1
|
Diemer EW, Tuhkanen J, Sammallahti S, Heinonen K, Neumann A, Robinson SL, Suderman M, Jin J, Page CM, Fore R, Rifas-Shiman SL, Oken E, Perron P, Bouchard L, Hivert MF, Räikköne K, Lahti J, Yeung EH, Guan W, Mumford SL, Magnus MC, Håberg S, Nystad W, Parr CL, London SJ, Felix JF, Tiemeier H. Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation. Epigenetics 2024; 19:2413815. [PMID: 39418282 PMCID: PMC11487971 DOI: 10.1080/15592294.2024.2413815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D ≤ 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, p > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.
Collapse
Affiliation(s)
- Elizabeth W. Diemer
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Psychology/Welfare Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sonia L. Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Oslo, Oslo, Norway
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Patrice Perron
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katri Räikköne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sunni L. Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Maria C. Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine L. Parr
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Janine F. Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Pike SC, Wiencke JK, Zhang Z, Molinaro AM, Hansen HM, Koestler DC, Christensen BC, Kelsey KT, Salas LA. Glioma immune microenvironment composition calculator (GIMiCC): a method of estimating the proportions of eighteen cell types from DNA methylation microarray data. Acta Neuropathol Commun 2024; 12:170. [PMID: 39468647 PMCID: PMC11514818 DOI: 10.1186/s40478-024-01874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
A scalable platform for cell typing in the glioma microenvironment can improve tumor subtyping and immune landscape detection as successful immunotherapy strategies continue to be sought and evaluated. DNA methylation (DNAm) biomarkers for molecular classification of tumor subtypes have been developed for clinical use. However, tools that predict the cellular landscape of the tumor are not well-defined or readily available. We developed the Glioma Immune Microenvironment Composition Calculator (GIMiCC), an approach for deconvolution of cell types in gliomas using DNAm data. Using data from 17 isolated cell types, we describe the derivation of the deconvolution libraries in the biological context of selected genomic regions and validate deconvolution results using independent datasets. We utilize GIMiCC to illustrate that DNAm-based estimates of immune composition are clinically relevant and scalable for potential clinical implementation. In addition, we utilize GIMiCC to identify composition-independent DNAm alterations that are associated with high immune infiltration. Our future work aims to optimize GIMiCC and advance the clinical evaluation of glioma.
Collapse
Affiliation(s)
- Steven C Pike
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lucas A Salas
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
3
|
Ruehlmann AK, Cecil KM, Lippert F, Yolton K, Ryan PH, Brunst KJ. Epigenome-wide association study of fluoride exposure during early adolescence and DNA methylation among U.S. children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174916. [PMID: 39038671 PMCID: PMC11514227 DOI: 10.1016/j.scitotenv.2024.174916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Exposure to fluoride in early childhood has been associated with altered cognition, intelligence, attention, and neurobehavior. Fluoride-related neurodevelopment effects have been shown to vary by sex and very little is known about the mechanistic processes involved. There is limited research on how fluoride exposure impacts the epigenome, potentially leading to changes in DNA methylation of specific genes regulating key developmental processes. In the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride adjusted for specific gravity (CUFsg) concentrations. Whole blood DNA methylation was assessed using the Infinium MethylationEPIC BeadChip 850 k Array. In a cross-sectional analysis, we interrogated epigenome-wide DNA methylation at 775,141 CpG loci across the methylome in relation to CUFsg concentrations in 272 early adolescents at age 12 years. Among all participants, higher concentrations of CUF were associated with differential methylation of one CpG (p < 6 × 10-8) located in the gene body of GBF1 (cg25435255). Among females, higher concentrations of CUFsg were associated with differential methylation of 7 CpGs; only three CpGs were differentially methylated among males with no overlap of significant CpGs observed among females. Secondary analyses revealed several differentially methylated regions (DMRs) and CpG loci mapping to genes with key roles in psychiatric outcomes, social interaction, and cognition, as well as immunologic and metabolic phenotypes. While fluoride exposure may impact the epigenome during early adolescence, the functional consequences of these changes are unclear warranting further investigation.
Collapse
Affiliation(s)
- Anna K Ruehlmann
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA
| | - Kim M Cecil
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Frank Lippert
- Department of Cariology, Operative Dentistry, and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Kimberly Yolton
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly J Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Suleri A, Salontaji K, Luo M, Neumann A, Mulder RH, Tiemeier H, Felix JF, Marioni RE, Bergink V, Cecil CAM. Prenatal exposure to common infections and newborn DNA methylation: A prospective, population-based study. Brain Behav Immun 2024; 121:244-256. [PMID: 39084542 DOI: 10.1016/j.bbi.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Infections during pregnancy have been robustly associated with adverse mental and physical health outcomes in offspring, yet the underlying molecular pathways remain largely unknown. Here, we examined whether exposure to common infections in utero associates with DNA methylation (DNAm) patterns at birth and whether this in turn relates to offspring health outcomes in the general population. METHODS Using data from 2,367 children from the Dutch population-based Generation R Study, we first performed an epigenome-wide association study to identify differentially methylated sites and regions at birth associated with prenatal infection exposure. We also examined the influence of infection timing by using self-reported cumulative infection scores for each trimester. Second, we sought to develop an aggregate methylation profile score (MPS) based on cord blood DNAm as an epigenetic proxy of prenatal infection exposure and tested whether this MPS prospectively associates with offspring health outcomes, including psychiatric symptoms, BMI, and asthma at ages 13-16 years. Third, we investigated whether prenatal infection exposure associates with offspring epigenetic age acceleration - a marker of biological aging. Across all analysis steps, we tested whether our findings replicate in 864 participants from an independent population-based cohort (ALSPAC, UK). RESULTS We observed no differentially methylated sites or regions in cord blood in relation to prenatal infection exposure, after multiple testing correction. 33 DNAm sites showed suggestive associations (p < 5e10 - 5; of which one was also nominally associated in ALSPAC), indicating potential links to genes associated with immune, neurodevelopmental, and cardiovascular pathways. While the MPS of prenatal infections associated with maternal reports of infections in the internal hold out sample in the Generation R Study (R2incremental = 0.049), it did not replicate in ALSPAC (R2incremental = 0.001), and it did not prospectively associate with offspring health outcomes in either cohort. Moreover, we observed no association between prenatal exposure to infections and epigenetic age acceleration across cohorts and clocks. CONCLUSION In contrast to prior studies, which reported DNAm differences in offspring exposed to severe infections in utero, we do not find evidence for associations between self-reported clinically evident common infections during pregnancy and DNAm or epigenetic aging in cord blood within the general pediatric population. Future studies are needed to establish whether associations exist but are too subtle to be statistically meaningful with present sample sizes, whether they replicate in a cohort with a more similar infection score as our discovery cohort, whether they occur in different tissues than cord blood, and whether other biological pathways may be more relevant for mediating the effect of prenatal common infection exposure on downstream offspring health outcomes.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Clemmensen SB, Frederiksen H, Mengel-From J, Heikkinen A, Kaprio J, Hjelmborg JVB. Novel epigenetic biomarkers for hematopoietic cancer found in twins. Acta Oncol 2024; 63:710-717. [PMID: 39295308 PMCID: PMC11423697 DOI: 10.2340/1651-226x.2024.40700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND PURPOSE This article aims to identify epigenetic markers and detect early development of hematopoietic malignancies through an epigenome wide association study of DNA methylation data. MATERIALS AND METHODS This register-based study includes 1,085 Danish twins with 31 hematopoietic malignancies and methylation levels from 450,154 5'-C-phospate-G-3' (CpG) sites. Associations between methylation levels and incidence of hematopoietic malignancy is studied through time-to-event regression. The matched case-cotwin design, where one twin has a malignancy and the cotwin does not, is applied to enhance control for unmeasured shared confounding and false discoveries. Predictive performance is validated in the independent Older Finnish Twin Cohort. RESULTS AND INTERPRETATION We identified 67 epigenetic markers for hematopoietic malignancies of which 12 are linked to genes associated with hematologic malignancies. For some markers, we discovered a 2-3-fold relative risk difference for high versus low methylation. The identification of these 67 sites enabled the formation of a predictor demonstrating a cross-validated time-varying area under the curve (AUC) of 92% 3 years after individual blood sampling and persistent performance above 70% up to 6 years after blood sampling. This predictive performance was to a large extent recovered in the validation sample showing an overall Harrell's C of 73%. In conclusion, from a large population representative twin study on hematopoietic cancers, novel epigenetic markers were identified that may prove useful for early diagnosis.
Collapse
Affiliation(s)
- Signe B Clemmensen
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Henrik Frederiksen
- Department of Haematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacob vB Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Lee DW, Lim YH, Choi YJ, Kim S, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116823. [PMID: 39096687 DOI: 10.1016/j.ecoenv.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 μg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 μg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 μg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, the Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, the Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, the Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, the Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
7
|
Drouard G, Wang Z, Heikkinen A, Foraster M, Julvez J, Kanninen KM, van Kamp I, Pirinen M, Ollikainen M, Kaprio J. Lifestyle differences between co-twins are associated with decreased similarity in their internal and external exposome profiles. Sci Rep 2024; 14:21261. [PMID: 39261679 PMCID: PMC11390871 DOI: 10.1038/s41598-024-72354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Whether differences in lifestyle between co-twins are reflected in differences in their internal or external exposome profiles remains largely underexplored. We therefore investigated whether within-pair differences in lifestyle were associated with within-pair differences in exposome profiles across four domains: the external exposome, proteome, metabolome and epigenetic age acceleration (EAA). For each domain, we assessed the similarity of co-twin profiles using Gaussian similarities in up to 257 young adult same-sex twin pairs (54% monozygotic). We additionally tested whether similarity in one domain translated into greater similarity in another. Results suggest that a lower degree of similarity in co-twins' exposome profiles was associated with greater differences in their behavior and substance use. The strongest association was identified between excessive drinking behavior and the external exposome. Overall, our study demonstrates how social behavior and especially substance use are connected to the internal and external exposomes, while controlling for familial confounders.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Zhiyang Wang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irene van Kamp
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Ke TM, Lophatananon A, Muir KR. Exploring the Relationships between Lifestyle Patterns and Epigenetic Biological Age Measures in Men. Biomedicines 2024; 12:1985. [PMID: 39335499 PMCID: PMC11428654 DOI: 10.3390/biomedicines12091985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methylation, validated as a surrogate for biological age, is a potential tool for predicting future morbidity and mortality outcomes. This study aims to explore how lifestyle patterns are associated with epigenetic changes in British men. Five biological age clocks were utilised to investigate the relationship between these epigenetic markers and lifestyle-related factors in a prospective study involving 221 participants. Spearman's correlation test, Pearson's correlation test, and univariate linear regression were employed for analysis. The results indicate that higher consumption of saturated fat and total daily calories, and a higher body mass index (BMI) are associated with accelerated biological aging. Conversely, higher vitamin D intake and a higher healthy lifestyle index (HLI) are linked to decelerated biological aging. These findings highlight the potential impact of specific lifestyle-related factors on biological aging and can serve as a reference for applying healthy lifestyle improvements in future disease prevention studies.
