1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Schwarztrauber M, Edwards N, Hiryak J, Chandrasekaran R, Wild J, Bommareddy A. Antitumor and chemopreventive role of major phytochemicals against breast cancer development. Nat Prod Res 2024; 38:3623-3643. [PMID: 37646820 DOI: 10.1080/14786419.2023.2251167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer continues to be one of the most commonly diagnosed cancers around the world. Despite the decrease in mortality, there has been a steady increase in its incidence. There is much evidence that naturally occurring phytochemicals could prove to be safer alternatives aimed at prevention and development of breast cancer. In the present review, we discuss important phytochemicals, namely capsaicin, alpha-santalol and diallyl trisulphide that are shown to have chemopreventive and anti-tumour properties against breast cancer development. We examined current knowledge of their bioavailability, safety and modulation of molecular mechanisms including their ability to induce apoptotic cell death, promote cell cycle arrest, and inhibit cellular proliferation in different breast cancer cell lines and in vivo models. This review emphasises the importance of these naturally occurring phytochemicals and their potential of becoming therapeutic options in the arsenal against breast cancer development provided further scientific and clinical validation.
Collapse
Affiliation(s)
| | - Nathaniel Edwards
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - James Hiryak
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - Ritesh Chandrasekaran
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Jayson Wild
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Ajay Bommareddy
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Sun H, Wang Z, Tu B, Shao Z, Li Y, Han D, Jiang Y, Zhang P, Zhang W, Wu Y, Wu X, Liu CM. Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, RAGE/IGF-1/Akt, TGF-β/Smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7659-7671. [PMID: 38700794 DOI: 10.1007/s00210-024-03092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-β1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-β/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.
Collapse
Affiliation(s)
- Hui Sun
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - ZiTong Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - BingHua Tu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - ZiChen Shao
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YiDan Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Di Han
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YinJie Jiang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Peng Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - WeiChang Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YunYan Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - XiaoMing Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Chi-Ming Liu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China.
| |
Collapse
|
4
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
5
|
Lin J, Ou H, Luo B, Ling M, Lin F, Cen L, Hu Z, Ye L, Pan L. Capsaicin mitigates ventilator-induced lung injury by suppressing ferroptosis and maintaining mitochondrial redox homeostasis through SIRT3-dependent mechanisms. Mol Med 2024; 30:148. [PMID: 39266965 PMCID: PMC11391744 DOI: 10.1186/s10020-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the severe complications in the clinic concerning mechanical ventilation (MV). Capsaicin (CAP) has anti-inflammatory and inhibitory effects on oxidative stress, which is a significant element causing cellular ferroptosis. Nevertheless, the specific role and potential mechanistic pathways through which CAP modulates ferroptosis in VILI remain elusive. METHODS VILI was established in vivo, and the pulmonary epithelial cell injury model induced by circulation stretching (CS) was established in vitro. Both mice and cells were pretreated with CAP. Transmission electron microscopy, ELISA, Western blot, immunofluorescence, RT-PCR, fluorescent probes, and other experimental methods were used to clarify the relationship between iron death and VILI in alveolar epithelial cells, and whether capsaicin alleviates VILI by inhibiting iron death and its specific mechanism. RESULTS Ferroptosis was involved in VILI by utilizing in vivo models. CAP inhibited ferroptosis and alleviated VILI's lung damage and inflammation, and this protective effect of CAP was dependent on maintaining mitochondrial redox system through SITR3 signaling. In the CS-caused lung epithelial cell injury models, CAP reduced pathological CS-caused ferroptosis and cell injury. Knockdown SIRT3 reversed the role of CAP on the maintaining mitochondria dysfunction under pathological CS and eliminated its subsequent advantageous impacts for ferroptosis against overstretching cells. CONCLUSION The outcomes showed that CAP alleviated ferroptosis in VILI via improving the activity of SITR3 to suppressing mitochondrial oxidative damage and maintaining mitochondrial redox homeostasis, illustrating its possibility as a novel therapeutic goal for VILI.
Collapse
Affiliation(s)
- Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Huajin Ou
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Bijun Luo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liming Cen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Zhaokun Hu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
| |
Collapse
|
6
|
Yu S, Zhang W, Zhang L, Wu D, Fu G, Yang M, Wu K, Wu Z, Deng Q, Zhu J, Fu H, Lu X, Wang Z, Cheng S. Negative regulation of CcPAL2 gene expression by the repressor transcription factor CcMYB4-12 modulates lignin and capsaicin biosynthesis in Capsicum chinense fruits. Int J Biol Macromol 2024; 280:135592. [PMID: 39276895 DOI: 10.1016/j.ijbiomac.2024.135592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Peppers globally renowned for their distinctive spicy flavor, have attracted significant research attention, particularly in understanding spiciness regulation. While the activator MYB's role in spiciness regulation is well-established, the involvement of repressor MYB factors remains unexplored. This study identified the MYB4 transcription factor through RNA-seq and genome-wide analysis as being associated with spiciness. Consequently, CcMYB4-2 and CcMYB4-12 were cloned from Hainan Huangdenglong peppers, both exhibiting nuclear subcellular localization. qRT-PCR analysis revealed that CcMYB4-2/4-12 had high expression levels during the accumulation period of capsaicin, but there were differences in their peak expression levels, which may be related to the formation of pepper spiciness. Heterologous expression in Arabidopsis thaliana resulted in significantly elevated CcMYB4-2/4-12 expression levels and reduced lignin content. In CcMYB4-2 silenced plants, PAL expression remained unchanged, while PAL expression significantly increased in CcMYB4-12 silenced plants, leading to elevated lignin content and reduced capsaicin content. Yeast one-hybrid (Y1H) and dual luciferase reporter assays (DLR) demonstrated that CcMYB4-2/4-12 inhibited the transcription of CcPAL2 by binding to its promoter. Notably, CcMYB4-12 exhibited more pronounced inhibition. Therefore, it is hypothesized that CcMYB4-12 plays a pivotal role in regulating lignin and capsaicin biosynthesis. This study elucidates the molecular mechanism of MYB4 binding to the PAL promoter, providing a foundational understanding for analyzing phenylpropanoid metabolism and its diverse branches. KEY MESSAGE: Through functional verification analysis of the repressor CcMYB4, transcriptional regulation experiments revealed that CcMYB4 can bind to the CcPAL2 promoter, negatively regulating the capsaicin biosynthesis in Capsicum chinense fruits.
Collapse
Affiliation(s)
- Shuang Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Wei Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Liping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Dan Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Genying Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mengxian Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kun Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhuo Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qin Deng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jie Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Huizhen Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xu Lu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Zhiwei Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
8
|
Kefale B, Delele MA, Fanta SW, Abate S. Optimization of Awaze paste formulations: The effects of using spices through a mixture design approach. Heliyon 2024; 10:e35141. [PMID: 39170444 PMCID: PMC11336441 DOI: 10.1016/j.heliyon.2024.e35141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Previous studies have revealed the microbial quality of Awaze paste. However, limited reports describe the effect of individual spices on Awaze paste quality. A mixture design approach was used to determine the appropriate proportions, with 15 experimental points for independent variables including RP (60-90 %), GA (10-30 %), RO (5-20 %), and GI (5-10 %). The techno-functional properties, particle size, antioxidant activity (DDPH radical assay), proximate composition, iron (Fe), zinc (Zn) content, viscosity, hardness, and microbiological quality of Awaze paste were assessed. The prepared Awaze paste showed a range of characteristics, with antioxidant activity (DDPH radical assay) ranging from 11.86 % to 62.5 %, crude protein content from 6.18 % to 16.22 %, crude fat from 5.7 % to 12.6 %, crude fiber from 16.86 % to 29.06 %, total ash content from 6.32 % to 9.94 %, total carbohydrate from 41.79 % to 60.61 %, energy from 264.3 to 329.2 k cal. , iron (Fe) content from 35.59 to 108.82 mg/100g, zinc (Zn) content from 1.72 to 26.93 mg/100g, viscosity from 65.5 to 125.5 cps, hardness from 8.48 to 55.09 g, yeast and mold count from 0.83 to 2.04 log cfu/g, and total bacterial count from 1.53 to 2.61 log cfu/g. Significant differences (p < 0.05) were observed in proximate composition, techno-functional properties, particle size, antioxidant activity, physicochemical properties, and microbiological characteristics among the formulations of Awaze paste. The selected formula showed a statistically significant difference (p < 0.05) compared to the control sample. The formulation containing 74.79 % RP, 10 % GA, 10.2 % RO, and 5.0 % GI was determined to be the optimal formula with a desirability of 0.73, based on the evaluated parameters. This preferred Awaze paste had a porosity of 28.12 %, particle size of 16.49 μm, antioxidant activity of 63.63 %, crude protein content of 17.28 %, iron (Fe) content of 98.06 mg/100g, and zinc (Zn) content of 15.04 mg/100g. Therefore, this optimal blend of ingredients could be used to produce a consumer accepted Awaze paste.
