1
|
Li Y, Zhang W, Huang Y, Cui G, Zhang X. Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem. Int J Biol Macromol 2024; 283:137817. [PMID: 39561835 DOI: 10.1016/j.ijbiomac.2024.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Huang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Gaochang Cui
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
3
|
Ren Z, Fu J, Abou-Elwafa SF, Ku L, Xie X, Liu Z, Shao J, Wen P, Al Aboud NM, Su H, Wang T, Wei L. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108292. [PMID: 38215602 DOI: 10.1016/j.plaphy.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Drought stress is one of the most limiting factors of maize productivity and can lead to a sharp reduction in the total biomass when it occurs at the seedling stage. Improving drought tolerance at the seedling stage is of great importance for maize breeding. The AP2/ERF transcription factor family plays a critical role in plant response to abiotic stresses. Here, we used a preliminary previously-generated ranscriptomic dataset to identify a highly drought-stress-responsive AP2 gene, i.e., ZmEREB24. Compared to the wild type, the overexpression of ZmEREB24 in maize significantly promotes drought tolerance of transgenic plants at the seedling stage. CRISPR/Cas9-based ZmEREB24-knockout mutants showed a drought-sensitive phenotype. RNA-seq analysis and EMSA assay revealed AATGG.CT and GTG.T.GCC motifs as the main binding sites of ZmEREB24 to the promoters of downstream target genes. DAP-seq identified four novel target genes involved in proline and sugar metabolism and hormone signal transduction of ZmEREB24. Our data indicate that ZmEREB24 plays important biological functions in regulating drought tolerance by binding to the promoters of drought stress genes and modulating their expression. The results further suggest a role of ZmEREB24 in regulating drought adaptation in maize, indicating its potential importance for employing molecular breeding in the development of high-yield drought-tolerant maize cultivars.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxu Fu
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhixue Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Wen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Tongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Zhang S, Kan J, Liu X, Wu Y, Zhang M, Ou J, Wang J, An L, Li D, Wang L, Wang X, Fang R, Jia Y. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. MOLECULAR PLANT PATHOLOGY 2023; 24:359-373. [PMID: 36762904 PMCID: PMC10013830 DOI: 10.1111/mpp.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen-plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinhong Kan
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yao Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Mingyang Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jinqing Ou
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Lin An
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Defeng Li
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Li Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xiu‐Jie Wang
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yantao Jia
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Zhang S, Wang J, Liu F, BassiriRad H, Liu N. Simulated nitrogen deposition promotes the carbon assimilation of shrubs rather than tree species in an evergreen broad-leaved forest. ENVIRONMENTAL RESEARCH 2023; 216:114497. [PMID: 36265598 DOI: 10.1016/j.envres.2022.114497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Although understory addition of nitrogen (UAN) is commonly used to simulate nitrogen deposition in field studies in forest ecosystems, it ignores the effects of atmospheric nitrogen deposition on the canopy. We studied the effects of nitrogen deposition simulated by UAN and by canopy addition of nitrogen (CAN) on leaf structure, chemical properties, Calvin cycle, and photosynthate distribution strategy of representative woody plant species in a subtropical evergreen broadleaved forest in South China. The results showed that maximum photosynthetic rate (Amax) of shrub species Blastus cochinchinensis and Ardisia quinquegona under CAN treatments was significantly higher than that of UAN treatments at the same N addition concentration. The concentrations of intermediates (PGK, DPGA and G3P) in Calvin cycle of B. cochinchinensis and A. quinquegona, and Castanea henryi were significantly increased with CAN treatments, but the opposite was true with UAN treatments. CAN25 significantly increased starch concentrations of shrub species Lasianthus chinensis and B. cochinchinensis, and significantly decreased sucrose concentrations of shrub species A. quinquegona and tree species C. henryi. Correlation analyses showed that nitrogen application amount under different modes helped explain the changes in Amax and Calvin cycle intermediates. In summary, nitrogen deposition may promote the Amax and Calvin cycle of shrub species, and the adaptability of shrub species to nitrogen deposition is higher than that of tree species, which may help to explain the degradation of subtropical evergreen broad-leaved forest.
Collapse
Affiliation(s)
- Shike Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hormoz BassiriRad
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, 60607, USA
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
6
|
Guo S, Zheng Y, Meng D, Zhao X, Sang Z, Tan J, Deng Z, Lang Z, Zhang B, Wang Q, Bouzayen M, Zuo J. DNA and coding/non-coding RNA methylation analysis provide insights into tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:399-413. [PMID: 36004545 DOI: 10.1111/tpj.15951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Collapse
Affiliation(s)
- Susu Guo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhaoze Sang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet-Tolosan, France
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
7
|
Wang J, Wang A, Luo Q, Hu Z, Ma Q, Li Y, Lin T, Liang X, Yu J, Foyer CH, Shi K. Glucose sensing by regulator of G protein signaling 1 (RGS1) plays a crucial role in coordinating defense in response to environmental variation in tomato. THE NEW PHYTOLOGIST 2022; 236:561-575. [PMID: 35789001 DOI: 10.1111/nph.18356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low light intensities affect the outbreak of plant diseases. However, the underlying molecular mechanisms remain poorly understood. High-performance liquid chromatography analysis of tomato (Solanum lycopersicum) revealed that apoplastic glucose (Glc) levels decreased in response to low light. Conversely, low-light-induced susceptibility to Pseudomonas syringae pv tomato (Pst) DC3000 was significantly alleviated by exogenous Glc treatment. Using cell-based biolayer interferometry assays, we found that Glc specifically binds to the tomato regulator of G protein signaling 1 (RGS1). Laser scanning confocal microscopy imaging revealed that Glc triggers RGS1 endocytosis, which influences the uncoupling of the RGS1-Gα (GPA1) and GPA1-Gβ (SlGB1) proteins, in a dose- and duration-dependent manner. Analysis of G protein single and double mutants revealed that RGS1 negatively regulates disease resistance under low light and is required for Glc-enhanced defense. Downstream of RGS1-Glc binding, GPA1 negatively mediates the light-intensity-regulated defense, whereas SlGB1 positively regulates this process. These results reveal a novel light-intensity-responsive defense system that is mediated by a Glc-RGS1-G protein signaling pathway. This information will be critical for future investigations of how plant cells sense extracellular sugars and adjust defense under different environments, as well as for genetic engineering approaches to improve stress resilience.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Anran Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qian Luo
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Ma
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yimei Li
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
8
|
Jammer A, Akhtar SS, Amby DB, Pandey C, Mekureyaw MF, Bak F, Roth PM, Roitsch T. Enzyme activity profiling for physiological phenotyping within functional phenomics: plant growth and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5170-5198. [PMID: 35675172 DOI: 10.1093/jxb/erac215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study. This includes the introduction of multivariate statistical analyses that can easily be implemented in similar studies, allowing researchers to extract more valuable information to identify enzymatic biosignatures. Through a literature meta-analysis, we demonstrate how enzyme activity profiling has already provided functional information on the mechanisms regulating plant development and response mechanisms to abiotic stress and pathogen attack. The high robustness of the distinct enzymatic biosignatures observed during developmental processes and under stress conditions underpins the enormous potential of enzyme activity profiling for future applications in both basic and applied research. Enzyme activity profiling will complement molecular -omics approaches to contribute to the mechanistic understanding required to narrow the genotype-to-phenotype knowledge gap and to identify predictive biomarkers for plant breeding to develop climate-resilient crops.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F Mekureyaw
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Sciences, Section of Microbial Ecology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Roth
- Institute for Computational Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- International AI Future Lab, Technical University of Munich, Munich, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
10
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
12
|
Wang X, Li S, Zhang X, Gao L, Ruan YL, Tian Y, Ma S. From Raffinose Family Oligosaccharides to Sucrose and Hexoses: Gene Expression Profiles Underlying Host-to-Nematode Carbon Delivery in Cucumis sativus Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:823382. [PMID: 35251093 PMCID: PMC8892300 DOI: 10.3389/fpls.2022.823382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (Meloidogyne incognita) induce specific feeding sites in cucumber roots where they absorb carbon nutrients from the host, thereby turning the feeding sites into a strong sink for assimilates. Nematode infection may alter host sugar metabolism in the roots of sucrose-transporting species. However, much less is known about the species translocating raffinose family oligosaccharides (RFOs), such as cucumber. To address this knowledge gap, the dynamics of RFOs and sucrose metabolisms, two major sugar-metabolism processes, in cucumber roots during nematode infection at transcription and protein levels were analyzed. In the nematode-infected root, the expressions of RFO-synthesis genes, CsRS (Raffinose Synthase) and CsGolS1 (Galactinol Synthase 1), were upregulated at early stage, but were significantly decreased, along with CsSTS (Stachyose Synthase), at the late stage during nematode infection. By contrast, α-galactosidase hydrolyzed RFOs into sucrose and galactose, whose encoding genes was suppressed (CsaGA2) at early stage and then elevated (CsaGA2, 4, and CsAGA1) at the late stage of nematode infection. Consistently, stachyose level was significantly increased by ∼2.5 times at the early stage but reduced at the late stage of infection in comparison with the uninfected roots, with a similar trend found for raffinose and galactinol. Moreover, the genes encoding sucrose synthase and cell wall invertase, which are responsible for sucrose degrading, were differentially expressed. In addition, sugar transporter, CsSUT4, was enhanced significantly after nematode infection at early stage but was suppressed at the late stage. Based on the observation and in connection with the information from literature, the RFOs play a role in the protection of roots during the initial stage of infection but could be used by nematode as C nutrients at the late stage.
