1
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Hayashi D, Dennis EA. Differentiating human phospholipase A 2's activity toward phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159527. [PMID: 38917952 PMCID: PMC11521320 DOI: 10.1016/j.bbalip.2024.159527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Phospholipase A2's (PLA2's) constitute a superfamily of enzymes that hydrolyze the sn-2 fatty acyl chain on glycerophospholipids. We have previously reported that each PLA2 Type shows a unique substrate specificity for the molecular species it hydrolyzes, especially the acyl chain that is cleaved from the sn-2 position and to some extent the polar group. However, phosphatidylinositol (PI) and PI phosphates (PIPs) have not been as well studied as substrates as other phospholipids because the PIPs require adaptation of the standard analysis methods, but they are important in vivo. We determined the in vitro activity of the three major types of human PLA2's, namely the cytosolic (c), calcium-independent (i), and secreted (s) PLA2's toward PI, PI-4-phosphate (PI(4)P), and PI-4,5-bisphosphate (PI(4,5)P2). The in vitro assay revealed that Group IVA cPLA2 (GIVA cPLA2) showed relatively high activity toward PI and PI(4)P among the tested PLA2's; nevertheless, the highly hydrophilic headgroup disrupted the interaction between the lipid surface and the enzyme. GIVA cPLA2 and GVIA iPLA2 showed detectable activity toward PI(4,5)P2, but it appeared to be a poorer substrate for all of the PLA2's tested. Furthermore, molecular dynamics (MD) simulations demonstrated that Thr416 and Glu418 of GIVA cPLA2 contribute significantly to accommodating the hydrophilic head groups of PI and PI(4)P, which could explain some selectivity for PI and PI(4)P. These results indicated that GIVA cPLA2 can accommodate PI and PI(4)P in its active site and hydrolyze them, suggesting that the GIVA cPLA2 may best account for the PI and PIP hydrolysis in living cells.
Collapse
Affiliation(s)
- Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan; Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ. The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-3,4,5-trisphosphate generation and Akt signaling. Mol Biol Cell 2024; 35:ar118. [PMID: 39024272 PMCID: PMC11449395 DOI: 10.1091/mbc.e23-09-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Victoria Chan
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Cristina Camardi
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Laura A. Orofiamma
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Karen E. Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Jafarul Hoque
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Leslie N. Bone
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Yasmin Awadeh
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Daniel K. C. Lee
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Norman J. Fu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jonathan T. S. Chow
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Phillip T. Hawkins
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| |
Collapse
|
4
|
Iwama T, Kano K, Kawana H, Shindou H, Shimizu T, Kono N, Aoki J. Visualization of Phospholipid Synthesis on Tissue Sections Using Functional Mass Spectrometry Imaging. Anal Chem 2024; 96:11771-11779. [PMID: 38995673 DOI: 10.1021/acs.analchem.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Functional mass spectrometry imaging (fMSI) is a potent tool for elucidating the spatial distribution of enzyme activities in tissues at high resolution. In this study, we applied fMSI to probe the intricate biosynthesis of phospholipids, which exist as thousands of molecular species in tissues and exhibit a unique distribution specific to cell type. By using deuterium- and 13C-labeled substrates, we visualized the activities of key enzymes involved in phospholipid synthesis, including glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferases (LPAAT), lysophospholipid acyltransferases (LPLAT), and long-chain acyl-CoA synthetase (ACSL). Additionally, we were able to visualize a two-step sequential enzyme reaction involving ACSL and LPLAT. This novel approach unveiled significant variations in enzyme activity distribution depending on the type of fatty acids used as substrates. It will also help to reveal the mechanisms underlying the formation of numerous phospholipid species.
Collapse
Affiliation(s)
- Taiga Iwama
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology. Nara 630-0192, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Institute of Microbial Chemistry, Tokyo 141-0021, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
6
|
Mao Z, Gao ZX, Ji T, Huan S, Yin GP, Chen L. Bidirectional two-sample mendelian randomization analysis identifies causal associations of MRI-based cortical thickness and surface area relation to NAFLD. Lipids Health Dis 2024; 23:58. [PMID: 38395962 PMCID: PMC10885469 DOI: 10.1186/s12944-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) patients have exhibited extra-hepatic neurological changes, but the causes and mechanisms remain unclear. This study investigates the causal effect of NAFLD on cortical structure through bidirectional two-sample Mendelian randomization analysis. METHODS Genetic data from 778,614 European individuals across four NAFLD studies were used to determine genetically predicted NAFLD. Abdominal MRI scans from 32,860 UK Biobank participants were utilized to evaluate genetically predicted liver fat and volume. Data from the ENIGMA Consortium, comprising 51,665 patients, were used to evaluate the associations between genetic susceptibility, NAFLD risk, liver fat, liver volume, and alterations in cortical thickness (TH) and surface area (SA). Inverse-variance weighted (IVW) estimation, Cochran Q, and MR-Egger were employed to assess heterogeneity and pleiotropy. RESULTS Overall, NAFLD did not significantly affect cortical SA or TH. However, potential associations were noted under global weighting, relating heightened NAFLD risk to reduced parahippocampal SA and decreased cortical TH in the caudal middle frontal, cuneus, lingual, and parstriangularis regions. Liver fat and volume also influenced the cortical structure of certain regions, although no Bonferroni-adjusted p-values reached significance. Two-step MR analysis revealed that liver fat, AST, and LDL levels mediated the impact of NAFLD on cortical structure. Multivariable MR analysis suggested that the impact of NAFLD on the cortical TH of lingual and parstriangularis was independent of BMI, obesity, hyperlipidemia, and diabetes. CONCLUSION This study provides evidence that NAFLD causally influences the cortical structure of the brain, suggesting the existence of a liver-brain axis in the development of NAFLD.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhi-Xiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Tong Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Sheng Huan
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, P. R. China
| | - Guo-Ping Yin
- Department of Anesthesiology, Nanjing Second Hospital, Nanjing, 210000, P. R. China.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
7
|
Radwan E, Abdelaziz A, Mandour MAM, Meki ARMA, El-Kholy MM, Mohamed MN. MBOAT7 expression is associated with disease progression in COVID-19 patients. Mol Biol Rep 2024; 51:79. [PMID: 38183501 PMCID: PMC10771377 DOI: 10.1007/s11033-023-09009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIM The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 caused a pandemic of acute respiratory disease, named coronavirus disease 2019 (COVID-19). COVID-19 became one of the most challenging health emergencies, hence the necessity to find different prognostic factors for disease progression, and severity. Membrane bound O-acyltransferase domain containing 7 (MBOAT7) demonstrates anti-inflammatory effects through acting as a fine-tune regulator of the amount of cellular free arachidonic acid. We aimed in this study to evaluate MBOAT7 expression in COVID-19 patients and to correlate it with disease severity and outcomes. METHODS This case-control study included 56 patients with confirmed SARS-CoV-2 diagnosis and 28 control subjects. Patients were further classified into moderate (n = 28) and severe (n = 28) cases. MBOAT7, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) mRNA levels were evaluated in peripheral blood mononuclear cells (PBMC) samples isolated from patients and control subjects by real time quantitative polymerase chain reaction (RT-qPCR). In addition, circulating MBOAT7 protein levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Significant lower levels of circulating MBOAT7 mRNA and protein were observed in COVID-19 patients compared to control subjects with severe COVID-19 cases showing significant lower levels compared to moderate cases. Moreover, severe cases showed a significant upregulation of TNF-α and IL-1ß mRNA. MBOAT7 mRNA and protein levels were significantly correlated with inflammatory markers (TNF-α, IL-1ß, C-reactive protein (CRP), and ferritin), liver enzymes, severity, and oxygen saturation levels. CONCLUSION COVID-19 is associated with downregulation of MBAOT7, which correlates with disease severity.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt.
