1
|
Yao W, Shi P, Wang J, Mu Y, Cao J, Niklas KJ. The "Leafing Intensity Premium" Hypothesis and the Scaling Relationships of the Functional Traits of Bamboo Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2340. [PMID: 39204776 PMCID: PMC11359851 DOI: 10.3390/plants13162340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The "leafing intensity premium" hypothesis proposes that leaf size results from natural selection acting on different leafing intensities, i.e., the number of leaves per unit shoot volume or mass. The scaling relationships among various above-ground functional traits in the context of this hypothesis are important for understanding plant growth and ecology. Yet, they have not been sufficiently studied. In this study, we selected four bamboo species of the genus Indocalamus Nakai and measured the total leaf fresh mass per culm, total non-leaf above-ground fresh mass, total number of leaves per culm, and above-ground culm height of 90 culms from each species. These data were used to calculate leafing intensity (i.e., the total number of leaves per culm divided by the total non-leaf above-ground fresh mass) and mean leaf fresh mass per culm (i.e., the total leaf fresh mass per culm divided by the total number of leaves per culm). Reduced major axis regression protocols were then used to determine the scaling relationships among the various above-ground functional traits and leafing intensity. Among the four species, three exhibited an isometric (one-to-one) relationship between the total leaf fresh mass per culm and the total non-leaf above-ground fresh mass, whereas one species (Indocalamus pumilus) exhibited an allometric (not one-to-one) relationship. A negative isometric relationship was found between the mean leaf fresh mass per culm and the leafing intensity for one species (Indocalamus pedalis), whereas three negative allometric relationships between mean leaf fresh mass per culm and leafing intensity were observed for the other three species and the pooled data. An exploration of the alternative definitions of "leafing intensity" showed that the total number of leaves per culm divided by the above-ground culm height is superior because it facilitates the non-destructive calculation of leafing intensity for Indocalamus species. These results not only confirm the leafing intensity premium hypothesis for bamboo species but also highlight the interconnected scaling relationships among different functional traits, thereby contributing to our understanding of the ecological and evolutionary significance of leaf size variation and biomass investment strategies.
Collapse
Affiliation(s)
- Weihao Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (J.W.); (Y.M.)
| | - Peijian Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (J.W.); (Y.M.)
| | - Jinfeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (J.W.); (Y.M.)
| | - Youying Mu
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (J.W.); (Y.M.)
| | - Jiajie Cao
- College of Landscape Architecture, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China
| | - Karl J. Niklas
- School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Poyatos C, Sacristán-Bajo S, Tabarés P, Prieto-Benítez S, Teso MLR, Torres E, Morente-López J, Lara-Romero C, Iriondo JM, Fernández AG. Differential patterns of within- and between-population genetically based trait variation in Lupinus angustifolius. ANNALS OF BOTANY 2023; 132:541-552. [PMID: 37647862 PMCID: PMC10667004 DOI: 10.1093/aob/mcad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIMS Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. METHODS We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). KEY RESULTS Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). CONCLUSIONS Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.
Collapse
Affiliation(s)
- Cristina Poyatos
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | - Sandra Sacristán-Bajo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | - Pablo Tabarés
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | | | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | - Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, Av. Puerta de Hierro 2-4, 28040, Madrid, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
- Grupo de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez 3, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | - José María Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| | - Alfredo García- Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica. Universidad Rey Juan Carlos-ESCET, Tulipán s/n. 28933 Móstoles, Madrid, Spain
| |
Collapse
|
3
|
Wang Y, Wang Y, Yu F, Yi X. Phylogeny more than plant height and leaf area explains variance in seed mass. FRONTIERS IN PLANT SCIENCE 2023; 14:1266798. [PMID: 38034582 PMCID: PMC10687375 DOI: 10.3389/fpls.2023.1266798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Although variation in seed mass can be attributed to other plant functional traits such as plant height, leaf size, genome size, growth form, leaf N and phylogeny, until now, there has been little information on the relative contributions of these factors to variation in seed mass. We compiled data consisting of 1071 vascular plant species from the literature to quantify the relationships between seed mass, explanatory variables and phylogeny. Strong phylogenetic signals of these explanatory variables reflected inherited ancestral traits of the plant species. Without controlling phylogeny, growth form and leaf N are associated with seed mass. However, this association disappeared when accounting for phylogeny. Plant height, leaf area, and genome size showed consistent positive relationship with seed mass irrespective of phylogeny. Using phylogenetic partial R2s model, phylogeny explained 50.89% of the variance in seed mass, much more than plant height, leaf area, genome size, leaf N, and growth form explaining only 7.39%, 0.58%, 1.85%, 0.06% and 0.09%, respectively. Therefore, future ecological work investigating the evolution of seed size should be cautious given that phylogeny is the best overall predictor for seed mass. Our study provides a novel avenue for clarifying variation in functional traits across plant species, improving our better understanding of global patterns in plant traits.
Collapse
Affiliation(s)
- Yingnan Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
4
|
Portela AP, Durance I, Vieira C, Honrado J. Response-effect trait overlap and correlation in riparian plant communities suggests sensitivity of ecosystem functioning and services to environmental change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160549. [PMID: 36455733 DOI: 10.1016/j.scitotenv.2022.160549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Environmental changes and biodiversity loss have emphasized the need to understand how communities affect ecosystem functioning and services. In riparian ecosystems, integrative, generalizable, broad-scale models of ecosystem functioning are still required to fulfill this need. However, few studies have explored the links between functional traits, ecosystem functions, and the services of riparian vegetation. Here we adapt the response-effect trait framework to link drivers, traits, ecosystem functions, and services in riparian ecosystems and assess ecosystem functioning sensitivity to environmental changes. The response-effect trait framework distinguishes between traits related to responses to the environment (response traits) and effects on ecosystem functioning (effect traits). The framework predicts that if response and effect traits are tightly linked, shifts in environmental drivers may alter communities' traits and ecosystem functioning. We adapted the response-effect trait framework for riparian plant communities and used it to assess the overlap between response and effect traits. We tested for correlation among traits identified in the framework and for community functional responses to climatic, topographic, soil, and land cover factors using riparian plant communities along a Temperate-Mediterranean climate gradient in North Portugal. We found a high overlap between response and effect traits, with seven out of thirteen traits identified as both response and effect. Additionally, we found trait linkages in four groups of positively correlated community mean traits. Precipitation and aridity were the most predictive drivers of community functional structure, and life form and leaf area were the most responsive traits. Overall, our findings suggest riparian plant communities are likely to propagate the effects of environmental changes to ecosystem functioning and services, affecting several regulation ecosystem services. This work highlights the sensitivity of riparian ecosystems to environmental changes and how it can affect ecosystem services. Similar functional approaches can be useful for adaptive ecosystem management to sustain biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Ana Paula Portela
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Isabelle Durance
- Water Research Institute and School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Cristiana Vieira
- Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP/UPorto/PRISC), Praça Gomes Teixeira, 4099-002 Porto, Portugal
| | - João Honrado
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
5
|
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Zanne AE, Chave J, Wright SJ, Sheremetiev SN, Jactel H, Baraloto C, Cerabolini BEL, Pierce S, Shipley B, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD, Amiaud B, Atkin OK, Bahn M, Baldocchi D, Beckmann M, Blonder B, Bond W, Bond-Lamberty B, Brown K, Burrascano S, Byun C, Campetella G, Cavender-Bares J, Chapin FS, Choat B, Coomes DA, Cornwell WK, Craine J, Craven D, Dainese M, de Araujo AC, de Vries FT, Domingues TF, Enquist BJ, Fagúndez J, Fang J, Fernández-Méndez F, Fernandez-Piedade MT, Ford H, Forey E, Freschet GT, Gachet S, Gallagher R, Green W, Guerin GR, Gutiérrez AG, Harrison SP, Hattingh WN, He T, Hickler T, Higgins SI, Higuchi P, Ilic J, Jackson RB, Jalili A, Jansen S, Koike F, König C, Kraft N, Kramer K, Kreft H, Kühn I, Kurokawa H, Lamb EG, Laughlin DC, Leishman M, Lewis S, Louault F, Malhado ACM, Manning P, Meir P, Mencuccini M, Messier J, Miller R, Minden V, Molofsky J, Montgomery R, Montserrat-Martí G, Moretti M, Müller S, Niinemets Ü, Ogaya R, Öllerer K, Onipchenko V, Onoda Y, Ozinga WA, Pausas JG, Peco B, Penuelas J, Pillar VD, Pladevall C, Römermann C, Sack L, Salinas N, Sandel B, Sardans J, Schamp B, Scherer-Lorenzen M, Schulze ED, Schweingruber F, Shiodera S, Sosinski Ê, Soudzilovskaia N, Spasojevic MJ, Swaine E, Swenson N, Tautenhahn S, Thompson K, Totte A, Urrutia-Jalabert R, Valladares F, van Bodegom P, Vasseur F, Verheyen K, Vile D, Violle C, von Holle B, Weigelt P, Weiher E, Wiemann MC, Williams M, Wright J, Zotz G. The global spectrum of plant form and function: enhanced species-level trait dataset. Sci Data 2022; 9:755. [PMID: 36477373 PMCID: PMC9729214 DOI: 10.1038/s41597-022-01774-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/12/2022] [Indexed: 12/12/2022] Open
Abstract
Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.
Collapse
Affiliation(s)
- Sandra Díaz
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina.
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000, Córdoba, Argentina.
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | | | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sandra Lavorel
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Stéphane Dray
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, F-69100, Villeurbanne, France
| | - Björn Reu
- Escuela de Biología, Universidad Industrial de Santander, Cra. 27 Calle 9, 680002, Bucaramanga, Colombia
| | - Michael Kleyer
- Landscape Ecology Group, Inst. of Biology and Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Christian Wirth
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Leipzig, Germany
| | - I Colin Prentice
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Gerhard Bönisch
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
| | - Mark Westoby
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hendrik Poorter
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Plant Sciences (IBG2), Forschungszentrum Jülich, Jülich, Germany
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Forest Resources, 1530 Cleveland Ave. N., University of Minnesota, St. Paul, MN, 55108, USA
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, USA
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - John Dickie
- Wellcome Trust Millennium Building, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, 33146, USA
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique UMR 5174 CNRS, IRD, Université Paul Sabatier, 31062, Toulouse, France
| | | | | | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610, Cestas, France
| | - Christopher Baraloto
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, via Dunant 3, IT-21100, Varese, Italy
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, via Celoria 2, Milan, IT-20133, Italy
| | - Bill Shipley
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fernando Casanoves
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Julia S Joswig
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
- University of Zurich Department of Geography, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Angela Günther
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
| | - Valeria Falczuk
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000, Córdoba, Argentina
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Smithsonian Tropical Research Institute, Panamá, Panama
- Department of Economics, University of Leipzig, Leipzig, Germany
| | - Miguel D Mahecha
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Remote Sensing Centre for Earth System Research, Leipzig University, Leipzig, Germany
| | - Lucas D Gorné
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
| | | | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Michael Beckmann
- Helmholtz Centre for Environmental Research - UFZ, Department of Computational Landscape Ecology, 04318, Leipzig, Germany
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - William Bond
- University of CapeTown, Biological Sciences, Rondebosch, 7701, Cape Town, South Africa
- South African Environmental Observation Network, c/o Fynbos node, Private Bag X7, Claremont, 7735, South Africa
| | - Ben Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland-College Park, College Park, MD, 20740, USA
| | - Kerry Brown
- Kingston University London, Department of Geography, Geology and the Environment, Kingston Upon Thames, UK
| | - Sabina Burrascano
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Chaeho Byun
- Department of Biological Sciences and Biotechnology, Andong National University, Andong, 36729, Korea
| | - Giandiego Campetella
- School of Biosciences & Veterinary Medicine - Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - F Stuart Chapin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David Anthony Coomes
- Department of Plant Sciences, University of Cambridge Conservation Initiative, Pembroke St, Cambridge, CB2, UK
| | - William K Cornwell
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | | | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Matteo Dainese
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100, Bozen/Bolzano, Italy
| | | | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Tomas Ferreira Domingues
- Faculdade de Filosofia, Ciências e Letras - Universidade de São Paulo - Depto. de Biologia, Ribeirão Preto, Brazil
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA
| | - Jaime Fagúndez
- Biology department, BioCost group, Centro interdisciplinar de química y biología CICA, University of A Coruña, 15071A, Coruña, Spain
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Fernando Fernández-Méndez
- Grupo de Investigación en Biodiversidad y Dinámica de Ecosistémas Tropicales - Universidad del Tolima, Ibagué, Colombia
- Centro Forestal Tropical Bajo Calima, Universidad del Tolima, Buenaventura, Costa Rica
| | - Maria T Fernandez-Piedade
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2.936 - Petrópolis - CEP, 69067-375, Manaus, AM, Brasil
| | - Henry Ford
- Ecological Flora of the British Isles, Bath, UK
| | - Estelle Forey
- Université de Rouen Normandie- INRAE, 76000, Rouen, France
| | - Gregoire T Freschet
- Theoretical and Experimental Ecology Station, CNRS, Paul Sabatier University, 09200, Moulis, France
| | - Sophie Gachet
- IMBE, Aix Marseille Univ, CNRS, IRD, Avignon Univ, Marseille, France
| | - Rachael Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Walton Green
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Greg R Guerin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alvaro G Gutiérrez
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile
| | | | | | - Tianhua He
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganalge 25, 60325, Frankfurt/Main, Germany
- Institut of Physcial Geography, Goethe University, Altenhöferallee 1, 60438, Frankfurt/Main, Germany
| | | | | | - Jugo Ilic
- University of Melbourne, Melburne, Australia
- CSIRO, Melburne, Canada