Collapse
Affiliation(s)
- Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Newcastle, NSW, Australia
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
De Rocchis V, Roitsch T, Franken P. Extracellular Glycolytic Activities in Root Endophytic Serendipitaceae and Their Regulation by Plant Sugars. Microorganisms 2022; 10:microorganisms10020320. [PMID: 35208775 PMCID: PMC8878002 DOI: 10.3390/microorganisms10020320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi that colonize the plant root live in an environment with relative high concentrations of different sugars. Analyses of genome sequences indicate that such endophytes can secrete carbohydrate-related enzymes to compete for these sugars with the surrounding plant cells. We hypothesized that typical plant sugars can be used as carbon source by root endophytes and that these sugars also serve as signals to induce the expression and secretion of glycolytic enzymes. The plant-growth-promoting endophytes Serendipita indica and Serendipita herbamans were selected to first determine which sugars promote their growth and biomass formation. Secondly, particular sugars were added to liquid cultures of the fungi to induce intracellular and extracellular enzymatic activities which were measured in mycelia and culture supernatants. The results showed that both fungi cannot feed on melibiose and lactose, but instead use glucose, fructose, sucrose, mannose, arabinose, galactose and xylose as carbohydrate sources. These sugars regulated the cytoplasmic activity of glycolytic enzymes and also their secretion. The levels of induction or repression depended on the type of sugars added to the cultures and differed between the two fungi. Since no conventional signal peptide could be detected in most of the genome sequences encoding the glycolytic enzymes, a non-conventional protein secretory pathway is assumed. The results of the study suggest that root endophytic fungi translocate glycolytic activities into the root, and this process is regulated by the availability of particular plant sugars.
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
- Correspondence: (V.D.R.); (P.F.)
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, 2630 Copenhagen, Denmark;
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
- Correspondence: (V.D.R.); (P.F.)
| |
Collapse
|
14
|
McIntyre KE, Bush DR, Argueso CT. Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:677585. [PMID: 34504504 PMCID: PMC8421792 DOI: 10.3389/fpls.2021.677585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.
Collapse
Affiliation(s)
- Kathryn E. McIntyre
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Cristiana T. Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M, Sweetman C, Famiani F. Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. Int J Mol Sci 2021; 22:7794. [PMID: 34360556 PMCID: PMC8345980 DOI: 10.3390/ijms22157794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.
Collapse
Affiliation(s)
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, 35020 Legnaro, Italy;
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | | | - Simone D. Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 0Z4, Canada;
| | - Zhi-Hui Chen
- College of Life Science, University of Dundee, Dundee DD1 5EH, UK;
| | - Philippe Darriet
- Cenologie, Institut des Sciences de la Vigne et du Vin (ISVV), 33140 Villenave d’Ornon, France;
| | - Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, 05010 Porano, Italy; (A.B.); (S.M.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia;
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06121 Perugia, Italy
| |
Collapse
|
16
|
Cisneros-Hernández I, Vargas-Ortiz E, Sánchez-Martínez ES, Martínez-Gallardo N, Soto González D, Délano-Frier JP. Highest Defoliation Tolerance in Amaranthus cruentus Plants at Panicle Development Is Associated With Sugar Starvation Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:658977. [PMID: 34163500 PMCID: PMC8215675 DOI: 10.3389/fpls.2021.658977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 05/15/2023]
Abstract
Defoliation tolerance (DT) in Amaranthus cruentus is known to reach its apex at the panicle emergence (PE) phase and to decline to minimal levels at flowering (FL). In this study, defoliation-induced changes were recorded in the content of non-structural carbohydrates and raffinose family oligosaccharides (RFOs), and in the expression and/or activity of sugar starvation response-associated genes in plants defoliated at different vegetative and reproductive stages. This strategy identified sugar-starvation-related factors that explained the opposite DT observed at these key developmental stages. Peak DT at PE was associated with increased cytosolic invertase (CI) activity in all organs and with the extensive induction of various class II trehalose-phosphate synthase (TPS) genes. Contrariwise, least DT at FL coincided with a sharp depletion of starch reserves and with sucrose (Suc) accumulation, in leaves and stems, the latter of which was consistent with very low levels of CI and vacuolar invertase activities that were not further modified by defoliation. Increased Suc suggested growth-inhibiting conditions associated with altered cytosolic Suc-to-hexose ratios in plants defoliated at FL. Augmented cell wall invertase activity in leaves and roots, probably acting in a regulatory rather than hydrolytic role, was also associated with minimal DT observed at FL. The widespread contrast in gene expression patterns in panicles also matched the opposite DT observed at PE and FL. These results reinforce the concept that a localized sugar starvation response caused by C partitioning is crucial for DT in grain amaranth.
