1
|
Glass AM, Navas-Martin S. Interferon-induced protein ISG15 in the central nervous system, quo vadis? FEBS Lett 2025. [PMID: 40353372 DOI: 10.1002/1873-3468.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
The ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) is a unique molecular effector that functions both intra- and extracellularly. Central to its pleiotropic nature is the ability to coordinate cellular responses following its conjugation to target proteins via ISGylation or in its free form. The activity of ISG15 is highly context-dependent: in the case of viral infections, ISG15 can serve as a pro- or antiviral factor. While ISG15 has been studied extensively, several gaps persist in our understanding of its role in dysregulated immune homeostasis. In particular, the role of ISG15 in the central nervous system (CNS), which has traditionally been considered an immune-privileged site, remains ill-defined. Interestingly, elevated ISG15 expression is observed in the CNS following instances of brain injury, autoimmunity, neurodegeneration, and viral infection. In this review, we seek to provide a comprehensive analysis of these studies as they pertain to ISG15 and its potential roles in the CNS. Furthermore, we discuss questions and challenges in the field while highlighting ISG15 as a potential diagnostic biomarker or therapeutic target. Impact statement While ISG15 has been studied extensively, several gaps remain in our understanding of its role in dysregulated immune homeostasis and its impact within the central nervous system (CNS). In this review, we provide a comprehensive analysis of the emerging roles of ISG15 in brain injury, autoimmunity, neurodegeneration, and viral infection within the CNS.
Collapse
Affiliation(s)
- Adam M Glass
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Gomez‐Giro G, Frangenberg D, Vega D, Zagare A, Barmpa K, Antony PMA, Robertson G, Sabahi‐Kaviani R, Haendler K, Kruse N, Papastefanaki F, Matsas R, Spielmann M, Luttge R, Schwamborn JC. α-Synuclein Pathology Spreads in a Midbrain-Hindbrain Assembloid Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409040. [PMID: 40245004 PMCID: PMC12120764 DOI: 10.1002/advs.202409040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/17/2025] [Indexed: 04/19/2025]
Abstract
Understanding the progression of α-synuclein pathology in neurodegenerative diseases such as Parkinson's disease (PD) is a longstanding challenge. Here, a novel midbrain-hindbrain-assembloid model that recapitulates the spread of α-synuclein pathology observed in PD patients, akin to Braak's hypothesis, is presented. Initially, the presence α-synuclein pathology is demonstrated in the hindbrain organoids. Subsequently, sophisticated tissue engineering methods are employed to create midbrain-hindbrain assembloids. These assembloids allow investigation and description of the spreading of α-synuclein pathology, as it progresses from the hindbrain components to the midbrain regions within the integrated structure. It is observed that an increase in α-synuclein in the hindbrain can induce transfer of the pathology into the healthy midbrain, as well as cause changes at the synapse level. The presented model constitutes a robust in vitro platform for investigating the mechanisms underlying α-synuclein spreading and disease progression, and holding potential for the screening of prospective therapeutics targeting the pathological propagation in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Gemma Gomez‐Giro
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Daniela Frangenberg
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Daniela Vega
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Alise Zagare
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Kyriaki Barmpa
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Paul M. A. Antony
- Bioimaging PlatformLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Graham Robertson
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| | - Rahman Sabahi‐Kaviani
- Department of Mechanical EngineeringEindhoven University of Technology (TUE)Eindhoven5612 AEThe Netherlands
| | - Kristian Haendler
- Institute of Human GeneticsUniversitätsklinikum Schleswig–Holstein (UKSH)23538LübeckGermany
| | - Nathalie Kruse
- Institute of Human GeneticsUniversitätsklinikum Schleswig–Holstein (UKSH)23538LübeckGermany
| | - Florentia Papastefanaki
- Human Embryonic and Induced Pluripotent Stem Cell UnitHellenic Pasteur InstituteAthens11521Greece
| | - Rebecca Matsas
- Human Embryonic and Induced Pluripotent Stem Cell UnitHellenic Pasteur InstituteAthens11521Greece
| | - Malte Spielmann
- Institute of Human GeneticsUniversitätsklinikum Schleswig–Holstein (UKSH)23538LübeckGermany
| | - Regina Luttge
- Department of Mechanical EngineeringEindhoven University of Technology (TUE)Eindhoven5612 AEThe Netherlands
| | - Jens C. Schwamborn
- Developmental and Cellular BiologyLuxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvauxL‐4367Luxembourg
| |
Collapse
|
3
|
Mielcarska MB, Rouse BT. Viruses and the Brain-A Relationship Prone to Trouble. Viruses 2025; 17:203. [PMID: 40006958 PMCID: PMC11860391 DOI: 10.3390/v17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neurological disorders, some of which are associated with viral infections, are growing due to the aging and expanding population. Despite strong defenses of the central nervous system, some viruses have evolved ways to breach them, which often result in dire consequences. In this review, we recount the various ways by which different viruses can enter the CNS, and we describe the consequences of such invasions. Consequences may manifest as acute disease, such as encephalitis, meningitis, or result in long-term effects, such as neuromuscular dysfunction, as occurs in poliomyelitis. We discuss evidence for viral involvement in the causation of well-known chronic neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, as well as vascular dementia in the elderly. We also describe the approaches currently available to control a few of the neural viral infections. These include antivirals that are effective against human immunodeficiency virus and herpes simplex virus, as well as vaccines valuable for controlling rabies virus, poliomyelitis virus, and some flavivirus infections. There is an urgent need to better understand, at a molecular level, how viruses contribute to acute and, especially, chronic neurological diseases and to develop more precise and effective vaccines and therapies.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Zhu XH, Zhou YP, Zhang Q, Zhu MY, Song XW, Li J, Chen J, Shi Y, Sun KJ, Zhang YJ, Zhang J, Xia T, Huang BS, Meng F, Zhou QG. A novel anti-epileptogenesis strategy of temporal lobe epilepsy based on nitric oxide donor. EMBO Mol Med 2025; 17:85-111. [PMID: 39653809 PMCID: PMC11730642 DOI: 10.1038/s44321-024-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 01/15/2025] Open