| | - Robert B Jackson
- Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford, CA, USA
| | - Adel Jalili
- Research Institute of Forests and Rangeland, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Steven Jansen
- Institue of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fumito Koike
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Christian König
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Nathan Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California, 90095, USA
| | - Koen Kramer
- Wageningen University, Droevendaalsesteeg 4, 6700AA, Wageningen, Netherlands
- Land Life Company, Mauritskade 63, 1092AD, Amsterdam, Netherlands
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Ingolf Kühn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Dept. Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- Martin Luther University Halle-Wittenberg, Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Germany
| | - Hiroko Kurokawa
- Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Eric G Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel C Laughlin
- Department of Botany, University of Wyoming, 1000 East University Ave, Laramie, WY, 82071, USA
| | - Michelle Leishman
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
| | - Frédérique Louault
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Ecosystème Prairial, 63000, Clermont Ferrand, France
| | - Ana C M Malhado
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, 57072-900, Brazil
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganalge 25, 60325, Frankfurt/Main, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Patrick Meir
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH93FF, United Kingdom
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Julie Messier
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Regis Miller
- Forest Products Lab, USDA Forest Service, Madison, Wisconsin, USA
| | - Vanessa Minden
- Landscape Ecology Group, Inst. of Biology and Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Jane Molofsky
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - Rebecca Montgomery
- Department of Forest Resources, 1530 Cleveland Ave. N., University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Marco Moretti
- Biodiverstiy and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Sandra Müller
- Geobotany, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | - Ülo Niinemets
- Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Romà Ogaya
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
| | - Kinga Öllerer
- Institute of Biology Bucharest, Romanian Academy, 060031, Bucharest, Romania
- Institute of Ecology and Botany, Centre for Ecological Research, 2163, Vácrátót, Hungary
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonosov State University, 119234, Moscow, Russia
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Wim A Ozinga
- Wageningen Environmental Research, PO Box 47, NL-6700 AA Wageningen, Wageningen, Netherlands
| | - Juli G Pausas
- Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE-CSIC), Valencia, 46113, Spain
| | - Begoña Peco
- Centro de Investigacion en Biodiversidad y Cambio Global (CIBC-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Josep Penuelas
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
| | - Valério D Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Clara Pladevall
- Snow and Mountain Research Center of Andorra, Andorran Research + Innovation, Avda. Rocafort 21-23 Sant Julià de Lòria, Principality of Andorra, Julià de Lòria, Andorra
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich-Schiller University Jena, Philosophenweg 16, D-07743, Jena, Germany
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California, 90095, USA
| | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, United Kingdom
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Brody Sandel
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193, Catalonia, Spain
| | - Brandon Schamp
- Department of Biology, Algoma University, Sault Ste, Marie, Ontario, P6A 6J8, Canada
| | | | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
| | - Fritz Schweingruber
- Landscape Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Satomi Shiodera
- Department of Global Liberal Studies, Faculty of Global Liberal Studies, Nanzan University, Aichi, 466-8673, Japan
- Center for Southeast Asian Studies (CSEAS), Kyoto University, 46 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | - Nadejda Soudzilovskaia
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC, Leiden, Netherlands
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, 92521, USA
| | - Emily Swaine
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Nathan Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Susanne Tautenhahn
- Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745, Jena, Germany
| | - Ken Thompson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Alexia Totte
- Département de biologie des organismes et écologie, Université libre de Bruxelles, Roosevelt, Belgique
| | - Rocío Urrutia-Jalabert
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- Center for Climate and Resilience Research CR2, Santiago, Chile
| | - Fernando Valladares
- National Museum of Natural Sciences, MNCN, CSIC, Serrano 115, 28006, Madrid, Spain
- University Rey Juan Carlos, Mostoles, Área de Biodiversidad y Conservación C/Tulipán sn, 28033, Móstoles, Madrid, Spain
| | - Peter van Bodegom
- Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC, Leiden, Netherlands
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, B-9090, Melle-Gontrode, Belgium
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Betsy von Holle
- National Science Foundation, Division of Environmental Biology, Alexandria, VA, 22314, USA
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Evan Weiher
- Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, USA
| | | | - Mathew Williams
- School of Geosciences, University of Edinburgh, Edinburgh, EH93FF, United Kingdom
| | - Justin Wright
- Department of Biology, Duke University, Durham, NC, USA
| | - Gerhard Zotz
- Smithsonian Tropical Research Institute, Panamá, Panama
- Functional Ecology Group, Inst. of Biology and Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| |
Collapse
|
6
|
Blandino C, Fernández-Pascual E, Newton RJ, Pritchard HW. Regeneration from seed in herbaceous understorey of ancient woodlands of temperate Europe. ANNALS OF BOTANY 2022; 129:761-774. [PMID: 35020780 PMCID: PMC9292608 DOI: 10.1093/aob/mcac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS European ancient woodlands are subject to land use change, and the distribution of herbaceous understorey species may be threatened because of their poor ability to colonize isolated forest patches. The regeneration niche can determine the species assembly of a community, and seed germination traits may be important descriptors of this niche. METHODS We analysed ecological records for 208 herbaceous species regarded as indicators of ancient woodlands in Europe and, where possible, collated data on seed germination traits, reviewed plant regeneration strategies and measured seed internal morphology traits. The relationship between plant regeneration strategies and ecological requirements was explored for 57 species using ordination and classification analysis. KEY RESULTS Three regeneration strategies were identified. Species growing in closed-canopy areas tend to have morphological seed dormancy, often requiring darkness and low temperatures for germination, and their shoots emerge in early spring, thus avoiding the competition for light from canopy species. These species are separated into two groups: autumn and late winter germinators. The third strategy is defined by open-forest plants with a preference for gaps, forest edges and riparian forests. They tend to have physiological seed dormancy and germinate in light and at higher temperatures, so their seedlings emerge in spring or summer. CONCLUSION Seed germination traits are fundamental to which species are good or poor colonizers of the temperate forest understorey and could provide a finer explanation than adult plant traits of species distribution patterns. Seed dormancy type, temperature stratification and light requirements for seed germination are important drivers of forest floor colonization patterns and should be taken in account when planning successful ecological recovery of temperate woodland understories.
Collapse
Affiliation(s)
- Cristina Blandino
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Florence, Italy
| | - Eduardo Fernández-Pascual
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- IMIB – Biodiversity Research Institute, University of Oviedo, Mieres, Spain
| | - Rosemary J Newton
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| | - Hugh W Pritchard
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| |
Collapse
|
7
|
Gorné LD, Díaz S, Minden V, Onoda Y, Kramer K, Muir C, Michaletz ST, Lavorel S, Sharpe J, Jansen S, Slot M, Chacon E, Boenisch G. The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments. ANNALS OF BOTANY 2022; 129:709-722. [PMID: 33245747 PMCID: PMC9113165 DOI: 10.1093/aob/mcaa198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation. METHODS We analysed covariation of four leaf functional traits [specific leaf area (SLA) leaf dry matter content (LDMC), force to tear (Ft) and leaf nitrogen content (Nm)] in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern. KEY RESULTS We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g. all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global pattern). CONCLUSIONS Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.
Collapse
Affiliation(s)
- Lucas D Gorné
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, IMBiV, Córdoba, Argentina
| | - Sandra Díaz
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, IMBiV, Córdoba, Argentina
| | - Vanessa Minden
- Institute of Biology and Environmental Sciences, Landscape Ecology Group, University of Oldenburg, Oldenburg, Germany
- Department of Biology, Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yusuke Onoda
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto, Japan
| | - Koen Kramer
- Wageningen University & Research, Wageningen University, The Netherlands
| | | | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Eduardo Chacon
- School of Biology, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
8
|
Yang K, Chen G, Xian J, Chen W. Varying Relationship Between Vascular Plant Leaf Area and Leaf Biomass Along an Elevational Gradient on the Eastern Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:824461. [PMID: 35498702 PMCID: PMC9040073 DOI: 10.3389/fpls.2022.824461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
The altitudinal gradient is one of the driving factors leading to leaf trait variation. It is crucial to understand the response and adaptation strategies of plants to explore the variation of leaf traits and their scaling relationship along the altitudinal gradient. We measured six main leaf traits of 257 woody species at 26 altitudes ranging from 1,050 to 3,500 m within the eastern Qinghai-Tibet Plateau and analyzed the scaling relationships among leaf fresh weight, leaf dry weight, and leaf area. The results showed that leaf dry weight increased significantly with elevation, while leaf fresh weight and leaf area showed a unimodal change. Leaf dry weight and fresh weight showed an allometric relationship, and leaf fresh weight increased faster than leaf dry weight. The scaling exponent of leaf area and leaf fresh weight (or dry weight) was significantly greater than 1, indicating that there have increasing returns for pooled data. For α and normalization constants (β), only β of leaf area vs. leaf fresh weight (or dry weight) had significantly increased with altitude. All three paired traits had positive linear relationships between α and β. Our findings suggest that plants adapt to altitudinal gradient by changing leaf area and biomass investment and coordinating scaling relationships among traits. But leaf traits variation had a minor effect on scaling exponent.
Collapse
Affiliation(s)
- Ketong Yang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guopeng Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Weiwei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Warming Responses of Leaf Morphology Are Highly Variable among Tropical Tree Species. FORESTS 2022. [DOI: 10.3390/f13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leaf morphological traits vary along climate gradients, but it is currently unclear to what extent this results from acclimation rather than adaptation. Knowing so is important for predicting the functioning of long-lived organisms, such as trees, in a rapidly changing climate. We investigated the leaf morphological warming responses of 18 tropical tree species with early (ES) abd late (LS) successional strategies, planted at three sites along an elevation gradient from 2400 m a.s.l. (15.2 °C mean temperature) to 1300 m a.s.l. (20.6 °C mean temperature) in Rwanda. Leaf size expressed as leaf area (LA) and leaf mass per area (LMA) decreased, while leaf width-to-length ratio (W/L) increased with warming, but only for one third to half of the species. While LA decreased in ES species, but mostly not in LS species, changes in LMA and leaf W/L were common in both successional groups. ES species had lower LMA and higher LA and leaf W/L compared to LS species. Values of LMA and LA of juvenile trees in this study were mostly similar to corresponding data on four mature tree species in another elevation-gradient study in Rwanda, indicating that our results are applicable also to mature forest trees. We conclude that leaf morphological responses to warming differ greatly between both successional groups and individual species, with potential consequences for species competitiveness and community composition in a warmer climate.
Collapse
|
10
|
Leaf Traits and Water-Use Characteristics of Impatiens hainanensis, a Limestone-Endemic Plant under Different Altitudes in Dry and Foggy Seasons. WATER 2022. [DOI: 10.3390/w14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The southwestern mountains of Hainan Island are distributed in the southernmost tropical karst landscape of China, and the unique hydrological structure and frequent solifluction droughts lead to double water stress for local plants. Highly heterogeneous water environments affect the water–use characteristics of plants. Plants develop local adaptative mechanisms in response to changes in the external environment. In this paper, hydrogen–oxygen and carbon stable isotope technology, and physiological index measurements were applied to determine the leaf traits, water–use efficiency, and photosynthetic characteristics of Impatiens hainanensis leaves in dry and foggy seasons, hoping to expound the adaptation mechanism of I. hainanensis leaves to the water dynamics in dry and foggy seasons. In dry and foggy seasons (November 2018 to April 2019), the leaves of I. hainanensis at low and medium altitudes have the following combination of traits: larger leaf dry weights, leaf areas, and specific leaf areas; smaller leaf thicknesses and leaf dry matter contents; and higher chlorophyll contents. In comparison, the leaves of I. hainanensis at high altitudes have the following combination of traits: smaller leaf dry weights, leaf areas, and specific leaf areas; larger leaf thicknesses and leaf dry matter contents; and lower chlorophyll contents. The leaves of I. hainanensis can absorb fog water through their leaves. When the leaves are sprayed with distilled water, the water potential is low, the water potential value gradually increases, and the leaves have a higher rate of water absorption. The leaves of I. hainanensis at low and medium altitudes have the following water–use characteristics: high photosynthesis, high transpiration, and low water–use efficiency. At high altitudes, the Pn of I. hainanensis decreases by 8.43% relative to at low altitudes and by 7.84% relative to at middle altitudes; the Tr decreased by 4.21% relative to at low altitudes and by 3.38% relative to at middle altitude; the WUE increased by 16.61% relative to at low altitudes and increased by 40.79% relative to at middle altitudes. The leaves of I. hainanensis at high altitudes have the following water–use characteristics: low photosynthesis, low transpiration, and high water–use efficiency. I. hainanensis develop different physiological mechanisms of water adaptation by weighing the traits of the leaves and their use of light and water to obtain resources during dry and foggy seasons.
Collapse
|
11
|
Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, Lens F, Niinemets Ü, Reich PB, Reichstein M, Römermann C, Schrodt F, Anand M, Bahn M, Byun C, Campetella G, Cerabolini BEL, Craine JM, Gonzalez-Melo A, Gutiérrez AG, He T, Higuchi P, Jactel H, Kraft NJB, Minden V, Onipchenko V, Peñuelas J, Pillar VD, Sosinski Ê, Soudzilovskaia NA, Weiher E, Mahecha MD. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat Ecol Evol 2022; 6:36-50. [PMID: 34949824 PMCID: PMC8752441 DOI: 10.1038/s41559-021-01616-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.