Collapse
Affiliation(s)
| | - Erandi Vargas-Ortiz
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | | | | | | | - John Paul Délano-Frier
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
17
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
18
|
Su T, Zhou B, Cao D, Pan Y, Hu M, Zhang M, Wei H, Han M. Transcriptomic Profiling of Populus Roots Challenged with Fusarium Reveals Differential Responsive Patterns of Invertase and Invertase Inhibitor-Like Families within Carbohydrate Metabolism. J Fungi (Basel) 2021; 7:jof7020089. [PMID: 33513923 PMCID: PMC7911864 DOI: 10.3390/jof7020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Fusarium solani (Fs) is one of the notorious necrotrophic fungal pathogens that cause root rot and vascular wilt, accounting for the severe loss of Populus production worldwide. The plant-pathogen interactions have a strong molecular basis. As yet, the genomic information and transcriptomic profiling on the attempted infection of Fs remain unavailable in a woody model species, Populus trichocarpa. We used a full RNA-seq transcriptome to investigate the molecular interactions in the roots with a time-course infection at 0, 24, 48, and 72 h post-inoculation (hpi) of Fs. Concomitantly, the invertase and invertase inhibitor-like gene families were further analyzed, followed by the experimental evaluation of their expression patterns using quantitative PCR (qPCR) and enzyme assay. The magnitude profiles of the differentially expressed genes (DEGs) were observed at 72 hpi inoculation. Approximately 839 genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and secondary and carbohydrate metabolism changes. Among these, a total of 63 critical genes that consistently appear during the entire interactions of plant-pathogen had substantially altered transcript abundance and potentially constituted suitable candidates as resistant genes in genetic engineering. These data provide essential clues in the developing new strategies of broadening resistance to Fs through transcriptional or translational modifications of the critical responsive genes within various analyzed categories (e.g., carbohydrate metabolism) in Populus.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Biyao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Dan Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yuting Pan
- College of Forest, Nanjing Forestry University, Nanjing 210037, China;
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mengru Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (B.Z.); (D.C.); (M.H.); (M.Z.); (H.W.)
- Correspondence: ; Tel.: +86-158-9598-9551
| |
Collapse
|
19
|
Lacrampe N, Lopez-Lauri F, Lugan R, Colombié S, Olivares J, Nicot PC, Lecompte F. Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. ANNALS OF BOTANY 2021; 127:143-154. [PMID: 32853354 PMCID: PMC7750717 DOI: 10.1093/aob/mcaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The main soluble sugars are important components of plant defence against pathogens, but the underlying mechanisms are unclear. Upon infection by Botrytis cinerea, the activation of several sugar transporters, from both plant and fungus, illustrates the struggle for carbon resources. In sink tissues, the metabolic use of the sugars mobilized in the synthesis of defence compounds or antifungal barriers is not fully understood. METHODS In this study, the nitrogen-dependent variation of tomato stem susceptibility to B. cinerea was used to examine, before and throughout the course of infection, the transcriptional activity of enzymes involved in sugar metabolism. Under different nitrate nutrition regimes, the expression of genes that encode the enzymes of sugar metabolism (invertases, sucrose synthases, hexokinases, fructokinases and phosphofructokinases) was determined and sugar contents were measured before inoculation and in asymptomatic tissues surrounding the lesions after inoculation. KEY RESULTS At high nitrogen availability, decreased susceptibility was associated with the overexpression of several genes 2 d after inoculation: sucrose synthases Sl-SUS1 and Sl-SUS3, cell wall invertases Sl-LIN5 to Sl-LIN9 and some fructokinase and phosphofructokinase genes. By contrast, increased susceptibility corresponded to the early repression of several genes that encode cell wall invertase and sucrose synthase. The course of sugar contents was coherent with gene expression. CONCLUSIONS The activation of specific genes that encode sucrose synthase is required for enhanced defence. Since the overexpression of fructokinase is also associated with reduced susceptibility, it can be hypothesized that supplementary sucrose cleavage by sucrose synthases is dedicated to the production of cell wall components from UDP-glucose, or to the additional implication of fructose in the synthesis of antimicrobial compounds, or both.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, Avignon, France
- UMR Qualisud, Avignon Université, Avignon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, Villenave d’Ornon, France
| | | | | | | |
Collapse
|
20
|
Li C, Liu Y, Tian J, Zhu Y, Fan J. Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress. PLoS One 2020; 15:e0243835. [PMID: 33306745 PMCID: PMC7732117 DOI: 10.1371/journal.pone.0243835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022] Open
Abstract
Sucrose metabolism contributes to the growth and development of plants and helps plants cope with abiotic stresses, including stress from Cd. Many of these processes are not well-defined, including the mechanism underlying the response of sucrose metabolism to Cd stress. In this study, we investigated how sucrose metabolism in maize varieties with low (FY9) and high (SY33) sensitivities to Cd changed in response to different levels of Cd (0 (control), 5, 10, and 20 mg L-1 Cd). The results showed that photosynthesis was impaired, and the biomass decreased, in both varieties of maize at different Cd concentrations. Cd inhibited the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) (sucrose synthesis), and stimulated the activities of acid invertase (AI) and SS (sucrose hydrolysis). The total soluble sugar contents were higher in the Cd-treated seedlings than in the control. Also, Cd concentrations in the shoots were higher in SY33 than in FY9, and in the roots were lower in SY33 than in FY9. The decreases in the photosynthetic rate, synthesis of photosynthetic products, enzyme activity in sucrose synthesis direction, and increases in activity in hydrolysis direction were more obvious in SY33 (the sensitive variety) than in FY9 (the tolerant variety), and more photosynthetic products were converted into soluble sugar in SY33 than in FY9 as the Cd stress increased. The transcript levels of the sugar transporter genes also differed between the two varieties at different concentrations of Cd. These results suggest that sucrose metabolism may be a secondary response to Cd additions, and that the Cd-sensitive variety used more carbohydrates to defend against Cd stress rather than to support growth than the Cd-tolerant variety.
Collapse
Affiliation(s)
- Cong Li
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, China
| | - Yu Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jing Tian
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, China
| | - Yanshu Zhu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, China
| | - Jinjuan Fan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
21
|
Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression. mBio 2020; 11:mBio.01251-20. [PMID: 33051363 PMCID: PMC7554665 DOI: 10.1128/mbio.01251-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The oomycete Phytophthora infestans, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the P. infestans genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.IMPORTANCE Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that Phytophthora invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the Phytophthora lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.
Collapse
|
22
|
Formela-Luboińska M, Remlein-Starosta D, Waśkiewicz A, Karolewski Z, Bocianowski J, Stępień Ł, Labudda M, Jeandet P, Morkunas I. The Role of Saccharides in the Mechanisms of Pathogenicity of Fusarium oxysporum f. sp. lupini in Yellow Lupine ( Lupinus luteus L.). Int J Mol Sci 2020; 21:ijms21197258. [PMID: 33019571 PMCID: PMC7582877 DOI: 10.3390/ijms21197258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The primary aim of this study was to determine the relationship between soluble sugar levels (sucrose, glucose, or fructose) in yellow lupine embryo axes and the pathogenicity of the hemibiotrophic fungus Fusarium oxysporum f. sp. Schlecht lupini. The first step of this study was to determine the effect of exogenous saccharides on the growth and sporulation of F. oxysporum. The second one focused on estimating the levels of ergosterol as a fungal growth indicator in infected embryo axes cultured in vitro on sugar containing-medium or without it. The third aim of this study was to record the levels of the mycotoxin moniliformin as the most characteristic secondary metabolite of F. oxysporum in the infected embryo axes with the high sugar medium and without it. Additionally, morphometric measurements, i.e., the length and fresh weight of embryo axes, were done. The levels of ergosterol were the highest in infected embryo axes with a sugar deficit. At the same time, significant accumulation of the mycotoxin moniliformin was recorded in those tissues. Furthermore, it was found that the presence of sugars in water agar medium inhibited the sporulation of the pathogenic fungus F. oxysporum in relation to the control (sporulation of the pathogen on medium without sugar), the strongest inhibiting effect was observed in the case of glucose. Infection caused by F. oxysporum significantly limited the growth of embryo axes, but this effect was more visible on infected axes cultured under sugar deficiency than on the ones cultured with soluble sugars. The obtained results thus showed that high sugar levels may lead to reduced production of mycotoxins by F. oxysporum, limiting infection development and fusariosis.