| | - Ahmed Abdelaziz
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Manal A M Mandour
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Maha M El-Kholy
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwan N Mohamed
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Harayama T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 2023; 215:34-41. [PMID: 37769936 DOI: 10.1016/j.biochi.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Cellular lipids have an enormous diversity in their chemical structures, which affect the physicochemical properties of lipids and membranes, as well as their regulatory roles on protein functions. Here, I review additional roles of lipid structures. Multiple studies show that structural differences affect how lipids, even from the same class, are metabolically converted via distinct pathways. I propose the name "structure-guided metabolic bias" for this phenomenon, and discuss its biological relevance. This metabolic bias seems implicated in the buildup of basic cellular lipid compositions, as well as genetic predisposition to diseases. Thus, guiding metabolic biases is an important function of lipid structures, while having the characteristic of being difficult to study by in vitro biochemical reconstitutions.
Collapse
Affiliation(s)
- Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de La Recherche Scientifique and Université Côte D'Azur, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
10
|
Caddeo A, Spagnuolo R, Maurotti S. MBOAT7 in liver and extrahepatic diseases. Liver Int 2023; 43:2351-2364. [PMID: 37605540 DOI: 10.1111/liv.15706] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
MBOAT7 is a protein anchored to endomembranes by several transmembrane domains. It has a catalytic dyad involved in remodelling of phosphatidylinositol with polyunsaturated fatty acids. Genetic variants in the MBOAT7 gene have been associated with the entire spectrum of non-alcoholic fatty liver (NAFLD), recently redefined as metabolic dysfunction-associated fatty liver disease (MAFLD) and, lately, steatotic liver disease (SLD), and to an increasing number of extrahepatic conditions. In this review, we will (a) elucidate the molecular mechanisms by which MBOAT7 loss-of-function predisposes to MAFLD and neurodevelopmental disorders and (b) discuss the growing number of genetic studies linking MBOAT7 to hepatic and extrahepatic diseases. MBOAT7 complete loss of function causes severe changes in brain development resulting in several neurological manifestations. Lower MBOAT7 hepatic expression at both the mRNA and protein levels, due to missense nucleotide polymorphisms (SNPs) in the locus containing the MBOAT7 gene, affects specifically metabolic and viral diseases in the liver from simple steatosis to hepatocellular carcinoma, and potentially COVID-19 disease. This body of evidence shows that phosphatidylinositol remodelling is a key factor for human health.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rocco Spagnuolo
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
11
|
Arihisa W, Kondo T, Yamaguchi K, Matsumoto J, Nakanishi H, Kunii Y, Akatsu H, Hino M, Hashizume Y, Sato S, Sato S, Niwa S, Yabe H, Sasaki T, Shigenobu S, Setou M. Lipid-correlated alterations in the transcriptome are enriched in several specific pathways in the postmortem prefrontal cortex of Japanese patients with schizophrenia. Neuropsychopharmacol Rep 2023; 43:403-413. [PMID: 37498306 PMCID: PMC10496066 DOI: 10.1002/npr2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
AIMS Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.
Collapse
Affiliation(s)
- Wataru Arihisa
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
| | - Takeshi Kondo
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Department of Biochemistry, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | | | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | | | - Yasuto Kunii
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura HospitalToyohashiJapan
- Department of Community‐based Medical Education/Department of Community‐based MedicineNagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | | | - Shumpei Sato
- RIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Shinji Sato
- Business Development, Otsuka Pharmaceutical Co., Ltd. Shinagawa Grand Central TowerTokyoJapan
| | - Shin‐Ichi Niwa
- Department of Psychiatry, Aizu Medical CenterFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Takehiko Sasaki
- Department of Biochemical PathophysiologyMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Preeminent Medical Photonics Education & Research CenterHamamatsu University School of MedicineShizuokaJapan
- Department of AnatomyThe University of Hong KongHong KongChina
| |
Collapse
|
12
|
Ronzoni L, Mureddu M, Malvestiti F, Moretti V, Bianco C, Periti G, Baldassarri M, Ariani F, Carrer A, Pelusi S, Renieri A, Prati D, Valenti L. Liver Involvement in Patients with Rare MBOAT7 Variants and Intellectual Disability: A Case Report and Literature Review. Genes (Basel) 2023; 14:1633. [PMID: 37628684 PMCID: PMC10454727 DOI: 10.3390/genes14081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) protein is an acyltransferase catalyzing arachidonic acid incorporation into lysophosphatidylinositol. Patients with rare, biallelic loss-of-function variants of the MBOAT7 gene display intellectual disability with neurodevelopmental defects. The rs641738 inherited variant associated with reduced hepatic MBOAT7 expression has been linked to steatotic liver disease susceptibility. However, the impact of biallelic loss-of-function MBOAT7 variants on liver disease is not known. We report on a 2-year-old girl with MBOAT7-related intellectual disability and steatotic liver disease, confirming that MBOAT7 loss-of-function predisposes to liver disease.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Matteo Mureddu
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vittoria Moretti
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Cristiana Bianco
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Giulia Periti
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Anna Carrer
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Serena Pelusi
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Daniele Prati
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
| | - Luca Valenti
- Biological Resource Center, and Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
13
|
Xu X, Xu H, Liu X, Zhang S, Cao Z, Qiu L, Du X, Liu Y, Wang G, Zhang L, Zhang Y, Zhang J. MBOAT7 rs641738 (C>T) is associated with NAFLD progression in men and decreased ASCVD risk in elder Chinese population. Front Endocrinol (Lausanne) 2023; 14:1199429. [PMID: 37424875 PMCID: PMC10324031 DOI: 10.3389/fendo.2023.1199429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background and aim The MBOAT7 rs641738 (C>T) variant has demonstrated an association with non-alcoholic fatty liver disease (NAFLD) in both adult and pediatric patients, while few studies have been conducted in elderly populations. Hence, a case-control study was undertaken to assess their correlation in elderly residents in a Beijing community. Materials and methods A total of 1,287 participants were included. Medical history, abdominal ultrasound, and laboratory tests were recorded. Liver fat content and fibrosis stage were detected by Fibroscan. Genotyping of genomic DNA was performed using the 96.96 genotyping integrated fluidics circuit. Results Of the recruited subjects, 638 subjects (56.60%) had NAFLD, and 398 subjects (35.28%) had atherosclerotic cardiovascular disease (ASCVD). T allele carriage was associated with higher ALT (p=0.005) and significant fibrosis in male NAFLD patients (p=0.005) compared to CC genotype. TT genotype was associated with reduced risk of metabolic syndrome (OR=0.589, 95%CI: 0.114-0.683, p=0.005) and type 2 diabetes (OR=0.804, 95%CI: 0.277-0.296, p=0.048) in NAFLD population when compared to the CC genotype. In addition, TT genotype was also associated with reduced risk of ASCVD (OR=0.570, 95%CI:0.340-0.953, p=0.032) and less obesity (OR=0.545, 95%CI: 0.346-0.856, p=0.008) in the whole population. Conclusion MBOAT7 rs641738 (C>T) variant was associated with fibrosis in male NAFLD patients. The variant also reduced risk of metabolic traits and type 2 diabetes in NAFLD and ASCVD risk in Chinese elders.