Collapse
Affiliation(s)
- Biadge Kefale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Centre, Food Science and Nutrition Research, Holeta, Ethiopia
| | - Mulugeta Admasu Delele
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| | - Solomon Workneh Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| | - Solomon Abate
- Ethiopian Institute of Agricultural Research, Head Quarter, Food Science and Nutrition Research, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Xu Y, Kong W, Zhao S, Xiong D, Wang Y. Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2. Carcinogenesis 2024; 45:556-568. [PMID: 38756095 DOI: 10.1093/carcin/bgae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Cisplatin (DDP)-based combined chemotherapy or concurrent chemoradiotherapy is the mainstay treatment for advanced-stage nasopharyngeal carcinoma (NPC), but needs improvement due to its severe side effects. Capsaicin (CAP) can enhance the anti-tumor activity of cytotoxic drugs. The aim of this study was to investigate the anti-metastasis activity of CAP in combination with DDP in NPC. Herein, CAP and DDP showed synergistic cytotoxic effects on NPC cells. CAP alone and DDP alone inhibited NPC migration and invasion in vitro and in vivo, and the combination of CAP and DDP had the greatest effect. Moreover, CAP upregulated the mRNA and protein expressions of serpin family B member 2 (SERPINB2). Further results showed that both SERPINB2 mRNA and protein expressions were downregulated in NPC cell lines and tissues and SERPINB2 overexpression inhibited NPC migration and invasion in vitro and in vivo, while silencing SERPINB2 acted oppositely. In addition, SERPINB2 was abnormally expressed in head and neck squamous cell carcinoma and other multiple cancers, and downregulation of SERPINB2 predicted poor prognosis in head and neck squamous cell carcinoma according to the Cancer Genome Atlas database. We further found that SERPINB2 overexpression inhibited epithelial-mesenchymal transition (EMT) and the phosphorylated extracellular signal-regulated kinase (p-ERK), and the inhibitory effect was enhanced by CAP and DDP. Altogether, our results suggest that the combined inhibition of CAP and DDP on NPC metastasis may be related to the inhibition of epithelial-mesenchymal transition and ERK signals mediated by SERPINB2, and CAP may help to improve the efficacy of DDP in the treatment of NPC and develop new therapeutic approaches.
Collapse
Affiliation(s)
- Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Weimiao Kong
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Simin Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, 47 Youyi Road, Luohu District, Shenzhen, Guangdong 518005, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, 1066 Xue Yuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518060, China
| |
Collapse
|
10
|
S H, Deora N, Khusro A. Molecular Docking and Pharmacokinetics Prediction of Piperine and Capsaicin as Human Pancreatic Lipase Inhibitors: An In Silico Study. Cureus 2024; 16:e67870. [PMID: 39328713 PMCID: PMC11424760 DOI: 10.7759/cureus.67870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Obesity is a complex multifaceted disease, characterized by excessive body fat accumulation. It is a major public health concern globally, affecting individuals of all ages, genders, and socioeconomic backgrounds. Lipase, a key enzyme involved in lipid metabolism, plays a crucial role in the hydrolysis of dietary fats. Pancreatic lipase performs hydrolysis of nearly 50%-70% of total dietary fats. Thus, inhibition of pancreatic lipase is recognized as one of the strategies for managing obesity. Aim To predict the effect of phytocompounds from pepper as pancreatic lipase inhibitors using computational approaches. Methodology The drug-likeness and pharmacokinetic properties of compounds were evaluated using Lipinski rule of five and absorption, distribution, metabolism, and excretion (ADME) analysis, respectively. The drug score value was computed using Molinspiration, while the lipase inhibitor potential of ligands was evaluated using prediction of activity spectra for substances. Molecular docking was carried out to evaluate the stability and ligand binding affinity. Results Computational approaches identified both piperine and capsaicin as potential candidates, exhibiting favorable affinities with binding energy values of -9.9 and -7.7 kcal/mol, respectively. Both piperine and capsaicin interacted with Ser-152 and His-263, demonstrating their binding at the substrate binding site. Conclusions Findings provide insights into the underlying anti-obesity potential of these bioactive compounds from pepper and support further experimental investigations for obesity treatment.
Collapse
Affiliation(s)
- Harismitha S
- Department of General Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Neha Deora
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ameer Khusro
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
11
|
Wang W, Zhou Z, Ding T, Feng S, Liu H, Liu M, Ge S. Capsaicin attenuates Porphyromonas gingivalis-suppressed osteogenesis of periodontal ligament stem cells via regulating mitochondrial function and activating PI3K/AKT/mTOR pathway. J Periodontal Res 2024; 59:798-811. [PMID: 38699845 DOI: 10.1111/jre.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Prevention of periodontal bone resorption triggered by Porphyromonas gingivalis (P. gingivalis) is crucial for dental stability. Capsaicin, known as the pungent ingredient of chili peppers, can activate key signaling molecules involved in osteogenic process. However, the effect of capsaicin on osteogenesis of periodontal ligament stem cells (PDLSCs) under inflammation remains elusive. METHODS P. gingivalis culture suspension was added to mimic the inflammatory status after capsaicin pretreatment. The effects of capsaicin on the osteogenesis of PDLSCs, as well as mitochondrial morphology, Ca2+ level, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and osteogenesis-regulated protein expression levels were analyzed. Furthermore, a mouse experimental periodontitis model was established to evaluate the effect of capsaicin on alveolar bone resorption and the expression of osteogenesis-related proteins. RESULTS Under P. gingivalis stimulation, capsaicin increased osteogenesis of PDLSCs. Not surprisingly, capsaicin rescued the damage to mitochondrial morphology, decreased the concentration of intracellular Ca2+ and ROS, enhanced MMP and activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. The in vivo results showed that capsaicin significantly attenuated alveolar bone loss and augmented the expression of bone associated proteins. CONCLUSION Capsaicin increases osteogenesis of PDLSCs under inflammation and reduces alveolar bone resorption in mouse experimental periodontitis.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhiyan Zhou
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Tian Ding
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Susu Feng
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hongrui Liu
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Mengmeng Liu
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
12
|
Petran EM, Periferakis A, Troumpata L, Periferakis AT, Scheau AE, Badarau IA, Periferakis K, Caruntu A, Savulescu-Fiedler I, Sima RM, Calina D, Constantin C, Neagu M, Caruntu C, Scheau C. Capsaicin: Emerging Pharmacological and Therapeutic Insights. Curr Issues Mol Biol 2024; 46:7895-7943. [PMID: 39194685 DOI: 10.3390/cimb46080468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Capsaicin, the most prominent pungent compound of chilli peppers, has been used in traditional medicine systems for centuries; it already has a number of established clinical and industrial applications. Capsaicin is known to act through the TRPV1 receptor, which exists in various tissues; capsaicin is hepatically metabolised, having a half-life correlated with the method of application. Research on various applications of capsaicin in different formulations is still ongoing. Thus, local capsaicin applications have a pronounced anti-inflammatory effect, while systemic applications have a multitude of different effects because their increased lipophilic character ensures their augmented bioavailability. Furthermore, various teams have documented capsaicin's anti-cancer effects, proven both in vivo and in vitro designs. A notable constraint in the therapeutic effects of capsaicin is its increased toxicity, especially in sensitive tissues. Regarding the traditional applications of capsaicin, apart from all the effects recorded as medicinal effects, the application of capsaicin in acupuncture points has been demonstrated to be effective and the combination of acupuncture and capsaicin warrants further research. Finally, capsaicin has demonstrated antimicrobial effects, which can supplement its anti-inflammatory and anti-carcinogenic actions.
