, Fairchild G, Fiedler J, Fuhrmann J, Funk S, Gambin A, Gogolewski K, Heyder S, Hotz T, Kheifetz Y, Kirsten H, Krueger T, Krymova E, Leithäuser N, Li ML, Meinke JH, Miasojedow B, Michaud IJ, Mohring J, Nouvellet P, Nowosielski JM, Ozanski T, Radwan M, Rakowski F, Scholz M, Soni S, Srivastava A, Gneiting T, Schienle M. National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021. COMMUNICATIONS MEDICINE 2022; 2:136. [PMID: 36352249 PMCID: PMC9622804 DOI: 10.1038/s43856-022-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.
Collapse
Affiliation(s)
- Johannes Bracher
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.
| | - Daniel Wolffram
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Jannik Deuschel
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Konstantin Görgen
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jakob L Ketterer
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Sam Abbott
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Dimitris Bertsimas
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), Imperial College London, London, UK
| | - Marcin Bodych
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nikos I Bosse
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jan Pablo Burgard
- Economic and Social Statistics Department, University of Trier, Trier, Germany
| | - Lauren Castro
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Geoffrey Fairchild
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jochen Fiedler
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Jan Fuhrmann
- Institute for Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Funk
- London School of Hygiene and Tropical Medicine, London, UK
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Stefan Heyder
- Institute of Mathematics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Thomas Hotz
- Institute of Mathematics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Yuri Kheifetz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Tyll Krueger
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Ekaterina Krymova
- Swiss Data Science Center, ETH Zürich and EPF Lausanne, Zürich, Switzerland
| | - Neele Leithäuser
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Michael L Li
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jan H Meinke
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
| | - Błażej Miasojedow
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Isaac J Michaud
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jan Mohring
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | | | - Jedrzej M Nowosielski
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Tomasz Ozanski
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Maciej Radwan
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Franciszek Rakowski
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Saksham Soni
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ajitesh Srivastava
- Ming Hsieh Department of Computer and Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Tilmann Gneiting
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Institute for Stochastics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Melanie Schienle
- Chair of Statistical Methods and Econometrics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Computational Statistics Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.
| |
Collapse
|
45
|
An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA. PLoS Comput Biol 2022; 18:e1010602. [PMID: 36201534 PMCID: PMC9578588 DOI: 10.1371/journal.pcbi.1010602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/18/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In our 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model, 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework can be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.
Collapse
|
46
|
How heterogeneous is the dengue transmission profile in Brazil? A study in six Brazilian states. PLoS Negl Trop Dis 2022; 16:e0010746. [PMID: 36095004 PMCID: PMC9499305 DOI: 10.1371/journal.pntd.0010746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/22/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Dengue is a vector-borne disease present in most tropical countries, infecting an average of 50 to 100 million people per year. Socioeconomic, demographic, and environmental factors directly influence the transmission cycle of the dengue virus (DENV). In Brazil, these factors vary between regions producing different profiles of dengue transmission and challenging the epidemiological surveillance of the disease. In this article, we aimed at classifying the profiles of dengue transmission in 1,823 Brazilian municipalities, covering different climates, from 2010 to 2019. Time series data of dengue cases were obtained from six states: Ceará and Maranhão in the semiarid Northeast, Minas Gerais in the countryside, Espírito Santo and Rio de Janeiro in the tropical Atlantic coast, and Paraná in the subtropical region. To describe the time series, we proposed a set of epi-features of the magnitude and duration of the dengue epidemic cycles, totaling 13 indicators. Using these epi-features as inputs, a multivariate cluster algorithm was employed to classify the municipalities according to their dengue transmission profile. Municipalities were classified into four distinct dengue transmission profiles: persistent transmission (7.8%), epidemic (21.3%), episodic/epidemic (43.2%), and episodic transmission (27.6%). Different profiles were associated with the municipality’s population size and climate. Municipalities with higher incidence and larger populations tended to be classified as persistent transmission, suggesting the existence of critical community size. This association, however, varies depending on the state, indicating the importance of other factors. The proposed classification is useful for developing more specific and precise surveillance protocols for regions with different dengue transmission profiles, as well as more precise public policies for dengue prevention. Dengue is one of the fastest-growing vector-borne diseases in the world. Currently, vaccines are experimental and are not very effective, so prevention depends on the control of the mosquito Aedes aegypti. Health promotion campaigns aimed at encouraging people to reduce mosquito breeding sites have limited effect. In addition, the heterogeneity of the territories that have dengue becomes a major challenge for the epidemiological surveillance of the disease. Brazil has a territory of continental size, and single standardized surveillance is not very effective for monitoring this arbovirus. Classifying types of dengue dynamics based on features of the epidemiological cycle in each location has the potential to increase the precision of surveillance and control strategies. In our study, we were able to classify areas according to different dengue transmission profiles, ranging from episodic to persistent transmission. These results can provide tools to guide actions aimed at achieving the World Health Organization’s goals of eliminating neglected tropical diseases in countries that have the virus.