Collapse
Affiliation(s)
- Te-Min Ke
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Kreitmaier P, Swift D, Wilkinson JM, Zeggini E. Epigenomic differences between osteoarthritis grades in primary cartilage. Osteoarthritis Cartilage 2024; 32:1126-1133. [PMID: 39053729 DOI: 10.1016/j.joca.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Osteoarthritis is a common and complex joint disorder that shows higher prevalence and greater disease severity in women. Here, we investigate genome-wide methylation profiles of primary chondrocytes from osteoarthritis patients. DESIGN We compare genome-wide methylation profiles of macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage samples matched from osteoarthritis patients undergoing knee replacement surgery. We perform an epigenome-wide association study for cartilage degeneration across 170 patients and separately in 96 women and 74 men. RESULTS We reveal widespread epigenetic differences with enrichments of nervous system and apoptosis-related processes. We further identify substantial similarities between sexes, but also sex-specific markers and pathways. CONCLUSIONS Together, we provide the largest genome-wide methylation profiles of primary cartilage to date with enhanced and sex-specific insights into epigenetic processes underlying osteoarthritis progression.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Diane Swift
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - J Mark Wilkinson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
10
|
Salontaji K, Haftorn KL, Sanders F, Page CM, Walton E, Felix JF, Bekkhus M, Bohlin J, Tiemeier H, Cecil CAM. Gestational epigenetic age and ADHD symptoms in childhood: a prospective, multi-cohort study. Mol Psychiatry 2024; 29:2911-2918. [PMID: 38561466 PMCID: PMC7616513 DOI: 10.1038/s41380-024-02544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epigenetic age acceleration (EAA), defined as the difference between chronological age and epigenetically predicted age, was calculated from multiple gestational epigenetic clocks (Bohlin, EPIC overlap, and Knight) using DNA methylation levels from cord blood in three large population-based birth cohorts: the Generation R Study (The Netherlands), the Avon Longitudinal Study of Parents and Children (United Kingdom), and the Norwegian Mother, Father and Child Cohort Study (Norway). We hypothesized that a lower EAA associates prospectively with increased ADHD symptoms. We tested our hypotheses in these three cohorts and meta-analyzed the results (n = 3383). We replicated previous research on the association between gestational age (GA) and ADHD. Both clinically measured gestational age as well as epigenetic age measures at birth were negatively associated with ADHD symptoms at ages 5-7 years (clinical GA: β = -0.04, p < 0.001, Bohlin: β = -0.05, p = 0.01; EPIC overlap: β = -0.05, p = 0.01; Knight: β = -0.01, p = 0.26). Raw EAA (difference between clinical and epigenetically estimated gestational age) was positively associated with ADHD in our main model, whereas residual EAA (raw EAA corrected for clinical gestational age) was not associated with ADHD symptoms across cohorts. Overall, findings support a link between lower gestational age (either measured clinically or using epigenetic-derived estimates) and ADHD symptoms. Epigenetic age acceleration does not, however, add unique information about ADHD risk independent of clinically estimated gestational age at birth.
Collapse
Affiliation(s)
- Kristina Salontaji
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Faye Sanders
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mona Bekkhus
- Promenta research centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department for methods development and analysis, section for modeling and bioinformatics, Division for infectious diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Medicine, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Kavrul Kayaalp G, Casares-Marfil D, Şahin S, Kasapçopur Ö, Sözeri B, Aktay Ayaz N, Sawalha AH. Rare Turner syndrome and lupus coexistence with insights from DNA methylation patterns. Clin Immunol 2024; 266:110310. [PMID: 39009202 DOI: 10.1016/j.clim.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Systemic lupus erythematosus (SLE or lupus) is a complex autoimmune disease that can affect multiple organs. While the exact disease etiology remains incompletely understood, there is a suggested influence of X-chromosome dosage in the pathogenesis of lupus. Here, we report a rare case of a female patient diagnosed with mosaic Turner syndrome and subsequently presenting with juvenile-onset SLE. DNA methylation patterns were analyzed in this patient and compared with age-matched female SLE controls, revealing higher methylation levels in interferon-regulated genes previously shown to be hypomethylated in SLE. These data provide a potential link between a gene-dose effect from the X-chromosome and the lupus-defining epigenotype. We hypothesize that the attenuated demethylation in interferon-regulated genes might provide a protective effect explaining the rarity of SLE in Turner syndrome.
Collapse
Affiliation(s)
- Gülşah Kavrul Kayaalp
- Division of Pediatric Rheumatology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey; Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, USA
| | - Desiré Casares-Marfil
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, USA
| | - Sezgin Şahin
- Division of Pediatric Rheumatology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Özgür Kasapçopur
- Division of Pediatric Rheumatology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Betül Sözeri
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Health Sciences, Umraniye Research and Training Hospital, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Division of Pediatric Rheumatology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Amr H Sawalha
- Departments of Pediatrics, Medicine, and Immunology, Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, USA.
| |
Collapse
|
12
|
Dye CK, Alschuler DM, Wu H, Duarte C, Monk C, Belsky DW, Lee S, O’Donnell K, Baccarelli AA, Scorza P. Maternal Adverse Childhood Experiences and Biological Aging During Pregnancy and in Newborns. JAMA Netw Open 2024; 7:e2427063. [PMID: 39120899 PMCID: PMC11316241 DOI: 10.1001/jamanetworkopen.2024.27063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024] Open
Abstract
Importance Adverse childhood experiences (ACEs), potentially traumatic experiences occurring before the age of 18 years, are associated with epigenetic aging later in life and may be transmitted across generations. Objective To test evidence of the transmission of biological embedding of life experience across generations by analyzing maternal ACEs and epigenetic clocks measured in mothers during pregnancy and in their children at birth. Design, Setting, and Participants For this cross-sectional study, data from the Accessible Resource for Integrated Epigenomic Studies (ARIES) substudy of the Avon Longitudinal Study of Parents and Children (ALSPAC) were analyzed. The ALSPAC study recruited 14 541 women who gave birth in the Avon Health District in the UK between April 1, 1991, and December 31, 1992. The ARIES substudy comprised 1018 mother-offspring dyads based on the availability of DNA samples profiled in 2014. Epigenetic age was estimated using DNA methylation-based epigenetic clocks (including Horvath, Hannum, GrimAge, PhenoAge, and DunedinPACE) in mothers during pregnancy and the Knight and Bohlin cord blood epigenetic clocks in newborns. Analyses were performed between October 1, 2022, and November 30, 2023. Exposures A composite measure of maternal ACEs was the primary exposure in both maternal and offspring models; as a secondary analysis, individual ACEs were measured separately. The Edinburgh Postnatal Depression Scale (EPDS) was used to investigate depression during pregnancy as an exposure. Main Outcomes and Measures Changes in epigenetic age acceleration (EAA) were investigated as the primary outcome in maternal models during pregnancy. Changes in epigenetic gestational age acceleration (GAA) were the primary outcome in offspring analyses. Linear regression analyses were used to determine the association between maternal ACEs and both outcomes. Results This study included 883 mother-child dyads. The mean (SD) maternal age at delivery was 29.8 (4.3) years. Pregnant women with higher ACE scores exhibited higher GrimAge EAA (β, 0.22 [95% CI, 0.12 to 0.33] years; P < .001). Maternal ACEs were not associated with GAA in newborns using P < .05 as a cutoff to determine statistical significance. Depression was associated with higher GrimAge EAA (β, 0.06 [95% CI, 0.02 to 0.10] years; P = .01) in mothers during pregnancy, but not in newborns, and did not mediate the association between ACEs and EAA. Conclusions and Relevance The findings of this study suggest that maternal ACEs may be associated with epigenetic aging later in life, including during pregnancy, supporting a role for maternal ACEs in offspring development and health later in life.
Collapse
Affiliation(s)
- Christian K. Dye
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Cristiane Duarte
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
| | - Catherine Monk
- Department of Psychiatry, Columbia University, New York, New York
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Daniel W. Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, New York
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Kieran O’Donnell
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Pamela Scorza
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| |
Collapse
|
13
|
Martin FZ, Easey KE, Howe LD, Fraser A, Lawlor DA, Relton CL, Sharp GC. A novel hypothesis-generating approach for detecting phenotypic associations using epigenetic data. Epigenomics 2024; 16:851-864. [PMID: 39016098 PMCID: PMC11370959 DOI: 10.1080/17501911.2024.2366157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Aim: Hypotheses about what phenotypes to include in causal analyses, that in turn can have clinical and policy implications, can be guided by hypothesis-free approaches leveraging the epigenome, for example.Materials & methods: Minimally adjusted epigenome-wide association studies (EWAS) using ALSPAC data were performed for example conditions, dysmenorrhea and heavy menstrual bleeding (HMB). Differentially methylated CpGs were searched in the EWAS Catalog and associated traits identified. Traits were compared between those with and without the example conditions in ALSPAC.Results: Seven CpG sites were associated with dysmenorrhea and two with HMB. Smoking and adverse childhood experience score were associated with both conditions in the hypothesis-testing phase.Conclusion: Hypothesis-generating EWAS can help identify associations for future analyses.