Collapse
Affiliation(s)
- Magda Formela-Luboińska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Dorota Remlein-Starosta
- Department of Ecology and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Zbigniew Karolewski
- Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, UPRES EA 4707, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
- Correspondence: or ; Tel.: +48-61-8466040
| |
Collapse
|
23
|
Gao J, Liu L, Ma N, Yang J, Dong Z, Zhang J, Zhang J, Cai M. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114412. [PMID: 32217380 DOI: 10.1016/j.envpol.2020.114412] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, the tips of Myriophyllum aquaticum (M. aquaticum) plants were planted in open-top plastic bins and treated by simulated wastewater with various ammonium-N concentrations for three weeks. The contents of related carbohydrates and key enzyme activities of carbon metabolism were measured, and the mechanisms of carbon metabolism regulation of the ammonia tolerant plant M. aquaticum under different ammonium-N levels were investigated. The decrease in total nonstructural carbohydrates, soluble sugars, sucrose, fructose, reducing sugar and starch content of M. aquaticum were induced after treatment with ammonium-N during the entire stress process. This finding showed that M. aquaticum consumed a lot of carbohydrates to provide energy during the detoxification process of ammonia nitrogen. Moreover, ammonia-N treatment led to the increase in the activitives of invertase (INV) and sucrose synthase (SS), which contributed to breaking down more sucrose to provide substance and energy for plant cells. Meanwhile, the sucrose phosphate synthase (SPS) activity was also enhanced under stress of high concentrations of ammonium-N, especially on day 21. The result indicated that under high-concentration ammonium-N stress, SPS activity can be significantly stimulated by regulating carbon metabolism of M. aquaticum, thereby accumulating sucrose in the plant body. Taken together, M. aquaticum can regulate the transformation of related carbohydrates in vivo by highly efficient expression of INV, SPS and SS, and effectively regulate the osmotic potential, thereby delaying the toxicity of ammonia nitrogen and improving the resistance to stress. It is very important to study carbon metabolism under ammonia stress to understand the ammonia nitrogen tolerance mechanism of M. aquaticum.
Collapse
Affiliation(s)
- Jingqing Gao
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, PR China.
| | - Lina Liu
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Na Ma
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiao Yang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zekun Dong
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingshen Zhang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, Henan, PR China; Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, Henan, PR China
| | - Jinliang Zhang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| |
Collapse
|
24
|
Sun K, Zhang W, Yuan J, Song SL, Wu H, Tang MJ, Xu FJ, Xie XG, Dai CC. Nitrogen fertilizer-regulated plant-fungi interaction is related to root invertase-induced hexose generation. FEMS Microbiol Ecol 2020; 96:5869223. [PMID: 32643762 DOI: 10.1093/femsec/fiaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying nitrogen (N)-regulated plant-fungi interactions are not well understood. N application modulates plant carbohydrate (C) sinks and is involved in the overall plant-fungal association. We hypothesized that N regulates plant-fungi interactions by influencing the carbohydrate metabolism. The mutualistic fungus Phomopsis liquidambaris was found to prioritize host hexose resources through in vitro culture assays and in planta inoculation. Rice-Ph. liquidambaris systems were exposed to N gradients ranging from N-deficient to N-abundant conditions to study whether and how the sugar composition was involved in the dynamics of N-mediated fungal colonization. We found that root soluble acid invertases were activated, resulting in increased hexose fluxes in inoculated roots. These fluxes positively influenced fungal colonization, especially under N-deficient conditions. Further experiments manipulating the carbohydrate composition and root invertase activity through sugar feeding, chemical treatments and the use of different soil types revealed that the external disturbance of root invertase could reduce endophytic colonization and eliminate endophyte-induced host benefits under N-deficient conditions. Collectively, these results suggest that the activation of root invertase is related to N deficiency-enhanced endophytic colonization via increased hexose generation. Certain combinations of farmland ecosystems with suitable N inputs could be implemented to maximize the benefits of plant-fungi associations.
Collapse
Affiliation(s)
- Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Hao Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
25
|
Jammer A, Albacete A, Schulz B, Koch W, Weltmeier F, van der Graaff E, Pfeifhofer HW, Roitsch TG. Early-stage sugar beet taproot development is characterized by three distinct physiological phases. PLANT DIRECT 2020; 4:e00221. [PMID: 32766510 PMCID: PMC7395582 DOI: 10.1002/pld3.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/21/2023]
Abstract
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Alfonso Albacete
- Institute of BiologyUniversity of GrazGrazAustria
- Present address:
Department of Plant Production and AgrotechnologyInstitute for Agri‐Food Research and Development of Murcia (IMIDA)MurciaSpain
| | | | | | | | - Eric van der Graaff
- Institute of BiologyUniversity of GrazGrazAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Present address:
Koppert Cress B.V.MonsterThe Netherlands
| | | | - Thomas G. Roitsch
- Department of Crop SciencesUFT TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenTaastrupDenmark
- Department of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
26
|
Ting HM, Cheah BH, Chen YC, Yeh PM, Cheng CP, Yeo FKS, Vie AK, Rohloff J, Winge P, Bones AM, Kissen R. The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:257. [PMID: 32211010 PMCID: PMC7076197 DOI: 10.3389/fpls.2020.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 05/17/2023]
Abstract
Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.
Collapse
Affiliation(s)
- Hieng-Ming Ting
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Min Yeh
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Freddy Kuok San Yeo
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Ane Kjersti Vie
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Hupp S, Rosenkranz M, Bonfig K, Pandey C, Roitsch T. Noninvasive Phenotyping of Plant-Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:1239. [PMID: 31681362 PMCID: PMC6803544 DOI: 10.3389/fpls.2019.01239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/05/2019] [Indexed: 05/26/2023]
Abstract
Plant-pathogen interactions have been widely studied, but mostly from the site of the plant secondary defense. Less is known about the effects of pathogen infection on plant primary metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present study, virulent and avirulent Pseudomonas syringae strains were transformed with green fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-Modulation (PAM) fluorescence and conventional binocular microscopy. The combination of various wavelengths and filters allowed simultaneous detection of GFP-transformed bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel means to study complex plant-pathogen interactions and relate the responses of primary and secondary metabolism to pathogen spread and multiplication. The study establishes a deeper understanding of imaging data and their implementation into disease screening.