Collapse
Affiliation(s)
- Julia S. Joswig
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Christian Wirth
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany
| | - Meredith C. Schuman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jens Kattge
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Björn Reu
- grid.411595.d0000 0001 2105 7207Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ian J. Wright
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Sydney, New South Wales Australia
| | - Sebastian D. Sippel
- grid.5801.c0000 0001 2156 2780Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ,grid.454322.60000 0004 4910 9859Norwegian Institute of Bioeconomy Research, Oslo, Norway
| | - Nadja Rüger
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Department of Economics, University of Leipzig, Leipzig, Germany ,grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Ancón, Panama
| | - Ronny Richter
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Institute of Systematic Botany and Functional Biodiversity, University of Leipzig, Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Michael E. Schaepman
- grid.7400.30000 0004 1937 0650Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Peter M. van Bodegom
- grid.5132.50000 0001 2312 1970Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Leiden, the Netherlands
| | - J. H. C. Cornelissen
- grid.12380.380000 0004 1754 9227Systems Ecology, Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sandra Díaz
- grid.10692.3c0000 0001 0115 2557Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Koen Kramer
- grid.4818.50000 0001 0791 5666Chairgroup Forest Ecology and Forest Management, Wageningen University, Wageningen, the Netherlands ,Land Life Company, Amsterdam, the Netherlands
| | - Frederic Lens
- grid.425948.60000 0001 2159 802XResearch Group Functional Traits, Naturalis Biodiversity Center, Leiden, the Netherlands ,grid.5132.50000 0001 2312 1970Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Ülo Niinemets
- grid.16697.3f0000 0001 0671 1127Estonian University of Life Sciences, Tartu, Estonia
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales Australia ,grid.214458.e0000000086837370Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Markus Reichstein
- grid.419500.90000 0004 0491 7318Max-Planck-Institute for Biogeochemistry, Jena, Germany ,grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Christine Römermann
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9613.d0000 0001 1939 2794Department of Plant Biodiversity, Institute of Ecology and Evolution, Friedrich-Schiller University, Jena, Germany
| | - Franziska Schrodt
- grid.4563.40000 0004 1936 8868School of Geography, University of Nottingham, Nottingham, UK
| | - Madhur Anand
- grid.34429.380000 0004 1936 8198School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Michael Bahn
- grid.5771.40000 0001 2151 8122Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Chaeho Byun
- grid.252211.70000 0001 2299 2686Department of Biological Sciences and Biotechnology, Andong National University, Andong, Korea
| | - Giandiego Campetella
- grid.5602.10000 0000 9745 6549Plant Diversity and Ecosystems Management Unit, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Bruno E. L. Cerabolini
- grid.18147.3b0000000121724807Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | | | - Andres Gonzalez-Melo
- grid.412191.e0000 0001 2205 5940Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro G. Gutiérrez
- grid.443909.30000 0004 0385 4466Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Tianhua He
- grid.1032.00000 0004 0375 4078School of Molecular and Life Sciences, Curtin University, Perth, Western Australia Australia ,grid.1025.60000 0004 0436 6763College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia Australia
| | - Pedro Higuchi
- grid.412287.a0000 0001 2150 7271Department of Forestry, Universidade do Estado de Santa, Catarina, Lages, Brazil
| | - Hervé Jactel
- grid.508391.60000 0004 0622 9359INRAE University Bordeaux, BIOGECO, Cestas, France
| | - Nathan J. B. Kraft
- grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Vanessa Minden
- grid.8767.e0000 0001 2290 8069Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium ,grid.5560.60000 0001 1009 3608Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Vladimir Onipchenko
- grid.14476.300000 0001 2342 9668Department of Ecology and Plant Geography, Moscow State Lomonosov University, Moscow, Russia
| | - Josep Peñuelas
- grid.4711.30000 0001 2183 4846CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain ,grid.452388.00000 0001 0722 403XCREAF, Cerdanyola del Vallés, Spain
| | - Valério D. Pillar
- grid.8532.c0000 0001 2200 7498Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ênio Sosinski
- grid.460200.00000 0004 0541 873XEmbrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Nadejda A. Soudzilovskaia
- grid.12155.320000 0001 0604 5662Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium ,grid.5132.50000 0001 2312 1970Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Evan Weiher
- grid.267460.10000 0001 2227 2494Department of Biology, University of Wisconsin, Eau Claire, WI USA
| | - Miguel D. Mahecha
- grid.9647.c0000 0004 7669 9786German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Remote Sensing Centre for Earth System Research, University of Leipzig, Leipzig, Germany ,grid.7492.80000 0004 0492 3830Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
12
|
Kretz L, Bondar-Kunze E, Hein T, Richter R, Schulz-Zunkel C, Seele-Dilbat C, van der Plas F, Vieweg M, Wirth C. Vegetation characteristics control local sediment and nutrient retention on but not underneath vegetation in floodplain meadows. PLoS One 2021; 16:e0252694. [PMID: 34855757 PMCID: PMC8638890 DOI: 10.1371/journal.pone.0252694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Sediment and nutrient retention are essential ecosystem functions that floodplains provide and that improve river water quality. During floods, the floodplain vegetation retains sediment, which settles on plant surfaces and the soil underneath plants. Both sedimentation processes require that flow velocity is reduced, which may be caused by the topographic features and the vegetation structure of the floodplain. However, the relative importance of these two drivers and their key components have rarely been both quantified. In addition to topographic factors, we expect vegetation height and density, mean leaf size and pubescence, as well as species diversity of the floodplain vegetation to increase the floodplain's capacity for sedimentation. To test this, we measured sediment and nutrients (carbon, nitrogen and phosphorus) both on the vegetation itself and on sediment traps underneath the vegetation after a flood at 24 sites along the River Mulde (Germany). Additionally, we measured biotic and topographic predictor variables. Sedimentation on the vegetation surface was positively driven by plant biomass and the height variation of the vegetation, and decreased with the hydrological distance (total R2 = 0.56). Sedimentation underneath the vegetation was not driven by any vegetation characteristics but decreased with hydrological distance (total R2 = 0.42). Carbon, nitrogen and phosphorus content in the sediment on the traps increased with the total amount of sediment (total R2 = 0.64, 0.62 and 0.84, respectively), while C, N and P on the vegetation additionally increased with hydrological distance (total R2 = 0.80, 0.79 and 0.92, respectively). This offers the potential to promote sediment and especially nutrient retention via vegetation management, such as adapted mowing. The pronounced signal of the hydrological distance to the river emphasises the importance of a laterally connected floodplain with abandoned meanders and morphological depressions. Our study improves our understanding of the locations where floodplain management has its most significant impact on sediment and nutrient retention to increase water purification processes.
Collapse
Affiliation(s)
- Lena Kretz
- Systematic Botany and Functional Biodiversity, Life science, Leipzig University, Leipzig, Germany
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elisabeth Bondar-Kunze
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- WasserCluster Lunz, Lunz am See, Austria
| | - Thomas Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- WasserCluster Lunz, Lunz am See, Austria
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Life science, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Leipzig, Germany
| | - Christiane Schulz-Zunkel
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Carolin Seele-Dilbat
- Systematic Botany and Functional Biodiversity, Life science, Leipzig University, Leipzig, Germany
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Fons van der Plas
- Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands
| | - Michael Vieweg
- Department of Conservation Biology and Social-Ecological Systems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Christian Wirth
- Systematic Botany and Functional Biodiversity, Life science, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Max Planck Institute of Biogeochemistry, Jena, Germany
| |
Collapse
|
13
|
Leaf Vein Morphological Variation in Four Endangered Neotropical Magnolia Species along an Elevation Gradient in the Mexican Tropical Montane Cloud Forests. PLANTS 2021; 10:plants10122595. [PMID: 34961066 PMCID: PMC8703730 DOI: 10.3390/plants10122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Climatic variations influence the adaptive capacity of trees within tropical montane cloud forests species. Phenology studies have dominated current studies on tree species. Leaf vein morphology has been related to specific climatic oscillations and varies within species along altitudinal gradients. We tested that certain Neotropical broad leaf Magnolia species might be more vulnerable to leaf vein adaptation to moisture than others, as they would be more resilient to the hydric deficit. We assessed that leaf vein trait variations (vein density, primary vein size, vein length, and leaf base angle) among four Magnolia species (Magnolia nuevoleonensis, M. alejandrae, M. rzedowskiana, and Magnolia vovidesii) through the Mexican Tropical montane cloud forest with different elevation gradient and specific climatic factors. The temperature, precipitation, and potential evaporation differed significantly among Magnolia species. We detected that M. rzedowskiana and M. vovidesii with longer leaves at higher altitude sites are adapted to higher humidity conditions, and that M. nuevoleonensis and M. alejandrae inhabiting lower altitude sites are better adjusted to the hydric deficit. Our results advance efforts to identify the Magnolia species most vulnerable to climate change effects, which must focus priorities for conservation of this ecosystem, particularly in the Mexican tropical montane cloud forests.
Collapse
|
14
|
Patterns of Leaf Morphological Traits of Beech (Fagus sylvatica L.) along an Altitudinal Gradient. FORESTS 2021. [DOI: 10.3390/f12101297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadleaved tree species in mountainous populations usually demonstrate high levels of diversity in leaf morphology among individuals, as a response to a variety of environmental conditions associated with changes in altitude. We investigated the parameters shaping leaf morphological diversity in 80 beech individuals (Fagus sylvatica L.), in light and shade leaves, growing along an elevational gradient and under different habitat types on Mt. Paggeo in northeastern Greece. A clear altitudinal pattern was observed in the morphological leaf traits expressing lamina size and shape; with increasing altitude, trees had leaves with smaller laminas, less elongated outlines, and fewer pairs of secondary veins. However, this altitudinal trend in leaf morphology was varied in different habitat types. Furthermore, the shade leaves and light leaves showed differences in their altitudinal trend. Traits expressing lamina shape in shade leaves were more related to altitude, while leaf size appeared to be more influenced by habitat type. While the altitudinal trend in leaf morphology has been well documented for numerous broadleaved tree species, in a small spatial scale, different patterns emerged across different habitat types. This morphological variability among trees growing in a mountainous population indicates a high potential for adaptation to environmental extremes.
Collapse
|
15
|
Abstract
A plant functional trait study was conducted to know the existing relationship between important leaf traits namely, specific leaf area (SLA), leaf dry matter content (LDMC), and leaf life span (LL) in tropical dry evergreen forest (TDEFs) of Peninsular India. Widely accepted methodologies were employed to record functional traits. The relationships between SLA and LDMC, LDMC and LL, and SLA and LL were measured. Pearson’s coefficient of correlation showed a significant negative relationship between SLA and LDMC, and SLA and LL, whereas a significant positive relationship was prevailed between LDMC and LL. The mean trait values (SLA, LDMC, and LL) of evergreens varied significantly from deciduous species. SLA had a closer relationship with LDMC than LL. Similarly, LL had a closer relationship with SLA than LDMC. Species with evergreen leaf habits dominated forest sites under study. Evergreen species dominate the study area with a high evergreen-deciduous ratio of 5.34:1. The S strategy score of trees indicated a relatively higher biomass allocation to persistent tissues. TDEFs occur in low elevation, semiarid environment, but with the combination of oligotrophic habitat, high temperature and longer dry season these forests were flourishing as a unique evergreen ecosystem in the drier environment. The relationships found between leaf traits were in concurrence with earlier findings. Trees of TDEFs survive on the poor-nutrient habitat with a low SLA, high LDMC, and LL. This study adds baseline data on key leaf traits to plant functional trait database of India.
Collapse
|
16
|
Wu J, Shi Z, Liu S, Centritto M, Cao X, Zhang M, Zhao G. Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau, China. TREE PHYSIOLOGY 2021; 41:76-88. [PMID: 32785643 DOI: 10.1093/treephys/tpaa105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Elevational variations in the growing environment and sex differences in individuals drive the diversification of photosynthetic capacity of plants. However, photosynthetic response of dioecious plants to elevation gradients and the mechanisms that cause these responses are poorly understood. We measured foliar gas exchange, chlorophyll fluorescence and nitrogen allocations of male and female Seabuckthorn (Hippophae rhamnoides L.) at the elevation of 1900-3700 m above sea level (a.s.l.) on the eastern Qinghai-Tibetan Plateau, China. Male and female plants showed increased leaf photosynthetic capacity at higher elevation generally with no sex-specific difference. Photosynthetic photon flux density-saturated photosynthesis (Asat) was limited mostly by diffusional components (77 ± 1%), whereas biochemical components contributed minor limitations (22 ± 1%). Mesophyll conductance (gm) played an essential role in Asat variation, accounting for 40 ± 2% of the total photosynthetic limitations and had a significant positive correlation with Asat. Leaf nitrogen allocations to Rubisco (PR) and bioenergetics (PB) in the photosynthetic apparatus were major drivers for variations in photosynthetic nitrogen-use efficiency. The increase of these resource uptake capacities enables H. rhamnoides to maintain a high level of carbon assimilation and function efficiently to cope with the harsh conditions and shorter growing season at higher elevation.
Collapse
Affiliation(s)
- Jiamei Wu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangdong Zhao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
17
|
Puglielli G, Laanisto L, Poorter H, Niinemets Ü. Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. THE NEW PHYTOLOGIST 2021; 229:308-322. [PMID: 33411342 DOI: 10.1111/nph.16879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
The optimal partitioning theory predicts that plants of a given species acclimate to different environments by allocating a larger proportion of biomass to the organs acquiring the most limiting resource. Are similar patterns found across species adapted to environments with contrasting levels of abiotic stress? We tested the optimal partitioning theory by analysing how fractional biomass allocation to leaves, stems and roots differed between woody species with different tolerances of shade and drought in plants of different age and size (seedlings to mature trees) using a global dataset including 604 species. No overarching biomass allocation patterns at different tolerance values across species were found. Biomass allocation varied among functional types as a result of phenological (deciduous vs evergreen broad-leaved species) and broad phylogenetical (angiosperms vs gymnosperms) differences. Furthermore, the direction of biomass allocation responses between tolerant and intolerant species was often opposite to that predicted by the optimal partitioning theory. We conclude that plant functional type is the major determinant of biomass allocation in woody species. We propose that interactions between plant functional type, ontogeny and species-specific stress tolerance adaptations allow woody species with different shade and drought tolerances to display multiple biomass partitioning strategies.
Collapse
Affiliation(s)
- Giacomo Puglielli
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, D-52425, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
- Estonian Academy of Sciences, Tallinn, 10130, Estonia
| |
Collapse
|
18
|
Pérez F, Lavandero N, Ossa CG, Hinojosa LF, Jara-Arancio P, Arroyo MTK. Divergence in Plant Traits and Increased Modularity Underlie Repeated Transitions Between Low and High Elevations in the Andean Genus Leucheria. FRONTIERS IN PLANT SCIENCE 2020; 11:714. [PMID: 32582248 PMCID: PMC7287153 DOI: 10.3389/fpls.2020.00714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Understanding why some plant lineages move from one climatic region to another is a mayor goal of evolutionary biology. In the southern Andes plant lineages that have migrated along mountain ranges tracking cold-humid climates coexist with lineages that have shifted repeatedly between warm-arid at low elevations and cold habitats at high elevations. Transitions between habitats might be facilitated by the acquisition of common traits favoring a resource-conservative strategy that copes with drought resulting from either low precipitation or extreme cold. Alternatively, transitions might be accompanied by phenotypic divergence and accelerated evolution of plant traits, which in turn may depend on the level of coordination among them. Reduced integration and evolution of traits in modules are expected to increase evolutionary rates of traits, allowing diversification in contrasting climates. To examine these hypotheses, we conducted a comparative study in the herbaceous genus Leucheria. We reconstructed ancestral habitat states using Maximum Likelihood and a previously published phylogeny. We performed a Phylogenetic Principal Components Analysis on traits, and then we tested the relationship between PC axes, habitat and climate using Phylogenetic Generalized Least Squares (PGLS). Finally, we compared the evolutionary rates of traits, and the levels of modularity among the three main Clades of Leucheria. Our results suggest that the genus originated at high elevations and later repeatedly colonized arid-semiarid shrublands and humid-forest at lower elevations. PGLS analysis suggested that transitions between habitats were accompanied by shifts in plant strategies: cold habitats at high elevations favored the evolution of traits related to a conservative-resource strategy (thicker and dissected leaves, with high mass per area, and high biomass allocation to roots), whereas warm-arid habitats at lower elevations favored traits related to an acquisitive-resource strategy. As expected, we detected higher levels of modularity in the clades that switched repeatedly between habitats, but higher modularity was not associated with accelerated rates of trait evolution.
Collapse
Affiliation(s)
- Fernanda Pérez
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás Lavandero
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carmen Gloria Ossa
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Santiago, Chile
| | - Luis Felipe Hinojosa
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paola Jara-Arancio
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Biológicas y Departamento de Ecología y Biodiversidad, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mary T. Kalin Arroyo
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, Tan Z, Su X, Tang Z, Guo Q, Feng X, Enquist BJ, Wang Z. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol Lett 2020; 23:1003-1013. [PMID: 32249502 PMCID: PMC7384143 DOI: 10.1111/ele.13503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size-primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems.