Collapse
Affiliation(s)
- Elena Madalina Petran
- Department of Biochemistry, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children's Hospital, 011743 Bucharest, Romania
| | - Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Romina-Marina Sima
- Department of Obstetrics and Gynecology, The "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- The "Bucur" Maternity, "Saint John" Hospital, 040294 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
13
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2024:nuae047. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
14
|
Aktaş Ş, Aminzai MT, Tegin İ, Yabalak E, Acar O. Determination of pesticide residues in varieties of pepper sold at different periods and provinces in Turkey and investigation of their adverse effects on human health and the environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2491-2503. [PMID: 37668001 DOI: 10.1080/09603123.2023.2254720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Pesticides are dangerous chemicals that can harm to people and the environment when applied inappropriately or in excess. In this research, various pesticide residues were investigated in 48 pepper samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). All samples were collected randomly in two periods of time (September and December) from markets and greengrocers in four provinces (Siirt, Mardin, Diyarbakir, and Batman). Considering the means of the first and second periods, diclofop-methyl had the highest concentration of 29.4 ± 7.7 µg kg-1, and diazinon had the lowest of 21.1 ± 4.6 µg kg-1. Based on the maximum residue limits (MRLs) of pesticides specified in the Turkish Food Codex, pyrimethanil, bupirimate, and diclofop-methyl were found to be below the maximum acceptable residue limit, while pyridaphention, dinoseb, diazinon, and pirimiphos-methyl were found to be above the limit. Thus, the current study demonstrated the potential of LC-MS/MS as a crucial technique for accurate measurements and confirmations of pesticides in different pepper varieties.
Collapse
Affiliation(s)
- Şerafettin Aktaş
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Turkey
| | - Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - İbrahim Tegin
- Faculty of Arts and Science, Department of Chemistry, Siirt University, Siirt, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, Mersin, Turkey
| | - Orhan Acar
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Choi D, Im HB, Choi SJ, Han D. Safety classification of herbal medicine use among hypertensive patients: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1321523. [PMID: 38881876 PMCID: PMC11176523 DOI: 10.3389/fphar.2024.1321523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/27/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of herbal medicines (HMs) for the treatment of hypertension (HTN) is increasing globally, but research on the potential adverse effects and safety of HMs in HTN patients is limited. Therefore, this systematic review and meta-analysis aim to determine the global prevalence of HM usage among HTN patients and assess the safety of identified herbs based on current scientific evidence. Methods The PubMed/MEDLINE, EMBASE (Ovid), and Cumulated Index to Nursing and Allied Health Literature (CINAHL) databases were searched for cross-sectional studies on the use of HM among HTN patients. Our review includes studies published in English up to the year 2023. After extracting and appraising the data from the studies, a meta-analysis was conducted using the Stata version 16.0 to estimate the pooled prevalence of HM use in patients with HTN (PROSPERO: CRD42023405537). The safety classification of the identified HM was done based on the existing scientific literature. Results This study analyzed 37 cross-sectional studies from 21 countries and found that 37.8% of HTN patients used HM to manage their health. The prevalence of HM use varied significantly based on publication year and geographical region. Among the 71 identified herbs, Allium sativum L., Hibiscus sabdariffa L., and Olea europaea L. were the most commonly used. However, four herbs were identified as contraindicated, 50 herbs required caution, and only 11 herbs were considered safe for use. Conclusion The study highlights the potential risks of toxicities and adverse effects associated with HM use in the treatment of HTN. Ensuring patient safety involves using safe HMs in appropriate doses and avoiding contraindicated HMs. Future research should focus on identifying commonly used herbs, especially in resource-limited countries with poor HTN management, and additional clinical research is required to assess the toxicity and safety of commonly used HMs.
Collapse
Affiliation(s)
- Dain Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Hyea Bin Im
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
| | - Soo Jeung Choi
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Dongwoon Han
- Department of Global Health and Development, Graduate School, Hanyang University, Seoul, Republic of Korea
- Institute of Health Services Management, Hanyang University, Seoul, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Brown KC, Sugrue AM, Conley KB, Modi KJ, Light RS, Cox AJ, Bender CR, Miles SL, Denning KL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of capsaicin and its analogs in gynecological cancers. Adv Cancer Res 2024; 164:241-281. [PMID: 39306367 DOI: 10.1016/bs.acr.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Capsaicin is the hot and pungent ingredient of chili peppers. It is a potent pain-relieving agent and is often present in over-the-counter analgesic lotions and creams. Several convergent studies reveal that capsaicin displays growth-suppressive activity in human cancers in vitro and in vivo. Apart from its growth-suppressive activity (as a single agent), capsaicin has been found to sensitize human cancer cells to the pro-apoptotic effects of chemotherapy and radiation. The first part of this book chapter discusses the anti-cancer activity of capsaicin in gynecological cancers in cell culture experiments and mouse models. Out of all gynecological cancers, the anti-cancer activity of capsaicin (and its analogs) has only been investigated in cervical cancers and ovarian cancers. The clinical development of capsaicin as a viable anti-cancer drug has remained challenging due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, irritation in the gut, nausea diarrhea and vomiting. Two strategies have been investigated to overcome these drawbacks of capsaicin. The first is to encapsulate capsaicin in sustained release drug delivery systems. The second strategy is to design non-pungent capsaicin analogs which will retain the anti-tumor activity of capsaicin. The second part of this chapter provides an overview of the anti-neoplastic (and chemosensitization activity) of capsaicin analogs and capsaicin-based sustained release formulations in cervical and ovarian cancers. The design of selective non-pungent capsaicin analogs and capsaicin-based polymeric drug delivery systems may foster the hope of novel strategies for the treatment and management of gynecological cancers.