Collapse
Affiliation(s)
- Sabrina Hupp
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Maaria Rosenkranz
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Katharina Bonfig
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Roitsch
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
28
|
Body MJA, Zinkgraf MS, Whitham TG, Lin CH, Richardson RA, Appel HM, Schultz JC. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:654-672. [PMID: 30520677 DOI: 10.1094/mpmi-11-18-0301-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insect galls are highly specialized structures arising from atypical development of plant tissue induced by insects. Galls provide the insect enhanced nutrition and protection against natural enemies and environmental stresses. Galls are essentially plant organs formed by an intimate biochemical interaction between the gall-inducing insect and its host plant. Because galls are plant organs, their development is likely to be governed by phytohormones involved in normal organogenesis. We characterized concentrations of both growth and defensive phytohormones in ungalled control leaves and galls induced by the aphid Pemphigus betae on narrowleaf cottonwood Populus angustifolia that differ genotypically in resistance to this insect. We found that susceptible trees differed from resistant trees in constitutive concentrations of both growth and defense phytohormones. Susceptible trees were characterized by significantly higher constitutive cytokinin concentrations in leaves, significantly greater ability of aphids to elicit cytokinin increases, and significantly lower constitutive defense phytohormone concentrations than observed in resistant trees. Phytohormone concentrations in both constitutive and induced responses in galled leaves exhibited high broad-sense heritability that, respectively, ranged from 0.39 to 0.93 and from 0.28 to 0.66, suggesting that selection can act upon these traits and that they might vary across the landscape. Increased cytokinin concentrations may facilitate forming strong photosynthate sinks in the galls, a requirement for galling insect success. By characterizing for the first time the changes in 15 phytohormones belonging to five different classes, this study offers a better overview of the signaling alteration occurring in galls that has likely been important for their ecology and evolution. Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Mélanie J A Body
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Matthew S Zinkgraf
- 2 Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, U.S.A.; and
| | - Thomas G Whitham
- 2 Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, U.S.A.; and
| | - Chung-Ho Lin
- 3 School of Natural Resources, 203 Anheuser-Busch Natural Resources Building, 1111 Rollins Street, University of Missouri, Columbia, MO 65201, U.S.A
| | - Ryan A Richardson
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Heidi M Appel
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| | - Jack C Schultz
- 1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO 65211, U.S.A
| |
Collapse
|
29
|
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. FRONTIERS IN PLANT SCIENCE 2019; 10:541. [PMID: 31114601 PMCID: PMC6503109 DOI: 10.3389/fpls.2019.00541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/09/2019] [Indexed: 05/28/2023]
Abstract
Storage roots are the main sink for photo-assimilate accumulation and reflect cassava yield and productivity. Regulation of sugar partitioning from leaves to storage roots has not been elucidated. Cell wall invertases are involved in the hydrolysis of sugar during phloem unloading of vascular plants to control plant development and sink strength but have rarely been studied in root crops like cassava. MeCWINV3 encodes a typical cell wall invertase in cassava and is mainly expressed in vascular bundles. The gene is highly expressed in leaves, especially mature leaves, in response to diurnal rhythm. When MeCWINV3 was overexpressed in cassava, sugar export from leaves to storage roots was largely inhibited and sucrose hydrolysis in leaves was accelerated, leading to increased transient starch accumulation by blocking starch degradation and reduced overall plant growth. The progress of leaf senescence was promoted in the MeCWINV3 over-expressed cassava plants with increased expression of senescence-related genes. Storage root development was also delayed because of dramatically reduced sugar allocation from leaves. As a result, the transcriptional expression of starch biosynthetic genes such as small subunit ADP-glucose pyrophosphorylase, granule-bound starch synthase I, and starch branching enzyme I was reduced in accordance with insufficient sugar supply in the storage roots of the transgenic plants. These results show that MeCWINV3 regulates sugar allocation from source to sink and maintains sugar balance in cassava, thus affecting yield of cassava storage roots.
Collapse
Affiliation(s)
- Wei Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Guanghua Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Zhanfei Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tailing Jiang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Tarkowski ŁP, Van de Poel B, Höfte M, Van den Ende W. Sweet Immunity: Inulin Boosts Resistance of Lettuce ( Lactuca sativa) against Grey Mold ( Botrytis cinerea) in an Ethylene-Dependent Manner. Int J Mol Sci 2019; 20:E1052. [PMID: 30823420 PMCID: PMC6429215 DOI: 10.3390/ijms20051052] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
The concept of "Sweet Immunity" postulates that sugar metabolism and signaling influence plant immune networks. In this study, we tested the potential of commercially available inulin-type fructans to limit disease symptoms caused by Botrytis cinerea in lettuce. Spraying mature lettuce leaves, with inulin-type fructans derived from burdock or chicory was as effective in reducing grey mold disease symptoms caused by Botrytis cinerea as spraying with oligogalacturonides (OGs). OGs are well-known defense elicitors in several plant species. Spraying with inulin and OGs induced accumulation of hydrogen peroxide and levels further increased upon pathogen infection. Inulin and OGs were no longer able to limit Botrytis infection when plants were treated with the ethylene signaling inhibitor 1-methylcyclopropene (1-MCP), indicating that a functional ethylene signaling pathway is needed for the enhanced defense response. Soluble sugars accumulated in leaves primed with OGs, while 1-MCP treatment had an overall negative effect on the sucrose pool. Accumulation of γ-aminobutyric acid (GABA), a stress-associated non-proteinogenic amino acid and possible signaling compound, was observed in inulin-treated samples after infection and negatively affected by the 1-MCP treatment. We have demonstrated for the first time that commercially available inulin-type fructans and OGs can improve the defensive capacity of lettuce, an economically important species. We discuss our results in the context of a possible recognition of fructans as Damage or Microbe Associated Molecular Patterns.
Collapse
Affiliation(s)
- Łukasz Paweł Tarkowski
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| | - Bram Van de Poel
- Laboratory of Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, UGhent, 9000 Ghent, Belgium.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium.
| |
Collapse
|
31
|
Su T, Han M, Min J, Zhou H, Zhang Q, Zhao J, Fang Y. Functional Characterization of Invertase Inhibitors PtC/VIF1 and 2 Revealed Their Involvements in the Defense Response to Fungal Pathogen in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2019; 10:1654. [PMID: 31969894 PMCID: PMC6960229 DOI: 10.3389/fpls.2019.01654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) were considered to be essential coordinators in carbohydrate partitioning, sink strength determination, and stress responses. An increasing body of evidence revealed that the tight regulation of CWI and VI substantially depends on the post-translational mechanisms, which were mediated by small proteinaceous inhibitors (C/VIFs, Inhibitor of β-Fructosidases). As yet, the extensive survey of the molecular basis and biochemical property of C/VIFs remains largely unknown in black cottonwood (Populus trichocarpa Torr. & A. Gray), a model species of woody plants. In the present work, we have initiated a systematic review of the genomic structures, phylogenies, cis-regulatory elements, and conserved motifs as well as the tissue-specific expression, resulting in the identification of 39 genes encoding C/VIF in poplar genome. We characterized two putative invertase inhibitors PtC/VIF1 and 2, showing predominant transcript levels in the roots and highly divergent responses to the selected stress cues including fusarium wilt, drought, ABA, wound, and senescence. In silico prediction of the signal peptide hinted us that they both likely had the apoplastic targets. Based on the experimental visualization via the transient and stable transformation assays, we confirmed that PtC/VIF1 and 2 indeed secreted to the extracellular compartments. Further validation of their recombinant enzymes revealed that they displayed the potent inhibitory affinities on the extracted CWI, supporting the patterns that act as the typical apoplastic invertase inhibitors. To our knowledge, it is the first report on molecular characterization of the functional C/VIF proteins in poplar. Our results indicate that PtC/VIF1 and 2 may exert essential roles in defense- and stress-related responses. Moreover, novel findings of the up- and downregulated C/VIF genes and functional enzyme activities enable us to further unravel the molecular mechanisms in the promotion of woody plant performance and adapted-biotic stress, underlying the homeostatic control of sugar in the apoplast.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Mei Han, ;
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huaiye Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Qi Zhang
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Jingyi Zhao