Collapse
Affiliation(s)
- Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Zhenhuan Cao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lixia Qiu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Du
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Li Zhang
- Menkuang Hospital, Beijing Jingmei Group General Hospital, Beijing, China
| | - Yang Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sato T, Umebayashi S, Senoo N, Akahori T, Ichida H, Miyoshi N, Yoshida T, Sugiura Y, Goto-Inoue N, Kawana H, Shindou H, Baba T, Maemoto Y, Kamei Y, Shimizu T, Aoki J, Miura S. LPGAT1/LPLAT7 regulates acyl chain profiles at the sn-1 position of phospholipids in murine skeletal muscles. J Biol Chem 2023:104848. [PMID: 37217003 PMCID: PMC10285227 DOI: 10.1016/j.jbc.2023.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle consists of both fast- and slow-twitch fibers. Phospholipids are important structural components of cellular membranes, and the diversity of their fatty acid composition affects membrane fluidity and permeability. Although some studies have shown that acyl chain species in phospholipids differ among various muscle fiber types, the mechanisms underlying these differences are unclear. To investigate this, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules in the murine extensor digitorum longus (EDL; fast-twitch) and soleus (slow-twitch) muscles. In the EDL muscle, the vast majority (93.6%) of PC molecules was palmitate-containing PC (16:0-PC), whereas in the soleus muscle, in addition to 16:0-PC, 27.9% of PC molecules was stearate-containing PC (18:0-PC). Most palmitate and stearate were bound at the sn-1 position of 16:0- and 18:0-PC, respectively, and 18:0-PC was found in type I and IIa fibers. The amount of 18:0-PE was higher in the soleus than in the EDL muscle. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increased the amount of 18:0-PC in the EDL. Lysophosphatidylglycerol acyltransferase 1 (LPGAT1) was highly expressed in the soleus compared with that in the EDL muscle and was upregulated by PGC-1α. LPGAT1 knockout decreased the incorporation of stearate into PC and PE in vitro and ex vivo and the amount of 18:0-PC and 18:0-PE in murine skeletal muscle with an increase in the level of 16:0-PC and 16:0-PE. Moreover, knocking out LPGAT1 decreased the amount of stearate-containing-phosphatidylserine (18:0-PS), suggesting that LPGAT1 regulated the acyl chain profiles of phospholipids, namely PC, PE, and PS, in the skeletal muscle.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shuhei Umebayashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Akahori
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiyori Ichida
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takuya Yoshida
- Laboratory of Clinical Nutrition, Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Baba
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yuki Maemoto
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Environmental and Life Science, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Institute of Microbial Chemistry, Tokyo, 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
15
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
16
|
Massey WJ, Varadharajan V, Banerjee R, Brown AL, Horak AJ, Hohe RC, Jung BM, Qiu Y, Chan ER, Pan C, Zhang R, Allende DS, Willard B, Cheng F, Lusis AJ, Brown JM. MBOAT7-driven lysophosphatidylinositol acylation in adipocytes contributes to systemic glucose homeostasis. J Lipid Res 2023; 64:100349. [PMID: 36806709 PMCID: PMC10041558 DOI: 10.1016/j.jlr.2023.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023] Open
Abstract
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of ∼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.
Collapse
Affiliation(s)
- William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony J Horak
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel C Hohe
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bryan M Jung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Calvin Pan
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aldons J Lusis
- Departments of Medicine, Microbiology, and Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
17
|
Reed A, Ware T, Li H, Fernando Bazan J, Cravatt BF. TMEM164 is an acyltransferase that forms ferroptotic C20:4 ether phospholipids. Nat Chem Biol 2023; 19:378-388. [PMID: 36782012 PMCID: PMC10362496 DOI: 10.1038/s41589-022-01253-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/21/2022] [Indexed: 02/15/2023]
Abstract
Ferroptosis is an iron-dependent form of cell death driven by oxidation of polyunsaturated fatty acid (PUFA) phospholipids. Large-scale genetic screens have uncovered a specialized role for PUFA ether phospholipids (ePLs) in promoting ferroptosis. Understanding of the enzymes involved in PUFA-ePL production, however, remains incomplete. Here we show, using a combination of pathway mining of genetic dependency maps, AlphaFold-guided structure predictions and targeted lipidomics, that the uncharacterized transmembrane protein TMEM164-the genetic ablation of which has been shown to protect cells from ferroptosis-is a cysteine active center enzyme that selectively transfers C20:4 acyl chains from phosphatidylcholine to lyso-ePLs to produce PUFA ePLs. Genetic deletion of TMEM164 across a set of ferroptosis-sensitive cancer cell lines caused selective reductions in C20:4 ePLs with minimal effects on C20:4 diacyl PLs, and this lipid profile produced a variable range of protection from ferroptosis, supportive of an important but contextualized role for C20:4 ePLs in this form of cell death.