Collapse
Affiliation(s)
- Florence Z Martin
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Kayleigh E Easey
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Diez Roux AV, Relton C. Epigenetic Aging and Racialized, Economic, and Environmental Injustice: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2421832. [PMID: 39073820 PMCID: PMC11287398 DOI: 10.1001/jamanetworkopen.2024.21832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/10/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Epigenetic age acceleration is associated with exposure to social and economic adversity and may increase the risk of premature morbidity and mortality. However, no studies have included measures of structural racism, and few have compared estimates within or across the first and second generation of epigenetic clocks. Objective To determine whether epigenetic age acceleration is positively associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design, Setting, and Participants This cross-sectional study used data from the My Body My Story (MBMS) study between August 8, 2008, and December 31, 2010, and examination 5 of the Multi-Ethnic Atherosclerosis Study (MESA) from April 1, 2010, to February 29, 2012. In the MBMS, DNA extraction was performed in 2021; linkage of structural measures to the MBMS and MESA, in 2022. US-born individuals were randomly selected from 4 community health centers in Boston, Massachusetts (MBMS), and 4 field sites in Baltimore, Maryland; Forsyth County, North Carolina; New York City, New York; and St Paul, Minnesota (MESA). Data were analyzed from November 13, 2021, to August 31, 2023. Main Outcomes and Measures Ten epigenetic clocks (6 first-generation and 4 second-generation), computed using DNA methylation data (DNAm) from blood spots (MBMS) and purified monocytes (MESA). Results The US-born study population included 293 MBMS participants (109 men [37.2%], 184 women [62.8%]; mean [SD] age, 49.0 [8.0] years) with 224 Black non-Hispanic and 69 White non-Hispanic participants and 975 MESA participants (492 men [50.5%], 483 women [49.5%]; mean [SD] age, 70.0 [9.3] years) with 229 Black non-Hispanic, 191 Hispanic, and 555 White non-Hispanic participants. Of these, 140 (11.0%) exhibited accelerated aging for all 5 clocks whose estimates are interpretable on the age (years) scale. Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 (95% CI, 0.003-0.27) SDs and with birth state conservatism by 0.06 (95% CI, 0.01-0.12) SDs, pooling across all clocks. Low parental educational level was associated with epigenetic age acceleration, pooling across all clocks, for both Black non-Hispanic (0.24 [95% CI, 0.08-0.39] SDs) and White non-Hispanic (0.27 [95% CI, 0.03-0.51] SDs) MBMS participants. Adult impoverishment was positively associated with the pooled second-generation clocks among the MESA participants (Black non-Hispanic, 0.06 [95% CI, 0.01-0.12] SDs; Hispanic, 0.07 [95% CI, 0.01-0.14] SDs; White non-Hispanic, 0.05 [95% CI, 0.01-0.08] SDs). Conclusions and Relevance The findings of this cross-sectional study of MBMS and MESA participants suggest that epigenetic age acceleration was associated with racialized and economic injustice, potentially contributing to well-documented inequities in premature mortality. Future research should test the hypothesis that epigenetic accelerated aging may be one of the biological mechanisms underlying the well-documented elevated risk of premature morbidity and mortality among social groups subjected to racialized and economic injustice.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sarah Holmes Watkins
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway
| | - Kate Tilling
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A. Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - George Davey Smith
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Caroline Relton
- MRC (Medical Research Council) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
15
|
Elliott HR, Bennett CL, Caramaschi D, English S. Negative association between higher maternal pre-pregnancy body mass index and breastfeeding outcomes is not mediated by DNA methylation. Sci Rep 2024; 14:14675. [PMID: 38918574 PMCID: PMC11199553 DOI: 10.1038/s41598-024-65605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
The benefits of breastfeeding for the health and wellbeing of both infants and mothers are well documented, yet global breastfeeding rates are low. One factor associated with low breast feeding is maternal body mass index (BMI), which is used as a measure of obesity. The negative relationship between maternal obesity and breastfeeding is likely caused by a variety of social, psychological, and physiological factors. Maternal obesity may also have a direct biological association with breastfeeding through changes in maternal DNA methylation. Here, we investigate this potential biological association using data from a UK-based cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC). We find that pre-pregnancy body mass index (BMI) is associated with lower initiation to breastfeed and shorter breastfeeding duration. We conduct epigenome-wide association studies (EWAS) of pre-pregnancy BMI and breastfeeding outcomes, and run candidate-gene analysis of methylation sites associated with BMI identified via previous meta-EWAS. We find that DNA methylation at cg11453712, annotated to PHTP1, is associated with pre-pregnancy BMI. From our results, neither this association nor those at candidate-gene sites are likely to mediate the link between pre-pregnancy BMI and breastfeeding.
Collapse
Affiliation(s)
- Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Chloe L Bennett
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Faculty of Health and Life Sciences, Department of Psychology, University of Exeter, Exeter, UK
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Großbach A, Suderman MJ, Hüls A, Lussier AA, Smith AD, Walton E, Dunn EC, Simpkin AJ. Maximizing Insights from Longitudinal Epigenetic Age Data: Simulations, Applications, and Practical Guidance. RESEARCH SQUARE 2024:rs.3.rs-4482915. [PMID: 38947070 PMCID: PMC11213208 DOI: 10.21203/rs.3.rs-4482915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Epigenetic Age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional - using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (i) their choice of model; (ii) the primary outcome (EA vs. EAA); and (iii) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. Results Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered an accelerated EA rate in males and an advanced EA that decelerates over time in children with higher birthweight. Conclusion Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.
Collapse
Affiliation(s)
- Anna Großbach
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Matthew J. Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew D.A.C. Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Erin C. Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| |
Collapse
|
17
|
Herzog C, Jones A, Evans I, Raut JR, Zikan M, Cibula D, Wong A, Brenner H, Richmond RC, Widschwendter M. Cigarette Smoking and E-cigarette Use Induce Shared DNA Methylation Changes Linked to Carcinogenesis. Cancer Res 2024; 84:1898-1914. [PMID: 38503267 PMCID: PMC11148547 DOI: 10.1158/0008-5472.can-23-2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Tobacco use is a major modifiable risk factor for adverse health outcomes, including cancer, and elicits profound epigenetic changes thought to be associated with long-term cancer risk. While electronic cigarettes (e-cigarettes) have been advocated as harm reduction alternatives to tobacco products, recent studies have revealed potential detrimental effects, highlighting the urgent need for further research into the molecular and health impacts of e-cigarettes. Here, we applied computational deconvolution methods to dissect the cell- and tissue-specific epigenetic effects of tobacco or e-cigarette use on DNA methylation (DNAme) in over 3,500 buccal/saliva, cervical, or blood samples, spanning epithelial and immune cells at directly and indirectly exposed sites. The 535 identified smoking-related DNAme loci [cytosine-phosphate-guanine sites (CpG)] clustered into four functional groups, including detoxification or growth signaling, based on cell type and anatomic site. Loci hypermethylated in buccal epithelial cells of smokers associated with NOTCH1/RUNX3/growth factor receptor signaling also exhibited elevated methylation in cancer tissue and progressing lung carcinoma in situ lesions, and hypermethylation of these sites predicted lung cancer development in buccal samples collected from smokers up to 22 years prior to diagnosis, suggesting a potential role in driving carcinogenesis. Alarmingly, these CpGs were also hypermethylated in e-cigarette users with a limited smoking history. This study sheds light on the cell type-specific changes to the epigenetic landscape induced by smoking-related products. SIGNIFICANCE The use of both cigarettes and e-cigarettes elicits cell- and exposure-specific epigenetic effects that are predictive of carcinogenesis, suggesting caution when broadly recommending e-cigarettes as aids for smoking cessation.
Collapse
Affiliation(s)
- Chiara Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Aging, Universität Innsbruck, Innsbruck, Austria
| | - Allison Jones
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Iona Evans
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Janhavi R. Raut
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michal Zikan
- Department of Gynecology and Obstetrics, First Faculty of Medicine and Hospital Na Bulovce, Charles University in Prague, Prague, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca C. Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Aging, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, United Kingdom
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Leung ML, Abdullaev Z, Santana-Santos L, Skaugen JM, Moore S, Ji J. Microarray-Based DNA Methylation Profiling: Validation Considerations for Clinical Testing. J Mol Diagn 2024; 26:447-455. [PMID: 38378079 PMCID: PMC11238273 DOI: 10.1016/j.jmoldx.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Microarray-based methylation profiling has emerged as a valuable tool for refining diagnoses and revealing novel tumor subtypes, particularly in central nervous system tumors. Despite the increasing adoption of this technique in clinical genomic laboratories, no technical standards have been published in establishing minimum criteria for test validation. A working group with experience and expertise in DNA-based methylation profiling tests on central nervous system tumors collaborated to develop practical discussion points and focus on important considerations for validating this test in clinical laboratory settings. The experience in validating this methodology in a clinical setting is summarized. Specifically, the advantages and challenges associated with utilizing an in-house classifier compared with a third-party classifier are highlighted. Additionally, experiences in demonstrating the assay's sensitivity and specificity, establishing minimum sample criteria, and implementing quality control metrics are described. As methylation profiling for tumor classification expands to other tumor types and continues to evolve for various other applications, the critical considerations described here are expected to serve as a guidance for future efforts in establishing professional guidelines for this assay.