- College of Forest, Nanjing Forestry University, Nanjing, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Su T, Han M, Min J, Chen P, Mao Y, Huang Q, Tong Q, Liu Q, Fang Y. Genome-Wide Survey of Invertase Encoding Genes and Functional Characterization of an Extracellular Fungal Pathogen-Responsive Invertase in Glycine max. Int J Mol Sci 2018; 19:E2395. [PMID: 30110937 PMCID: PMC6121457 DOI: 10.3390/ijms19082395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Invertases are essential enzymes that irreversibly catalyze the cleavage of sucrose into glucose and fructose. Cell wall invertase (CWI) and vacuolar invertase (VI) are glycosylated proteins and exert fundamental roles in plant growth as well as in response to environmental cues. As yet, comprehensive insight into invertase encoding genes are lacking in Glycine max. In the present study, the systematic survey of gene structures, coding regions, regulatory elements, conserved motifs, and phylogenies resulted in the identification of thirty⁻two putative invertase genes in soybean genome. Concomitantly, impacts on gene expression, enzyme activities, proteins, and soluble sugar accumulation were explored in specific tissues upon stress perturbation. In combination with the observation of subcellular compartmentation of the fluorescent fusion protein that indeed exported to apoplast, heterologous expression, and purification in using Pichia pastoris system revealed that GmCWI4 was a typical extracellular invertase. We postulated that GmCWI4 may play regulatory roles and be involved in pathogenic fungi defense. The experimental evaluation of physiological significance via phenotypic analysis of mutants under stress exposure has been initiated. Moreover, our paper provides theoretical basis for elucidating molecular mechanisms of invertase in association with inhibitors underlying the stress regime, and will contribute to the improvement of plant performance to a diverse range of stressors.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Peixian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yuxin Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiao Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Tong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiuchen Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
33
|
Yang Z, Liu D, Ji H. Sucrose metabolism in developing oil-rich tubers of Cyperus esculentus: comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:151. [PMID: 30041609 PMCID: PMC6056992 DOI: 10.1186/s12870-018-1363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/05/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cyperus esculentus is unique in that it can accumulate significant amounts of oil, starch and sugar as major storage reserves in tubers with high tuber yield and therefore considered as a novel model to study carbon allocation into different storage reserves in underground sink tissues such as tubers and roots. Sucrose (Suc) plays a central role in control of carbon flux toward biosynthesis of different storage reserves; however, it remains unclear for the molecular mechanism underlying Suc metabolism in underground oil-rich storage tissues. In the present study, a comprehensive transcriptome analysis of C. esculentus oil tuber compared to other plant oil- or carbohydrate-rich storage tissues was made for the expression patterns of genes related to the Suc metabolism. RESULTS The results revealed some species-specific features of gene transcripts in oil tuber of C. esculentus, indicating that: (i) the expressions of genes responsible for Suc metabolism are developmentally regulated and displayed a pattern dissimilar to other plant storage tissues; (ii) both of Suc breakdown and biosynthesis processes might be the major pathways associated with Suc metabolism; (iii) it was probably that Suc degradation could be primarily through the action of Suc synthase (SUS) other than invertase (INV) during tuber development. The orthologs of SUS1, SUS3 and SUS4 are the main SUS isoforms catalyzing Suc breakdown while the vacuolar INV (VIN) is the leading determinant controlling sugar composition; (iv) cytosolic hexose phosphorylation possibly relies more on fructose as substrate and uridine diphosphate glucose pyrophosphorylase (UGP) plays an important role in this pathway; (v) it is Suc-phosphate synthase (SPS) B- and C-family members rather than SPS A that are the principal contributors to SPS enzymes and play crucial roles in Suc biosynthesis pathway. CONCLUSIONS We have successfully identified the Suc metabolic pathways in C. esculentus tubers, highlighting several conserved and distinct expressions that might contribute to sugar accumulation in this unique underground storage tissue. The specific and differential expression genes revealed in this study might indicate the special molecular mechanism and transcriptional regulation of Suc metabolism occurred in oil tubers of C. esculentus.
Collapse
Affiliation(s)
- Zhenle Yang
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Dantong Liu
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongying Ji
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
34
|
Kuska MT, Behmann J, Großkinsky DK, Roitsch T, Mahlein AK. Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging. FRONTIERS IN PLANT SCIENCE 2018; 9:1074. [PMID: 30083181 PMCID: PMC6065056 DOI: 10.3389/fpls.2018.01074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 05/13/2023]
Abstract
Molecular marker analysis allow for a rapid and advanced pre-selection and resistance screenings in plant breeding processes. During the phenotyping process, optical sensors have proved their potential to determine and assess the function of the genotype of the breeding material. Thereby, biomarkers for specific disease resistance traits provide valuable information for calibrating optical sensor approaches during early plant-pathogen interactions. In this context, the combination of physiological, metabolic phenotyping and phenomic profiles could establish efficient identification and quantification of relevant genotypes within breeding processes. Experiments were conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo) and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily conducted 0-8 days after inoculation (dai) in a high-throughput facility with 10 wavelength bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport sugar sucrose into the hexose monomers, were profiled in a semi high-throughput approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific dynamics of the activity signatures for susceptible genotypes and genotypes with mlo and Mla based resistances 0-120 hours after inoculation (hai). These patterns could be used to differentiate between interaction types and revealed an early influence of Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already 0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity increased in the blue bands and at 690 nm. The Mla resistant plants showed an increased reflectance at 680 and 710 nm and a decreased reflectance in the near infrared bands from 3 dai. Applying a Support Vector Machine classification as a supervised machine learning approach, the pixelwise identification and quantification of powdery mildew diseased barley tissue and hypersensitive response spots were established. This enables an automatic identification of the barley-powdery mildew interaction. The study established a proof-of-concept for plant resistance phenotyping with multispectral imaging in high-throughput. The combination of invertase analysis and multispectral imaging showed to be a complementing validation system. This will provide a deeper understanding of optical data and its implementation into disease resistance screening.
Collapse
Affiliation(s)
- Matheus T. Kuska
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Jan Behmann
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
| | - Dominik K. Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Anne-Katrin Mahlein
- Institute for Crop Science and Resource Conservation-Plant Diseases and Plant Protection, University of Bonn, Bonn, Germany
- Institute of Sugar Beet Research (IfZ), Göttingen, Germany
| |
Collapse
|
35
|
Sheshadri SA, Nishanth MJ, Harita N, Brindha P, Bindu S. Comparative genome based cis-elements analysis in the 5' upstream and 3' downstream region of cell wall invertase and Phenylalanine ammonia lyase in Nicotiana benthamiana. Comput Biol Chem 2018; 72:181-191. [PMID: 29329783 DOI: 10.1016/j.compbiolchem.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/12/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022]
Abstract
Plant secondary metabolites are widely used in human disease treatment; though primary metabolism provides precursors for secondary metabolism, not much has been studied to unravel the link connecting both the processes. Most common form of gene regulation interconnecting diverse metabolism occurs at the transcriptional and/or posttranscriptional level mediated by regulatory cis-elements. The present study aims at understanding the common cis-elements network connecting the major primary metabolic enzyme, cell wall invertase (CWIN) and secondary metabolism genes in Nicotiana benthamiana (N. benthamiana). The CWIN and thirty one other gene sequences were extracted from N. benthamiana genome, followed by cis-element analysis of their 5' upstream and 3' downstream region using different programs (Genomatix software suite; PLACE and PlantCARe). Comparative cis-element analysis of CWIN (N. benthamiana and other plant species) and other primary, secondary metabolism and transcription factor genes (N. benthamiana) revealed the occurrence of common stress associated cis-elements. Predominantly, AHBP, L1BX, MYBL, MADS, MYBS, GTBX, DOFF and CCAF were found in the 5' upstream region of all genes, whereas AHBP, MYBL, L1BX, HEAT, CCAF and KAN1 were largely occurring in the 3' downstream region of all genes; indicating common function of these elements in transcriptional and posttranscriptional gene regulation. Further, genomic analysis using FGENESH, GenScan and homology based methods (BlastX and BlastN) was performed on the N. benthamiana contigs harboring CWIN and PAL, in an attempt to identify genomic neighborhood genes. The 5' upstream and 3' downstream region of genes in the genomic neighborhood of CWIN and PAL were also subjected to similar cis-element analysis, and the results indicated cis-elements profile similar to CWIN, PAL and other primary, secondary metabolism and transcription factor genes. The results of evolutionary studies confirmed that the 5' upstream region of NbCWINs significantly showed more proximity to secondary metabolism genes 4CL and the redox gene SOD, followed by the phenylpropanoid pathway gene CHI. The 3' downstream regions of NbCWINs were more closely related to other plant CWINs, followed by the redox gene, SOD and primary metabolism gene FBA. Thus, the commonly found stress responsive cis-elements in our study can play a vital role in modulating key pathways of both primary and secondary metabolism; thereby postulating their role in regulating plant growth and metabolisms under unfavourable growth conditions.