Collapse
Affiliation(s)
- Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Amanda M Sugrue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Kaitlyn B Conley
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Kushal J Modi
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Reagan S Light
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Christopher R Bender
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Krista L Denning
- Department of Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
17
|
Abdillah AM, Yun JW. Capsaicin induces ATP-dependent thermogenesis via the activation of TRPV1/β3-AR/α1-AR in 3T3-L1 adipocytes and mouse model. Arch Biochem Biophys 2024; 755:109975. [PMID: 38531438 DOI: 10.1016/j.abb.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Capsaicin (CAP) is a natural bioactive compound in chili pepper that activates the transient receptor potential vanilloid subfamily 1 (TRPV1) and is known to stimulate uncoupling protein 1 (UCP1)-dependent thermogenesis. However, its effect on ATP-dependent thermogenesis remains unknown. In this study, we employed qRT-PCR, immunoblot, staining method, and assay kit to investigate the role of CAP on ATP-dependent thermogenesis and its modulatory roles on the TRPV1, β3-adrenergic receptor (β3-AR), and α1-AR using in vitro and in vivo models. The studies showed that CAP treatment in high-fat diet-induced obese mice resulted in lower body weight gain and elevated ATP-dependent thermogenic effectors' protein and gene expression through ATP-consuming calcium and creatine futile cycles. In both in vitro and in vivo experiments, CAP treatment elevated the protein and gene expressions of sarcoendoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), ryanodine receptor 2 (RYR2), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2) mediated by the activation of β3-AR, α1-AR, and TRPV1. Our study showed that CAP increased intracellular Ca2+ levels and the expression of voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU) which indicates that increased mitochondrial Ca2+ levels lead to increased expression of oxidative phosphorylation protein complexes as a result of ATP-futile cycle activation. A mechanistic study in 3T3-L1 adipocytes revealed that CAP induces UCP1- and ATP-dependent thermogenesis mediated by the β3-AR/PKA/p38MAPK/ERK as well as calcium-dependent α1-AR/TRPV1/CaMKII/AMPK/SIRT1 pathway. Taken together, we identified CAP's novel functional and modulatory roles in UCP1- and ATP-dependent thermogenesis, which is important for developing therapeutic strategies for combating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
18
|
Roopashree N, Syam DS, Krishnakumar IM, Mala KN, Fleenor BS, Thomas J. A natural sustained-intestinal release formulation of red chili pepper extracted capsaicinoids (Capsifen®) safely modulates energy balance and endurance performance: a randomized, double-blind, placebo-controlled study. Front Nutr 2024; 11:1348328. [PMID: 38571755 PMCID: PMC10987775 DOI: 10.3389/fnut.2024.1348328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Overweight and obesity are major public health concerns, with a sharp increase in prevalence over the last few decades. The primary cause is an imbalance between calorie intake and expenditure due to a rise in calorie-rich processed food and reduced physical activity. Energy balance in humans involves complex processes including thermogenesis, a crucial factor in regulating energy expenditure. Methods In this randomized, double-blinded, placebo-controlled three-arm three-sequence study, we investigated the efficacy of Capsifen® (CapF), a pungency-masked sustained-intestinal release formulation of red chili extract, on energy expenditure, fat oxidation, and endurance using the Quark C-PET system in healthy overweight participants, with and without exercise. In the study, 105 healthy participants were randomized to receive either placebo, CapF 100 mg/day, or CapF 200 mg/day for 28 days. Results CapF demonstrated a dose-dependent response to increased energy expenditure and fatty acid oxidation with a concomitant reduction in body weight. Both CapF 100 and CapF 200 also increased the time to exhaustion. Discussion These results demonstrate the plausible efficacy of CapF in energy expenditure and physical performance in otherwise healthy adults who have a high body mass index. Clinical trial registration https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=MjQzNTg=&Enc=&userName=CTRI/2018/04/013157 dated 04 October 2018.
Collapse
Affiliation(s)
- N. Roopashree
- BGS Global Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Das S. Syam
- Akay Natural Ingredients Ltd, Kochi, Kerala, India
| | | | - K. N. Mala
- Sri Rama Hospital, Bangalore, Karnataka, India
| | - Bradley S. Fleenor
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Jestin Thomas
- Leads Clinical Research and Bio Services Private Limited, Bangalore, Karnataka, India
| |
Collapse
|
19
|
Oloruntola OD, Ayodele SO, Oloruntola DA, Olarotimi OJ, Falowo AB, Akinduro VO, Gbore FA, Adu OA, Agbede JO. Dietary supplementation of Capsicum powder affects the growth, immunoglobulins, pro-inflammatory cytokines, adipokines, meat, and liver histology of aflatoxin B1 exposed broiler chickens. Toxicon 2024; 240:107640. [PMID: 38325757 DOI: 10.1016/j.toxicon.2024.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.
Collapse
Affiliation(s)
| | - Simeon O Ayodele
- Department of Agricultural Technology, The Federal Polytechnic, Ado Ekiti, Nigeria
| | - Deborah A Oloruntola
- Department of Medical Laboratory Science, University of Medical Sciences, Ondo City, Nigeria
| | | | - Andrew B Falowo
- Department of Animal Science, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Victor O Akinduro
- Department of Animal Science, Osun State University, Osogbo, Nigeria
| | - Francis A Gbore
- Department of Animal Science, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Olufemi A Adu
- Department of Animal Production and Health, The Federal University of Technology, Akure. Nigeria
| | - Johnson O Agbede
- Department of Animal Production and Health, The Federal University of Technology, Akure. Nigeria
| |
Collapse
|
20
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
21
|
Ibrahim RE, Rhouma NR, Elbealy MA, Abdelwarith AA, Younis EM, Khalil SS, Khamis T, Mansour AT, Davies SJ, El-Murr A, Abdel Rahman AN. Effect of dietary intervention with Capsicum annuum extract on growth performance, physiological status, innate immune response, and related gene expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110914. [PMID: 37939898 DOI: 10.1016/j.cbpb.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1β, il-6, il-8, and il-10), transforming growth factor-β, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Nasreddin R Rhouma
- Biology Department, Faculty of Science, Misurata University, PO Box 2478, Misurata, Libya
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
22
|
Hu Q, Liu H, Wang R, Yao L, Chen S, Wang Y, Lv C. Capsaicin Attenuates LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Autophagy Through Regulation of the TRPV1/AKT Pathway. J Inflamm Res 2024; 17:153-170. [PMID: 38223422 PMCID: PMC10787572 DOI: 10.2147/jir.s441141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Purpose Acute lung injury (ALI) is a severe pulmonary disease characterized by damage to the alveoli and pulmonary blood vessels, leading to severe impairment of lung function. Studies on the effect of capsaicin (8-methyl-N-geranyl-6-nonamide, CAP) on lipopolysaccharide (LPS)-induced ALI in bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B) are still limited. This study aimed to investigate the effect and specific mechanism by which CAP improves LPS-induced ALI. Methods The present study investigated the effect of CAP and the potential underlying mechanisms in LPS-induced ALI in vitro and vivo via RNA sequencing, Western blotting (WB), quantitative real-time reverse transcription PCR (qRT‒PCR), enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM). The TRPV1 inhibitor AMG9810 and the AKT agonist SC79 were used to confirm the protective effect of the TRPV1/AKT axis against ALI. The autophagy agonist rapamycin (Rapa) and the autophagy inhibitors 3-methyladenine (3-MA) and bafilomycin A1 (Baf-A1) were used to clarify the characteristics of LPS-induced autophagy. Results Our findings demonstrated that CAP effectively suppressed inflammation and autophagy in LPS-induced ALI, both in vivo and in vitro. This mechanism involves regulation by the TRPV1/AKT signaling pathway. By activating TRPV1, CAP reduces the expression of P-AKT, thereby exerting its anti-inflammatory and inhibitory effects on pro-death autophagy. Furthermore, prior administration of CAP provided substantial protection to mice against ALI induced by LPS, reduced the lung wet/dry ratio, decreased proinflammatory cytokine expression, and downregulated LC3 expression. Conclusion Taken together, our results indicate that CAP protects against LPS-induced ALI by inhibiting inflammatory responses and autophagic death through the TRPV1/AKT signaling pathway, presenting a novel strategy for ALI therapy.