Collapse
Affiliation(s)
- Yaoqi Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMN55108USA
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Bernhard Schmid
- Department of GeographyRemote Sensing LaboratoriesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
- Institute of Innovation EcologyLanzhou UniversityLanzhou730000China
| | - Xiao Feng
- Institute of the EnvironmentUniversity of ArizonaTucsonArizona85721USA
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Brian S. Maitner
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZ85721USA
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengdu610065SichuanChina
| | - Yichao Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Dongting Zou
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Zheng‐Hong Tan
- College of Environment and EcologyHainan UniversityHaikouHainan570228China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Zhiyao Tang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| | - Qinghua Guo
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Brian J. Enquist
- Institute of the EnvironmentUniversity of ArizonaTucsonArizona85721USA
- The Santa Fe InstituteSanta FeNM87501USA
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking UniversityBeijing100871China
| |
Collapse
|
20
|
Ye M, Zhu X, Gao P, Jiang L, Wu R. Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With Populus szechuanica in the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2020; 11:632. [PMID: 32536931 PMCID: PMC7267013 DOI: 10.3389/fpls.2020.00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
As an important functional organ of plants, leaves alter their shapes in response to a changing environment. The variation of leaf shape has long been an important evolutionary and developmental force in plants. Despite an increasing amount of investigations into the genetic controls of leaf morphology, few have systematically studied the genetic architecture controlling shape differences among distinct altitudes. Altitude denotes a comprehensive complex of environmental factors affecting plant growth in many aspects, e.g., UV-light radiation, temperature, and humidity. To reveal how plants alter ecological adaptation to altitude through genes, we used Populus szechuanica var. tibetica growing on the Qinghai-Tibetan plateau. F ST between the low- and high- altitude population was 0.00748, Q ST for leaf width, length and area were 0.00924, 0.1108, 0.00964 respectively. With the Elliptic Fourier-based morphometric model, association study of leaf shape was allowed, the dissection of the pleiotropic expression of genes mediating altitude-derived leaf shape variation was performed. For high and low altitudes, 130 and 131 significant single-nucleotide polymorphisms (SNPs) were identified. QTLs that affected leaf axis length and leaf width were expressed in both-altitude population, while QTLs regulating "leaf tip" and "leaf base" were expressed in low-altitude population. Pkinase and PRR2 were common significant genes in both types of populations. Auxin-related and differentiation-related genes included PIN1, CDK-like, and CAK1AT at high altitude, whereas they included NAP5, PIN-LIKES, and SCL1 at low altitude. The presence of Stress-antifung gene, CIPK3 and CRPK1 in high-altitude population suggested an interaction between genes and harsh environment in mediating leaf shape, while the senescence repression-related genes (EIN2 and JMJ18) and JMT in jasmonic acid pathway in low-altitude population suggested their crucial roles in ecological adaptability. These data provide new information that strengthens the understanding of genetic control with respect to leaf shape and constitute an entirely novel perspective regarding leaf adaptation and development in plants.
Collapse
Affiliation(s)
- Meixia Ye
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pan Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
21
|
Casolo V, Braidot E, Petrussa E, Zancani M, Vianello A, Boscutti F. Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus. AMERICAN JOURNAL OF BOTANY 2020; 107:639-649. [PMID: 32239489 PMCID: PMC7217170 DOI: 10.1002/ajb2.1458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant-plant interaction, and elevation. METHODS We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. RESULTS Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. CONCLUSIONS We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands.
Collapse
Affiliation(s)
- Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Enrico Braidot
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Marco Zancani
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Angelo Vianello
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Francesco Boscutti
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| |
Collapse
|
22
|
Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, Schaepman-Strub G, Wilmking M, Wipf S, Cornwell WK, Beck PSA, Georges D, Goetz SJ, Guay KC, Rüger N, Soudzilovskaia NA, Spasojevic MJ, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Te Beest M, Berner LT, Björk RG, Buchwal A, Buras A, Carbognani M, Christie KS, Collier LS, Cooper EJ, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Heijmans MMPD, Hermanutz L, Hudson JMG, Johnstone JF, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Kaarlejarvi E, Kulonen A, Lamarque LJ, Lantz TC, Lévesque E, Little CJ, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Petraglia A, Rumpf SB, Shetti R, Speed JDM, Suding KN, Tape KD, Tomaselli M, Trant AJ, Treier UA, Tremblay M, Venn SE, Vowles T, Weijers S, Wookey PA, Zamin TJ, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS, Craine JM, Dainese M, Green WA, Jansen S, Kleyer M, Manning P, Niinemets Ü, Onoda Y, Ozinga WA, Peñuelas J, Poschlod P, Reich PB, Sandel B, Schamp BS, Sheremetiev SN, de Vries FT. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat Commun 2020; 11:1351. [PMID: 32165619 PMCID: PMC7067758 DOI: 10.1038/s41467-020-15014-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
Collapse
Affiliation(s)
- H J D Thomas
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK.
| | - A D Bjorkman
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319, Gothenburg, Sweden
| | - I H Myers-Smith
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - S C Elmendorf
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - J Kattge
- Max Planck Institute for Biogeochemistry, 07701, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - S Diaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Av.Velez Sarsfield 299, Cordoba, Argentina
- FCEFyN, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - M Vellend
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université Sherbrooke, Québec, J1K 2R1, Canada
| | - D Blok
- Dutch Research Council, (NWO), Postbus 93460, 2509 AL, Den Haag, The Netherlands
| | - J H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - B C Forbes
- Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
| | - G H R Henry
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
| | - R D Hollister
- Biology Department, Grand Valley State University, 1 Campus Drive, 3300a Kindschi Hall of Science, Allendale, Michigan, USA
| | - S Normand
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J S Prevéy
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - C Rixen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - G Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - M Wilmking
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - S Wipf
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss National Park, Runatsch 124, Chastè Planta-Wildenberg, 7530, Zernez, Switzerland
| | - W K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - P S A Beck
- European Commission, Joint Research Centre, Via Enrico Fermi, 2749, Ispra, 21027, Italy
| | - D Georges
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- International Agency for Research in Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - S J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - K C Guay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, Maine, 04544, USA
| | - N Rüger
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancón, Panama
| | - N A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - M J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Life Sciences Building, Eucalyptus Dr #2710, Riverside, CA, 92521, USA
| | - J M Alatalo
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
- Environmental Science Center, Qatar University, Doha, Qatar
| | - H D Alexander
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Mississippi, MS, 39762, USA
| | - A Anadon-Rosell
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S Angers-Blondin
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - M Te Beest
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - L T Berner
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - R G Björk
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30, Gothenburg, Sweden
| | - A Buchwal
- Adam Mickiewicz University, Institute of Geoecology and Geoinformation, B. Krygowskiego 10, 61-680, Poznan, Poland
- University of Alaska Anchorage, 3211 Providence Dr, Anchorage, AK, 99508, USA
| | - A Buras
- Land Surface-Atmosphere Interactions, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - M Carbognani
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - K S Christie
- Alaska Department of Fish and Game, 333 Raspberry Rd, Anchorage, AK, 99518, USA
| | - L S Collier
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - E J Cooper
- Deptartment of Arctic and Marine Biology, Faculty of Bioscences Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
| | - B Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - A Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Oulu, Finland
| | - E R Frei
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - O Grau
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane), Campus Agronomique, 97310, Kourou, French Guiana
| | - P Grogan
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Hallinger
- Biology Department, Swedish Agricultural University (SLU), SE-750 07, Uppsala, Sweden
| | - M M P D Heijmans
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - L Hermanutz
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - J M G Hudson
- British Columbia Public Service, Vancouver, Canada
| | - J F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - K Hülber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - M Iturrate-Garcia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - C M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6134, USA
| | - F Jaroszynska
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, N-5020, Bergen, Norway
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3FX, Scotland, UK
| | - E Kaarlejarvi
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
- Department of Biology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussles, Belgium
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box, 65, FI-00014, Helsinki, Finland
| | - A Kulonen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - L J Lamarque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - T C Lantz
- School of Environmental Studies, University of Victoria, David Turpin Building, B243, Victoria, BC, Canada
| | - E Lévesque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - C J Little
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Aquatic Ecology, Eawag, the Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Duebendorf, Switzerland
| | - A Michelsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
- Department of Biology, University of Copenhagen, Terrestrial Ecology Section, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - A Milbau
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000, Brussels, Belgium
| | - J Nabe-Nielsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - S S Nielsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J M Ninot
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S F Oberbauer
- Department of Biological Sciences, Florida International University, 11200S.W. 8th Street, Miami, FL, 33199, USA
| | - J Olofsson
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - V G Onipchenko
- Department of Ecology and Plant Geography, Moscow State Lomonosov University, 119234, Moscow, 1-12 Leninskie Gory, Russia
| | - A Petraglia
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - S B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- Department of Ecology and Evolution, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015, Lausanne, Switzerland
| | - R Shetti
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - J D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - K N Suding
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - K D Tape
- Institute of Northern Engineering, University of Alaska, Engineering Learning and Innovation Facility (ELIF), Suite 240, 1764 Tanana Loop, Fairbanks, AK, 99775-5910, USA
| | - M Tomaselli
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - A J Trant
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - U A Treier
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - M Tremblay
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - S E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Rd, Waurn Ponds Victoria, 3216, Australia
| | - T Vowles
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - S Weijers
- Department of Geography, University of Bonn, Meckenheimer Allee 166, D-53115, Bonn, Germany
| | - P A Wookey
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - T J Zamin
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Bahn
- Department of Ecology, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - B Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, 3 South Parks Road, Oxford, OX1 3QY, UK
- Rocky Mountain Biological Laboratory, 8000 Co Rd 317, Crested Butte, CO, 81224, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94706, USA
| | - P M van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - B Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, 5825 University Research Ct, College Park, MD, 20740, USA
| | - G Campetella
- School of Biosciences and Veterinary Medicine-Plant Diversity and Ecosystems Management Unit, Univeristy of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - B E L Cerabolini
- DBSV-University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - F S Chapin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - J M Craine
- Jonah Ventures, 1600 Range Street Suite 201, Boulder, CO, 80301, USA
| | - M Dainese
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Alpine Environment, EURAC Research, Viale Druso, 1, 39100, Bolzano, Italy
| | - W A Green
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - M Kleyer
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - P Manning
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt, Germany
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R.Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Y Onoda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - W A Ozinga
- Vegetation, Forest and Landscape Ecology, Wageningen University and Research, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands
| | - J Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - P Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - P B Reich
- Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave. N., St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - B Sandel
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - B S Schamp
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste., Marie, ON, P6A 2G4, Canada
| | - S N Sheremetiev
- Komarov Botanical Institute, Professor Popova Street, 2, St Petersburg, Russia
| | - F T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, 1090 GE, Amsterdam, Netherlands
| |
Collapse
|
23
|
Wang R, Chen H, Liu X, Wang Z, Wen J, Zhang S. Plant Phylogeny and Growth Form as Drivers of the Altitudinal Variation in Woody Leaf Vein Traits. FRONTIERS IN PLANT SCIENCE 2020; 10:1735. [PMID: 32117333 PMCID: PMC7012802 DOI: 10.3389/fpls.2019.01735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Variation in leaf veins along environmental gradients reflects an important adaptive strategy of plants to the external habitats, because of their crucial roles in maintaining leaf water status and photosynthetic capacity. However, most studies concentrate on a few species and their vein variation across horizontal spatial scale, we know little about how vein traits shift along the vertical scale, e.g., elevational gradient along a mountain, and how such patterns are shaped by plant types and environmental factors. Here, we aimed to investigate the variation in leaf vein traits (i.e., vein density, VD; vein thickness, VT; and vein volume per unit leaf area, VV) of 93 woody species distributed along an elevational gradient (1,374-3,375 m) in a temperate mountain in China. Our results showed that altitude-related trends differed between growth forms. Tree plants from higher altitudes had lower VD but higher VT and VV than those from lower altitude; however, the opposite tend was observed in VD of shrubs, and no significant altitudinal changes in their VT or VV. Plant phylogenetic information at the clade level rather than climate explained most of variation in three leaf vein traits (17.1-86.6% vs. <0.011-6.3% explained variance), supporting the phylogenetic conservatism hypothesis for leaf vein traits. Moreover, the phylogenetic effects on vein traits differed between trees and shrubs, with the vein traits of trees being relatively more conserved. Together, our study provides new picture of leaf vein variation along the altitude, and highlights the importance of taking plant phylogeny into consideration when discussing trait variation from an ecological to a biogeographic scale.
Collapse
Affiliation(s)
- Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Huoditang, China
| | - Haoxuan Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xinrui Liu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhibo Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jingwen Wen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Huoditang, China
| |
Collapse
|
24
|
Santini F, Climent JM, Voltas J. Phenotypic integration and life history strategies among populations of Pinus halepensis: an insight through structural equation modelling. ANNALS OF BOTANY 2020; 124:1161-1172. [PMID: 31115443 PMCID: PMC6943711 DOI: 10.1093/aob/mcz088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Understanding inter-population variation in the allocation of resources to specific anatomical compartments and physiological processes is crucial to disentangle adaptive patterns in forest species. This work aims to evaluate phenotypic integration and trade-offs among functional traits as determinants of life history strategies in populations of a circum-Mediterranean pine that dwells in environments where water and other resources are in limited supply. METHODS Adult individuals of 51 populations of Pinus halepensis grown in a common garden were characterized for 11 phenotypic traits, including direct and indirect measures of water uptake at different depths, leaf area, stomatal conductance, chlorophyll content, non-structural carbohydrates, stem diameter and tree height, age at first reproduction and cone production. The population differentiation in these traits was tested through analysis of variance (ANOVA). The resulting populations' means were carried forward to a structural equation model evaluating phenotypic integration between six latent variables (summer water uptake depth, summer transpiration, spring photosynthetic capacity, growth, reserve accumulation and reproduction). KEY RESULTS Water uptake depth and transpiration covaried negatively among populations, as the likely result of a common selective pressure for drought resistance, while spring photosynthetic capacity was lower in populations originating from dry areas. Transpiration positively influenced growth, while growth was negatively related to reproduction and reserves among populations. Water uptake depth negatively influenced reproduction. CONCLUSIONS The observed patterns indicate a differentiation in life cycle features between fast-growing and slow-growing populations, with the latter investing significantly more in reproduction and reserves. We speculate that such contrasting strategies result from different arrays of life history traits underlying the very different ecological conditions that the Aleppo pine must face across its distribution range. These comprise, principally, drought as the main stressor and fire as the main ecological disturbance of the Mediterranean basin.