Collapse
Affiliation(s)
- S A Sheshadri
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - M J Nishanth
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - N Harita
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - P Brindha
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, 613401 India
| | - S Bindu
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India.
| |
Collapse
|
36
|
Shivalingamurthy SG, Anangi R, Kalaipandian S, Glassop D, King GF, Rae AL. Identification and Functional Characterization of Sugarcane Invertase Inhibitor ( ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane. FRONTIERS IN PLANT SCIENCE 2018; 9:598. [PMID: 29774044 PMCID: PMC5944049 DOI: 10.3389/fpls.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.
Collapse
Affiliation(s)
| | - Raveendra Anangi
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Glenn F. King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Anne L. Rae
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- *Correspondence: Anne L. Rae
| |
Collapse
|
37
|
Xu XX, Hu Q, Yang WN, Jin Y. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato. BMC PLANT BIOLOGY 2017; 17:195. [PMID: 29121866 PMCID: PMC5679139 DOI: 10.1186/s12870-017-1145-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. RESULTS We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. CONCLUSIONS In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.
Collapse
Affiliation(s)
- Xiao-xia Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Qin Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Wan-nian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| | - Ye Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
38
|
Chen Y, Dong J, Bennetzen JL, Zhong M, Yang J, Zhang J, Li S, Hao X, Zhang Z, Wang X. Integrating transcriptome and microRNA analysis identifies genes and microRNAs for AHO-induced systemic acquired resistance in N. tabacum. Sci Rep 2017; 7:12504. [PMID: 28970509 PMCID: PMC5624873 DOI: 10.1038/s41598-017-12249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/04/2017] [Indexed: 11/09/2022] Open
Abstract
3-Acetonyl-3-hydroxyoxindole (AHO) induces systemic acquired resistance (SAR) in Nicotiana. However, the underlying molecular mechanism is not well understood. To understand the molecular regulation during SAR induction, we examined mRNA levels, microRNA (miRNA) expression, and their regulatory mechanisms in control and AHO-treated tobacco leaves. Using RNA-seq analysis, we identified 1,445 significantly differentially expressed genes (DEGs) at least 2 folds with AHO treatment. The DEGs significantly enriched in six metabolism pathways including phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis for protective cuticle and wax. Key DEGs including PALs and PR-10 in salicylic acid pathway involved in SAR were significantly regulated. In addition, we identified 403 miRNAs belonging to 200 miRNA families by miRNA sequencing. In total, AHO treatment led to 17 up- and 6 down-regulated at least 2 folds (Wald test, P < 0.05) miRNAs (DEMs), respectively. Targeting analysis implicated four DEMs regulating three DEGs involved in disease resistance, including miR156, miR172f, miR172g, miR408a, SPL6 and AP2. We concluded that both mRNA and miRNA regulation enhances AHO-induced SAR. These data regarding DEGs, miRNAs, and their regulatory mechanisms provide molecular evidence for the mechanisms involved in tobacco SAR, which are likely to be present in other plants.
Collapse
Affiliation(s)
- Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jiahong Dong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
- Department of Genetics, University of Georgia, Athens, USA
| | - Micai Zhong
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P. R. China
| | - Jie Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China
| | - Shunlin Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences; Yunnan Provincial Key Laboratory of Agricultural Biotechnology; Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, P. R. China.
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, P. R. China.
- Department of Genetics, University of Georgia, Athens, USA.
| |
Collapse
|
39
|
Naseem M, Kunz M, Dandekar T. Plant-Pathogen Maneuvering over Apoplastic Sugars. TRENDS IN PLANT SCIENCE 2017; 22:740-743. [PMID: 28779901 DOI: 10.1016/j.tplants.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 05/07/2023]
Abstract
The nutrient-rich extracellular plant compartment, the apoplast, is an attractive niche for attacks by microbial pathogens. Here, we highlight recent trends in plant-pathogen competition for apoplastic sugars in the context of innate immune responses in various plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Muhammad Naseem
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany; Systems Biology of Plant-Microbes Interaction (SBP-MI) Lab, Department of Molecular Biology and Genetics, Bogazici University, Kuzey Park, Istanbul, Turkey.
| | - Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
40
|
Zhang C, Li X, He Y, Zhang J, Yan T, Liu X. Physiological investigation of C 4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:328-342. [PMID: 28415033 DOI: 10.1016/j.plaphy.2017.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C4PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C4-PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C4 photosynthesis can be used to increase the yield of rice under drought conditions.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia Li
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yafei He
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Jinfei Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Ting Yan
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaolong Liu
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| |
Collapse
|
41
|
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:322-335. [PMID: 28304127 DOI: 10.1111/jipb.12539] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.
Collapse
Affiliation(s)
- Jun Li
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Limin Wu
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ryan Foster
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| |
Collapse
|
42
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
43
|
O'Leary BM, Neale HC, Geilfus CM, Jackson RW, Arnold DL, Preston GM. Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. PLANT, CELL & ENVIRONMENT 2016; 39:2172-84. [PMID: 27239727 PMCID: PMC5026161 DOI: 10.1111/pce.12770] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of P. syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Helen C Neale
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Christoph-Martin Geilfus
- Faculty of Agricultural and Nutritional Sciences, Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, 24118, Germany
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, UK
| | - Dawn L Arnold
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, United Kingdom
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
44
|
Kissoudis C, Sunarti S, van de Wiel C, Visser RGF, van der Linden CG, Bai Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5119-32. [PMID: 27436279 PMCID: PMC5014164 DOI: 10.1093/jxb/erw285] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios. Here, we evaluated the effect of different levels of salt stress ranging from mild to severe (50, 100, and 150mM NaCl) on powdery mildew resistance and overall performance of tomato introgression lines with contrasting levels of partial resistance, as well as near-isogenic lines (NILs) carrying the resistance gene Ol-1 (associated with a slow hypersensitivity response; HR), ol-2 (an mlo mutant associated with papilla formation), and Ol-4 (an R gene associated with a fast HR). Powdery mildew resistance was affected by salt stress in a genotype- and stress intensity-dependent manner. In susceptible and partial resistant lines, increased susceptibility was observed under mild salt stress (50mM) which was accompanied by accelerated cell death-like senescence. In contrast, severe salt stress (150mM) reduced disease symptoms. Na(+) and Cl(-) accumulation in the leaves was linearly related to the decreased pathogen symptoms under severe stress. In contrast, complete resistance mediated by ol-2 and Ol-4 was unaffected under all treatment combinations, and was associated with a decreased growth penalty. Increased susceptibility and senescence under combined stress in NIL-Ol-1 was associated with the induction of ethylene and jasmonic acid pathway genes and the cell wall invertase gene LIN6. These results highlight the significance of stress severity and resistance type on the plant's performance under the combination of abiotic and biotic stress.