Collapse
Affiliation(s)
- Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, People’s Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, People’s Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
| | - Ruiyu Wang
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Li Yao
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Shikun Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chuanzhu Lv
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, People’s Republic of China
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
23
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
24
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Chae HS, Cantrell CL, Khan IA, Jarret RL, Khan SI. Capsiate-Rich Fraction of Capsicum annuum Induces Muscular Glucose Uptake, Ameliorates Rosiglitazone-Induced Adipogenesis, and Exhibits Activation of NRs Regulating Multiple Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18395-18404. [PMID: 37972244 DOI: 10.1021/acs.jafc.3c06148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Capsiate is a key ingredient in the fruits of a nonpungent cultivar of Capsicum annuum. We investigated the effects of a C. annuum extract (CE) and a capsiate-rich fraction of CE (CR) on nuclear receptors involved in multiple signaling pathways, glucose uptake, and adipogenesis in comparison to pure capsiate (Ca). Similar to the effect of Ca (100 μM), CE (500 μg/mL) and CR (100 μg/mL) caused the activation of PPARα and PPARγ (>3-fold), while CR also activated LXR and NRF2 (>2 fold). CR (200 μg/mL) and Ca (100 μM) decreased lipid accumulation (22.6 ± 14.1 and 49.7 ± 7.3%, respectively) in adipocytes and increased glucose uptake (44.7 ± 6.2 and 30.1 ± 12.2%, respectively) in muscle cells and inhibited the adipogenic effect induced by rosiglitazone by 41.2 ± 5.6 and 13.9 ± 4.3%, respectively. This is the first report to reveal the agonistic action of CR and Ca on multiple nuclear receptors along with their enhanced glucose uptake and antiadipogenic effects. The results indicate the potential utility of the capsiate-rich fraction of C. annuum in alleviating the symptoms of metabolic syndrome and in preventing the undesired adipogenic effects of full PPARγ agonists such as rosiglitazone.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Robert L Jarret
- Plant Genetic Resources Unit, USDA-ARS, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
26
|
Coyago-Cruz E, Moya M, Méndez G, Villacís M, Rojas-Silva P, Corell M, Mapelli-Brahm P, Vicario IM, Meléndez-Martínez AJ. Exploring Plants with Flowers: From Therapeutic Nutritional Benefits to Innovative Sustainable Uses. Foods 2023; 12:4066. [PMID: 38002124 PMCID: PMC10671036 DOI: 10.3390/foods12224066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flowers have played a significant role in society, focusing on their aesthetic value rather than their food potential. This study's goal was to look into flowering plants for everything from health benefits to other possible applications. This review presents detailed information on 119 species of flowers with agri-food and health relevance. Data were collected on their family, species, common name, commonly used plant part, bioremediation applications, main chemical compounds, medicinal and gastronomic uses, and concentration of bioactive compounds such as carotenoids and phenolic compounds. In this respect, 87% of the floral species studied contain some toxic compounds, sometimes making them inedible, but specific molecules from these species have been used in medicine. Seventy-six percent can be consumed in low doses by infusion. In addition, 97% of the species studied are reported to have medicinal uses (32% immune system), and 63% could be used in the bioremediation of contaminated environments. Significantly, more than 50% of the species were only analysed for total concentrations of carotenoids and phenolic compounds, indicating a significant gap in identifying specific molecules of these bioactive compounds. These potential sources of bioactive compounds could transform the health and nutraceutical industries, offering innovative approaches to combat oxidative stress and promote optimal well-being.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Melany Moya
- Facultad de Ciencias Médicas, Carrera de Obstetricia, Universidad Central del Ecuador, Iquique, Luis Sodiro N14-121, Quito 170146, Ecuador
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Michael Villacís
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Mireia Corell
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Carretera de Utrera Km 1, 41013 Sevilla, Spain
- Unidad Asociada al CSIC de Uso Sostenible del Suelo y el Agua en la Agricultura (US-IRNAS), Crta. de Utrera Km 1, 41013 Sevilla, Spain
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Isabel M. Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| | - Antonio J. Meléndez-Martínez
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (A.J.M.-M.)
| |
Collapse
|
27
|
Xu S, Hao K, Xiong Y, Xu R, Huang H, Wang H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:77. [PMID: 37935716 PMCID: PMC10630396 DOI: 10.1038/s41537-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Early life stress (ELS) is associated with the later development of schizophrenia. In the rodent model, the maternal separation (MS) stress may induce neuronal apoptosis and schizophrenia-like behavior. Although the TRPV1 agonist capsaicin (CAP) has been reported to reduce apoptosis in the central nervous system, its effect in MS models is unclear. Twenty-four hours of MS of Wistar rat pups on postnatal day (PND9) was used as an ELS. Male rats in the adult stage were the subjects of the study. CAP (1 mg/kg/day) intraperitoneal injection pretreatment was undertaken before behavioral tests for 1 week and continued during the tests. Behavioral tests included open field, novel object recognition, Barnes maze test, and pre-pulse inhibition (PPI) test. MS rats showed behavioral deficits and cognitive impairments mimicking symptoms of schizophrenia compared with controls. MS decreased the expression of TRPV1 in the frontal association cortex (FrA) and in the hippocampal CA1, CA3, and dentate gyrus (DG) regions compared with the control group resulting in the increase of pro-apoptotic proteins (BAX, Caspase3, Cleaved-Caspase3) and the decrease of anti-apoptotic proteins (Bcl-2). The number of NeuN++TUNEL+ cells increased in the MS group in the FrA, CA1, CA3, and DG compared with the control group. Neuronal and behavioral impairments of MS were reversed by treatment with CAP. Exposure to ELS may lead to increased neuronal apoptosis and impaired cognitive function with decreased TRPV1 expression in the prefrontal cortex and hippocampus in adulthood. Sustained low-dose administration of CAP improved neuronal apoptosis and cognitive function. Our results provide evidence for future clinical trials of chili peppers or CAP as dietary supplements for the reversal treatment of schizophrenia.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
28
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
29
|
Hassan S, Hassan M, Soliman F, Safwat A. Influence of hot red pepper oil in broiler diets on blood, antioxidant, immunological parameters and intestinal bacteria counts. Anim Biotechnol 2023; 34:1295-1304. [PMID: 34974793 DOI: 10.1080/10495398.2021.2020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study aimed to examine the impacts of supplementing hot red pepper oil (HRPO) to broiler diets. One hundred and twenty Arbor Acres chicks were divided randomly into four experimental groups as three supplementation levels of HRPO (0.25, 0.5 and 1.0 mL/kg diet) and the control group. Results showed that HRPO supplementation exhibited significantly (p < 0.001) higher red blood cells (RBCs) count, hemoglobin (Hb) and packed cells volume (PCV) percentage, while insignificant effects were shown for white blood cells (WBCs) count or its differentiation. Diets supplemented with different levels of HRPO influenced significantly (p < 0.001) the total protein (TP), albumin (Alb) and glucose (Glo) values of the studied birds. Results also indicated that different levels of HRPO supplementations significantly (p < 0.01) decreased total lipid, triglycerides (Trig), cholesterol (Cho) and low-density lipoprotein (LDL), but did not affect high density lipoprotein (HDL) values. Data revealed that supplementing broiler diets with different levels of HRPO enhanced their liver function. The bactericidal activity index was significantly increased (p < 0.02) compared with control. HRPO supplemented groups had beneficial effects (p < 0.02) on cecal microbiota count. It could be concluded that dietary HRPO supplementation could improve the general internal health status of Arbor Acres broiler chicks.