Collapse
Affiliation(s)
- Filippo Santini
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - José M Climent
- INIA-CIFOR, Department of Ecology and Forest Genetics, Madrid, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC – AGROTECNIO, Lleida, Spain
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| |
Collapse
|
25
|
Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, Alcántara JM, Alcázar C C, Aleixo I, Ali H, Amiaud B, Ammer C, Amoroso MM, Anand M, Anderson C, Anten N, Antos J, Apgaua DMG, Ashman TL, Asmara DH, Asner GP, Aspinwall M, Atkin O, Aubin I, Baastrup-Spohr L, Bahalkeh K, Bahn M, Baker T, Baker WJ, Bakker JP, Baldocchi D, Baltzer J, Banerjee A, Baranger A, Barlow J, Barneche DR, Baruch Z, Bastianelli D, Battles J, Bauerle W, Bauters M, Bazzato E, Beckmann M, Beeckman H, Beierkuhnlein C, Bekker R, Belfry G, Belluau M, Beloiu M, Benavides R, Benomar L, Berdugo-Lattke ML, Berenguer E, Bergamin R, Bergmann J, Bergmann Carlucci M, Berner L, Bernhardt-Römermann M, Bigler C, Bjorkman AD, Blackman C, Blanco C, Blonder B, Blumenthal D, Bocanegra-González KT, Boeckx P, Bohlman S, Böhning-Gaese K, Boisvert-Marsh L, Bond W, Bond-Lamberty B, Boom A, Boonman CCF, Bordin K, Boughton EH, Boukili V, Bowman DMJS, Bravo S, Brendel MR, Broadley MR, Brown KA, Bruelheide H, Brumnich F, Bruun HH, Bruy D, Buchanan SW, Bucher SF, Buchmann N, Buitenwerf R, Bunker DE, Bürger J, Burrascano S, Burslem DFRP, Butterfield BJ, Byun C, Marques M, Scalon MC, Caccianiga M, Cadotte M, Cailleret M, Camac J, Camarero JJ, Campany C, Campetella G, Campos JA, Cano-Arboleda L, Canullo R, Carbognani M, Carvalho F, Casanoves F, Castagneyrol B, Catford JA, Cavender-Bares J, Cerabolini BEL, Cervellini M, Chacón-Madrigal E, Chapin K, Chapin FS, Chelli S, Chen SC, Chen A, Cherubini P, Chianucci F, Choat B, Chung KS, Chytrý M, Ciccarelli D, Coll L, Collins CG, Conti L, Coomes D, Cornelissen JHC, Cornwell WK, Corona P, Coyea M, Craine J, Craven D, Cromsigt JPGM, Csecserits A, Cufar K, Cuntz M, da Silva AC, Dahlin KM, Dainese M, Dalke I, Dalle Fratte M, Dang-Le AT, Danihelka J, Dannoura M, Dawson S, de Beer AJ, De Frutos A, De Long JR, Dechant B, Delagrange S, Delpierre N, Derroire G, Dias AS, Diaz-Toribio MH, Dimitrakopoulos PG, Dobrowolski M, Doktor D, Dřevojan P, Dong N, Dransfield J, Dressler S, Duarte L, Ducouret E, Dullinger S, Durka W, Duursma R, Dymova O, E-Vojtkó A, Eckstein RL, Ejtehadi H, Elser J, Emilio T, Engemann K, Erfanian MB, Erfmeier A, Esquivel-Muelbert A, Esser G, Estiarte M, Domingues TF, Fagan WF, Fagúndez J, Falster DS, Fan Y, Fang J, Farris E, Fazlioglu F, Feng Y, Fernandez-Mendez F, Ferrara C, Ferreira J, Fidelis A, Finegan B, Firn J, Flowers TJ, Flynn DFB, Fontana V, Forey E, Forgiarini C, François L, Frangipani M, Frank D, Frenette-Dussault C, Freschet GT, Fry EL, Fyllas NM, Mazzochini GG, Gachet S, Gallagher R, Ganade G, Ganga F, García-Palacios P, Gargaglione V, Garnier E, Garrido JL, de Gasper AL, Gea-Izquierdo G, Gibson D, Gillison AN, Giroldo A, Glasenhardt MC, Gleason S, Gliesch M, Goldberg E, Göldel B, Gonzalez-Akre E, Gonzalez-Andujar JL, González-Melo A, González-Robles A, Graae BJ, Granda E, Graves S, Green WA, Gregor T, Gross N, Guerin GR, Günther A, Gutiérrez AG, Haddock L, Haines A, Hall J, Hambuckers A, Han W, Harrison SP, Hattingh W, Hawes JE, He T, He P, Heberling JM, Helm A, Hempel S, Hentschel J, Hérault B, Hereş AM, Herz K, Heuertz M, Hickler T, Hietz P, Higuchi P, Hipp AL, Hirons A, Hock M, Hogan JA, Holl K, Honnay O, Hornstein D, Hou E, Hough-Snee N, Hovstad KA, Ichie T, Igić B, Illa E, Isaac M, Ishihara M, Ivanov L, Ivanova L, Iversen CM, Izquierdo J, Jackson RB, Jackson B, Jactel H, Jagodzinski AM, Jandt U, Jansen S, Jenkins T, Jentsch A, Jespersen JRP, Jiang GF, Johansen JL, Johnson D, Jokela EJ, Joly CA, Jordan GJ, Joseph GS, Junaedi D, Junker RR, Justes E, Kabzems R, Kane J, Kaplan Z, Kattenborn T, Kavelenova L, Kearsley E, Kempel A, Kenzo T, Kerkhoff A, Khalil MI, Kinlock NL, Kissling WD, Kitajima K, Kitzberger T, Kjøller R, Klein T, Kleyer M, Klimešová J, Klipel J, Kloeppel B, Klotz S, Knops JMH, Kohyama T, Koike F, Kollmann J, Komac B, Komatsu K, König C, Kraft NJB, Kramer K, Kreft H, Kühn I, Kumarathunge D, Kuppler J, Kurokawa H, Kurosawa Y, Kuyah S, Laclau JP, Lafleur B, Lallai E, Lamb E, Lamprecht A, Larkin DJ, Laughlin D, Le Bagousse-Pinguet Y, le Maire G, le Roux PC, le Roux E, Lee T, Lens F, Lewis SL, Lhotsky B, Li Y, Li X, Lichstein JW, Liebergesell M, Lim JY, Lin YS, Linares JC, Liu C, Liu D, Liu U, Livingstone S, Llusià J, Lohbeck M, López-García Á, Lopez-Gonzalez G, Lososová Z, Louault F, Lukács BA, Lukeš P, Luo Y, Lussu M, Ma S, Maciel Rabelo Pereira C, Mack M, Maire V, Mäkelä A, Mäkinen H, Malhado ACM, Mallik A, Manning P, Manzoni S, Marchetti Z, Marchino L, Marcilio-Silva V, Marcon E, Marignani M, Markesteijn L, Martin A, Martínez-Garza C, Martínez-Vilalta J, Mašková T, Mason K, Mason N, Massad TJ, Masse J, Mayrose I, McCarthy J, McCormack ML, McCulloh K, McFadden IR, McGill BJ, McPartland MY, Medeiros JS, Medlyn B, Meerts P, Mehrabi Z, Meir P, Melo FPL, Mencuccini M, Meredieu C, Messier J, Mészáros I, Metsaranta J, Michaletz ST, Michelaki C, Migalina S, Milla R, Miller JED, Minden V, Ming R, Mokany K, Moles AT, Molnár A, Molofsky J, Molz M, Montgomery RA, Monty A, Moravcová L, Moreno-Martínez A, Moretti M, Mori AS, Mori S, Morris D, Morrison J, Mucina L, Mueller S, Muir CD, Müller SC, Munoz F, Myers-Smith IH, Myster RW, Nagano M, Naidu S, Narayanan A, Natesan B, Negoita L, Nelson AS, Neuschulz EL, Ni J, Niedrist G, Nieto J, Niinemets Ü, Nolan R, Nottebrock H, Nouvellon Y, Novakovskiy A, Nystuen KO, O'Grady A, O'Hara K, O'Reilly-Nugent A, Oakley S, Oberhuber W, Ohtsuka T, Oliveira R, Öllerer K, Olson ME, Onipchenko V, Onoda Y, Onstein RE, Ordonez JC, Osada N, Ostonen I, Ottaviani G, Otto S, Overbeck GE, Ozinga WA, Pahl AT, Paine CET, Pakeman RJ, Papageorgiou AC, Parfionova E, Pärtel M, Patacca M, Paula S, Paule J, Pauli H, Pausas JG, Peco B, Penuelas J, Perea A, Peri PL, Petisco-Souza AC, Petraglia A, Petritan AM, Phillips OL, Pierce S, Pillar VD, Pisek J, Pomogaybin A, Poorter H, Portsmuth A, Poschlod P, Potvin C, Pounds D, Powell AS, Power SA, Prinzing A, Puglielli G, Pyšek P, Raevel V, Rammig A, Ransijn J, Ray CA, Reich PB, Reichstein M, Reid DEB, Réjou-Méchain M, de Dios VR, Ribeiro S, Richardson S, Riibak K, Rillig MC, Riviera F, Robert EMR, Roberts S, Robroek B, Roddy A, Rodrigues AV, Rogers A, Rollinson E, Rolo V, Römermann C, Ronzhina D, Roscher C, Rosell JA, Rosenfield MF, Rossi C, Roy DB, Royer-Tardif S, Rüger N, Ruiz-Peinado R, Rumpf SB, Rusch GM, Ryo M, Sack L, Saldaña A, Salgado-Negret B, Salguero-Gomez R, Santa-Regina I, Santacruz-García AC, Santos J, Sardans J, Schamp B, Scherer-Lorenzen M, Schleuning M, Schmid B, Schmidt M, Schmitt S, Schneider JV, Schowanek SD, Schrader J, Schrodt F, Schuldt B, Schurr F, Selaya Garvizu G, Semchenko M, Seymour C, Sfair JC, Sharpe JM, Sheppard CS, Sheremetiev S, Shiodera S, Shipley B, Shovon TA, Siebenkäs A, Sierra C, Silva V, Silva M, Sitzia T, Sjöman H, Slot M, Smith NG, Sodhi D, Soltis P, Soltis D, Somers B, Sonnier G, Sørensen MV, Sosinski EE, Soudzilovskaia NA, Souza AF, Spasojevic M, Sperandii MG, Stan AB, Stegen J, Steinbauer K, Stephan JG, Sterck F, Stojanovic DB, Strydom T, Suarez ML, Svenning JC, Svitková I, Svitok M, Svoboda M, Swaine E, Swenson N, Tabarelli M, Takagi K, Tappeiner U, Tarifa R, Tauugourdeau S, Tavsanoglu C, Te Beest M, Tedersoo L, Thiffault N, Thom D, Thomas E, Thompson K, Thornton PE, Thuiller W, Tichý L, Tissue D, Tjoelker MG, Tng DYP, Tobias J, Török P, Tarin T, Torres-Ruiz JM, Tóthmérész B, Treurnicht M, Trivellone V, Trolliet F, Trotsiuk V, Tsakalos JL, Tsiripidis I, Tysklind N, Umehara T, Usoltsev V, Vadeboncoeur M, Vaezi J, Valladares F, Vamosi J, van Bodegom PM, van Breugel M, Van Cleemput E, van de Weg M, van der Merwe S, van der Plas F, van der Sande MT, van Kleunen M, Van Meerbeek K, Vanderwel M, Vanselow KA, Vårhammar A, Varone L, Vasquez Valderrama MY, Vassilev K, Vellend M, Veneklaas EJ, Verbeeck H, Verheyen K, Vibrans A, Vieira I, Villacís J, Violle C, Vivek P, Wagner K, Waldram M, Waldron A, Walker AP, Waller M, Walther G, Wang H, Wang F, Wang W, Watkins H, Watkins J, Weber U, Weedon JT, Wei L, Weigelt P, Weiher E, Wells AW, Wellstein C, Wenk E, Westoby M, Westwood A, White PJ, Whitten M, Williams M, Winkler DE, Winter K, Womack C, Wright IJ, Wright SJ, Wright J, Pinho BX, Ximenes F, Yamada T, Yamaji K, Yanai R, Yankov N, Yguel B, Zanini KJ, Zanne AE, Zelený D, Zhao YP, Zheng J, Zheng J, Ziemińska K, Zirbel CR, Zizka G, Zo-Bi IC, Zotz G, Wirth C. TRY plant trait database - enhanced coverage and open access. GLOBAL CHANGE BIOLOGY 2020; 26:119-188. [PMID: 31891233 DOI: 10.1111/gcb.14904] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 05/17/2023]
Abstract
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
Collapse
Affiliation(s)
- Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Sandra Díaz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV), and Factulad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sandra Lavorel
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | | | - Paul Leadley
- Ecologie Systématique Evolution, CNRS, AgroParisTech, University of Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Oxford, UK
- Balliol College, University of Oxford, Oxford, UK
| | | | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | | | - George C Adamidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Kairi Adamson
- Tartu Observatory, University of Tartu, Tartumaa, Estonia
| | - Masahiro Aiba
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Cécile H Albert
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | | | | | - Izabela Aleixo
- National Institute of Amazonian Research (INPA), Manaus, Brazil
| | - Hamada Ali
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | | - Christian Ammer
- Forest Sciences, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land-use, University of Göttingen, Göttingen, Germany
| | - Mariano M Amoroso
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Universidad Nacional de Río Negro, El Bolsón, Argentina
- Conicet-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Carolyn Anderson
- Pacific Northwest National Laboratory, Richland, WA, USA
- University of Massachusetts Amherst, Amherst, MA, USA
| | - Niels Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | | | | | | | - Degi Harja Asmara
- Centre for Forest Research, Institute for Integrative Systems Biology, Université Laval, Quebec, QC, Canada
| | | | - Michael Aspinwall
- Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - Owen Atkin
- ARC Centre for Excellence in Plant Energy Biology, Australian National University, Acton, ACT, Australia
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON, Canada
| | | | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Jan P Bakker
- Conservation Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Baltzer
- Biology Department, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Arindam Banerjee
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | | | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Diego R Barneche
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Zdravko Baruch
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Denis Bastianelli
- CIRAD, UMR SELMET, Montpellier, France
- SELMET, CIRAD, INRA, Univ Montpellier, Montpellier SupAgro, France
| | - John Battles
- University of California at Berkeley, Berkeley, CA, USA
| | - William Bauerle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Marijn Bauters
- Department of Green Chemistry and Technology, Ghent University, Gent, Belgium
- Department of Environment, Ghent University, Gent, Belgium
| | - Erika Bazzato
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy
| | - Michael Beckmann
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | - Renee Bekker
- Groningen Institute of Archaeology (GIA), University of Groningen, Groningen, The Netherlands
| | - Gavin Belfry
- Department of Biological Sciences, University of Tennessee, Knoxville, TN, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Michael Belluau
- Département des Science, Université du Québec À Montréal, Montreal, QC, Canada
| | - Mirela Beloiu
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
| | | | | | - Mary Lee Berdugo-Lattke
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
- Fundación Natura, Bogota, Colombia
| | - Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - Rodrigo Bergamin
- Laboratório de Estudos em Vegetação Campestre (LEVCamp), Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joana Bergmann
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Marcos Bergmann Carlucci
- Laboratório de Ecologia Funcional de Comunidades (LABEF), Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Logan Berner
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Chris Blackman
- PIAF, INRA, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Carolina Blanco
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Benjamin Blonder
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dana Blumenthal
- USDA-ARS Rangeland Resources & Systems Research Unit, Fort Collins, CO, USA
| | - Kelly T Bocanegra-González
- Grupo de Investigación en Biodiversidad y Dinámica de Ecosistémas Tropicales - Universidad del Tolima, Ibagué, Colombia
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Gent, Belgium
| | - Stephanie Bohlman
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Laura Boisvert-Marsh
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, ON, Canada
| | - William Bond
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- SAEON Fynbos Node, Claremont, South Africa
| | | | - Arnoud Boom
- School of Geography, Geology and Environment, University of Leicester, Leicester, UK
| | - Coline C F Boonman
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Kauane Bordin
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Vanessa Boukili
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Sandra Bravo
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina
| | - Marco Richard Brendel
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | | | - Kerry A Brown
- Department of Geography and Geology, Kingston University, Kingston upon Thames, UK
| | - Helge Bruelheide
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Federico Brumnich
- Conicet-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral (FICH-UNL), Santa Fe, Argentina
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David Bruy
- AMAP, CIRAD, CNRS, IRD, INRA, Université de Montpellier, Montpellier, France
- AMAP, IRD, Herbier de Nouvelle-Calédonie, Nouméa, New Caledonia
| | | | | | | | - Robert Buitenwerf
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Jana Bürger
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | | | | | - Bradley J Butterfield
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Chaeho Byun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Marcia Marques
- Departamento de Botânica, SCB, UFPR - Federal University of Parana, Curitiba, Brazil
| | - Marina C Scalon
- Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marc Cadotte
- University of Toronto Scarborough, Scarborough, ON, Canada
| | - Maxime Cailleret
- IRSTEA Aix-en-Provence, UMR RECOVER, Aix-Marseille University, Aix-en-Provence, France
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - James Camac
- Centre of Excellence for Bioscurity Risk Analysis, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | - Giandiego Campetella
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
| | - Juan Antonio Campos
- Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Laura Cano-Arboleda
- Fundación Natura, Bogota, Colombia
- Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellin, Colombia
| | - Roberto Canullo
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Fabio Carvalho
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Fernando Casanoves
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | | | - Jane A Catford
- Department of Geography, King's College London, London, UK
| | | | - Bruno E L Cerabolini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marco Cervellini
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
- BIGEA, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | | - F Stuart Chapin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Stefano Chelli
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
| | | | - Anping Chen
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Paolo Cherubini
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
- Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | | | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | | | - Milan Chytrý
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | | | - Lluís Coll
- Department of Agriculture and Forest Engineering (EAGROF), University of Lleida, Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO, Solsona, Spain
| | | | - Luisa Conti
- Faculty of Environmental Sciences, University of Life Sciences Prague, Praha-Suchdol, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
| | - David Coomes
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - William K Cornwell
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Marie Coyea
- Faculté de foresterie, de géographie et de géomatique, Université Laval, Quebec, QC, Canada
| | | | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Katarina Cufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matthias Cuntz
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | | | - Kyla M Dahlin
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA
| | - Matteo Dainese
- Eurac Research, Institute for Alpine Environment, Bozen-Bolzano, Italy
| | - Igor Dalke
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Michele Dalle Fratte
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anh Tuan Dang-Le
- University of Science - Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Jirí Danihelka
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
- Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Masako Dannoura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Samantha Dawson
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Arend Jacobus de Beer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Angel De Frutos
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jonathan R De Long
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Benjamin Dechant
- Department Computational Landscape Ecology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department Computational Hydrosystems, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sylvain Delagrange
- Institute of Temperate Forest Sciences (ISFORT), Ripon, QC, Canada
- UQO, Department of Natural Sciences, Ripon, QC, Canada
| | - Nicolas Delpierre