Abstract
The molecular mechanism underlying the role of hippocampal hilar interneuron degeneration in temporal lobe epilepsy (TLE) remains unclear. Especially, very few studies have focused on the role of neuronal nitric oxide synthase (nNOS, encoded by Nos1) containing hilar interneurons in TLE. In the present study, Nos1 conditional knockout mice were constructed, and we found that selective deletion of Nos1 in hilar interneurons rather than dentate granular cells (DGCs) triggered epileptogenesis. The level of nNOS was downregulated in patients and mice with TLE. Nos1 deletion led to excessive epilepsy-like excitatory input circuit formation and hyperexcitation of DGCs. Replenishment of hilar nNOS protein blocked epileptogenic development and memory impairment in pilocarpine-induced TLE mice. Moreover, chronic treatment with DETA/NONOate, a slowly released exogenous nitric oxide (NO) donor, prevented aberrant neural circuits of DGCs and the consequent epileptogenesis without acute antiseizure effects. Therefore, we concluded that NO donor therapy may be a novel anti-epileptogenesis strategy, different from existing antiseizure medications (ASMs), for curing TLE.
Collapse
Affiliation(s)
- Xian-Hui Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Changzhou Hygiene Vocational Technology College, Changzhou, 213002, China
| | - Qiao Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Suqian First Hospital, Nanjing Medical University, Suqian, 223800, China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Centre of Medicinal Preparations, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xiao-Wei Song
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, 226001, China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jiang Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210032, China
| | - Yun Shi
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, 210032, China
| | - Kang-Jian Sun
- Department of Neurosurgery, Nanjing Jinling University, Nanjing, 210002, China
| | - Yong-Jie Zhang
- Department of Human Anatomy, Human Brain Tissue Resource Center of Nanjing Medical University, National Health and Disease Human Brain Tissue Resource Center-sub-center of Nanjing Medical University, Nanjing, 211166, China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Tian Xia
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Bao-Sheng Huang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- The Key Center of Gene Technology Drugs of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
- Department of Pharmacy of First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Kim JI, Miura Y, Li MY, Revah O, Selvaraj S, Birey F, Meng X, Thete MV, Pavlov SD, Andersen J, Pașca AM, Porteus MH, Huguenard JR, Pașca SP. Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway. Neuron 2024; 112:4048-4059.e7. [PMID: 39419023 DOI: 10.1016/j.neuron.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
Collapse
Affiliation(s)
- Ji-Il Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Sergey D Pavlov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA
| | - Anca M Pașca
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis, Wu Tsai Neuroscience Institute, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Zhang Y, Zhang X, Yang X, Lv L, Wang Q, Zeng S, Zhang Z, Dorf M, Li S, Zhao L, Fu B. AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry. Autophagy 2024; 20:2785-2803. [PMID: 39128851 PMCID: PMC11587837 DOI: 10.1080/15548627.2024.2390814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.Abbreviation: aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H+ transporting V1 subunit A; ATP6V1H: ATPase H+ transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: drosophila melanogaster endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: homo sapiens protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: mus musculus protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: Saccharomyces cerevisiae s288c protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xinyi Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Martin Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Miura Y, Kim JI, Jurjuț O, Kelley KW, Yang X, Chen X, Thete MV, Revah O, Cui B, Pachitariu M, Pașca SP. Assembloid model to study loop circuits of the human nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.617729. [PMID: 39463945 PMCID: PMC11507680 DOI: 10.1101/2024.10.13.617729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Neural circuits connecting the cerebral cortex, the basal ganglia and the thalamus are fundamental networks for sensorimotor processing and their dysfunction has been consistently implicated in neuropsychiatric disorders 1-9 . These recursive, loop circuits have been investigated in animal models and by clinical neuroimaging, however, direct functional access to developing human neurons forming these networks has been limited. Here, we use human pluripotent stem cells to reconstruct an in vitro cortico-striatal-thalamic-cortical circuit by creating a four-part loop assembloid. More specifically, we generate regionalized neural organoids that resemble the key elements of the cortico-striatal-thalamic-cortical circuit, and functionally integrate them into loop assembloids using custom 3D-printed biocompatible wells. Volumetric and mesoscale calcium imaging, as well as extracellular recordings from individual parts of these assembloids reveal the emergence of synchronized patterns of neuronal activity. In addition, a multi-step rabies retrograde tracing approach demonstrate the formation of neuronal connectivity across the network in loop assembloids. Lastly, we apply this system to study heterozygous loss of ASH1L gene associated with autism spectrum disorder and Tourette syndrome and discover aberrant synchronized activity in disease model assembloids. Taken together, this human multi-cellular platform will facilitate functional investigations of the cortico-striatal-thalamic-cortical circuit in the context of early human development and in disease conditions.