Collapse
Affiliation(s)
- Saber Hassan
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mohamed Hassan
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRAT- City), Alexandria, Egypt
| | - Farid Soliman
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Assem Safwat
- Poultry Production Dept., Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ, Peng W. Targeting TRPV1 and TRPA1: A feasible strategy for natural herbal medicines to combat postoperative ileus. Pharmacol Res 2023; 196:106923. [PMID: 37709183 DOI: 10.1016/j.phrs.2023.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing-Wen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Ru Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Jie Wu
- Institute of Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
31
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
32
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper ( Piper nigrum) and Red Pepper ( Capsicum annum) against Diverse Metabolic Complications. Molecules 2023; 28:6569. [PMID: 37764345 PMCID: PMC10534530 DOI: 10.3390/molecules28186569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
33
|
Dario JGN, de Oliveira ER, de Souza RP, Theodorovicz S, Bernini GC, Ruiz G, de Carvalho RH, da Silva CA. Capsaicin and 1,25-Dihydroxyvitamin D 3 Glycoside: Effects on the Reproductive Performance of Hyper-Prolific Sows. Animals (Basel) 2023; 13:2794. [PMID: 37685058 PMCID: PMC10486751 DOI: 10.3390/ani13172794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
This study evaluated the effect of a natural source of vitamin D3 [1,25-(OH)2D3] and capsaicin (CAP) in the dietary supplementation of sows in the final phase (85-114 days) of gestation (Gest) and lactation (Lact) on the reproductive performance of the sows and health of piglets through two experiments (Exp I and II). In Exp I, 120 sows were subjected to four treatments: T1-control (without [1,25-(OH)2D3] and supplemental CAP); T2-3.5 µg 1,25-(OH)2D3/Gest/day and 7.0 µg Vit 1,25-(OH)2D3/Lact/day; T3-7.0 µg CAP/Gest/day and 14.0 µg CAP/Lact/day; T4-1.75 µg Vit 1,25-(OH)2D3 + 3.5 µg CAP/Gest/day and 3.5 µg 1,25-(OH)2D3 + 7.0 µg CAP/Lact/day. In Exp II, 200 sows were randomly blocked, factorial 2 × 2 (without or with Vit 1,25-(OH)2D3 and without or with CAP): T1-control (without Vit 1,25-(OH)2D3 and CAP); T2-3.5 µg Vit 1,25-(OH)2D3/Gest/day and 7.0 µg Vit 1,25-(OH)2D3/Lact/day; T3-7.0 µg CAP/Gest/day and 14.0 µg CAP/Lact/day; T4-3.5 µg Vit 1,25-(OH)2D3 + 7 µg CAP/Gest/day; and 7.0 µg Vit 1,25-(OH)2D3 + 14.0 µg CAP/Lact/day. The duration of delivery (3:48 vs. 4:57 h) and the percentage of stillbirths (5.37% vs. 7.61%) were improved (p < 0.05) in the group that received Vit 1,25-(OH)2D3 (Exp II) compared to the control group. Moreover, the dystocia rate decreased (p < 0.05) in Exp II, which received Vit 1,25-(OH)2D3 (4.21 vs. 27.63%), and in Exp I, which received the combination of Vit 1,25-(OH)2D3 + CAP (12 vs. 40%) compared to the respective control groups. Colostrum production was greater (p < 0.05) in sows that received Vit 1,25-(OH)2D3 supplementation compared to the control group, consequently resulting in higher colostrum intake (p < 0.05) of the piglets (330 vs. 258 g/piglet). The additives reduced the incidence of diarrhea (p < 0.05) in piglets (Exp I and II). Thus, the use of additives improved the reproductive performance of sows and contributed to litter growth.
Collapse
Affiliation(s)
- Julie Gabriela Nagi Dario
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Eduardo Raele de Oliveira
- Project Coordinator and Assistant at NutriQuest TechnoFeed, São Paulo 13025-320, SP, Brazil; (E.R.d.O.); (R.P.d.S.)
| | - Rodrigo Pereira de Souza
- Project Coordinator and Assistant at NutriQuest TechnoFeed, São Paulo 13025-320, SP, Brazil; (E.R.d.O.); (R.P.d.S.)
| | - Sabrina Theodorovicz
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Giovana Chimentão Bernini
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Gabriela Ruiz
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Rafael Humberto de Carvalho
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| |
Collapse
|
34
|
Pintó-Marijuan M, Turon-Orra M, González-Betancort A, Muñoz P, Munné-Bosch S. Improved production and quality of peppers irrigated with regenerated water by the application of 24-epibrassinolide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111764. [PMID: 37301327 DOI: 10.1016/j.plantsci.2023.111764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Water shortage for crop irrigation is reducing agricultural production worldwide and the use of sewage treatment plant (STP) water to irrigate horticultural fields is a solution to avoid the use of drinkable water in agriculture. In this study, two different genotypes of pepper (Red Cherry Small and Italian green) were irrigated with STP water, as an alternative to potable water. Moreover, the foliar application of a molecule with biostimulant properties (24-epibrassinolide; EBR) was tested as a strategy to ameliorate the production and quality of fruits. Both genotypes differed on their tolerance to the suffered oxidative stress due to their different salinity tolerance, but fruit commercial weight was reduced by 49% on the salt sensitive and by 37% on the salt tolerant. Moreover, ascorbic acid was also decreased by 37% after STP water irrigation in the Red Cherry Small peppers. However, EBR applications alleviated STP watering stress effects improving pepper plants fruit production and quality parameters, such as ascorbic acid and capsaicinoids. These results have important economic and environmental relevance to overcome present and future water deficiencies in the agricultural sector derived from climate change, guaranteeing the maintenance of production in peppers irrigated with STP water for a more sustainable agriculture following relevant circular economy actions.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
| | - Martina Turon-Orra
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alba González-Betancort
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Sirotkin AV. Peppers and their constituents against obesity. Biol Futur 2023; 74:247-252. [PMID: 37493973 DOI: 10.1007/s42977-023-00174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Phytotherapy can be an efficient tool for prevention and treatment of disorders including obesity. The purpose of this narrative review is to summarize the available knowledge concerning the positive effects of peppers (Capsicum spp.) and their alkaloid capsaicin on human health, in particular on fat and obesity. Search for literature was performed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2023. Words used to search were pepper, Capsicum, capsaicin, review, obesity, fat, weight loss and mechanisms. The available data demonstrate that both pepper extract and capsaicin can positively influence human health and treat several disorders. Moreover, they can reduce fat storage affecting brain centres responsible for the sensation of hunger, nutrient uptake by gastrointestinal tract, state of adipocytes, increase in carbohydrate and fat oxidation, metabolism and thermogenesis and other mechanisms. Therefore, despite some possible limitations, these substances could be useful for treatment of obesity.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovak Republic.