- Ecologie Systématique Evolution, CNRS, AgroParisTech, University of Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRA, Université des Antilles, Université de la Guyane), Kourou, French Guiana, France
| | - Arildo S Dias
- Institut für Physische Geographie, Biogeography and Biodiversity Lab, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | | | | | - Mark Dobrowolski
- Iluka Resources, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Daniel Doktor
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Pavel Dřevojan
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Stefan Dressler
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Leandro Duarte
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Emilie Ducouret
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRA, Université des Antilles, Université de la Guyane), Kourou, French Guiana, France
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Walter Durka
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Remko Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Olga Dymova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Anna E-Vojtkó
- Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Rolf Lutz Eckstein
- Department of Environmental and Life Sciences - Biology, Karlstad University, Karlstad, Sweden
| | - Hamid Ejtehadi
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - James Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Thaise Emilio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós Graduação em Ecologia, Institute of Biology, University of Campinas UNICAMP, Brazil
| | - Kristine Engemann
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Mohammad Bagher Erfanian
- Quantitative Plant Ecology and Biodiversity Research Laboratory, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alexandra Erfmeier
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Ecosystem Research/Geobotany, Kiel University, Kiel, Germany
| | - Adriane Esquivel-Muelbert
- School of Geography, University of Leeds, Leeds, UK
- School of Geography, Earth and Environmental Sciences - University of Birmingham, Birmingham, UK
| | - Gerd Esser
- Institute for Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marc Estiarte
- Spanish National Research Council - CSIC, Catalonia, Spain
- CREAF, Catalonia, Spain
| | | | | | - Jaime Fagúndez
- Campus da Zapateira, University of A Coruña, A Coruña, Spain
| | - Daniel S Falster
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ying Fan
- Rutgers University, Piscataway, NJ, USA
| | | | - Emmanuele Farris
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Fatih Fazlioglu
- Faculty of Arts and Sciences, Molecular Biology and Genetics, Ordu University, Ordu, Turkey
| | - Yanhao Feng
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fernando Fernandez-Mendez
- Grupo de Investigación en Biodiversidad y Dinámica de Ecosistémas Tropicales - Universidad del Tolima, Ibagué, Colombia
- Centro Forestal Tropical Bajo Calima, Universidad del Tolima, Buenaventura, Colombia
| | | | | | - Alessandra Fidelis
- Instituto de Biociências, Laboratory of Vegetation Ecology, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Bryan Finegan
- CATIE-Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica
| | - Jennifer Firn
- Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Dan F B Flynn
- Arnold Arboretum of Harvard University, Boston, MA, USA
| | - Veronika Fontana
- Eurac Research, Institute for Alpine Environment, Bozen-Bolzano, Italy
| | - Estelle Forey
- Laboratoire ECODIV URA, IRSTEA/EA 1293, Normandie Université, UFR ST, Université de Rouen, Mont Saint-Aignan, France
| | - Cristiane Forgiarini
- Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Louis François
- Unit of Research SPHERES, University of Liège, Liège, Belgium
| | - Marcelo Frangipani
- University of Guelph, Guelph, ON, Canada
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Grégoire T Freschet
- Theoretical and Experimental Ecology Station, CNRS, Paul Sabatier University Toulouse, Moulis, France
| | - Ellen L Fry
- School of Earth and Environment Science, University of Manchester, Manchester, UK
| | - Nikolaos M Fyllas
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Guilherme G Mazzochini
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sophie Gachet
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France
| | - Rachael Gallagher
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gislene Ganade
- Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Francesca Ganga
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy
| | - Pablo García-Palacios
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Verónica Gargaglione
- Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Invetigaciones Científicas y Técnicas, Universidad Nacional de La Patagonia Austral, Río Gallegos, Argentina
| | - Eric Garnier
- UMR 5175 CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry, Montpellier, France
| | - Jose Luis Garrido
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | | | - David Gibson
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA
| | | | - Aelton Giroldo
- Instituto Federal de Educação Ciência e Tecnologia do Ceará, Crateús, Brazil
| | | | - Sean Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, USA
| | - Mariana Gliesch
- Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich, Switzerland
| | - Emma Goldberg
- Department of Ecology, Evolution & Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Bastian Göldel
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | | | - Andrés González-Melo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogota, Colombia
| | - Ana González-Robles
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | | | - Elena Granda
- Department of Life Sciences, University of Alcalá, Alcala de Henares, Spain
| | | | - Walton A Green
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Gregor
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Nicolas Gross
- UCA, INRA, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, France
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Greg R Guerin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Alvaro G Gutiérrez
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Lillie Haddock
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, USA
| | - Anna Haines
- The University of Manchester, Manchester, UK
| | - Jefferson Hall
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Wenxuan Han
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
| | | | - Wesley Hattingh
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joseph E Hawes
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, UK
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Tianhua He
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Pengcheng He
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Stefan Hempel
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jörn Hentschel
- Herbarium Haussknecht, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Bruno Hérault
- Cirad, Université de Montpellier, Montpellier, France
- Institut National Polytehcnique Félix Houphouet-Boigny, INP-HB, Yamoussoukro, Ivory Coast
| | - Ana-Maria Hereş
- Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
- BC3 - Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
| | - Katharina Herz
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Physical Geography, Goethe University, Frankfurt am Main, Germany
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL, USA
- The Field Museum, Chicago, IL, USA
| | | | - Maria Hock
- Institute for Ecosystem Research/Geobotany, Kiel University, Kiel, Germany
| | - James Aaron Hogan
- Department of Biological Sciences, Florida International University, Miami, FL, USA
- Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN
| | - Karen Holl
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Division of Ecology, Evolution and Biodiversity Conservation, Heverlee, Belgium
| | | | - Enqing Hou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nate Hough-Snee
- Four Peaks Environmental Science and Data Solutions, Wenatchee, WA, USA
| | - Knut Anders Hovstad
- Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Boris Igić
- University of Illinois at Chicago, Chicago, IL, USA
| | - Estela Illa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Masae Ishihara
- Ashiu Forest Research Station, Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Leonid Ivanov
- Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Tyumen State University, Tyumen, Russia
| | - Larissa Ivanova
- Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Tyumen State University, Tyumen, Russia
| | | | - Jordi Izquierdo
- Barcelona School of Agricultural Engineering, Universitat Politècnica de Catalunya, Catalonia, Spain
| | - Robert B Jackson
- Earth System Science Department, Stanford University, Stanford, CA, USA
| | - Benjamin Jackson
- Global Academy of Agriculture and Food Security, University of Edinburgh, Midlothian, Scotland
| | | | - Andrzej M Jagodzinski
- Institute of Dendrology, Polish Academy of Sciences, Kornik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Poznan, Poland
| | - Ute Jandt
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Thomas Jenkins
- Department of Zoology, University of Oxford, Oxford, UK
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Anke Jentsch
- BayCEER, Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
| | | | - Guo-Feng Jiang
- Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, PR China
| | | | | | - Eric J Jokela
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Grant Stuart Joseph
- Department of Zoology, School of Mathematical and Natural Science, University of Venda, Thohoyandou, South Africa
- Department of Biological Sciences, DST/NRF Centre of Excellence, Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Decky Junaedi
- Cibodas Botanical Garden - Indonesian Institute of Sciences (LIPI), Jl. Kebun Raya Cibodas, Cipanas, Indonesia
- Centre of Excellence for Biosecurity Risk Analysis (CEBRA), School Of Biosciences, University of Melbourne, Parkville, Vic., Australia
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department Biology, Philipps-University Marburg, Marburg, Germany
- Department of Bioscience, University Salzburg, Salzburg, Austria
| | - Eric Justes
- PERSYST Department, CIRAD, Montpellier Cedex 5, France
| | - Richard Kabzems
- BC Ministry Forest, Lands, Natural Resource Operations and Rural Development, Dawson Creek, BC, Canada
| | | | - Zdenek Kaplan
- Institute of Botany, The Czech Academy of Sciences, Prùhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Teja Kattenborn
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Elizabeth Kearsley
- CAVElab - Computational and Applied Vegetation Ecology, Ghent University, Ghent, Belgium
| | - Anne Kempel
- Institute of Plant Sciences, Bern, Switzerland
| | - Tanaka Kenzo
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | | | - Mohammed I Khalil
- Department of Biology, University of Garmian, Kalar, Iraq
- School of Biological Sciences and Center for Ecology, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Nicole L Kinlock
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Wilm Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- University of Florida, Gainesville, FL, USA
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Thomas Kitzberger
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET, Bariloche, Argentina
- Departamento de Ecología, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Kleyer
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Jitka Klimešová
- Institute of Botany, Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Sciences, Charles University, Praha, Czech Republic
| | - Joice Klipel
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Brian Kloeppel
- Department of Geosciences and Natural Resources, Western Carolina University, Cullowhee, NC, USA
| | - Stefan Klotz
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Johannes M H Knops
- Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu, China
| | | | - Fumito Koike
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | | | | | | | - Christian König
- Department of Geography, Humboldt University of Berlin, Berlin, Germany
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Koen Kramer
- Wageningen University & Research, Wageningen, The Netherlands
- Land Life Company, Amsterdam, The Netherlands
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
| | - Ingolf Kühn
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
- Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dushan Kumarathunge
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
- Plant Physiology Division, Coconut Research Institute of Sri Lanka, Lunuwila, Sri Lanka
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Hiroko Kurokawa
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | | | - Shem Kuyah
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Jean-Paul Laclau
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, CIRAD, INRA, IRD, SupAgro, University of Montpellier, Montpellier, France
| | - Benoit Lafleur
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Erik Lallai
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy
| | - Eric Lamb
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrea Lamprecht
- GLORIA-Coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences & Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Daniel J Larkin
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | | | | | - Guerric le Maire
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, CIRAD, INRA, IRD, SupAgro, University of Montpellier, Montpellier, France
| | - Peter C le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tali Lee
- University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | | | - Yuanzhi Li
- Sun Yat-sen University, Guangzhou, China
| | - Xine Li
- Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | - Jun Ying Lim
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Yan-Shih Lin
- Macquarie University, North Ryde, NSW, Australia
| | | | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, P.R. China
| | - Daijun Liu
- School of Geography, Earth and Environmental Sciences - University of Birmingham, Birmingham, UK
| | | | | | - Joan Llusià
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Madelon Lohbeck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Álvaro López-García
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Dept. Animal Biology, Plant Biology and Ecology, University of Jaén, Jaén, Spain
| | | | - Zdeňka Lososová
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Frédérique Louault
- UCA, INRA, VetAgro Sup, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Balázs A Lukács
- Department for Tisza River Research, MTA Centre for Ecological Research, DRI, Debrecen, Hungary
| | - Petr Lukeš
- Global Change Research Institute AS CR, Brno, Czech Republic
| | - Yunjian Luo
- Department of Ecology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michele Lussu
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy
| | - Siyan Ma
- University of California at Berkeley, Berkeley, CA, USA
| | | | - Michelle Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Vincent Maire
- Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Annikki Mäkelä
- Institute of Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | | | | | - Azim Mallik
- Lakehead University, Thunder Bay, ON, Canada
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm, Sweden
| | - Zuleica Marchetti
- Conicet-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral (FICH-UNL), Santa Fe, Argentina
| | - Luca Marchino
- CREA - Research Centre for Forestry and Wood, Arezzo, Italy
| | | | - Eric Marcon
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRA, Université des Antilles, Université de la Guyane), Kourou, French Guiana, France
| | - Michela Marignani
- Department of Life and Environmental Sciences, Botany Division, University of Cagliari, Cagliari, Italy
| | | | - Adam Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Cristina Martínez-Garza
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | | | - Tereza Mašková
- Faculty of Sciences, Charles University, Praha, Czech Republic
| | - Kelly Mason
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Norman Mason
- Manaaki Whenua - Landcare Research, Hamilton, New Zealand
| | - Tara Joy Massad
- Department of Scientific Services, Gorongosa National Park, Beira, Sofala Province, Mozambique
| | - Jacynthe Masse
- Institut de recherche en biologie végétale, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - James McCarthy
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
- CSIRO, Canberra, ACT, Australia
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | | | | | - Ian R McFadden
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Mara Y McPartland
- Department of Geography, Environment & Society, University of Minnesota, Minneapolis, MN, USA
| | | | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | | | - Zia Mehrabi
- Institute for Resources Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
- School of Geosciences, The University of Edinburgh, Edinburgh, UK
| | | | | | | | - Julie Messier
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Ilona Mészáros
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Juha Metsaranta
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Chrysanthi Michelaki
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Svetlana Migalina
- Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Tyumen State University, Tyumen, Russia
| | | | | | - Vanessa Minden
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ray Ming
- University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | | | - Angela T Moles
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Attila Molnár
- Department of Botany, University of Debrecen, Hungary
| | | | - Martin Molz
- Fundação Zoobotânica do Rio Grande do Sul, Porto Allegre, Brazil
| | | | - Arnaud Monty
- Gembloux Agro-Bio Tech, Biodiversity and landscape, University of Liège, Belgium
| | - Lenka Moravcová
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Alvaro Moreno-Martínez
- Numerical Terradynamic Simulation Group (NTSG), College of Forestry and Conservation, University of Montana, Missoula, USA
| | - Marco Moretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | | | - Dave Morris
- Ontario Ministry of Natural Resources and Forestry, Centre for Northern Forest Ecosystem Research, Thunder Bay, ON, Canada
| | - Jane Morrison
- Universitat Politècnica de Catalunya, Castelldefels, Spain
| | - Ladislav Mucina
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
- Dept of Geography & Environmental Studies, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Sandra Mueller
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - François Munoz