Collapse
Affiliation(s)
- Alex Reed
- Department of Chemistry, The Scripps Research Institute, San Diego, CA, USA
| | - Timothy Ware
- Department of Chemistry, The Scripps Research Institute, San Diego, CA, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, San Diego, CA, USA
| | - J Fernando Bazan
- ħ Bioconsulting, LLC, Stillwater, MN, USA.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, San Diego, CA, USA.
| |
Collapse
|
18
|
Association between Arachidonic Acid and the Risk of Schizophrenia: A Cross-National Study and Mendelian Randomization Analysis. Nutrients 2023; 15:nu15051195. [PMID: 36904193 PMCID: PMC10005211 DOI: 10.3390/nu15051195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs), especially long-chain PUFAs (LCPUFAs), are crucial for both the structural and functional integrity of cells. PUFAs have been reported to be insufficient in schizophrenia, and the resulting cell membrane impairments have been hypothesized as an etiological mechanism. However, the impact of PUFA deficiencies on the onset of schizophrenia remain uncertain. We investigated the associations between PUFAs consumption and schizophrenia incidence rates through correlational analyses and conducted Mendelian randomization analyses to reveal the causal effects. Using dietary PUFA consumption and national schizophrenia incidence rates in 24 countries, we found that incidence rates of schizophrenia were inversely correlated with arachidonic acid (AA) and ω-6 LCPUFA consumption (rAA = -0.577, p < 0.01; rω-6 LCPUFA = -0.626, p < 0.001). Moreover, Mendelian randomization analyses revealed that genetically predicted AA and gamma-linolenic acid (GLA) were protective factors against schizophrenia (ORAA = 0.986, ORGLA = 0.148). In addition, no significant relationships were observed between schizophrenia and docosahexaenoic acid (DHA) or other ω-3 PUFAs. These findings show that the deficiencies of ω-6 LCPUFAs, especially AA, are associated with schizophrenia risk, which sheds novel insight into the etiology of schizophrenia and a promising diet supplementation for the prevention and treatment of schizophrenia.
Collapse
|
19
|
Sharpe MC, Pyles KD, Hallcox T, Kamm DR, Piechowski M, Fisk B, Albert CJ, Carpenter DH, Ulmasov B, Ford DA, Neuschwander-Tetri BA, McCommis KS. Enhancing Hepatic MBOAT7 Expression in Mice With Nonalcoholic Steatohepatitis. GASTRO HEP ADVANCES 2023; 2:558-572. [PMID: 37293574 PMCID: PMC10249591 DOI: 10.1016/j.gastha.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.
Collapse
Affiliation(s)
- Martin C. Sharpe
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kelly D. Pyles
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Taylor Hallcox
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Dakota R. Kamm
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Michaela Piechowski
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Bryan Fisk
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn J. Albert
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | - Barbara Ulmasov
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David A. Ford
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kyle S. McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Wu Z, Hu Z, Gao Y, Xia Y, Zhang X, Jiang Z. A computational approach based on weighted gene co-expression network analysis for biomarkers analysis of Parkinson's disease and construction of diagnostic model. Front Comput Neurosci 2023; 16:1095676. [PMID: 36704228 PMCID: PMC9873349 DOI: 10.3389/fncom.2022.1095676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background Parkinson's disease (PD) is a common age-related chronic neurodegenerative disease. There is currently no affordable, effective, and less invasive test for PD diagnosis. Metabolite profiling in blood and blood-based gene transcripts is thought to be an ideal method for diagnosing PD. Aim In this study, the objective is to identify the potential diagnostic biomarkers of PD by analyzing microarray gene expression data of samples from PD patients. Methods A computational approach, namely, Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct co-expression gene networks and identify the key modules that were highly correlated with PD from the GSE99039 dataset. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to identify the hub genes in the key modules with strong association with PD. The selected hub genes were then used to construct a diagnostic model based on logistic regression analysis, and the Receiver Operating Characteristic (ROC) curves were used to evaluate the efficacy of the model using the GSE99039 dataset. Finally, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to validate the hub genes. Results WGCNA identified two key modules associated with inflammation and immune response. Seven hub genes, LILRB1, LSP1, SIPA1, SLC15A3, MBOAT7, RNF24, and TLE3 were identified from the two modules and used to construct diagnostic models. ROC analysis showed that the diagnostic model had a good diagnostic performance for PD in the training and testing datasets. Results of the RT-PCR experiments showed that there were significant differences in the mRNA expression of LILRB1, LSP1, and MBOAT7 among the seven hub genes. Conclusion The 7-gene panel (LILRB1, LSP1, SIPA1, SLC15A3, MBOAT7, RNF24, and TLE3) will serve as a potential diagnostic signature for PD.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchun Gao
- Department of Neurology, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Yuechong Xia
- Department of Respiratory Medicine, Central South University, Changsha, Hunan, China
| | - Xiaobo Zhang
- Department of Neurology, The First People’s Hospital of Changde City, Changde, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Zheng Jiang,
| |
Collapse
|
21
|
Oya S, Korogi K, Kohno T, Tsuiji H, Danylchuk DI, Klymchenko AS, Niko Y, Hattori M. The Plasma Membrane Polarity Is Higher in the Neuronal Growth Cone than in the Cell Body of Hippocampal and Cerebellar Granule Neurons. Biol Pharm Bull 2023; 46:1820-1825. [PMID: 38044101 DOI: 10.1248/bpb.b23-00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The polarity of the biological membrane, or lipid order, regulates many cellular events. It is generally believed that the plasma membrane polarity is regulated according to cell type and function, sometimes even within a cell. Neurons have a variety of functionally specialized subregions, each of which bears distinct proteins and lipids, and the membrane polarity of the subregions may differ accordingly. However, no direct experimental evidence of it has been presented to date. In the present study, we used a cell-impermeable solvatochromic membrane probe NR12A to investigate the local polarity of the plasma membrane of neurons. Both in hippocampal and cerebellar granule neurons, growth cones have higher membrane polarity than the cell body. In addition, the overall variation in the polarity value of each pixel was greater in the growth cone than in cell bodies, suggesting that the lateral diffusion and/or dynamics of the growth cone membrane are greater than other parts of the neuron. These tendencies were much less notably observed in the lamellipodia of a non-neuronal cell. Our results suggest that the membrane polarity of neuronal growth cones is unique and this characteristic may be important for its structure and function.