| |
Collapse
|
36
|
Hjazi A. The effects of Capsicum annuum supplementation on lipid profiles in adults with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:3859-3866. [PMID: 37344950 DOI: 10.1002/ptr.7922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/20/2023] [Accepted: 05/27/2023] [Indexed: 06/23/2023]
Abstract
The electiveness of Capsicum annuum supplementation in controlling dyslipidemia in adults has been unclear. Therefore, this meta-analysis focuses on the relationship between C. annuum supplementation and lipid profile in adults with metabolic syndrome (MetS) and related disorders. PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched up to March 2021. Only randomized controlled trials (RCTs) studying the administration of C. annuum compared to control on lipid markers in adults with MetS and related disorders were examined. Pooled effect sizes were reported as weighted mean differences (WMDs) and 95% confidence intervals (CIs). The results of four eligible RCTs showed that C. annuum supplementation could significantly reduce total cholesterol (TC) (WMD: -4.98 mg/dL, 95% CI: -7.08 to -2.88, p ≤ 0.001) levels, but did not regulate triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol concentrations. In summary, the present findings suggest the beneficial effects of C. annuum supplementation on the reduction of plasma levels of TC. However, to draw a firm link between C. annuum supplementation and lipid profile, more trials with adequate sample sizes, specifically in subjects with dyslipidemia are warranted.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
37
|
Das S, Saha A, Banerjee A, Goyary D, Karmakar S, Dwivedi SK, Chattopadhyay P. Toxicological evaluation of a nonlethal riot control combinational formulation upon dermal application using animal models. Cutan Ocul Toxicol 2023; 42:118-130. [PMID: 37315295 DOI: 10.1080/15569527.2023.2220393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
Numerous adverse effects on human health have been reported in epidemiological studies of oleoresin capsicum (OC) and other riot control agents (RCAs). Importantly, the daunting risk of such RCAs can be neutralized by optimizing the desired concentration of such agents for mob dispersal. Hence, a nonlethal riot control combinational formulation (NCF) was prepared for dispersing rioters without imparting fatal outcomes. However, for desired utilization of NCF, it is essential to recognize its extent of potential toxicity. Therefore, the current investigation evaluated the dermal toxicity of NCF using experimental animals in compliance with the OECD guidelines. Additionally, few essential metal ions were analyzed and found non -significantly different in the test rats as compared to control rats. Moreover, abnormal dermal morphology and lesions ultrastructural tissue defects were not noticed as evinced by different studies like ultrasonography, histology, and scanning electron microscopy (SEM) respectively. Further, Doppler ultrasonography exhibited non-significantly different blood flow velocity in both groups, whereas miles test demonstrated a significantly increased Evans blue concentration in test rats compared to the control rats, which might be due to an initial increase in blood flow via an instant action of the NCF at the cutaneous sensory nerve endings. However, our results demonstrated NCF can produce initial skin irritating and sensitizing effects in guinea pigs and rabbits without the antecedence of acute toxicity (≤2000 mg/kg) in Wistar rats.
Collapse
Affiliation(s)
- Sanghita Das
- Defence Research Laboratory, Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | | | | | | | | | | |
Collapse
|
38
|
Mishra G, Singh P, Pottoo FH, Javed MN, Zeleke MM, Yimer YS. Nutraceuticals for Fibromyalgia and Neuropathic Pain. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:133-191. [DOI: 10.4018/978-1-7998-4120-3.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Both neuropathic pain and fibromyalgia are horrific painful conditions arising due to impairment in the somatosensory nervous system and the musculoskeletal system, respectively. They share some common symptoms like hyperalgesia, allodynia, insomnia, cognitive deficits, and mood disturbances. It is believed that fibromyalgia is the consequence of dysfunction of the central nervous system, autonomic nervous system, imbalance in neurotransmitters, and psychological and emotional stress. Henceforth, these pain syndromes have become a major challenge for healthcare professionals due to their complex etiology and poor availability and effectiveness of the drugs. Notably, the available synthetic drugs possess serious side effects including physical dependence and tolerance. Therefore, researchers are now seeking natural-based therapy for modulating chronic pain conditions. This chapter has been written with the intention of exploring the beneficial effects of various nutraceuticals including herbal dietary supplements in neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Pradeep Singh
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Faheem Hyder Pottoo
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md Noushad Javed
- School of Pharmaceutical Sciences and Research, Jamia Hamdard, India
| | - Mulugeta Molla Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | | |
Collapse
|
39
|
Su M, She Y, Deng M, Guo Y, Li Y, Liu G, Sun B, Liu D. Effect of Capsaicin Addition on Antioxidant Capacity, Immune Performance and Upper Respiratory Microbiota in Nursing Calves. Microorganisms 2023; 11:1903. [PMID: 37630463 PMCID: PMC10458815 DOI: 10.3390/microorganisms11081903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Capsaicin (CAP) has various biological activities; it has antibacterial, anti-inflammatory and antioxidant properties, and stimulates intestinal development. The aim of this study was to investigate the effect of CAP on the health of nursing calves under group housing conditions. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups of eight calves each. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of CAP in each of the three treatment groups. Following a one-month clinical trial of individual-pen housing, an extended one-month trial of group housing was conducted. At the end of the trial, serum samples, rectal fecal samples and upper respiratory swab samples were collected to determine the effect of CAP addition on serum parameters, fecal fermentation parameters and upper respiratory microbiota of calves under group housing conditions. The results showed that the addition of high doses of CAP decreased calf respiratory scores (p < 0.05), increased serum glutathione peroxidase, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 concentration (p < 0.05), and decreased malondialdehyde, amyloid A and haptoglobin concentration (p < 0.05). Moreover, high doses of CAP increased the rectal fecal concentration of total short-chain fatty acids, acetate and butyric acid (p < 0.05). In addition, CAP regulated the upper respiratory tract microbiota, with high doses of CAP reducing Mycoplasma abundance (p < 0.05), two doses of CAP reducing Corynebacterium abundance (p < 0.05) and a tendency to reduce Staphylococcus abundance (p = 0.06). Thus, CAP can improve calf antioxidant capacity, immune capacity and reduce inflammatory factors, stress proteins as well as improve gut fermentation and upper respiratory microbiota under group housing conditions, which is beneficial for healthy calf growth.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (Y.S.); (M.D.); (Y.G.); (Y.L.); (G.L.)
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
40
|
Su M, She Y, Deng M, Guo Y, Li Y, Liu G, Zhang H, Sun B, Liu D. The Effect of Capsaicin on Growth Performance, Antioxidant Capacity, Immunity and Gut Micro-Organisms of Calves. Animals (Basel) 2023; 13:2309. [PMID: 37508086 PMCID: PMC10376287 DOI: 10.3390/ani13142309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Capsaicin is the active ingredient of the red pepper plant of the genus Capsicum. The aim of this study was to investigate the effects of different doses of capsaicin on growth performance, antioxidant capacity, immunity, fecal fermentation parameters and gut microbial composition in nursing calves. Twenty-four newborn Holstein calves were randomly assigned to three treatment groups, which each consisted of eight calves. The milk replacer was supplemented with 0, 0.15 or 0.3 mL/d of capsaicin in each of the three treatment groups. During the 4-week experiment, intake was recorded daily, body weight and body size parameters were measured at the beginning and end of the trial and serum samples and rectal fecal samples were collected at the end of the trial to determine serum parameters, fecal fermentation parameters and fecal microbiome compartments. The results showed that both doses of capsaicin had no negative effect on the growth performance or the fecal fermentation parameters of calves, and the higher dose (0.3 mL/d) of capsaicin significantly improved the antioxidant capacity and immunity of calves. The calves in the high-dose capsaicin-treated group had lower fecal scores than those recorded in the control group. High doses of capsaicin increased glutathione antioxidant enzyme, superoxide dismutase, immunoglobulin A, immunoglobulin G, immunoglobulin M and interleukin-10 levels and decreased malondialdehyde and bound bead protein levels. In addition, capsaicin regulated the gut microbiota, reducing the abundance of diarrhea-associated bacteria, such as Eggerthella, Streptococcus, Enterococcus and Enterobacteriaceae, in the gut of calves in the treated group. Therefore, high doses of capsaicin can improve the antioxidant and immune capacity of calves without affecting growth performance, as well as improve the gut microbiological environment, which enables the healthy growth of calves.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi 832000, China
| |
Collapse
|
41
|
Jia XY, Jiang DL, Jia XT, Fu LY, Tian H, Liu KL, Qi J, Kang YM, Yu XJ. Capsaicin improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the hypothalamic paraventricular nucleus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154951. [PMID: 37453193 DOI: 10.1016/j.phymed.2023.154951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKβ, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China; Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Da-Li Jiang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Tao Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an 710061, China.