- Laboratoire d'Ecologie Alpine, Université Grenoble-Alpes, Grenoble Cedex 9, France
- French Institute of Pondicherry, Puducherry, India
| | | | - Randall W Myster
- Biology Department, Oklahoma State University, Oklahoma, OK, USA
| | | | - Shawna Naidu
- University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Ayyappan Narayanan
- Department of Ecology, French Institute of Pondicherry, Pondicherry, India
| | | | - Luka Negoita
- Galápagos Verde 2050, Charles Darwin Foundation, Charles Darwin Research Station, Galapagos, Ecuador
| | - Andrew S Nelson
- Forest, Rangeland, and Fire Sciences Department, University of Idaho, Moscow, ID, USA
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jian Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Georg Niedrist
- Eurac Research, Institute for Alpine Environment, Bozen-Bolzano, Italy
| | - Jhon Nieto
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogota, Colombia
- Universidad Distrital Francisco José de Caldas, Bogota, Colombia
| | - Ülo Niinemets
- Estonian University of Life Sciences, Tartu, Estonia
| | - Rachael Nolan
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | | | - Yann Nouvellon
- CIRAD, UMR Eco&Sols, Montpellier, France
- Eco&Sols, CIRAD, INRA, IRD, SupAgro, University of Montpellier, Montpellier, France
| | - Alexander Novakovskiy
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Kristin Odden Nystuen
- Faculty of Biosciences and Aquaculture, NORD University, Steinkjer, Norway
- Department of Biology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Kevin O'Hara
- University of California at Berkeley, Berkeley, CA, USA
| | | | - Simon Oakley
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | | | | | - Ricardo Oliveira
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Kinga Öllerer
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Romania
- Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary
| | - Mark E Olson
- Instituto de Biología, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, Mexico
- Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Faculty of Biology, Moscow Lomonosov State University, Moscow, Russia
| | | | - Renske E Onstein
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jenny C Ordonez
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, Quito, Equador
| | | | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | - Sarah Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Wim A Ozinga
- Wageningen Environmental Research, Wageningen, The Netherlands
| | - Anna T Pahl
- Restoration Ecology, Technische Universität München, München, Germany
| | | | | | | | | | | | - Marco Patacca
- Wageningen University & Research, Wageningen, The Netherlands
| | - Susana Paula
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Harald Pauli
- GLORIA-Coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences & Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Juli G Pausas
- Desertification Research Center (CIDE-CSIC), Valencia, Spain
| | - Begoña Peco
- Departamento de Ecología, Centro de Investigación en Biodiversidad y Cambio Global (CIBC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Josep Penuelas
- CREAF, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Pablo Luis Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Río Gallegos, Santa Cruz, Argentina
- Universidad Nacional de la Patagonia Austral (UNPA), CONICET, Rio Gallegos, Argentina
| | | | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Any Mary Petritan
- National Institute for Research-Development in Forestry, Voluntari, Romania
| | | | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milano, Italy
| | - Valério D Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jan Pisek
- Tartu Observatory, University of Tartu, Tartumaa, Estonia
| | | | - Hendrik Poorter
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
- Plant Sciences (IBG2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | | | | | - A Shafer Powell
- Environmental Sciences Division & Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Andreas Prinzing
- Research Unit ECOBIO - Ecosystèmes, Biodiversité, Evolution, Université Rennes 1/CNRS, Rennes, France
| | | | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valerie Raevel
- AMAP, CIRAD, CNRS, IRD, INRA, Université de Montpellier, Montpellier, France
- French Institute of Pondicherry, Puducherry, India
- CEFE, CNRS, EPHE, Université de Montpellier, Université Paul Valéry, Montpellier, France
| | - Anja Rammig
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Courtenay A Ray
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | | | - Douglas E B Reid
- Ontario Ministry of Natural Resources and Forestry, Centre for Northern Forest Ecosystem Research, Thunder Bay, ON, Canada
| | | | - Victor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Lleida, Spain
| | | | | | | | - Matthias C Rillig
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Fiamma Riviera
- The University of Western Australia, Crawley, WA, Australia
| | - Elisabeth M R Robert
- Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Spain
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Wood Biology and Xylarium, Royal Museum for Central-Africa (RMCA), Tervuren, Belgium
| | - Scott Roberts
- Department of Forestry, Mississippi State University, Starkville, MS, USA
| | - Bjorn Robroek
- School of Biological Sciences, University of Southampton, Southampton, UK
- Aquatic Ecology and Environmental Biology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Adam Roddy
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA
| | - Arthur Vinicius Rodrigues
- Programa de pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, NY, Upton, USA
| | - Emily Rollinson
- Department of Biological Sciences, East Stroudsburg University, East Stroudsburg, PA, USA
| | - Victor Rolo
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain
| | - Christine Römermann
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Dina Ronzhina
- Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Tyumen State University, Tyumen, Russia
| | - Christiane Roscher
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Christian Rossi
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
- Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Research and Geoinformation, Swiss National Park, Chastè Planta-Wildenberg, Zernez, Switzerland
| | - David B Roy
- Centre for Ecology & Hydrology (CEH), Wallingford, Oxfordshire, UK
| | | | - Nadja Rüger
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Ricardo Ruiz-Peinado
- Departamento de Dinamica y Gestion Forestal, INIA-CIFOR, Madrid, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Madrid, Spain
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Masahiro Ryo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Angela Saldaña
- Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | | | | | - Ignacio Santa-Regina
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Ana Carolina Santacruz-García
- Conicet-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina
| | - Joaquim Santos
- Centre for Functional Ecology, Departamento de Ciências da Vida, Universidade de Coimbra, Coimbra, Portugal
| | - Jordi Sardans
- Global Ecology Unit CREAF-CSIC, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Zürich, Switzerland
| | - Marco Schmidt
- Senckenberg Biodiversität und Klima Forschungszentrum (SBiK-F), Frankfurt, Germany
- Palmengarten der Stadt Frankfurt am Main, Frankfurt, Germany
| | | | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Entomology III, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Simon D Schowanek
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Julian Schrader
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | | | - Bernhard Schuldt
- Julius-von-Sachs-Institute for Biological Sciences, Chair of Ecophysiology and Vegetation Ecology, University of Wuerzburg, Wuerzburg, Germany
| | - Frank Schurr
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | | | - Marina Semchenko
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Colleen Seymour
- South African National Biodiversity Institute, Pretoria, South Africa
| | - Julia C Sfair
- Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Christine S Sheppard
- Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | | | - Satomi Shiodera
- Research Institute for Humanity and Nature, Kyoto, Japan
- Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
| | - Bill Shipley
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Carlos Sierra
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Vasco Silva
- Centre for Applied Ecology "Professor Baeta Neves" (CEABN), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Mateus Silva
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - Tommaso Sitzia
- Department Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Padua, Italy
| | - Henrik Sjöman
- Department of Landscape Architecture, Planning and Management, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Gothenburg Botanical Garden, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Darwin Sodhi
- Forest Sciences Centre, Faculty of Forestry and Conservation Science, University of British Columbia, Vancouver, BC, Canada
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Douglas Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ben Somers
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marko Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Amanda B Stan
- Department of Geography, Planning and Recreation, Northern Arizona University, Flagstaff, AZ, USA
| | - James Stegen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Klaus Steinbauer
- GLORIA-Coordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences & Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jörg G Stephan
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, The Netherlands
| | - Dejan B Stojanovic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | | | - Maria Laura Suarez
- Instituto de Investigaciones en Biodiversidad y Medioambiente-CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ivana Svitková
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Svitok
- Department of Ecology and General Biology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Emily Swaine
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Nathan Swenson
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Kentaro Takagi
- Teshio Experimental Forest, Hokkaido University, Horonobe, Japan
| | - Ulrike Tappeiner
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
- Eurac Research, Institute for Alpine Environment, Bozen-Bolzano, Italy
| | - Rubén Tarifa
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Spain
| | - Simon Tauugourdeau
- SELMET, CIRAD, INRA, Univ Montpellier, Montpellier SupAgro, France
- CIRAD-UMR SELMET-PZZS, Dakar, Senegal
| | | | - Mariska Te Beest
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Nelson Thiffault
- Natural Resources Canada, Canadian Wood Fibre Centre, Quebec, QC, Canada
| | - Dominik Thom
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | | | - Ken Thompson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Wilfried Thuiller
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Grenoble, France
| | - Lubomír Tichý
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - David Yue Phin Tng
- Centre for Rainforest Studies, The School for Field Studies, Yungaburra, Qld, Australia
| | - Joseph Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Péter Török
- MTA-DE Lendület Functional and Restoration Ecology Research Group, Debrecen, Hungary
- Department of Ecology, University of Debrecen, Debrecen, Hungary
| | - Tonantzin Tarin
- Department of Soil and Plant Sciences, University of Delaware, Newark, DE, USA
| | | | - Béla Tóthmérész
- MTA-TKI Biodiversity and Ecosystem Services Research Group, Debrecen, Hungary
| | - Martina Treurnicht
- SAEON Fynbos Node, Claremont, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Franck Trolliet
- Unit for Modelling of Climate and Biogeochemical Cycles, UR-SPHERES, University of Liège, Liège, Belgique
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - James L Tsakalos
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ioannis Tsiripidis
- School of Biology, Department of Botany, Aristotle University of Thessaloniki, Greece
| | - Niklas Tysklind
- CIRAD, UMR EcoFoG (Agroparistech, CNRS, INRA, Université des Antilles, Université de la Guyane), Kourou, France
| | | | - Vladimir Usoltsev
- Ural State Forest Engineering University, Ekaterinburg, Russia
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | | | - Jamil Vaezi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Jana Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Michiel van Breugel
- College Environmental Studies, Yale University, New Haven, CT, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elisa Van Cleemput
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Masha T van der Sande
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | | | - Mark Vanderwel
- Department of Biology, University of Regina, Regina, SK, Canada
| | - Kim André Vanselow
- Institute of Geography, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Laura Varone
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Maribel Yesenia Vasquez Valderrama
- Universidad Distrital Francisco José de Caldas, Bogota, Colombia
- Laboratorio de invasiones Biológicas, Universidad de Concepcion, Concepcion, Chile
| | - Kiril Vassilev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mark Vellend
- Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Erik J Veneklaas
- School of Biological Sciences and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia
| | - Hans Verbeeck
- CAVElab - Computational and Applied Vegetation Ecology, Ghent University, Ghent, Belgium
| | - Kris Verheyen
- Department of Environment, Forest & Nature Lab, Ghent University, Gontrode-Melle, Belgium
| | | | - Ima Vieira
- Museu Paraense Emilio Goeldi, Belém, PA, Brazil
| | - Jaime Villacís
- Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Cyrille Violle
- UMR 5175 CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry, Montpellier, France
| | - Pandi Vivek
- Department of Botany, Goa University, Goa, India
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | - Katrin Wagner
- Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Matthew Waldram
- School of Geography, Geology and Environment, University of Leicester, Leicester, UK
| | - Anthony Waldron
- Zoology Department, Edward Grey Institute, Oxford University, Oxford, UK
- Department of Zoology, Cambridge University, Cambridge Conservation Initiative, Cambridge, UK
| | - Anthony P Walker
- Environmental Sciences Division & Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Martyn Waller
- Department of Geography and Geology, Kingston University, Kingston upon Thames, UK
| | - Gabriel Walther
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Feng Wang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Weiqi Wang
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Harry Watkins
- Department of Landscape Architecture, University of Sheffield, Sheffield, UK
| | - James Watkins
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ulrich Weber
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - James T Weedon
- Ecological Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Liping Wei
- Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Göttingen, Germany
| | - Evan Weiher
- University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - Aidan W Wells
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
- Maritime and Science Technology Academy, Miami, FL, USA
| | | | - Elizabeth Wenk
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Philip John White
- The James Hutton Institute, Dundee, UK
- King Saud University, Riyadh, Saudi Arabia
| | | | - Mathew Williams
- School of Geosciences, The University of Edinburgh, Edinburgh, UK
| | - Daniel E Winkler
- University of California - Irvine, Irvine, CA, USA
- Southwest Biological Science Center, U. S. Geological Survey, Moab, UT, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Chevonne Womack
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Justin Wright
- Department of Biology, Duke University, Durham, NC, USA
| | - Bruno X Pinho
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Fabiano Ximenes
- NSW Department of Primary Industries, Parramatta, NSW, Australia
| | | | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ruth Yanai
- SUNY-College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Nikolay Yankov
- Botanical Garden of the Samara University, Samara, Russia
| | - Benjamin Yguel
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Université, Paris, France
| | | | - Amy E Zanne
- Biological Sciences, George Washington University, Washington, DC, USA
| | | | - Yun-Peng Zhao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jingming Zheng
- Forestry College, Beijing Forestry University, Beijing, China
| | - Ji Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai, P.R. China
| | | | - Chad R Zirbel
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Georg Zizka
- Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
| | - Irié Casimir Zo-Bi
- Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Gerhard Zotz
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Institute for Biology and Environmental Sciences, University Oldenburg, Oldenburg, Germany
| | - Christian Wirth
- Max Planck Institute for Biogeochemistry, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Han X, Turgeon R, Schulz A, Liesche J. Environmental conditions, not sugar export efficiency, limit the length of conifer leaves. TREE PHYSIOLOGY 2019; 39:312-319. [PMID: 29850887 DOI: 10.1093/treephys/tpy056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Most conifer species have needle-shaped leaves that are only a few centimeters long. In general, variation in leaf size has been associated with environmental factors, such as cold or drought stress. However, it has recently been proposed that sugar export efficiency is the limiting factor for conifer needle length, based on the results obtained using a mathematical model of phloem transport. Here, phloem transport rates in long conifer needles were experimentally determined to test if the mathematical model accurately represents phloem transport. The validity of the model's assumptions was tested by anatomical analyses and sugar quantification. Furthermore, various environmental and physiological factors were tested for their correlation with needle length. The results indicate that needle length is not limited by sugar transport efficiency, but, instead, by winter temperatures and light availability. The identification of factors that influence needle size is instrumental for using this trait as a variable in breeding programs.