Collapse
Affiliation(s)
- Shintaro Oya
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Katsunari Korogi
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
- Graduate School of Pharmaceutical Sciences, Aichi Gakuin University
| | - Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
22
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
23
|
Barneda D, Janardan V, Niewczas I, Collins DM, Cosulich S, Clark J, Stephens LR, Hawkins PT. Acyl chain selection couples the consumption and synthesis of phosphoinositides. EMBO J 2022; 41:e110038. [PMID: 35771169 PMCID: PMC9475507 DOI: 10.15252/embj.2021110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PIPn) in mammalian tissues are enriched in the stearoyl/arachidonoyl acyl chain species ("C38:4"), but its functional significance is unclear. We have used metabolic tracers (isotopologues of inositol, glucose and water) to study PIPn synthesis in cell lines in which this enrichment is preserved to differing relative extents. We show that PIs synthesised from glucose are initially enriched in shorter/more saturated acyl chains, but then rapidly remodelled towards the C38:4 species. PIs are also synthesised by a distinct 're-cycling pathway', which utilises existing precursors and exhibits substantial selectivity for the synthesis of C38:4-PA and -PI. This re-cycling pathway is rapidly stimulated during receptor activation of phospholipase-C, both allowing the retention of the C38:4 backbone and the close coupling of PIPn consumption to its resynthesis, thus maintaining pool sizes. These results suggest that one property of the specific acyl chain composition of PIPn is that of a molecular code, to facilitate 'metabolic channelling' from PIP2 to PI via pools of intermediates (DG, PA and CDP-DG) common to other lipid metabolic pathways.
Collapse
Affiliation(s)
- David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK.,Projects, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vishnu Janardan
- Cellular Organization and Signalling, National Centre for Biological Sciences, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Jose GP, Harayama T. Unique acyl chains mark phosphoinositides for recycling. EMBO J 2022; 41:e112163. [PMID: 35924974 PMCID: PMC9475516 DOI: 10.15252/embj.2022112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Two recent complementary studies show that, after phospholipase C cleavage, the characteristic acyl chain composition of phosphoinositide-derived diacylglycerol funnels them back into the PI cycle.
Collapse
Affiliation(s)
- Gregor P Jose
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueUniversité Côte d'AzurValbonneFrance
| | - Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueUniversité Côte d'AzurValbonneFrance
| |
Collapse
|
25
|
Kawana H, Ozawa M, Shibata T, Ohnishi H, Sato Y, Kano K, Shindou H, Shimizu T, Kono N, Aoki J. Identification and characterization of LPLAT7 as an sn-1-specific lysophospholipid acyltransferase. J Lipid Res 2022; 63:100271. [PMID: 36049524 PMCID: PMC9587406 DOI: 10.1016/j.jlr.2022.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022] Open
Abstract
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1), and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase (LPLAT)). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/ lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7 mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.
Collapse
Affiliation(s)
- Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Masaya Ozawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| | - Takeaki Shibata
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| | - Hirofumi Ohnishi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Yukitaka Sato
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan; Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
26
|
Kim YJ, Sengupta N, Sohn M, Mandal A, Pemberton JG, Choi U, Balla T. Metabolic routing maintains the unique fatty acid composition of phosphoinositides. EMBO Rep 2022; 23:e54532. [PMID: 35712788 PMCID: PMC9253762 DOI: 10.15252/embr.202154532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphoinositide lipids (PPIn) are enriched in stearic- and arachidonic acids (38:4) but how this enrichment is established and maintained during phospholipase C (PLC) activation is unknown. Here we show that the metabolic fate of newly synthesized phosphatidic acid (PA), the lipid precursor of phosphatidylinositol (PI), is influenced by the fatty acyl-CoA used with preferential routing of the arachidonoyl-enriched species toward PI synthesis. Furthermore, during agonist stimulation the unsaturated forms of PI(4,5P)2 are replenished significantly faster than the more saturated ones, suggesting a favored recycling of the unsaturated forms of the PLC-generated hydrolytic products. Cytidine diphosphate diacylglycerol synthase 2 (CDS2) but not CDS1 was found to contribute to increased PI resynthesis during PLC activation. Lastly, while the lipid transfer protein, Nir2 is found to contribute to rapid PPIn resynthesis during PLC activation, the faster re-synthesis of the 38:4 species does not depend on Nir2. Therefore, the fatty acid side-chain composition of the lipid precursors used for PI synthesis is an important determinant of their metabolic fates, which also contributes to the maintenance of the unique fatty acid profile of PPIn lipids.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Varadharajan V, Massey WJ, Brown JM. Membrane-bound O-acyltransferase 7 (MBOAT7)-driven phosphatidylinositol remodeling in advanced liver disease. J Lipid Res 2022; 63:100234. [PMID: 35636492 PMCID: PMC9240865 DOI: 10.1016/j.jlr.2022.100234] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Collapse
Affiliation(s)
- Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
28
|
Supercritical fluid chromatography-mass spectrometry enables simultaneous measurement of all phosphoinositide regioisomers. Commun Chem 2022; 5:61. [PMID: 36697617 PMCID: PMC9814602 DOI: 10.1038/s42004-022-00676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 01/28/2023] Open
Abstract
Phosphoinositide species, differing in phosphorylation at hydroxyls of the inositol head group, play roles in various cellular events. Despite the importance of phosphoinositides, simultaneous quantification of individual phosphoinositide species is difficult using conventional methods. Here we developed a supercritical fluid chromatography-mass spectrometry method that can quantify the molecular species of all seven phosphoinositide regioisomers. We used this method to analyze (1) profiles of phosphoinositide species in mouse tissues, (2) the effect of lysophosphatidylinositol acyltransferase 1-depletion on phosphoinositide acyl-chain composition in cultured cells, and (3) the molecular species of phosphatidylinositol-3-phosphate produced during the induction of autophagy. Although further improvement is needed for the absolute quantification of minor phosphoinositide regioisomers in biological samples, our method should clarify the physiological and pathological roles of phosphoinositide regioisomers at the molecular species level.
Collapse
|
29
|
Abnormal male reproduction and embryonic development induced by downregulation of a phospholipid fatty acid-introducing enzyme Lpgat1 in zebrafish. Sci Rep 2022; 12:7312. [PMID: 35508627 PMCID: PMC9068807 DOI: 10.1038/s41598-022-11002-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
Phospholipids in the membrane consist of diverse pairs of fatty acids bound to a glycerol backbone. The biological significance of the diversity, however, remains mostly unclear. Part of this diversity is due to lysophospholipid acyltransferases (LPLATs), which introduce a fatty acid into lysophospholipids. The human genome has 14 LPLATs and most of them are highly conserved in vertebrates. Here, we analyzed the function of one of these enzymes, lysophosphatidylglycerol acyltransferase 1 (Lpgat1), in zebrafish. We found that the reproduction of heterozygous (lpgat1+/−) male mutants was abnormal. Crosses between heterozygous males and wild-type females produced many eggs with no obvious cleavage, whereas eggs produced by crosses between heterozygous females and wild-type males cleaved normally. Consistent with this, spermatozoa from heterozygous males had reduced motility and abnormal morphology. We also found that the occurrence of lpgat1 homozygous (lpgat1−/−) mutants was far lower than expected. In addition, downregulation of lpgat1 by morpholino antisense oligonucleotides resulted in severe developmental defects. Lipidomic analysis revealed that selective phospholipid species with stearic acid and docosahexaenoic acid were reduced in homozygous larvae and spermatozoa from heterozygotes. These results suggest that the specific phospholipid molecular species produced by Lpgat1 have an essential role in sperm fertilization and in embryonic development.