Collapse
Affiliation(s)
- Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Departments of Pathology and Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lucas Santana-Santos
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John M Skaugen
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Stephen Moore
- Department of Molecular and Medical Genetics and Knight Diagnostic Laboratory, Oregon Health & Science University, Portland, Oregon
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Ohi K, Fujikane D, Takai K, Kuramitsu A, Muto Y, Sugiyama S, Shioiri T. Epigenetic signatures of social anxiety, panic disorders and stress experiences: Insights from genome-wide DNA methylation risk scores. Psychiatry Res 2024; 337:115984. [PMID: 38820651 DOI: 10.1016/j.psychres.2024.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Social anxiety disorder (SAD) and panic disorder (PD) are prevalent anxiety disorders characterized by a complex interplay of genetic and environmental factors. Both disorders share overlapping features and often coexist, despite displaying distinct characteristics. Childhood life adversity, overall stressful life events, and genetic factors contribute to the development of these disorders. DNA methylation, an epigenetic modification, has been implicated in the pathogenesis of these diseases. In this study, we investigated whether whole-genome DNA methylation risk scores (MRSs) for SAD risk, severity of social anxiety, childhood life adversity, PD risk, and overall stressful life events were associated with SAD or PD case‒control status. Preliminary epigenome-wide association studies (EWASs) for SAD risk, severity of social anxiety, and childhood life adversity were conducted in 66 SAD individuals and 77 healthy controls (HCs). Similarly, EWASs for PD risk and overall stressful life events were performed in 182 PD individuals and 81 HCs. MRSs were calculated from these EWASs. MRSs derived from the EWASs of SAD risk and severity of social anxiety were greater in PD patients than in HCs. Additionally, MRSs derived from the EWASs of overall stressful life events, particularly in PD individuals, were lower in SAD individuals than in HCs. In contrast, MRSs for childhood life adversity or PD risk were not significantly associated with PD or SAD case‒control status. These findings highlight the epigenetic features shared in both disorders and the distinctive epigenetic features related to social avoidance in SAD patients, helping to elucidate the epigenetic basis of these disorders.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
20
|
Yap CX, Vo DD, Heffel MG, Bhattacharya A, Wen C, Yang Y, Kemper KE, Zeng J, Zheng Z, Zhu Z, Hannon E, Vellame DS, Franklin A, Caggiano C, Wamsley B, Geschwind DH, Zaitlen N, Gusev A, Pasaniuc B, Mill J, Luo C, Gandal MJ. Brain cell-type shifts in Alzheimer's disease, autism, and schizophrenia interrogated using methylomics and genetics. SCIENCE ADVANCES 2024; 10:eadn7655. [PMID: 38781333 PMCID: PMC11114225 DOI: 10.1126/sciadv.adn7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chloe X. Yap
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel D. Vo
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G. Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cindy Wen
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuanhao Yang
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- The National Centre for Register-based Research, Aarhus University, Denmark
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dorothea Seiler Vellame
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Christa Caggiano
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Brie Wamsley
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J. Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Creasey N, Beijers R, O'Donnell KJ, de Weerth C, Tollenaar MS. Maternal sensitivity and child internalizing and externalizing behavior: a mediating role for glucocorticoid receptor gene ( NR3C1) methylation? Dev Psychopathol 2024; 36:967-978. [PMID: 36896668 DOI: 10.1017/s0954579423000226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The early caregiving environment can have lasting effects on child mental health. Animal models suggest that glucocorticoid receptor gene (NR3C1) DNA methylation plays a mediating role in linking more responsive caregiving to improved behavioral outcomes by its impact on the stress regulatory system. In this longitudinal study, we examined whether children's NR3C1 methylation levels mediate an effect of maternal sensitivity in infancy on levels of child internalizing and externalizing behavior in a community sample. Maternal sensitivity of 145 mothers was rated at infant age 5 weeks, 12 months, and 30 months by observing mother-infant interactions. Buccal DNA methylation was assessed in the same children at age 6 years and maternal-reported internalizing and externalizing behavior was assessed at age 6 and 10 years. Higher sensitivity at age 5 weeks significantly predicted lower DNA methylation levels at two NR3C1 CpG loci, although methylation levels at these loci did not mediate an effect of maternal sensitivity on levels of child internalizing and externalizing behavior. Overall, the study provides evidence that maternal sensitivity in early infancy is associated with DNA methylation levels at loci involved in stress regulation, but the significance of this finding for child mental health remains unclear.
Collapse
Affiliation(s)
- Nicole Creasey
- Preventive Youth Care, Research Institute of Child Development and Education, University of Amsterdam, the Netherlands
| | - Roseriet Beijers
- Department of Social Development, Behavioral Science Institute, Radboud University, the Netherlands, and Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, QC, Canada; Canadian Institute for Advanced Research, Child and Brain Development Program, Canada; and Yale Child Study Center & Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, USA
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, the Netherlands
| | - Marieke S Tollenaar
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| |
Collapse
|
22
|
Opsahl JO, Fragoso-Bargas N, Lee Y, Carlsen EØ, Lekanova N, Qvigstad E, Sletner L, Jenum AK, Lee-Ødegård S, Prasad RB, Birkeland KI, Moen GH, Sommer C. Epigenome-wide association study of DNA methylation in maternal blood leukocytes with BMI in pregnancy and gestational weight gain. Int J Obes (Lond) 2024; 48:584-593. [PMID: 38219005 PMCID: PMC10978488 DOI: 10.1038/s41366-024-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
OBJECTIVES We aimed to discover CpG sites with differential DNA methylation in peripheral blood leukocytes associated with body mass index (BMI) in pregnancy and gestational weight gain (GWG) in women of European and South Asian ancestry. Furthermore, we aimed to investigate how the identified sites were associated with methylation quantitative trait loci, gene ontology, and cardiometabolic parameters. METHODS In the Epigenetics in pregnancy (EPIPREG) sample we quantified maternal DNA methylation in peripheral blood leukocytes in gestational week 28 with Illumina's MethylationEPIC BeadChip. In women with European (n = 303) and South Asian (n = 164) ancestry, we performed an epigenome-wide association study of BMI in gestational week 28 and GWG between gestational weeks 15 and 28 using a meta-analysis approach. Replication was performed in the Norwegian Mother, Father, and Child Cohort Study, the Study of Assisted Reproductive Technologies (MoBa-START) (n = 877, mainly European/Norwegian). RESULTS We identified one CpG site significantly associated with GWG (p 5.8 × 10-8) and five CpG sites associated with BMI at gestational week 28 (p from 4.0 × 10-8 to 2.1 × 10-10). Of these, we were able to replicate three in MoBa-START; cg02786370, cg19758958 and cg10472537. Two sites are located in genes previously associated with blood pressure and BMI. DNA methylation at the three replicated CpG sites were associated with levels of blood pressure, lipids and glucose in EPIPREG (p from 1.2 × 10-8 to 0.04). CONCLUSIONS We identified five CpG sites associated with BMI at gestational week 28, and one with GWG. Three of the sites were replicated in an independent cohort. Several genetic variants were associated with DNA methylation at cg02786379 and cg16733643 suggesting a genetic component influencing differential methylation. The identified CpG sites were associated with cardiometabolic traits. CLINICALTRIALS GOV REGISTRATION NO Not applicable.
Collapse
Affiliation(s)
- J O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - N Fragoso-Bargas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Y Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - E Ø Carlsen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - N Lekanova
- Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - E Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - L Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - A K Jenum
- General Practice Research Unit, Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - S Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R B Prasad
- Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K I Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - G-H Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - C Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
23
|
Kiltschewskij DJ, Reay WR, Geaghan MP, Atkins JR, Xavier A, Zhang X, Watkeys OJ, Carr VJ, Scott RJ, Green MJ, Cairns MJ. Alteration of DNA Methylation and Epigenetic Scores Associated With Features of Schizophrenia and Common Variant Genetic Risk. Biol Psychiatry 2024; 95:647-661. [PMID: 37480976 DOI: 10.1016/j.biopsych.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Unpacking molecular perturbations associated with features of schizophrenia is a critical step toward understanding phenotypic heterogeneity in this disorder. Recent epigenome-wide association studies have uncovered pervasive dysregulation of DNA methylation in schizophrenia; however, clinical features of the disorder that account for a large proportion of phenotypic variability are relatively underexplored. METHODS We comprehensively analyzed patterns of DNA methylation in a cohort of 381 individuals with schizophrenia from the deeply phenotyped Australian Schizophrenia Research Bank. Epigenetic changes were investigated in association with cognitive status, age of onset, treatment resistance, Global Assessment of Functioning scores, and common variant polygenic risk scores for schizophrenia. We subsequently explored alterations within genes previously associated with psychiatric illness, phenome-wide epigenetic covariance, and epigenetic scores. RESULTS Epigenome-wide association studies of the 5 primary traits identified 662 suggestively significant (p < 6.72 × 10-5) differentially methylated probes, with a further 432 revealed after controlling for schizophrenia polygenic risk on the remaining 4 traits. Interestingly, we uncovered many probes within genes associated with a variety of psychiatric conditions as well as significant epigenetic covariance with phenotypes and exposures including acute myocardial infarction, C-reactive protein, and lung cancer. Epigenetic scores for treatment-resistant schizophrenia strikingly exhibited association with clozapine administration, while epigenetic proxies of plasma protein expression, such as CCL17, MMP10, and PRG2, were associated with several features of schizophrenia. CONCLUSIONS Our findings collectively provide novel evidence suggesting that several features of schizophrenia are associated with alteration of DNA methylation, which may contribute to interindividual phenotypic variation in affected individuals.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Michael P Geaghan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Oliver J Watkeys
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Melissa J Green
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
24
|
Hatton AA, Cheng FF, Lin T, Shen RJ, Chen J, Zheng Z, Qu J, Lyu F, Harris SE, Cox SR, Jin ZB, Martin NG, Fan D, Montgomery GW, Yang J, Wray NR, Marioni RE, Visscher PM, McRae AF. Genetic control of DNA methylation is largely shared across European and East Asian populations. Nat Commun 2024; 15:2713. [PMID: 38548728 PMCID: PMC10978881 DOI: 10.1038/s41467-024-47005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.
Collapse
Affiliation(s)
- Alesha A Hatton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fei-Fei Cheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Life Sciences, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100008, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jie Chen
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Qu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lyu
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, 100008, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Nicholas G Martin
- Queensland Institute of Medical Research Berghofer, Brisbane, QLD, 4006, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, 100191, Beijing, China
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, 310030, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Peters TJ, Meyer B, Ryan L, Achinger-Kawecka J, Song J, Campbell EM, Qu W, Nair S, Loi-Luu P, Stricker P, Lim E, Stirzaker C, Clark SJ, Pidsley R. Characterisation and reproducibility of the HumanMethylationEPIC v2.0 BeadChip for DNA methylation profiling. BMC Genomics 2024; 25:251. [PMID: 38448820 PMCID: PMC10916044 DOI: 10.1186/s12864-024-10027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The Illumina family of Infinium Methylation BeadChip microarrays has been widely used over the last 15 years for genome-wide DNA methylation profiling, including large-scale and population-based studies, due to their ease of use and cost effectiveness. Succeeding the popular HumanMethylationEPIC BeadChip (EPICv1), the recently released Infinium MethylationEPIC v2.0 BeadChip (EPICv2) claims to extend genomic coverage to more than 935,000 CpG sites. Here, we comprehensively characterise the reproducibility, reliability and annotation of the EPICv2 array, based on bioinformatic analysis of both manifest data and new EPICv2 data from diverse biological samples. RESULTS We find a high degree of reproducibility with EPICv1, evidenced by comparable sensitivity and precision from empirical cross-platform comparison incorporating whole genome bisulphite sequencing (WGBS), and high correlation between technical sample replicates, including between samples with DNA input levels below the manufacturer's recommendation. We provide a full assessment of probe content, evaluating genomic distribution and changes from previous array versions. We characterise EPICv2's new feature of replicated probes and provide recommendations as to the superior probes. In silico analysis of probe sequences demonstrates that probe cross-hybridisation remains a significant problem in EPICv2. By mapping the off-target sites at single nucleotide resolution and comparing with WGBS we show empirical evidence for preferential off-target binding. CONCLUSIONS Overall, we find EPICv2 a worthy successor to the previous Infinium methylation microarrays, however some technical issues remain. To support optimal EPICv2 data analysis we provide an expanded version of the EPICv2 manifest to aid researchers in understanding probe design, data processing, choosing appropriate probes for analysis and for integration with methylation datasets from previous versions of the Infinium Methylation BeadChip.