Collapse
|
47
|
Dankwa EA, Lambert S, Hayes S, Thompson RN, Donnelly CA. Stochastic modelling of African swine fever in wild boar and domestic pigs: Epidemic forecasting and comparison of disease management strategies. Epidemics 2022; 40:100622. [PMID: 36041286 DOI: 10.1016/j.epidem.2022.100622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is highly virulent in domestic pigs and wild boar (Sus scrofa), causing up to 100% mortality. The recent epidemic of ASF in Europe has had a serious economic impact and poses a threat to global food security. Unfortunately, there is no effective treatment or vaccine against ASFV, limiting the available disease management strategies. Mathematical models allow us to further our understanding of infectious disease dynamics and evaluate the efficacy of disease management strategies. The ASF Challenge, organised by the French National Research Institute for Agriculture, Food, and the Environment, aimed to expand the development of ASF transmission models to inform policy makers in a timely manner. Here, we present the model and associated projections produced by our team during the challenge. We developed a stochastic model combining transmission between wild boar and domestic pigs, which was calibrated to synthetic data corresponding to different phases describing the epidemic progression. The model was then used to produce forward projections describing the likely temporal evolution of the epidemic under various disease management scenarios. Despite the interventions implemented, long-term projections forecasted persistence of ASFV in wild boar, and hence repeated outbreaks in domestic pigs. A key finding was that it is important to consider the timescale over which different measures are evaluated: interventions that have only limited effectiveness in the short term may yield substantial long-term benefits. Our model has several limitations, partly because it was developed in real-time. Nonetheless, it can inform understanding of the likely development of ASF epidemics and the efficacy of disease management strategies, should the virus continue its spread in Europe.
Collapse
Affiliation(s)
| | - Sébastien Lambert
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United Kingdom
| | - Sarah Hayes
- Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Robin N Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Christl A Donnelly
- Department of Statistics, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom.
| |
Collapse
|
48
|
Bosse NI, Abbott S, Bracher J, Hain H, Quilty BJ, Jit M, van Leeuwen E, Cori A, Funk S. Comparing human and model-based forecasts of COVID-19 in Germany and Poland. PLoS Comput Biol 2022; 18:e1010405. [PMID: 36121848 PMCID: PMC9534421 DOI: 10.1371/journal.pcbi.1010405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/05/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Forecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.
Collapse
Affiliation(s)
- Nikos I. Bosse
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom
| | - Sam Abbott
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom
| | - Johannes Bracher
- Institute of Economic Theory and Statistics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Habakuk Hain
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Billy J. Quilty
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom
| | | | - Edwin van Leeuwen
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- UK Health Security Agency, London, United Kingdom
| | - Anne Cori
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Sebastian Funk
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom
| |
Collapse
|
49
|
Ezanno P, Picault S, Bareille S, Beaunée G, Boender GJ, Dankwa EA, Deslandes F, Donnelly CA, Hagenaars TJ, Hayes S, Jori F, Lambert S, Mancini M, Munoz F, Pleydell DRJ, Thompson RN, Vergu E, Vignes M, Vergne T. The African swine fever modelling challenge: Model comparison and lessons learnt. Epidemics 2022; 40:100615. [PMID: 35970067 DOI: 10.1016/j.epidem.2022.100615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, multiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health - the ASF Challenge - which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions outperformed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.
Collapse
Affiliation(s)
| | | | - Servane Bareille
- INRAE, Oniris, BIOEPAR, 44300 Nantes, France; INRAE, ENVT, IHAP, Toulouse, France
| | | | | | | | | | - Christl A Donnelly
- Department of Statistics, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | | | - Sarah Hayes
- Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Ferran Jori
- CIRAD, INRAE, Université de Montpellier, ASTRE, 34398 Montpellier, France
| | - Sébastien Lambert
- Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United Kingdom
| | - Matthieu Mancini
- INRAE, Oniris, BIOEPAR, 44300 Nantes, France; INRAE, ENVT, IHAP, Toulouse, France
| | - Facundo Munoz
- CIRAD, INRAE, Université de Montpellier, ASTRE, 34398 Montpellier, France
| | - David R J Pleydell
- CIRAD, INRAE, Université de Montpellier, ASTRE, 34398 Montpellier, France
| | - Robin N Thompson
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Elisabeta Vergu
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Matthieu Vignes
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
50
|
Yakob L. Predictable Chikungunya Infection Dynamics in Brazil. Viruses 2022; 14:v14091889. [PMID: 36146696 PMCID: PMC9505030 DOI: 10.3390/v14091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Chikungunya virus (CHIKV) was first imported into the Caribbean in 2013 and subsequently spread across the Americas. It has infected millions in the region and Brazil has become the hub of ongoing transmission. Using Seasonal Autoregressive Integrated Moving Average (SARIMA) models trained and validated on Brazilian data from the Ministry of Health’s notifiable diseases information system, we tested the hypothesis that transmission in Brazil had transitioned from sporadic and explosive to become more predictable. Consistency weighted, population standardized kernel density estimates were used to identify municipalities with the most consistent inter-annual transmission rates. Spatial clustering was assessed per calendar month for 2017−2021 inclusive using Moran’s I. SARIMA models were validated on 2020−2021 data and forecasted 106,162 (95%CI 27,303−200,917) serologically confirmed cases and 339,907 (95%CI 35,780−1035,449) total notifications for 2022−2023 inclusive, with >90% of cases in the Northeast and Southeast regions. Comparing forecasts for the first five months of 2022 to the most up-to-date ECDC report (published 2 June 2022) showed remarkable accuracy: the models predicted 92,739 (95%CI 20,685−195,191) case notifications during which the ECDC reported 92,349 case notifications. Hotspots of consistent transmission were identified in the states of Para and Tocantins (North region); Rio Grande do Norte, Paraiba and Pernambuco (Northeast region); and Rio de Janeiro and eastern Minas Gerais (Southeast region). Significant spatial clustering peaked during late summer/early autumn. This analysis highlights how CHIKV transmission in Brazil has transitioned, making it more predictable and thus enabling improved control targeting and site selection for trialing interventions.
Collapse
Affiliation(s)
- Laith Yakob
- Department of Disease Control, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| |
Collapse
|