Collapse
|
30
|
Lee J, Shamim A, Park J, Jang JH, Kim JH, Kwon JY, Kim JW, Kim KK, Lee J. Functional and Structural Changes in the Membrane-Bound O-Acyltransferase Family Member 7 (MBOAT7) Protein: The Pathomechanism of a Novel MBOAT7 Variant in Patients With Intellectual Disability. Front Neurol 2022; 13:836954. [PMID: 35509994 PMCID: PMC9058081 DOI: 10.3389/fneur.2022.836954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
The membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) gene is associated with intellectual disability, early onset seizures, and autism spectrum disorders. This study aimed to determine the pathogenetic mechanism of the MBOAT7 missense variant via molecular modeling. Three patients from a consanguineous family were found to have a homozygous c.757G>A (p.Glu253Lys) variant of MBOAT7. The patients showed prominent dysfunction in gait, swallowing, vocalization, and fine motor function and had intellectual disabilities. Brain magnetic resonance imaging showed signal changes in the bilateral globus pallidi and cerebellar dentate nucleus, which differed with age. In the molecular model of human MBOAT7, Glu253 in the wild-type protein is located close to the backbone carbonyl oxygens in the loop near the helix, suggesting that the ionic interaction could contribute to the conformational stability of the funnel. Molecular modeling showed that Lys253 in the mutant protein was expected to alter the surface charge distribution, thereby potentially affecting substrate specificity. Changes in conformational stability and substrate specificity through varied ionic interactions are the suggested pathophysiological mechanisms of the MBOAT7 variant found in patients with intellectual disabilities.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Amen Shamim
- Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
- Department of Precision Medicine, Graduate School of Basic Medical Sciences, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jongho Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong-Yi Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Sciences, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
32
|
Yau SY, Yip YSL, Formolo DA, He S, Lee THY, Wen C, Hryciw DH. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav Brain Res 2022; 416:113538. [PMID: 34418475 DOI: 10.1016/j.bbr.2021.113538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an essential role in brain development. Emerging data have suggested a possible link between an imbalance in PUFAs and cognitive behavioral deficits in offspring. A diet rich in high linoleic acid (HLA), typically from preconception to lactation, leads to an increase in the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids in the fetus. Arising research has suggested that a deficiency in omega-3 fatty acids is a potential risk factor for inducing autism spectrum disorder (ASD)-like behavioral deficits. However, the impact of a high n- diet during preconception, pregnancy, lactation, and post-weaning on the brain development of adolescent offspring are yet to be determined. This study examined whether consumption of an HLA diet during pregnancy, lactation, and post-weaning induced social and cognitive impairments in female and male offspring rats that resemble autistic phenotypes in humans. Female Wistar Kyoto rats were fed with either HLA or low linoleic acid (LLA) control diet for 10 weeks before mating, then continued with the same diet throughout the pregnancy and lactation period. Female and male offspring at 5 weeks old were subjected to behavioral tests to assess social interaction behavior and depression-/anxiety-like behavior. Our result showed that chronic consumption of an HLA diet did not affect sociability and social recognition memory, but induced depression-like behavior in male but not in female offspring.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Yvette Siu Ling Yip
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Douglas A Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Siyuen He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Thomas Ho Yin Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia; School of Environment and Science, Griffith University, Nathan, QLD, Australia; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
34
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
35
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
38
|
Knoener R, Evans E, Becker JT, Scalf M, Benner B, Sherer NM, Smith LM. Identification of host proteins differentially associated with HIV-1 RNA splice variants. eLife 2021; 10:e62470. [PMID: 33629952 PMCID: PMC7906601 DOI: 10.7554/elife.62470] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein 'interactomes' is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.
Collapse
Affiliation(s)
- Rachel Knoener
- Department of Chemistry, University of WisconsinMadisonUnited States
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Edward Evans
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Jordan T Becker
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Mark Scalf
- Department of Chemistry, University of WisconsinMadisonUnited States
| | - Bayleigh Benner
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of WisconsinMadisonUnited States
| | - Lloyd M Smith
- Department of Chemistry, University of WisconsinMadisonUnited States
| |
Collapse
|
39
|
Xia M, Chandrasekaran P, Rong S, Fu X, Mitsche MA. Hepatic deletion of Mboat7 (LPIAT1) causes activation of SREBP-1c and fatty liver. J Lipid Res 2021; 62:100031. [PMID: 32859645 PMCID: PMC8022244 DOI: 10.1194/jlr.ra120000856] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants that increase the risk of fatty liver disease and cirrhosis have recently been identified in the proximity of membrane-bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and fatty liver disease, we characterized Mboat7 liver-specific KO mice (Mboat7 LSKO). Chow-fed Mboat7 LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using MS revealed a pronounced reduction in 20-carbon PUFA content in phosphatidylinositols (PIs) but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis because of activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage-activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap-only hepatic KO, showing that increased SREBP-1c processing is required for Mboat7-induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis.