Collapse
Affiliation(s)
- Timothy J Peters
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Braydon Meyer
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Lauren Ryan
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Jenny Song
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Elyssa M Campbell
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Wenjia Qu
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Shalima Nair
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Phuc Loi-Luu
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Phillip Stricker
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
- Department of Urology, St. Vincent's Prostate Cancer Centre, Sydney, NSW, 2050, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia.
| | - Ruth Pidsley
- Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
26
|
Creasey N, Leijten P, Tollenaar MS, Boks MP, Overbeek G. DNA methylation variation after a parenting program for child conduct problems: Findings from a randomized controlled trial. Child Dev 2024. [PMID: 38436454 DOI: 10.1111/cdev.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study investigated associations of the Incredible Years (IY) parenting program with children's DNA methylation. Participants were 289 Dutch children aged 3-9 years (75% European ancestry, 48% female) with above-average conduct problems. Saliva was collected 2.5 years after families were randomized to IY or care as usual (CAU). Using an intention-to-treat approach, confirmatory multiple-regression analyses revealed no significant differences between the IY and CAU groups in children's methylation levels at the NR3C1 and FKBP5 genes. However, exploratory epigenome-wide analyses revealed nine differentially methylated regions between groups, coinciding with SLAMF1, MITF, FAM200B, PSD3, SNX31, and CELSR1. The study provides preliminary evidence for associations of IY with children's salivary methylation levels and highlights the need for further research into biological outcomes of parenting programs.
Collapse
Affiliation(s)
- Nicole Creasey
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patty Leijten
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke S Tollenaar
- Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Marco P Boks
- Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Geertjan Overbeek
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Kreitmaier P, Park YC, Swift D, Gilly A, Wilkinson JM, Zeggini E. Epigenomic profiling of the infrapatellar fat pad in osteoarthritis. Hum Mol Genet 2024; 33:501-509. [PMID: 37975894 PMCID: PMC10939427 DOI: 10.1093/hmg/ddad198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
29
|
Gu Z, Uh HW, Houwing-Duistermaat J, El Bouhaddani S. Joint modeling of an outcome variable and integrated omics datasets using GLM-PO2PLS. J Appl Stat 2024; 51:2627-2651. [PMID: 39290359 PMCID: PMC11404385 DOI: 10.1080/02664763.2024.2313458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/23/2024] [Indexed: 09/19/2024]
Abstract
In many studies of human diseases, multiple omics datasets are measured. Typically, these omics datasets are studied one by one with the disease, thus the relationship between omics is overlooked. Modeling the joint part of multiple omics and its association to the outcome disease will provide insights into the complex molecular base of the disease. Several dimension reduction methods which jointly model multiple omics and two-stage approaches that model the omics and outcome in separate steps are available. Holistic one-stage models for both omics and outcome are lacking. In this article, we propose a novel one-stage method that jointly models an outcome variable with omics. We establish the model identifiability and develop EM algorithms to obtain maximum likelihood estimators of the parameters for normally and Bernoulli distributed outcomes. Test statistics are proposed to infer the association between the outcome and omics, and their asymptotic distributions are derived. Extensive simulation studies are conducted to evaluate the proposed model. The method is illustrated by modeling Down syndrome as outcome and methylation and glycomics as omics datasets. Here we show that our model provides more insight by jointly considering methylation and glycomics.
Collapse
Affiliation(s)
- Zhujie Gu
- Department of Data Science and Biostatistics, Julius Centre, UMC Utrecht, Utrecht, The Netherlands
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Hae-Won Uh
- Department of Data Science and Biostatistics, Julius Centre, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanine Houwing-Duistermaat
- Department of Data Science and Biostatistics, Julius Centre, UMC Utrecht, Utrecht, The Netherlands
- Department of Statistics, University of Leeds, Leeds, UK
- Department of Mathematics, Radboud University, Nijmegen, The Netherlands
| | - Said El Bouhaddani
- Department of Data Science and Biostatistics, Julius Centre, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Zhang H, Kalla R, Chen J, Zhao J, Zhou X, Adams A, Noble A, Ventham NT, Wellens J, Ho GT, Dunlop MG, Nowak JK, Ding Y, Liu Z, Satsangi J, Theodoratou E, Li X. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat Commun 2024; 15:595. [PMID: 38238335 PMCID: PMC10796384 DOI: 10.1038/s41467-024-44841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.
Collapse
Affiliation(s)
- Han Zhang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Academic Coloproctology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Judith Wellens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jan Krzysztof Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Evropi Theodoratou
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
31
|
Ohi K, Shimada M, Soda M, Nishizawa D, Fujikane D, Takai K, Kuramitsu A, Muto Y, Sugiyama S, Hasegawa J, Kitaichi K, Ikeda K, Shioiri T. Genome-wide DNA methylation risk scores for schizophrenia derived from blood and brain tissues further explain the genetic risk in patients stratified by polygenic risk scores for schizophrenia and bipolar disorder. BMJ MENTAL HEALTH 2024; 27:e300936. [PMID: 38216218 PMCID: PMC10806921 DOI: 10.1136/bmjment-2023-300936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Genetic and environmental factors contribute to the pathogenesis of schizophrenia (SZ) and bipolar disorder (BD). Among genetic risk groups stratified by combinations of Polygenic Risk Score (PRS) deciles for SZ, BD and SZ versus BD, genetic SZ risk groups had high SZ risk and prominent cognitive impairments. Furthermore, epigenetic alterations are implicated in these disorders. However, it was unclear whether DNA Methylation Risk Scores (MRSs) for SZ risk derived from blood and brain tissues were associated with SZ risk, particularly the PRS-stratified genetic SZ risk group. METHODS Epigenome-wide association studies (EWASs) of SZ risk in whole blood were preliminarily conducted between 66 SZ patients and 30 healthy controls (HCs) and among genetic risk groups (individuals with low genetic risk for SZ and BD in HCs (n=30) and in SZ patients (n=11), genetic BD risk in SZ patients (n=25) and genetic SZ risk in SZ patients (n=30)) stratified by combinations of PRSs for SZ, BD and SZ versus BD. Next, differences in MRSs based on independent EWASs of SZ risk in whole blood, postmortem frontal cortex (FC) and superior temporal gyrus (STG) were investigated among our case‒control and PRS-stratified genetic risk status groups. RESULTS Among case‒control and genetic risk status groups, 33 and 351 genome-wide significant differentially methylated positions (DMPs) associated with SZ were identified, respectively, many of which were hypermethylated. Compared with the low genetic risk in HCs group, the genetic SZ risk in SZ group had 39 genome-wide significant DMPs, while the genetic BD risk in SZ group had only six genome-wide significant DMPs. The MRSs for SZ risk derived from whole blood, FC and STG were higher in our SZ patients than in HCs in whole blood and were particularly higher in the genetic SZ risk in SZ group than in the low genetic risk in HCs and genetic BD risk in SZ groups. Conversely, the MRSs for SZ risk based on our whole-blood EWASs among genetic risk groups were also associated with SZ in the FC and STG. There were no correlations between the MRSs and PRSs. CONCLUSIONS These findings suggest that the MRS is a potential genetic marker in understanding SZ, particularly in patients with a genetic SZ risk.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Mihoko Shimada
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Midori Soda
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Fujikane
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kentaro Takai
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuramitsu
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
32
|
Kasela S, Aguet F, Kim-Hellmuth S, Brown BC, Nachun DC, Tracy RP, Durda P, Liu Y, Taylor KD, Johnson WC, Van Den Berg D, Gabriel S, Gupta N, Smith JD, Blackwell TW, Rotter JI, Ardlie KG, Manichaikul A, Rich SS, Barr RG, Lappalainen T. Interaction molecular QTL mapping discovers cellular and environmental modifiers of genetic regulatory effects. Am J Hum Genet 2024; 111:133-149. [PMID: 38181730 PMCID: PMC10806864 DOI: 10.1016/j.ajhg.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.
Collapse
Affiliation(s)
- Silva Kasela
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA.
| | | | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA; Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, Munich, Germany; Computational Health Center, Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Brielin C Brown
- New York Genome Center, New York, NY, USA; Data Science Institute, Columbia University, New York, NY, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Russell P Tracy
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Peter Durda
- Pathology and Laboratory Medicine, The University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Yongmei Liu
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Smith
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
33
|
Luo M, Walton E, Neumann A, Thio CHL, Felix JF, van IJzendoorn MH, Pappa I, Cecil CAM. DNA methylation at birth and lateral ventricular volume in childhood: a neuroimaging epigenetics study. J Child Psychol Psychiatry 2024; 65:77-90. [PMID: 37469193 PMCID: PMC10953396 DOI: 10.1111/jcpp.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Lateral ventricular volume (LVV) enlargement has been repeatedly linked to schizophrenia; yet, what biological factors shape LVV during early development remain unclear. DNA methylation (DNAm), an essential process for neurodevelopment that is altered in schizophrenia, is a key molecular system of interest. METHODS In this study, we conducted the first epigenome-wide association study of neonatal DNAm in cord blood with LVV in childhood (measured using T1-weighted brain scans at 10 years), based on data from a large population-based birth cohort, the Generation R Study (N = 840). Employing both probe-level and methylation profile score (MPS) approaches, we further examined whether epigenetic modifications identified at birth in cord blood are: (a) also observed cross-sectionally in childhood using peripheral blood DNAm at age of 10 years (Generation R, N = 370) and (b) prospectively associated with LVV measured in young adulthood in an all-male sample from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 114). RESULTS At birth, DNAm levels at four CpGs (annotated to potassium channel tetramerization domain containing 3, KCTD3; SHH signaling and ciliogenesis regulator, SDCCAG8; glutaredoxin, GLRX) prospectively associated with childhood LVV after genome-wide correction; these genes have been implicated in brain development and psychiatric traits including schizophrenia. An MPS capturing a broader epigenetic profile of LVV - but not individual top hits - showed significant cross-sectional associations with LVV in childhood in Generation R and prospectively associated with LVV in early adulthood within ALSPAC. CONCLUSIONS This study finds suggestive evidence that DNAm at birth prospectively associates with LVV at different life stages, albeit with small effect sizes. The prediction of MPS on LVV in a childhood sample and an independent male adult sample further underscores the stability and reproducibility of DNAm as a potential marker for LVV. Future studies with larger samples and comparable time points across development are needed to further elucidate how DNAm associates with this clinically relevant brain structure and risk for neuropsychiatric disorders, and what factors explain the identified DNAm profile of LVV at birth.