Collapse
Affiliation(s)
- Xiaoyu Han
- College of Life Science, Northwest A&F University, Nongling Road 10, Yangling, China
- Biomass Energy Center for Arid Lands, Northwest A&F University, Nongling Road 10, Yangling, China
| | - Robert Turgeon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 412 Mann Library Building, Ithaca, NY, USA
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Johannes Liesche
- College of Life Science, Northwest A&F University, Nongling Road 10, Yangling, China
- Biomass Energy Center for Arid Lands, Northwest A&F University, Nongling Road 10, Yangling, China
| |
Collapse
|
27
|
Dry Season Irrigation Promotes Leaf Growth in Eucalyptus urophylla × E. grandis under Fertilization. FORESTS 2019. [DOI: 10.3390/f10010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leaves are essential for photosynthesis and gas exchange, and their growth characteristics are the key factors that influence the carbon budget. Eucalyptus is widely afforested in south China due to its fast-growing and high-yield features. Water and fertilizer are the main factors affecting plant growth. Studying the effects of different water and fertilizer treatments on the growth of Eucalyptus leaves under seasonal drought could further elucidate the optimal additions for Eucalyptus productivity. In this study, we investigated the leaf area, length, width, perimeter, and expansion rates of the commercial species E. urophylla × E. grandis under different treatments of dry season irrigation and fertilizer application to elucidate the growth dynamics of the leaves. The results indicated that both dry season irrigation and fertilizer could affect whole leaf expansion. Leaf area was largest when water and fertilizer were added at the same time. In this experiment, we found that fertilization had a significant effect on the leaf shape index of the Eucalyptus leaves. The leaf shape index was larger with the fertilizer treatment, which made the leaves slender. Dry season irrigation shorten the peak period of leaf growth and increase the leaf area. Our results help to further understand the mechanism of Eucalyptus productivity under seasonal drought and provide theoretical support for Eucalyptus production.
Collapse
|
28
|
Genetic architecture of quantitative flower and leaf traits in a pair of sympatric sister species of Primulina. Heredity (Edinb) 2018; 122:864-876. [PMID: 30518967 DOI: 10.1038/s41437-018-0170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/10/2023] Open
Abstract
Flowers and leaves each represent suites of functionally interrelated traits that are often involved in species divergence and local adaptation. However, a major unresolved issue is how the individual component traits that make up a complex trait such as a flower evolve in a coordinated fashion to retain a high degree of functionality. We use a quantitative trait loci (QTL) approach to elucidate the genetic architecture of divergence in flower and leaf traits between the sister species Primulina depressa and Primulina danxiaensis, which grow sympatrically but in contrasting microhabitats. We found that flower traits were controlled by multiple QTL of small effect, while leaf physiological and morphological traits tended to be controlled by QTL of larger effect. The observed floral integration, manifested by a high degree overlap in both individual trait QTL and QTL for principal component scores (PCA QTL), may have been critical for evolutionary divergence of floral morphology in relation to their pollinators. This overlap suggests that direct selection on only one or a few of the component traits could have caused substantial divergence in other floral traits due to genetic correlations, while the low QTL overlap between floral and vegetative traits suggests that these trait suites are genetically unlinked and can evolve independently in response to different selective pressures corresponding to their distinct functions.
Collapse
|
29
|
Abdusalam A, Li Q. Morphological plasticity and adaptation level of distylous Primula nivalis in a heterogeneous alpine environment. PLANT DIVERSITY 2018; 40:284-291. [PMID: 30740575 PMCID: PMC6317488 DOI: 10.1016/j.pld.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Plant populations at high elevation face extreme climatic conditions and resource limitations. The existence of distylous species at different elevations can help us investigate their adaptation to high altitudes, the evolution of their morphological characteristics, as well as their responses to limited resources. Here, 17 populations of Primula nivalis at different elevations were evaluated regarding variations in plant morphological characteristics, biomass allocation, and morphological plasticity in a heterogeneous environment. Our results demonstrate that heterogeneous environments can affect plant morphological characteristics and resource allocation in each sexual morph of these plants. Moreover, environmental variations reduced morphological plasticity in the two plant morphs, and the plasticity of long style (LS) plants was greater than that of short style (SS) plants. There were significant negative correlations between morphological characteristics and elevation, rainfall, temperature, and sunshine, and these are the main variables that affect morphological characteristics and resource allocation of both morphs of P. nivalis plants in heterogeneous environments. The morphological characteristics of P. nivalis plants transplanted from high to lower elevations were not significantly different in either population. LS plants had greater morphological plasticity and adaptability in heterogeneous environments than SS plants. Elevational gradients and heterogeneous environments differentiated both morphs of P. nivalis plants with regards to morphology as well as adaptations. LS plants showed a higher level of adaptability than SS plants.
Collapse
Affiliation(s)
- Aysajan Abdusalam
- Key Laboratory of Ecology and Biological Resources in Yarkand Oasis, College of Life and Geography Sciences, Kashi University, Kashgar, 844006, PR China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Yunnan 666303, PR China
| | - Qingjun Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Yunnan 666303, PR China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, PR China
| |
Collapse
|
30
|
Osada N, Hiura T. How is light interception efficiency related to shoot structure in tall canopy species? Oecologia 2017; 185:29-41. [DOI: 10.1007/s00442-017-3926-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
|
31
|
Dwyer JM, Laughlin DC. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecol Lett 2017; 20:872-882. [DOI: 10.1111/ele.12781] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 01/29/2023]
Affiliation(s)
- John M. Dwyer
- School of Biological SciencesThe University of QueenslandSt LuciaBrisbaneQLD4072Australia
- Ecosciences PrecinctCSIRO Land and WaterDutton ParkBrisbaneQLD4102Australia
| | - Daniel C. Laughlin
- Environmental Research Institute and School of ScienceUniversity of WaikatoHamilton3240New Zealand
- Department of BotanyUniversity of Wyoming1000 East University Dr.LaramieWY82071USA
| |
Collapse
|
32
|
Santini BA, Hodgson JG, Thompson K, Wilson PJ, Band SR, Jones G, Charles M, Bogaard A, Palmer C, Rees M. The triangular seed mass–leaf area relationship holds for annual plants and is determined by habitat productivity. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bianca A. Santini
- Animal and Plant Sciences Department University of Sheffield Sheffield UK
| | - John G. Hodgson
- Unit of Comparative Plant Ecology University of Sheffield Sheffield UK
- Department of Archaeology University of Sheffield Sheffield UK
| | - Ken Thompson
- Unit of Comparative Plant Ecology University of Sheffield Sheffield UK
| | - Peter J. Wilson
- Unit of Comparative Plant Ecology University of Sheffield Sheffield UK
| | - Stuart R. Band
- Unit of Comparative Plant Ecology University of Sheffield Sheffield UK
| | - Glynis Jones
- Department of Archaeology University of Sheffield Sheffield UK
| | - Mike Charles
- Department of Archaeology University of Oxford Oxford UK
| | - Amy Bogaard
- Department of Archaeology University of Oxford Oxford UK
| | - Carol Palmer
- Department of Archaeology University of Sheffield Sheffield UK
| | - Mark Rees
- Animal and Plant Sciences Department University of Sheffield Sheffield UK
| |
Collapse
|
33
|
Fletcher T, Feng R, Telka AM, Matthews JV, Ballantyne A. Floral Dissimilarity and the Influence of Climate in the Pliocene High Arctic: Biotic and Abiotic Influences on Five Sites on the Canadian Arctic Archipelago. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Fajardo A. Are trait-scaling relationships invariant across contrasting elevations in the widely distributed treeline species Nothofagus pumilio? AMERICAN JOURNAL OF BOTANY 2016; 103:821-829. [PMID: 27208350 DOI: 10.3732/ajb.1500439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. METHODS Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). KEY RESULTS The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. CONCLUSIONS The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns.
Collapse
Affiliation(s)
- Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) CONICYT-Regional R10C1003, Universidad Austral de Chile, Camino Baguales s/n, Coyhaique 5951601, Chile
| |
Collapse
|
35
|
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD. The global spectrum of plant form and function. Nature 2015; 529:167-71. [PMID: 26700811 DOI: 10.1038/nature16489] [Citation(s) in RCA: 1080] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022]
Abstract
Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.
Collapse
Affiliation(s)
- Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sandra Lavorel
- Laboratoire d'Ecologie Alpine, UMR 5553, CNRS - Université Grenoble Alpes, 38041 Grenoble Cedex 9, France
| | - Stéphane Dray
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Björn Reu
- Institute of Biology, University of Leipzig, Johannisallee 21, 04103 Leipzig, Germany.,Escuela de Biología, Universidad Industrial de Santander, Cra. 27 Calle 9, 680002 Bucaramanga, Colombia
| | - Michael Kleyer
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Christian Wirth
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Department of Systematic Botany and Functional Biodiversity, University of Leipzig, Johannisallee 21, 04103 Leipzig, Germany
| | - I Colin Prentice
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.,AXA Chair in Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute - Climate Change and the Environment, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Eric Garnier
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175), CNRS-Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 34293 Montpellier Cedex 5, France
| | - Gerhard Bönisch
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA.,Hawkesbury Institute for the Environment, University of Western Sydney, Penrith New South Wales 2751, Australia
| | - Angela T Moles
- Evolution &Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - John Dickie
- Collections , The Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Andrew N Gillison
- Center for Biodiversity Management, P.O. Box 120, Yungaburra, Queensland 4884, Australia
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington DC 20052, USA.,Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA
| | - Jérôme Chave
- UMR 5174 Laboratoire Evolution et Diversité Biologique, CNRS &Université Paul Sabatier, Toulouse 31062, France
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Serge N Sheremet'ev
- Komarov Botanical Institute, Prof. Popov Street 2, St Petersburg 197376, Russia
| | - Hervé Jactel
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, F-33600 Pessac, France
| | - Christopher Baraloto
- International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA.,INRA, UMR Ecologie des Forêts de Guyane, 97310 Kourou, French Guiana
| | - Bruno Cerabolini
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy
| | - Bill Shipley
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Donald Kirkup
- Biodiversity Informatics and Spatial Analysis, Jodrell Building, The Royal Botanic Gardens Kew, Richmond TW9 3AB, UK
| | - Fernando Casanoves
- Unidad de Bioestadística, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 7170 Turrialba, 30501, Costa Rica
| | - Julia S Joswig
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Angela Günther
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Valeria Falczuk
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Miguel D Mahecha
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Lucas D Gorné
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| |
Collapse
|
36
|
Wanderley AM, Galetto L, Machado ICS. Functional decoupling between flowers and leaves in the Ameroglossum pernambucense complex can facilitate local adaptation across a pollinator and climatic heterogeneous landscape. J Evol Biol 2015; 29:528-40. [PMID: 26663030 DOI: 10.1111/jeb.12802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/09/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
Abstract
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower-pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird-pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower-pollinator fit [floral tube length (TL) and anther-nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two-fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower-pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among-population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower-leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.
Collapse
Affiliation(s)
- A M Wanderley
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - L Galetto
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (CONICET - UNC), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - I C S Machado
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
37
|
Shi Z, Haworth M, Feng Q, Cheng R, Centritto M. Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AOB PLANTS 2015; 7:plv115. [PMID: 26433706 PMCID: PMC4631907 DOI: 10.1093/aobpla/plv115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 09/23/2015] [Indexed: 05/14/2023]
Abstract
Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ(13)C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves.
Collapse
Affiliation(s)
- Zuomin Shi
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Qiuhong Feng
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China Sichuan Academy of Forestry, Chengdu 610081, China
| | - Ruimei Cheng
- Institute of Forest Ecology, Environment and Protection, Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
38
|
Werner GDA, Cornwell WK, Cornelissen JHC, Kiers ET. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism. Proc Natl Acad Sci U S A 2015; 112:10262-9. [PMID: 26041807 PMCID: PMC4547229 DOI: 10.1073/pnas.1424030112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.
Collapse
Affiliation(s)
- Gijsbert D A Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - William K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johannes H C Cornelissen
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
39
|
Laughlin DC, Messier J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol Evol 2015; 30:487-96. [PMID: 26122484 DOI: 10.1016/j.tree.2015.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Phenotypic traits influence species distributions, but ecology lacks established links between multidimensional phenotypes and fitness for predicting species responses to environmental change. The common focus on single traits rather than multiple trait combinations limits our understanding of their adaptive value, and intraspecific trait covariation has been neglected in ecology despite its importance in evolutionary theory and its likely impact on species distributions. Here, we extend the adaptive landscape framework to ecological sorting of multidimensional phenotypes across environments and discuss how two analytical approaches can be used to quantify fitness as a function of the interaction between the phenotype and the environment. We encourage ecologists to consider how phenotypic integration will constrain species responses to environmental change.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Environmental Research Institute and School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Julie Messier
- Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
40
|
Valverde‐Barrantes OJ, Smemo KA, Blackwood CB. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12384] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kurt A. Smemo
- Department of Biological Sciences Kent State University Kent OH 44242 USA
- The Holden Arboretum 9500 Sperry Rd Kirtland OH 44094 USA
| | | |
Collapse
|
41
|
Price CA, Wright IJ, Ackerly DD, Niinemets Ü, Reich PB, Veneklaas EJ. Are leaf functional traits ‘invariant’ with plant size and what is ‘invariance’ anyway? Funct Ecol 2014. [DOI: 10.1111/1365-2435.12298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles A. Price
- School of Plant Biology; University of Western Australia; Perth Western Australia 6009 Australia
| | - Ian J. Wright
- Department of Biological Sciences; Macquarie University; Sydney New South Wales 2109 Australia
| | - David D. Ackerly
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley California 94720-3140 USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences; Estonian University of Life Sciences; Kreutzwaldi 1 Tartu 51014 Estonia
| | - Peter B. Reich
- Department of Forest Resources; University of Minnesotam; 1530 Cleveland Avenue North St. Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment; University of Western Sydney; Locked Bag 1797 Penrith New South Wales 2751 Australia
| | - Erik J. Veneklaas
- School of Plant Biology; University of Western Australia; Perth Western Australia 6009 Australia
| |
Collapse
|
42
|
Nakadai R, Murakami M, Hirao T. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 2014; 175:1237-45. [PMID: 24879058 DOI: 10.1007/s00442-014-2964-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/05/2014] [Indexed: 12/01/2022]
Abstract
Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.
Collapse
|
43
|
Kamiyama C, Katabuchi M, Sasaki T, Shimazaki M, Nakashizuka T, Hikosaka K. Leaf-trait responses to environmental gradients in moorland communities: contribution of intraspecific variation, species replacement and functional group replacement. Ecol Res 2014. [DOI: 10.1007/s11284-014-1148-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Cavender-Bares J, Reich PB. Shocks to the system: community assembly of the oak savanna in a 40-year fire frequency experiment. Ecology 2012. [DOI: 10.1890/11-0502.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Yan ER, Milla R, Aarssen LW, Wang XH. Functional relationships of leafing intensity to plant height, growth form and leaf habit. ACTA OECOLOGICA 2012. [DOI: 10.1016/j.actao.2012.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S. Advances, challenges and a developing synthesis of ecological community assembly theory. Philos Trans R Soc Lond B Biol Sci 2011; 366:2403-13. [PMID: 21768155 DOI: 10.1098/rstb.2011.0056] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.
Collapse
Affiliation(s)
- Evan Weiher
- Department of Biology, University of Wisconsin-Eau Claire, PO Box 4004, Eau Claire, WI, USA.
| | | | | | | | | | | |
Collapse
|