| |
Collapse
|
42
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
43
|
Zhang C, Huang R, Zhan N, Qin L. Methyl jasmonate and selenium synergistically mitigative cadmium toxicity in hot pepper (Capsicum annuum L.) plants by improving antioxidase activities and reducing Cd accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82458-82469. [PMID: 37326735 DOI: 10.1007/s11356-023-28273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Methyl jasmonate (MeJA) or selenium (Se)-mediated response to cadmium (Cd) stress in plant has been widely reported, but the combined effects both on plant growth in response to Cd stress and the underlying mechanisms remain obscure. Here, we showed the combined effects of MeJA (2.5 μM) and Se (7 μM) on hot pepper growth under Cd stress (CdCl2, 5 μM). The results showed Cd suppressed the accumulation of total chlorophyll and carotenoid and reduced the photosynthesis, while it increased the content of endogenous signaling molecules, e.g. nitric oxide (NO) and hydrogen peroxide (H2O2), as well as Cd content in leaves. The combined application of MeJA and Se significantly decreased the malondialdehyde (MDA) accumulation and improved the activities of antioxidant enzymes (AOEs, e.g. SOD and CAT) and defense-related enzymes (DREs, POD and PAL). Additionally, the synergistic application of MeJA and Se also obviously improved photosynthesis in hot pepper plants under Cd stress compared with those treated with MeJA or Se respectively or not. Moreover, the treatment of MeJA associated with Se also effectively reduced the Cd accumulation in hot pepper leaves under Cd stress compared with the plants treated with MeJA or Se separately, which implied a potentially synergistic role of MeJA and Se in alleviating Cd toxicity in hot pepper plants. This study provides a theoretical reference for the further analysis of the molecular mechanism of MeJA and Se in jointly mediating the response to heavy metals in plants.
Collapse
Affiliation(s)
- Chuhan Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Renquan Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Niheng Zhan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Lijun Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
44
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
45
|
Mao B, Xiang Q, Tang X, Zhang Q, Liu X, Zhao J, Cui S, Zhang H. Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 Could Prevent Capsaicin-Induced Ileal and Colonic Injuries. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10106-1. [PMID: 37314694 DOI: 10.1007/s12602-023-10106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Capsaicin (CAP) is usually reported to have many biological activities. However, a large intake of CAP may cause heartburn, gastrointestinal pain, and diarrhea. In this study, mice were gavaged with nine lactic acid bacteria (LAB) strains for two weeks, in which the mice were treated with CAP at the second week and lasted for one week. We tried to identify potential probiotics that could prevent CAP-induced intestinal injury and investigate the mechanisms. The modulation of transient receptor potential vanilloid 1 (TRPV1), levels of short-chain fatty acids (SCFAs), and the composition of gut microbiota were analyzed. The results showed that Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 effectively attenuated CAP-induced injuries to the ileum and colon, including relieving the damage to colonic crypt structures, increasing the number of goblet cells, decreasing levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), increasing levels of anti-inflammatory factors (IL-10), and reducing levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in serum and colon tissue. Further analysis showed that L. reuteri CCFM1175 increased the relative abundance of Ruminococcaceae UCG_014 and Akkermansia. L. paracasei CCFM1176 downregulated the expression of TRPV1 in the ileal and colonic tissues and promoted the relative abundance of Ruminococcaceae UCG_014 and Lachnospiraceae UCG_006. These results indicate that L. reuteri CCFM1175 and L. paracasei CCFM1176 could prevent CAP-induced intestinal injury and be used as probiotics to improve the gastrointestinal health.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qunran Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
46
|
González-Gordo S, Muñoz-Vargas MA, Palma JM, Corpas FJ. Class III Peroxidases (POD) in Pepper ( Capsicum annuum L.): Genome-Wide Identification and Regulation during Nitric Oxide (NO)-Influenced Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12051013. [PMID: 37237879 DOI: 10.3390/antiox12051013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The class III peroxidases (PODs) catalyze the oxidation of several substrates coupled to the reduction of H2O2 to water, and play important roles in diverse plant processes. The POD family members have been well-studied in several plant species, but little information is available on sweet pepper fruit physiology. Based on the existing pepper genome, a total of 75 CaPOD genes have been identified, but only 10 genes were found in the fruit transcriptome (RNA-Seq). The time-course expression analysis of these genes showed that two were upregulated during fruit ripening, seven were downregulated, and one gene was unaffected. Furthermore, nitric oxide (NO) treatment triggered the upregulation of two CaPOD genes whereas the others were unaffected. Non-denaturing PAGE and in-gel activity staining allowed identifying four CaPOD isozymes (CaPOD I-CaPOD IV) which were differentially modulated during ripening and by NO. In vitro analyses of green fruit samples with peroxynitrite, NO donors, and reducing agents triggered about 100% inhibition of CaPOD IV. These data support the modulation of POD at gene and activity levels, which is in agreement with the nitro-oxidative metabolism of pepper fruit during ripening, and suggest that POD IV is a target for nitration and reducing events that lead to its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
47
|
Mougin J, Lobanov V, Danion M, Roquigny R, Goardon L, Grard T, Morin T, Labbé L, Joyce A. Effects of dietary co-exposure to fungal and herbal functional feed additives on immune parameters and microbial intestinal diversity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108773. [PMID: 37105422 DOI: 10.1016/j.fsi.2023.108773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss). We investigated the impact of diet supplementation for 7 weeks on survival, growth performance, cellular, humoral, and molecular immune parameters, as well as the intestinal microbial composition of the fish. Uptake of herbal and fungal compounds influenced the expression of immune related genes, without generating an inflammatory response. Significant differences were detected in the spleen-tlr2 gene expression. Supplementation with herbal additives correlated with structural changes in the fish intestinal microbiota and enhanced overall intestinal microbial diversity. Results demonstrated that the different treatments had no adverse effect on growth performance and survival, suggesting the safety of the different feed additives at the tested concentrations. While the mechanisms and multifactorial interactions remain unclear, this study provides insights not only in regard to nutrition and safety of these compounds, but also how a combined immune and gut microbiota approach can shed light on efficacy of immunostimulant compounds for potential commercial inclusion as feed supplements.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Roxane Roquigny
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Lionel Goardon
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Laurent Labbé
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
48
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
49
|
MYB24 Negatively Regulates the Biosynthesis of Lignin and Capsaicin by Affecting the Expression of Key Genes in the Phenylpropanoid Metabolism Pathway in Capsicum chinense. Molecules 2023; 28:molecules28062644. [PMID: 36985616 PMCID: PMC10054932 DOI: 10.3390/molecules28062644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The wide application of pepper is mostly related to the content of capsaicin, and phenylpropanoid metabolism and its branch pathways may play an important role in the biosynthesis of capsaicin. The expression level of MYB24, a transcription factor screened from the transcriptome data of the pepper fruit development stage, was closely related to the spicy taste. In this experiment, CcMYB24 was cloned from Hainan Huangdenglong pepper, a hot aromatic pepper variety popular in the world for processing, and its function was confirmed by tissue expression characteristics, heterologous transformation in Arabidopsis thaliana, and VIGS technology. The results showed that the relative expression level of CcMYB24 was stable in the early stage of pepper fruit development, and increased significantly from 30 to 50 days after flowering. Heterologous expression led to a significant increase in the expression of CcMYB24 and decrease in lignin content in transgenic Arabidopsis thaliana plants. CcMYB24 silencing led to a significant increase in the expression of phenylpropanoid metabolism pathway genes PAL, 4CL, and pAMT; lignin branch CCR1 and CAD; and capsaicin pathway CS, AT3, and COMT genes in the placenta of pepper, with capsaicin content increased by more than 31.72% and lignin content increased by 20.78%. However, the expression of PAL, pAMT, AT3, COMT, etc., in the corresponding pericarps did not change significantly. Although CS, CCR1, and CAD increased significantly, the relative expression amount was smaller than that in placental tissue, and the lignin content did not change significantly. As indicated above, CcMYB24 may negatively regulate the formation of capsaicin and lignin by regulating the expression of genes from phenylpropanoid metabolism and its branch pathways.
Collapse
|
50
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|