Collapse
Affiliation(s)
- Mannan Luo
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | | | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Chris H. L. Thio
- Department of EpidemiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Janine F. Felix
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Marinus H. van IJzendoorn
- Department of Psychology, Education and Child StudiesErasmus University RotterdamRotterdamThe Netherlands
- Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, UCLUniversity of LondonLondonUK
| | - Irene Pappa
- Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Clinical Child and Family StudiesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
34
|
Drouard G, Wang Z, Heikkinen A, Foraster M, Julvez J, Kanninen KM, van Kamp I, Pirinen M, Ollikainen M, Kaprio J. Lifestyle differences between co-twins are associated with decreased similarity in their internal and external exposome profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.12.23299868. [PMID: 38168348 PMCID: PMC10760270 DOI: 10.1101/2023.12.12.23299868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Whether differences in lifestyle between co-twins are reflected in differences in their internal or external exposome profiles remains largely underexplored. We therefore investigated whether within-pair differences in lifestyle were associated with within-pair differences in exposome profiles across four domains: the external exposome, proteome, metabolome and epigenetic age acceleration (EAA). For each domain, we assessed the similarity of co-twin profiles using Gaussian similarities in up to 257 young adult same-sex twin pairs (54% monozygotic). We additionally tested whether similarity in one domain translated into greater similarity in another. Results suggest that a lower degree of similarity in co-twins' exposome profiles was associated with greater differences in their behavior and substance use. The strongest association was identified between excessive drinking behavior and the external exposome. Overall, our study demonstrates how social behavior and especially substance use are connected to the internal and external exposomes, while controlling for familial confounders.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Zhiyang Wang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Jordi Julvez
- Clinical and epidemiological Neuroscience (NeuroÈpia), Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irene van Kamp
- National Institute for Public Health and the Environment, centre for Sustainability, Environment and Health, Netherlands
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Krieger N, Testa C, Chen JT, Johnson N, Watkins SH, Suderman M, Simpkin AJ, Tilling K, Waterman PD, Coull BA, De Vivo I, Smith GD, Roux AVD, Relton C. Epigenetic aging & embodying injustice: US My Body My Story and Multi-Ethnic Atherosclerosis Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299930. [PMID: 38168159 PMCID: PMC10760288 DOI: 10.1101/2023.12.13.23299930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Importance Epigenetic accelerated aging is associated with exposure to social and economic adversity and may increase risk of premature morbidity and mortality. However, no studies have included measures of structural racism and few have compared estimates within or across the 1st and 2nd generation of epigenetic clocks (the latter additionally trained on phenotypic data). Objective To determine if accelerated epigenetic aging is associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design Cross-sectional My Body My Story Study (MBMS; US, 2008-2010) and Exam 5 Multi-Ethnic Atherosclerosis Study (MESA; US, 2010-2012). MBMS DNA extraction: 2021; linkage of structural measures to MBMS and MESA: 2022. Setting MBMS recruited a random sample of US-born Black non-Hispanic (BNH) and white non-Hispanic (WNH) participants from 4 community health centers in Boston, MA. The MESA Exam 5 epigenetic component included 975 randomly selected US-born BNH, WNH, and Hispanic participants from four field sites: Baltimore, MD; Forsyth County, NC; New York City, NY; St. Paul, MN. Participants US-born persons (MBMS: 224 BNH, 69 WNH; MESA: 229 BNH, 555 WNH, 191 Hispanic). Main outcome and measures 10 epigenetic clocks (six 1st generation; four 2nd generation), computed using DNA methylation data (DNAm) from blood spots (MBMS; N = 293) and purified monocytes (MESA; N = 975). Results Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 standard deviations (95% confidence interval [CI] 0.00, 0.27) and with birth state conservatism (0.06, 95% CI 0.00, 0.05), pooling across all clocks, as was low parental education for both Black non-Hispanic and white non-Hispanic MBMS participants (respectively: 0.24, 95% CI 0.08, 0.39, and 0.27, 95% CI 0.03, 0.51. Adult impoverishment was positively associated with the pooled 2nd generation clocks among the MESA participants (Black non-Hispanic: 0.06, 95% CI 0.01, 0.12; white non-Hispanic: 0.05, 95% CI 0.01, 0.08; Hispanic: 0.07, 95% CI 0.01, 0.14). Conclusions and Relevance Epigenetic accelerated aging may be one of the biological mechanisms linking exposure to racialized and economic injustice to well-documented inequities in premature morbidity and mortality.
Collapse
Affiliation(s)
- Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Nykesha Johnson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sarah H. Watkins
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Ana V. Diez Roux
- Urban Health Collective and Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
36
|
Rönn T, Ofori JK, Perfilyev A, Hamilton A, Pircs K, Eichelmann F, Garcia-Calzon S, Karagiannopoulos A, Stenlund H, Wendt A, Volkov P, Schulze MB, Mulder H, Eliasson L, Ruhrmann S, Bacos K, Ling C. Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes. Nat Commun 2023; 14:8040. [PMID: 38086799 PMCID: PMC10716521 DOI: 10.1038/s41467-023-43719-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic dysregulation may influence disease progression. Here we explore whether epigenetic alterations in human pancreatic islets impact insulin secretion and type 2 diabetes (T2D). In islets, 5,584 DNA methylation sites exhibit alterations in T2D cases versus controls and are associated with HbA1c in individuals not diagnosed with T2D. T2D-associated methylation changes are found in enhancers and regions bound by β-cell-specific transcription factors and associated with reduced expression of e.g. CABLES1, FOXP1, GABRA2, GLR1A, RHOT1, and TBC1D4. We find RHOT1 (MIRO1) to be a key regulator of insulin secretion in human islets. Rhot1-deficiency in β-cells leads to reduced insulin secretion, ATP/ADP ratio, mitochondrial mass, Ca2+, and respiration. Regulators of mitochondrial dynamics and metabolites, including L-proline, glycine, GABA, and carnitines, are altered in Rhot1-deficient β-cells. Islets from diabetic GK rats present Rhot1-deficiency. Finally, RHOT1methylation in blood is associated with future T2D. Together, individuals with T2D exhibit epigenetic alterations linked to mitochondrial dysfunction in pancreatic islets.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Alexander Hamilton
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Biology, University of Copenhagen, København, Denmark
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
- HCEMM-Su, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sonia Garcia-Calzon
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
- Department of Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Alexandros Karagiannopoulos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Hans Stenlund
- Swedish Metabolomics Centre, Umeå University, Umeå, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Sabrina Ruhrmann
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
37
|
Watkins SH, Testa C, Simpkin AJ, Smith GD, Coull B, De Vivo I, Tilling K, Waterman PD, Chen JT, Diez-Roux AV, Krieger N, Suderman M, Relton C. An epigenome-wide analysis of DNA methylation, racialized and economic inequities, and air pollution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570610. [PMID: 38105971 PMCID: PMC10723401 DOI: 10.1101/2023.12.07.570610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Importance DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures become embodied and contribute to health inequities, due to its role in genome regulation and responsiveness to social and biophysical exposures tied to societal context. However, scant epigenome-wide association studies (EWAS) have included structural and lifecourse measures of exposure, especially in relation to structural discrimination. Objective Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination, economic adversity, and air pollution become biologically embodied. Design A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013); using new georeferenced social exposure data for both studies (generated in 2022). Setting MBMS was recruited from four community health centers in Boston; MESA was recruited from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN. Participants Two population-based samples of US-born Black non-Hispanic (Black NH), white non-Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA; n=229 Black NH, n=555 white NH and n=191 Hispanic). Exposures Eight social exposures encompassing racial discrimination, economic adversity, and air pollution. Main outcome Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip (MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes). Our hypothesis was formulated after data collection. Results We observed the strongest associations with traffic-related air pollution (measured via black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air pollution exposure may induce epigenetic changes related to inflammatory processes. We also found suggestive associations of DNAm variation with measures of structural racial discrimination (e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic residential segregation) situated in genes with plausible links to effects on health. Conclusions and Relevance Overall, this work suggests that DNAm is a biological mechanism through which structural racism and air pollution become embodied and may lead to health inequities.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Brent Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Pamela D. Waterman
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Ana V. Diez-Roux
- Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, USA
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Quinn EB, Hsiao CJ, Maisha FM, Mulligan CJ. Prenatal maternal stress is associated with site-specific and age acceleration changes in maternal and newborn DNA methylation. Epigenetics 2023; 18:2222473. [PMID: 37300821 PMCID: PMC10259347 DOI: 10.1080/15592294.2023.2222473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prenatal maternal stress has a negative impact on child health but the mechanisms through which maternal stress affects child health are unclear. Epigenetic variation, such as DNA methylation, is a likely mechanistic candidate as DNA methylation is sensitive to environmental insults and can regulate long-term changes in gene expression. We recruited 155 mother-newborn dyads in the Democratic Republic of Congo to investigate the effects of maternal stress on DNA methylation in mothers and newborns. We used four measures of maternal stress to capture a range of stressful experiences: general trauma, sexual trauma, war trauma, and chronic stress. We identified differentially methylated positions (DMPs) associated with general trauma, sexual trauma, and war trauma in both mothers and newborns. No DMPs were associated with chronic stress. Sexual trauma was positively associated with epigenetic age acceleration across several epigenetic clocks in mothers. General trauma and war trauma were positively associated with newborn epigenetic age acceleration using the extrinsic epigenetic age clock. We tested the top DMPs for enrichment of DNase I hypersensitive sites (DHS) and found no enrichment in mothers. In newborns, top DMPs associated with war trauma were enriched for DHS in embryonic and foetal cell types. Finally, one of the top DMPs associated with war trauma in newborns also predicted birthweight, completing the cycle from maternal stress to DNA methylation to newborn health outcome. Our results indicate that maternal stress is associated with site-specific changes in DNAm and epigenetic age acceleration in both mothers and newborns.