Collapse
Affiliation(s)
- Christos Kissoudis
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Sri Sunarti
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Clemens van de Wiel
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - C Gerard van der Linden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, PO Box 386, 6700AJ, Wageningen, The Netherlands
| |
Collapse
|
45
|
Pidatala VR, Li K, Sarkar D, Ramakrishna W, Datta R. Identification of Biochemical Pathways Associated with Lead Tolerance and Detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by Metabolic Profiling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2530-7. [PMID: 26843403 DOI: 10.1021/acs.est.5b04725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is a major urban pollutant, due to deteriorating lead-based paint in houses built before 1978. Phytoremediation is an inexpensive and effective technique for remediation of Pb-contaminated homes. Vetiver (Chrysopogon zizanioides), a noninvasive, fast-growing grass with high biomass, can tolerate and accumulate large quantities of Pb in its tissues. Lead is known to induce phytochelatins and antioxidative enzymes in vetiver; however, the overall impact of Pb stress on metabolic pathways of vetiver is unknown. In the current study, vetiver plants were treated with different concentrations of Pb in a hydroponic setup. Metabolites were extracted and analyzed using LC/MS/MS. Multivariate analysis of metabolites in both root and shoot tissue showed tremendous induction in key metabolic pathways including sugar metabolism, amino acid metabolism, and an increase in production of osmoprotectants, such as betaine and polyols, and metal-chelating organic acids. The data obtained provide a comprehensive insight into the overall stress response mechanisms in vetiver.
Collapse
Affiliation(s)
- Venkataramana R Pidatala
- Department of Biological Sciences, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Kefeng Li
- School of Medicine, University of California, San Diego , San Diego, California 92103, United States
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Wusirika Ramakrishna
- Department of Biological Sciences, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
46
|
Zinkgraf MS, Meneses N, Whitham TG, Allan GJ. Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:50-59. [PMID: 26518288 DOI: 10.1016/j.jinsphys.2015.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The identification of genes associated with ecologically important traits provides information on the potential genetic mechanisms underlying the responses of an organism to its natural environment. In this study, we investigated the genetic basis of host plant resistance to the gall-inducing aphid, Pemphigus betae, in a natural population of 154 narrowleaf cottonwoods (Populus angustifolia). We surveyed genetic variation in two genes putatively involved in sink-source relations and a phenology gene that co-located in a previously identified quantitative trait locus for resistance to galling. Using a candidate gene approach, three major findings emerged. First, natural variation in tree resistance to galling was repeatable. Sampling of the same tree genotypes 20 years after the initial survey in 1986 show that 80% of the variation in resistance was due to genetic differences among individuals. Second, we identified significant associations at the single nucleotide polymorphism and haplotype levels between the plant neutral invertase gene NIN1 and tree resistance. Invertases are a class of sucrose hydrolyzing enzymes and play an important role in plant responses to biotic stress, including the establishment of nutrient sinks. These associations with NIN1 were driven by a single nucleotide polymorphism (NIN1_664) located in the second intron of the gene and in an orthologous sequence to two known regulatory elements. Third, haplotypes from an inhibitor of invertase (C/VIF1) were significantly associated with tree resistance. The identification of genetic variation in these two genes provides a starting point to understand the possible genetic mechanisms that contribute to tree resistance to gall formation. We also build on previous work demonstrating that genetic differences in sink-source relationships of the host influence the ability of P. betae to manipulate the flow of nutrients and induce a nutrient sink.
Collapse
Affiliation(s)
- Matthew S Zinkgraf
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Nashelly Meneses
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
47
|
Veillet F, Gaillard C, Coutos-Thévenot P, La Camera S. Targeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1899. [PMID: 28066461 PMCID: PMC5167757 DOI: 10.3389/fpls.2016.01899] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP) of the plasma membrane, i.e., STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN)-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several AtSUC and AtVIN genes accompanied with an enhanced vacuolar invertase activity, suggesting that the AtCWIN1-independent pathway is efficient upon infection. In absence of AtCWIN1, we postulate that intracellular sucrose hydrolysis is sufficient to provide intracellular hexoses to maintain sugar homeostasis in host cells and to fuel plant defenses. Finally, we demonstrated that Botrytis cinerea possesses its own functional sucrolytic machinery and hexose uptake system, and does not rely on the host apoplastic invertases.
Collapse
|
48
|
Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima E, Baldwin IT, Erb M. A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. THE NEW PHYTOLOGIST 2015; 208:519-30. [PMID: 26017581 DOI: 10.1111/nph.13475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/12/2015] [Indexed: 05/24/2023]
Abstract
Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source-sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.
Collapse
Affiliation(s)
- Abigail P Ferrieri
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Carla C M Arce
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ivan D Meza-Canales
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Eraldo Lima
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
49
|
Schmittgen S, Metzner R, Van Dusschoten D, Jansen M, Fiorani F, Jahnke S, Rascher U, Schurr U. Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5543-53. [PMID: 25873673 PMCID: PMC4585413 DOI: 10.1093/jxb/erv109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cercospora leaf spot (CLS) infection can cause severe yield loss in sugar beet. Introduction of Cercospora-resistant varieties in breeding programmes is important for plant protection to reduce both fungicide applications and the risk of the development of fungal resistance. However, in vivo monitoring of the sugar-containing taproots at early stages of foliar symptoms and the characterization of the temporal development of disease progression has proven difficult. Non-invasive magnetic resonance imaging (MRI) measurements were conducted to quantify taproot development of genotypes with high (HS) and low (LS) levels of susceptibility after foliar Cercospora inoculation. Fourteen days post-inoculation (dpi) the ratio of infected leaf area was still low (~7%) in both the HS and LS genotypes. However, during this period, the volumetric growth of the taproot had already started to decrease. Additionally, inoculated plants showed a reduction of the increase in width of inner cambial rings while the width of outer rings increased slightly compared with non-inoculated plants. This response partly compensated for the reduced development of inner rings that had a vascular connection with Cercospora-inoculated leaves. Hence, alterations in taproot anatomical features such as volume and cambial ring development can be non-invasively detected already at 14 dpi, providing information on the early impact of the infection on whole-plant performance. All these findings show that MRI is a suitable tool to identify promising candidate parent lines with improved resistance to Cercospora, for example with comparatively lower taproot growth reduction at early stages of canopy infection, for future introduction into breeing programmes.
Collapse
Affiliation(s)
- Simone Schmittgen
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Ralf Metzner
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Dagmar Van Dusschoten
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Marcus Jansen
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Fabio Fiorani
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Siegfried Jahnke
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Uwe Rascher
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Ulrich Schurr
- Forschungszentrum Jülich GmbH, Institut für Bio-und Geowissenschaften, IBG-2: Plant Sciences, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| |
Collapse
|
50
|
Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky DK, Albacete AA, Stabentheiner E, Franzaring J, Fangmeier A, van der Graaff E, Roitsch T. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5531-42. [PMID: 26002973 DOI: 10.1093/jxb/erv228] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Anna Gasperl
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Nora Luschin-Ebengreuth
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Elmien Heyneke
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Hyosub Chu
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Elena Cantero-Navarro
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Dominik K Großkinsky
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Alfonso A Albacete
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Edith Stabentheiner
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Jürgen Franzaring
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann-Strasse 3, D-70599 Stuttgart, Germany
| | - Andreas Fangmeier
- Institute of Landscape and Plant Ecology, University of Hohenheim, August-von-Hartmann-Strasse 3, D-70599 Stuttgart, Germany
| | - Eric van der Graaff
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - Thomas Roitsch
- Institute of Plant Sciences, Karl-Franzens-Universität Graz, Schubertstrasse 51, 8010 Graz, Austria
| |
Collapse
|