Collapse
Affiliation(s)
- Mingfeng Xia
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Preethi Chandrasekaran
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shunxing Rong
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew A Mitsche
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Tanaka Y, Shimanaka Y, Caddeo A, Kubo T, Mao Y, Kubota T, Kubota N, Yamauchi T, Mancina RM, Baselli G, Luukkonen P, Pihlajamäki J, Yki-Järvinen H, Valenti L, Arai H, Romeo S, Kono N. LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut 2021; 70:180-193. [PMID: 32253259 PMCID: PMC7788230 DOI: 10.1136/gutjnl-2020-320646] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a common prelude to cirrhosis and hepatocellular carcinoma. The genetic rs641738 C>T variant in the lysophosphatidylinositol acyltransferase 1 (LPIAT1)/membrane bound O-acyltransferase domain-containing 7, which incorporates arachidonic acid into phosphatidylinositol (PI), is associated with the entire spectrum of NAFLD. In this study, we investigated the mechanism underlying this association in mice and cultured human hepatocytes. DESIGN We generated the hepatocyte-specific Lpiat1 knockout mice to investigate the function of Lpiat1 in vivo. We also depleted LPIAT1 in cultured human hepatic cells using CRISPR-Cas9 systems or siRNA. The effect of LPIAT1-depletion on liver fibrosis was examined in mice fed high fat diet and in liver spheroids. Lipid species were measured using liquid chromatography-electrospray ionisation mass spectrometry. Lipid metabolism was analysed using radiolabeled glycerol or fatty acids. RESULTS The hepatocyte-specific Lpiat1 knockout mice developed hepatic steatosis spontaneously, and hepatic fibrosis on high fat diet feeding. Depletion of LPIAT1 in cultured hepatic cells and in spheroids caused triglyceride accumulation and collagen deposition. The increase in hepatocyte fat content was due to a higher triglyceride synthesis fueled by a non-canonical pathway. Indeed, reduction in the PI acyl chain remodelling caused a high PI turnover, by stimulating at the same time PI synthesis and breakdown. The degradation of PI was mediated by a phospholipase C, which produces diacylglycerol, a precursor of triglyceride. CONCLUSION We found a novel pathway fueling triglyceride synthesis in hepatocytes, by a direct metabolic flow of PI into triglycerides. Our findings provide an insight into the pathogenesis and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Shimanaka
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kubo
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanli Mao
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rosellina Margherita Mancina
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Panu Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland,Department of Internal Medicine, Yale University, New Haven, CT, USA, Yale University, New Haven, Connecticut, USA
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy,Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan,Present address: Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Teo K, Abeysekera KWM, Adams L, Aigner E, Anstee QM, Banales JM, Banerjee R, Basu P, Berg T, Bhatnagar P, Buch S, Canbay A, Caprio S, Chatterjee A, Ida Chen YD, Chowdhury A, Daly AK, Datz C, de Gracia Hahn D, DiStefano JK, Dong J, Duret A, Emdin C, Fairey M, Gerhard GS, Guo X, Hampe J, Hickman M, Heintz L, Hudert C, Hunter H, Kelly M, Kozlitina J, Krawczyk M, Lammert F, Langenberg C, Lavine J, Li L, Lim HK, Loomba R, Luukkonen PK, Melton PE, Mori TA, Palmer ND, Parisinos CA, Pillai SG, Qayyum F, Reichert MC, Romeo S, Rotter JI, Im YR, Santoro N, Schafmayer C, Speliotes EK, Stender S, Stickel F, Still CD, Strnad P, Taylor KD, Tybjærg-Hansen A, Umano GR, Utukuri M, Valenti L, Wagenknecht LE, Wareham NJ, Watanabe RM, Wattacheril J, Yaghootkar H, Yki-Järvinen H, Young KA, Mann JP. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. J Hepatol 2021; 74:20-30. [PMID: 32882372 PMCID: PMC7755037 DOI: 10.1016/j.jhep.2020.08.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Collapse
Affiliation(s)
- Kevin Teo
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Leon Adams
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Austria
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jesus M Banales
- Department on Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | | | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | | | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Ali Canbay
- Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sonia Caprio
- Yale University, Department of Pediatrics, New Haven, CT, USA
| | | | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Abhijit Chowdhury
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | | | - Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiawen Dong
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amedine Duret
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Madison Fairey
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Glenn S Gerhard
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Matthew Hickman
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Lena Heintz
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Christian Hudert
- Department of Pediatric Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harriet Hunter
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joel Lavine
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Lin Li
- BioStat Solutions LLC, Frederick, MD, USA
| | - Hong Kai Lim
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA, USA
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Yale University School of Medicine, New Haven, CT, USA
| | - Phillip E Melton
- School of Global Population Health, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Constantinos A Parisinos
- Institute of Health Informatics, Faculty of Population Health Sciences, University College London, London, UK
| | | | - Faiza Qayyum
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yu Ri Im
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nicola Santoro
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of Medicine and Health Sciences 'V. Tiberio' University of Molise, Campobasso, Italy
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Michigan Health System, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Pavel Strnad
- Medical Clinic III, University Hospital RWTH Aachen, Aachen, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Giuseppina Rosaria Umano
- Yale University, Department of Pediatrics, New Haven, CT, USA; Department of the Woman, the Child, of General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mrudula Utukuri
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Wattacheril
- Department of Medicine, Center for Liver Disease and Transplantation, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Chen CT, Haven S, Lecaj L, Borgstrom M, Torabi M, SanGiovanni JP, Hibbeln JR. Brain PUFA Concentrations Are Differentially Affected by Interactions of Diet, Sex, Brain Regions, and Phospholipid Pools in Mice. J Nutr 2020; 150:3123-3132. [PMID: 33188433 PMCID: PMC7726127 DOI: 10.1093/jn/nxaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PUFAs play vital roles in the development, maintenance, and functioning of circuitries that regulate reward and social behaviors. Therefore, modulations in PUFA concentrations of these brain regions may disrupt reward and social circuitries contributing to mood disorders, developmental disabilities, and addictions. Though much is known about regional and phospholipid-pool-specific PUFA concentrations, less is known about the effects of dietary interventions that concurrently lowers n-6 PUFA and supplements n-3 PUFA, on brain PUFA concentrations. There is even less knowledge on the effects of sex on brain PUFA concentrations. OBJECTIVE This study aimed to comprehensively examine the interaction effects of diet (D), sex (S), brain regions (BR), and phospholipid pools (PL) on brain PUFA concentrations. METHODS Male and female C57BL/6J mice were fed 1 of 4 custom-designed diets varying in linoleic acid (LNA) (8 en% or 1 en%) and eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) (0.4 en% or 0 en%) concentrations from in utero to 15 weeks old. At 15 weeks old, the prefrontal cortex, dorsal striatum, and cerebellum were collected. Fatty acids of 5 major PL were quantified by GC-flame ionization detection. Repeated measures ANOVA was used to test for differences among the groups for D, S, BR, and PL. RESULTS No significant 4-way interactions on PUFA concentrations. DHA, predominant n-3 PUFA, concentrations were dependent on significant D × BR × PL interactions. DHA concentration was not affected by sex. Arachidonic acid (ARA; predominant n-6 PUFA) concentrations were not dependent on 3-way interactions. However, significant 2-way D × PL, BR × PL, and D × Sinteractions affected ARA concentrations. Brain fatty acid concentrations were differentially affected by various combinations of D, S, BR, and PL interactions. CONCLUSION Though DHA concentrations are not affected by sex, ARA concentrations are affected by interactions of the 4 variables examined. This study provides comprehensive references in the investigation of complex interactions between factors that affect brain PUFA concentrations in mice.