Collapse
Affiliation(s)
- Edward B. Quinn
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Chu J. Hsiao
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Felicien M. Maisha
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Democratic Republic of Congo, HEAL Africa Hospital, Goma, USA
- Democratic Republic of Congo, Maisha Institute, Goma, USA
| | - Connie J. Mulligan
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez TL, Went H, Gonzalez JR. Impact of tobacco, alcohol, and marijuana on genome-wide DNA methylation and its relationship with hypertension. Epigenetics 2023; 18:2214392. [PMID: 37216580 DOI: 10.1080/15592294.2023.2214392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.
Collapse
Affiliation(s)
| | | | - Alejandro Cáceres
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | - Juan R Gonzalez
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Serdarevic F, Luo M, Karabegović I, Binter AC, Alemany S, Mutzel R, Guxens M, Bustamante M, Hajdarpasic A, White T, Felix JF, Cecil CAM, Tiemeier H. DNA methylation at birth and fine motor ability in childhood: an epigenome-wide association study with replication. Epigenetics 2023; 18:2207253. [PMID: 37139702 PMCID: PMC10161945 DOI: 10.1080/15592294.2023.2207253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Lower fine motor performance in childhood has been associated with poorer cognitive development and neurodevelopmental conditions such as autism spectrum disorder, yet, biological underpinnings remain unclear. DNA methylation (DNAm), an essential process for healthy neurodevelopment, is a key molecular system of interest. In this study, we conducted the first epigenome-wide association study of neonatal DNAm with childhood fine motor ability and further examined the replicability of epigenetic markers in an independent cohort. The discovery study was embedded in Generation R, a large population-based prospective cohort, including a subsample of 924 ~ 1026 European-ancestry singletons with available data on DNAm in cord blood and fine motor ability at a mean (SD) age of 9.8 (0.4) years. Fine motor ability was measured using a finger-tapping test (3 subtests including left-, right-hand and bimanual), one of the most frequently used neuropsychological instruments of fine motor function. The replication study comprised 326 children with a mean (SD) age of 6.8 (0.4) years from an independent cohort, the INfancia Medio Ambiente (INMA) study. Four CpG sites at birth were prospectively associated with childhood fine motor ability after genome-wide correction. Of these, one CpG (cg07783800 in GNG4) was replicated in INMA, showing that lower levels of methylation at this site were associated with lower fine motor performance in both cohorts. GNG4 is highly expressed in the brain and has been implicated in cognitive decline. Our findings support a prospective, reproducible association between DNAm at birth and fine motor ability in childhood, pointing to GNG4 methylation at birth as a potential biomarker of fine motor ability.
Collapse
Affiliation(s)
- Fadila Serdarevic
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Mannan Luo
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Irma Karabegović
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Alemany
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ryan Mutzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Monica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Hajdarpasic
- Department of Medical Biology, and Genetics, Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Ng JWY, Felix JF, Olson DM. A novel approach to risk exposure and epigenetics-the use of multidimensional context to gain insights into the early origins of cardiometabolic and neurocognitive health. BMC Med 2023; 21:466. [PMID: 38012757 PMCID: PMC10683259 DOI: 10.1186/s12916-023-03168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Each mother-child dyad represents a unique combination of genetic and environmental factors. This constellation of variables impacts the expression of countless genes. Numerous studies have uncovered changes in DNA methylation (DNAm), a form of epigenetic regulation, in offspring related to maternal risk factors. How these changes work together to link maternal-child risks to childhood cardiometabolic and neurocognitive traits remains unknown. This question is a key research priority as such traits predispose to future non-communicable diseases (NCDs). We propose viewing risk and the genome through a multidimensional lens to identify common DNAm patterns shared among diverse risk profiles. METHODS We identified multifactorial Maternal Risk Profiles (MRPs) generated from population-based data (n = 15,454, Avon Longitudinal Study of Parents and Children (ALSPAC)). Using cord blood HumanMethylation450 BeadChip data, we identified genome-wide patterns of DNAm that co-vary with these MRPs. We tested the prospective relation of these DNAm patterns (n = 914) to future outcomes using decision tree analysis. We then tested the reproducibility of these patterns in (1) DNAm data at age 7 and 17 years within the same cohort (n = 973 and 974, respectively) and (2) cord DNAm in an independent cohort, the Generation R Study (n = 686). RESULTS We identified twenty MRP-related DNAm patterns at birth in ALSPAC. Four were prospectively related to cardiometabolic and/or neurocognitive childhood outcomes. These patterns were replicated in DNAm data from blood collected at later ages. Three of these patterns were externally validated in cord DNAm data in Generation R. Compared to previous literature, DNAm patterns exhibited novel spatial distribution across the genome that intersects with chromatin functional and tissue-specific signatures. CONCLUSIONS To our knowledge, we are the first to leverage multifactorial population-wide data to detect patterns of variability in DNAm. This context-based approach decreases biases stemming from overreliance on specific samples or variables. We discovered molecular patterns demonstrating prospective and replicable relations to complex traits. Moreover, results suggest that patterns harbour a genome-wide organisation specific to chromatin regulation and target tissues. These preliminary findings warrant further investigation to better reflect the reality of human context in molecular studies of NCDs.
Collapse
Affiliation(s)
- Jane W Y Ng
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
| | - Janine F Felix
- The Generation F Study Group, Erasmus MC University Medical Center Rotterdam, Postbus, 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M Olson
- Departments of Obstetrics and Gynecology, Physiology, and Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 220 HMRC, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
42
|
Coltell O, Asensio EM, Sorlí JV, Ortega-Azorín C, Fernández-Carrión R, Pascual EC, Barragán R, González JI, Estruch R, Alzate JF, Pérez-Fidalgo A, Portolés O, Ordovas JM, Corella D. Associations between the New DNA-Methylation-Based Telomere Length Estimator, the Mediterranean Diet and Genetics in a Spanish Population at High Cardiovascular Risk. Antioxidants (Basel) 2023; 12:2004. [PMID: 38001857 PMCID: PMC10669035 DOI: 10.3390/antiox12112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Biological aging is a relevant risk factor for chronic diseases, and several indicators for measuring this factor have been proposed, with telomere length (TL) among the most studied. Oxidative stress may regulate telomere shortening, which is implicated in the increased risk. Using a novel estimator for TL, we examined whether adherence to the Mediterranean diet (MedDiet), a highly antioxidant-rich dietary pattern, is associated with longer TL. We determined TL using DNA methylation algorithms (DNAmTL) in 414 subjects at high cardiovascular risk from Spain. Adherence to the MedDiet was assessed by a validated score, and genetic variants in candidate genes and at the genome-wide level were analyzed. We observed several significant associations (p < 0.05) between DNAmTL and candidate genes (TERT, TERF2, RTEL1, and DCAF4), contributing to the validity of DNAmTL as a biomarker in this population. Higher adherence to the MedDiet was associated with lower odds of having a shorter TL in the whole sample (OR = 0.93; 95% CI: 0.85-0.99; p = 0.049 after fully multivariate adjustment). Nevertheless, this association was stronger in women than in men. Likewise, in women, we observed a direct association between adherence to the MedDiet score and DNAmTL as a continuous variable (beta = 0.015; SE: 0.005; p = 0.003), indicating that a one-point increase in adherence was related to an average increase of 0.015 ± 0.005 kb in TL. Upon examination of specific dietary items within the global score, we found that fruits, fish, "sofrito", and whole grains exhibited the strongest associations in women. The novel score combining these items was significantly associated in the whole population. In the genome-wide association study (GWAS), we identified ten polymorphisms at the suggestive level of significance (p < 1 × 10-5) for DNAmTL (intergenics, in the IQSEC1, NCAPG2, and ABI3BP genes) and detected some gene-MedDiet modulations on DNAmTL. As this is the first study analyzing the DNAmTL estimator, genetics, and modulation by the MedDiet, more studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José V Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Rebeca Fernández-Carrión
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Eva C Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - José I González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica-CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín 050010, Colombia
| | - Alejandro Pérez-Fidalgo
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Olga Portolés
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Jose M Ordovas
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Nutrition and Genomics, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
43
|
Sehovic E, Zellers SM, Youssef MK, Heikkinen A, Kaprio J, Ollikainen M. DNA methylation sites in early adulthood characterised by pubertal timing and development: a twin study. Clin Epigenetics 2023; 15:181. [PMID: 37950287 PMCID: PMC10638786 DOI: 10.1186/s13148-023-01594-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 as well as pubertal age (PA). RESULTS Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites associated (p < 1 × 10-5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were sex-specific. Thirteen CpGs had a high heritability (h2: 0.51-0.98), while one CpG site (mapped to GET4) had a high shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative trait loci of associated CpG sites were enriched in immune pathways developing during puberty. CONCLUSIONS By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential links with disease risks.