Collapse
Affiliation(s)
| | - Sophie Haven
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Lea Lecaj
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| | - Mark Borgstrom
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | - Mohammad Torabi
- University Information Technology Services, University of Arizona, Tucson, AZ, USA
| | | | - Joseph R Hibbeln
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, North Bethesda, MD, USA
| |
Collapse
|
43
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
44
|
Heidari E, Caddeo A, Zarabadi K, Masoudi M, Tavasoli AR, Romeo S, Garshasbi M. Identification of novel loss of function variants in MBOAT7 resulting in intellectual disability. Genomics 2020; 112:4072-4077. [DOI: 10.1016/j.ygeno.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/10/2020] [Accepted: 07/02/2020] [Indexed: 01/28/2023]
|
45
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
46
|
Farnè M, Tedesco GM, Bedetti C, Mencarelli A, Rogaia D, Colavito D, Di Cara G, Stangoni G, Troiani S, Ferlini A, Prontera P. A patient with novel MBOAT7 variant: The cerebellar atrophy is progressive and displays a peculiar neurometabolic profile. Am J Med Genet A 2020; 182:2377-2383. [PMID: 32744787 DOI: 10.1002/ajmg.a.61773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022]
Abstract
Mutations in the MBOAT7 gene have been described in 43 patients, belonging to 18 families, showing nonspecific clinical features (intellectual disability [ID], seizures, microcephaly or macrocephaly, and mild to moderate cerebellar atrophy) that make the clinical diagnosis difficult. Here we report the first Italian patient, a 22.5-year-old female, one of the oldest reported, born to apparently consanguineous parents. She shows severe ID, macrocephaly, seizures, aggressive outbursts, hyperphagia. We also documented progressive atrophy of the cerebellar vermis, that appeared not before the age of 7. The whole-exome sequencing of the trio identified a novel homozygous variant c.1057_1058delGCinsCA (p.Ala353His) in the MBOAT7 gene. The variant is considered to be likely pathogenic, since it is absent from population database and it lies in a highly conserved amino acid residue. This disorder has a neurometabolic pathogenesis, implicating a phospholipid remodeling abnormalities. A brain hydrogen-magnetic resonance spectroscopy (H-MRS) examination in our patient disclosed a peculiar neurometabolic profile in the cerebellar hemispheric region. This new finding could address the clinical suspicion of MBOAT7-related disorder, among the wide range of genetic conditions associated with ID and cerebellar atrophy. Moreover, the documented progression of cerebellar atrophy and the worsening of the disease only after some years open to the possibility of a therapeutic window after birth.
Collapse
Affiliation(s)
- Marianna Farnè
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Giovanna M Tedesco
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy.,Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases (B.I.R.D.), Costozza di Longare, Vicenza, Italy
| | | | - Amedea Mencarelli
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Daniela Rogaia
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Pediatric Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriela Stangoni
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Stefania Troiani
- Division of Neonatology and Neonatal Intensive Care Unit, Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
47
|
Meroni M, Longo M, Fracanzani AL, Dongiovanni P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020; 57:102866. [PMID: 32629394 PMCID: PMC7339032 DOI: 10.1016/j.ebiom.2020.102866] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabetes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inherited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD, these results have not been completely replicated and the debate is still opened. Thus, functional studies that unravel the biological mechanisms underlying the genetic association with fatty liver are required. This review aims to summarize the clinical and experimental findings regarding the rs641738 variation and MBOAT7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna L Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy.
| |
Collapse
|
48
|
Bozelli JC, Epand RM. Specificity of Acyl Chain Composition of Phosphatidylinositols. Proteomics 2020; 19:e1900138. [PMID: 31381272 DOI: 10.1002/pmic.201900138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/30/2019] [Indexed: 01/15/2023]
Abstract
Phosphatidylinositol (PI) lipids have a predominance of a single molecular species present through the organism. In healthy mammals this molecular species is 1-stearoyl-2-arachidonoyl (18:0/20:4) PI. Although the importance of PI lipids for cell physiology has long been appreciated, less is known about the biological role of enriching PI lipids with 18:0/20:4 acyl chains. In conditions with dysfunctional lipid metabolism, the predominance of 18:0/20:4 acyl chains is lost. Recently, molecular mechanisms underpinning the enrichment or alteration of these acyl chains in PI lipids have begun to emerge. In the majority of the cases a common feature is the presence of enzymes bearing substrate acyl chain specificity. However, in cancer cells, it has been shown that one (not the only) of the mechanisms responsible for the loss in this acyl chain enrichment is mutation on the transcription factor p53 gene, which is one of the most highly mutated genes in cancers. There is a compelling need for a global picture of the specificity of the acyl chain composition of PIs. This can be possible once high-resolution spatio-temporal information is gathered in a cellular context; which can ultimately lead to potential novel targets to combat conditions with altered PI acyl chain profiles.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
49
|
Harayama T, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res 2020; 61:1150-1160. [PMID: 32487545 PMCID: PMC7397749 DOI: 10.1194/jlr.r120000800] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Biochemistry and National Centre of Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan and Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
LPIAT, a lyso-Phosphatidylinositol Acyltransferase, Modulates Seed Germination in Arabidopsis thaliana through PIP Signalling Pathways and is Involved in Hyperosmotic Response. Int J Mol Sci 2020; 21:ijms21051654. [PMID: 32121266 PMCID: PMC7084726 DOI: 10.3390/ijms21051654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022] Open
Abstract
Lyso-lipid acyltransferases are enzymes involved in various processes such as lipid synthesis and remodelling. Here, we characterized the activity of an acyltransferase from Arabidopsis thaliana (LPIAT). In vitro, this protein, expressed in Escherichia coli membrane, displayed a 2-lyso-phosphatidylinositol acyltransferase activity with a specificity towards saturated long chain acyl CoAs (C16:0- and C18:0-CoAs), allowing the remodelling of phosphatidylinositol. In planta, LPIAT gene was expressed in mature seeds and very transiently during seed imbibition, mostly in aleurone-like layer cells. Whereas the disruption of this gene did not alter the lipid composition of seed, its overexpression in leaves promoted a strong increase in the phosphatidylinositol phosphates (PIP) level without affecting the PIP2 content. The spatial and temporal narrow expression of this gene as well as the modification of PIP metabolism led us to investigate its role in the control of seed germination. Seeds from the lpiat mutant germinated faster and were less sensitive to abscisic acid (ABA) than wild-type or overexpressing lines. We also showed that the protective effect of ABA on young seedlings against dryness was reduced for lpiat line. In addition, germination of lpiat mutant seeds was more sensitive to hyperosmotic stress. All these results suggest a link between phosphoinositides and ABA signalling in the control of seed germination.
Collapse
|