Collapse
Affiliation(s)
- Emir Sehovic
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Stephanie M Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Markus K Youssef
- Laboratory for Topology and Neuroscience, Brain Mind Institute, EPFL, 1015, Lausanne, Switzerland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
44
|
Li T, Ferraro N, Strober BJ, Aguet F, Kasela S, Arvanitis M, Ni B, Wiel L, Hershberg E, Ardlie K, Arking DE, Beer RL, Brody J, Blackwell TW, Clish C, Gabriel S, Gerszten R, Guo X, Gupta N, Johnson WC, Lappalainen T, Lin HJ, Liu Y, Nickerson DA, Papanicolaou G, Pritchard JK, Qasba P, Shojaie A, Smith J, Sotoodehnia N, Taylor KD, Tracy RP, Van Den Berg D, Wheeler MT, Rich SS, Rotter JI, Battle A, Montgomery SB. The functional impact of rare variation across the regulatory cascade. CELL GENOMICS 2023; 3:100401. [PMID: 37868038 PMCID: PMC10589633 DOI: 10.1016/j.xgen.2023.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/08/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023]
Abstract
Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Taibo Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole Ferraro
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Benjamin J. Strober
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Harvard School of Public Health, Epidemiology Department, Boston, MA, USA
| | | | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Marios Arvanitis
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Laurens Wiel
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca L. Beer
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Brody
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Robert Gerszten
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - W. Craig Johnson
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Henry J. Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yongmei Liu
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - George Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Pankaj Qasba
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Josh Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P. Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, VT, USA
| | - David Van Den Berg
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Malone Center for Engineering of Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Campos-Martin R, Bey K, Elsner B, Reuter B, Klawohn J, Philipsen A, Kathmann N, Wagner M, Ramirez A. Epigenome-wide analysis identifies methylome profiles linked to obsessive-compulsive disorder, disease severity, and treatment response. Mol Psychiatry 2023; 28:4321-4330. [PMID: 37587247 PMCID: PMC10827661 DOI: 10.1038/s41380-023-02219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent mental disorder affecting ~2-3% of the population. This disorder involves genetic and, possibly, epigenetic risk factors. The dynamic nature of epigenetics also presents a promising avenue for identifying biomarkers associated with symptom severity, clinical progression, and treatment response in OCD. We, therefore, conducted a comprehensive case-control investigation using Illumina MethylationEPIC BeadChip, encompassing 185 OCD patients and 199 controls recruited from two distinct sites in Germany. Rigorous clinical assessments were performed by trained raters employing the Structured Clinical Interview for DSM-IV (SCID-I). We performed a robust two-step epigenome-wide association study that led to the identification of 305 differentially methylated CpG positions. Next, we validated these findings by pinpointing the optimal set of CpGs that could effectively classify individuals into their respective groups. This approach identified a subset comprising 12 CpGs that overlapped with the 305 CpGs identified in our EWAS. These 12 CpGs are close to or in genes associated with the sweet-compulsive brain hypothesis which proposes that aberrant dopaminergic transmission in the striatum may impair insulin signaling sensitivity among OCD patients. We replicated three of the 12 CpGs signals from a recent independent study conducted on the Han Chinese population, underscoring also the cross-cultural relevance of our findings. In conclusion, our study further supports the involvement of epigenetic mechanisms in the pathogenesis of OCD. By elucidating the underlying molecular alterations associated with OCD, our study contributes to advancing our understanding of this complex disorder and may ultimately improve clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Björn Elsner
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Reuter
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Van Asselt AJ, Beck JJ, Finnicum CT, Johnson BN, Kallsen N, Hottenga JJ, de Geus EJC, Boomsma DI, Ehli EA, van Dongen J. Genome-Wide DNA Methylation Profiles in Whole-Blood and Buccal Samples-Cross-Sectional, Longitudinal, and across Platforms. Int J Mol Sci 2023; 24:14640. [PMID: 37834090 PMCID: PMC10572275 DOI: 10.3390/ijms241914640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The field of DNA methylation research is rapidly evolving, focusing on disease and phenotype changes over time using methylation measurements from diverse tissue sources and multiple array platforms. Consequently, identifying the extent of longitudinal, inter-tissue, and inter-platform variation in DNA methylation is crucial for future advancement. DNA methylation was measured in 375 individuals, with 197 of those having 2 blood sample measurements ~10 years apart. Whole-blood samples were measured on Illumina Infinium 450K and EPIC methylation arrays, and buccal samples from a subset of 58 participants were measured on EPIC array. The data were analyzed with the aims to examine the correlation between methylation levels in longitudinal blood samples in 197 individuals, examine the correlation between methylation levels in the blood and buccal samples in 58 individuals, and examine the correlation between blood methylation profiles assessed on the EPIC and 450K arrays in 83 individuals. We identified 136,833, 7674, and 96,891 CpGs significantly and strongly correlated (>0.50) longitudinally, across blood and buccal samples as well as array platforms, respectively. A total of 3674 of these CpGs were shared across all three sets. Analysis of these shared CpGs identified previously found associations with aging, ancestry, and 7016 mQTLs as well.
Collapse
Affiliation(s)
- Austin J. Van Asselt
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
- Department of Biological Psychology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Jeffrey J. Beck
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
| | - Casey T. Finnicum
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
| | - Brandon N. Johnson
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
| | - Noah Kallsen
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Erik A. Ehli
- Avera McKennan Hospital, University Health Center, Sioux Falls, SD 57105, USA; (A.J.V.A.)
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
47
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Ouni M, Eichelmann F, Jähnert M, Krause C, Saussenthaler S, Ott C, Gottmann P, Speckmann T, Huypens P, Wolter S, Mann O, De Angelis MH, Beckers J, Kirchner H, Schulze MB, Schürmann A. Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes. Mol Metab 2023; 75:101774. [PMID: 37429525 PMCID: PMC10422014 DOI: 10.1016/j.molmet.2023.101774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christin Krause
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Sophie Saussenthaler
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Department of Molecular Toxicology, Potsdam-Rehbruecke, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Peter Huypens
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Henriette Kirchner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
49
|
Issarapu P, Arumalla M, Elliott HR, Nongmaithem SS, Sankareswaran A, Betts M, Sajjadi S, Kessler NJ, Bayyana S, Mansuri SR, Derakhshan M, Krishnaveni GV, Shrestha S, Kumaran K, Di Gravio C, Sahariah SA, Sanderson E, Relton CL, Ward KA, Moore SE, Prentice AM, Lillycrop KA, Fall CHD, Silver MJ, Chandak GR. DNA methylation at the suppressor of cytokine signaling 3 (SOCS3) gene influences height in childhood. Nat Commun 2023; 14:5200. [PMID: 37626025 PMCID: PMC10457295 DOI: 10.1038/s41467-023-40607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.
Collapse
Affiliation(s)
- Prachand Issarapu
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Manisha Arumalla
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Alagu Sankareswaran
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Modupeh Betts
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Sara Sajjadi
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Swati Bayyana
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Sohail R Mansuri
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India
| | - Maria Derakhshan
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - G V Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka, India
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka, India
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Chiara Di Gravio
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kate A Ward
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Sophie E Moore
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
- Department of Women & Children's Health, King's College London, London, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Karen A Lillycrop
- School of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, University of Southampton, Southampton, UK
| | - Caroline H D Fall
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Matt J Silver
- MRC Unit The Gambia at The London School of Hygiene and Tropical Medicine (LSHTM), London, UK.
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, India.
| |
Collapse
|
50
|
Lussier AA, Zhu Y, Smith BJ, Cerutti J, Fisher J, Melton PE, Wood NM, Cohen-Woods S, Huang RC, Mitchell C, Schneper L, Notterman DA, Simpkin AJ, Smith ADAC, Suderman MJ, Walton E, Relton CL, Ressler KJ, Dunn EC. Association between the timing of childhood adversity and epigenetic patterns across childhood and adolescence: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:532-543. [PMID: 37327798 PMCID: PMC10527482 DOI: 10.1016/s2352-4642(23)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Childhood adversity is a potent determinant of health across development and is associated with altered DNA methylation signatures, which might be more common in children exposed during sensitive periods in development. However, it remains unclear whether adversity has persistent epigenetic associations across childhood and adolescence. We aimed to examine the relationship between time-varying adversity (defined through sensitive period, accumulation of risk, and recency life course hypotheses) and genome-wide DNA methylation, measured three times from birth to adolescence, using data from a prospective, longitudinal cohort study. METHODS We first investigated the relationship between the timing of exposure to childhood adversity between birth and 11 years and blood DNA methylation at age 15 years in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort study. Our analytic sample included ALSPAC participants with DNA methylation data and complete childhood adversity data between birth and 11 years. We analysed seven types of adversity (caregiver physical or emotional abuse, sexual or physical abuse [by anyone], maternal psychopathology, one-adult households, family instability, financial hardship, and neighbourhood disadvantage) reported by mothers five to eight times between birth and 11 years. We used the structured life course modelling approach (SLCMA) to identify time-varying associations between childhood adversity and adolescent DNA methylation. Top loci were identified using an R2 threshold of 0·035 (ie, ≥3·5% of DNA methylation variance explained by adversity). We attempted to replicate these associations using data from the Raine Study and Future of Families and Child Wellbeing Study (FFCWS). We also assessed the persistence of adversity-DNA methylation associations we previously identified from age 7 blood DNA methylation into adolescence and the influence of adversity on DNA methylation trajectories from ages 0-15 years. FINDINGS Of 13 988 children in the ALSPAC cohort, 609-665 children (311-337 [50-51%] boys and 298-332 [49-50%] girls) had complete data available for at least one of the seven childhood adversities and DNA methylation at 15 years. Exposure to adversity was associated with differences in DNA methylation at 15 years for 41 loci (R2 ≥0·035). Sensitive periods were the most often selected life course hypothesis by the SLCMA. 20 (49%) of 41 loci were associated with adversities occurring between age 3 and 5 years. Exposure to one-adult households was associated with differences in DNA methylation at 20 [49%] of 41 loci, exposure to financial hardship was associated with changes at nine (22%) loci, and physical or sexual abuse was associated with changes at four (10%) loci. We replicated the direction of associations for 18 (90%) of 20 loci associated with exposure to one-adult household using adolescent blood DNA methylation from the Raine Study and 18 (64%) of 28 loci using saliva DNA methylation from the FFCWS. The directions of effects for 11 one-adult household loci were replicated in both cohorts. Differences in DNA methylation at 15 years were not present at 7 years and differences identified at 7 years were no longer apparent by 15 years. We also identified six distinct DNA methylation trajectories from these patterns of stability and persistence. INTERPRETATION These findings highlight the time-varying effect of childhood adversity on DNA methylation profiles across development, which might link exposure to adversity to potential adverse health outcomes in children and adolescents. If replicated, these epigenetic signatures could ultimately serve as biological indicators or early warning signs of initiated disease processes, helping identify people at greater risk for the adverse health consequences of childhood adversity. FUNDING Canadian Institutes of Health Research, Cohort and Longitudinal Studies Enhancement Resources, EU's Horizon 2020, US National Institute of Mental Health.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA; Stanley Center for Psychiatric Research, The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yiwen Zhu
- Psychiatric and Neurodevelopmental Genetics Unit, Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Epidemiology, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Brooke J Smith
- Psychiatric and Neurodevelopmental Genetics Unit, Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Janine Cerutti
- Psychiatric and Neurodevelopmental Genetics Unit, Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jonah Fisher
- Institute for Social Research, University of Michigan, Ann Abor, MI, USA
| | - Phillip E Melton
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia; Menzies Research Institute, University of Tasmania, Hobart, TAS, Australia
| | - Natasha M Wood
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
| | - Sarah Cohen-Woods
- College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia; Flinders Institute for Mental Health and Wellbeing, Flinders University, Adelaide, SA, Australia; Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Rae-Chi Huang
- Nutrition Health Innovation Research Institute, Edith Cowan University, Perth, WA, Australia
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Abor, MI, USA
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Daniel A Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Andrew D A C Smith
- Mathematics and Statistics Research Group, University of the West of England, Bristol, UK
| | - Matthew J Suderman
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Erin C Dunn
- Psychiatric and Neurodevelopmental Genetics Unit, Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA; Center on the Developing Child, Harvard University, Boston, MA, USA; Stanley Center for Psychiatric Research, The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|