Collapse
|
8
|
Li Y, Fang Y, Li K, Yang H, Duan S, Sun L. Morphological Tracing and Functional Identification of Monosynaptic Connections in the Brain: A Comprehensive Guide. Neurosci Bull 2024; 40:1364-1378. [PMID: 38700806 PMCID: PMC11365912 DOI: 10.1007/s12264-024-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 09/01/2024] Open
Abstract
Behavioral studies play a crucial role in unraveling the mechanisms underlying brain function. Recent advances in optogenetics, neuronal typing and labeling, and circuit tracing have facilitated the dissection of the neural circuitry involved in various important behaviors. The identification of monosynaptic connections, both upstream and downstream of specific neurons, serves as the foundation for understanding complex neural circuits and studying behavioral mechanisms. However, the practical implementation and mechanistic understanding of monosynaptic connection tracing techniques and functional identification remain challenging, particularly for inexperienced researchers. Improper application of these methods and misinterpretation of results can impede experimental progress and lead to erroneous conclusions. In this paper, we present a comprehensive description of the principles, specific operational details, and key steps involved in tracing anterograde and retrograde monosynaptic connections. We outline the process of functionally identifying monosynaptic connections through the integration of optogenetics and electrophysiological techniques, providing practical guidance for researchers.
Collapse
Affiliation(s)
- Yuanyuan Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Fang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Kaiyuan Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hongbin Yang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Shumin Duan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Sun
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Velica A, Kullander K. A flowchart for adequate controls in virus-based monosynaptic tracing experiments identified Cre-independent leakage of the TVA receptor in RΦGT mice. BMC Neurosci 2024; 25:9. [PMID: 38383317 PMCID: PMC10882902 DOI: 10.1186/s12868-024-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.
Collapse
Affiliation(s)
- Anna Velica
- Department of Immunology, Genetics and Pathology, Uppsala University, 815, Husargatan 3, Uppsala, 751 08, Sweden.
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, 815, Husargatan 3, Uppsala, 751 08, Sweden
| |
Collapse
|
10
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Transferrin Receptor Protein 1 Cooperates with mGluR2 To Mediate the Internalization of Rabies Virus and SARS-CoV-2. J Virol 2023; 97:e0161122. [PMID: 36779763 PMCID: PMC9972945 DOI: 10.1128/jvi.01611-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.
Collapse
|
12
|
Abstract
Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.
Collapse
|
13
|
Feige L, Kozaki T, Dias de Melo G, Guillemot V, Larrous F, Ginhoux F, Bourhy H. Susceptibilities of CNS Cells towards Rabies Virus Infection Is Linked to Cellular Innate Immune Responses. Viruses 2022; 15:88. [PMID: 36680128 PMCID: PMC9860954 DOI: 10.3390/v15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Rabies is caused by neurotropic rabies virus (RABV), contributing to 60,000 human deaths annually. Even though rabies leads to major public health concerns worldwide, we still do not fully understand factors determining RABV tropism and why glial cells are unable to clear RABV from the infected brain. Here, we compare susceptibilities and immune responses of CNS cell types to infection with two RABV strains, Tha and its attenuated variant Th2P-4M, mutated on phospho- (P-protein) and matrix protein (M-protein). We demonstrate that RABV replicates in human stem cell-derived neurons and astrocytes but fails to infect human iPSC-derived microglia. Additionally, we observed major differences in transcription profiles and quantification of intracellular protein levels between antiviral immune responses mediated by neurons, astrocytes (IFNB1, CCL5, CXCL10, IL1B, IL6, and LIF), and microglia (CCL5, CXCL10, ISG15, MX1, and IL6) upon Tha infection. We also show that P- and M-proteins of Tha mediate evasion of NF-κB- and JAK-STAT-controlled antiviral host responses in neuronal cell types in contrast to glial cells, potentially explaining the strong neuron-specific tropism of RABV. Further, Tha-infected astrocytes and microglia protect neurons from Tha infection via a filtrable and transferable agent. Overall, our study provides novel insights into RABV tropism, showing the interest in studying the interplay of CNS cell types during RABV infection.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Vincent Guillemot
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, 75015 Paris, France
| | - Florence Larrous
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Center, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 75015 Paris, France
| |
Collapse
|
14
|
Li J, Liu Q, Liu J, Wu X, Lei Y, Li S, Zhao D, Li Z, Luo L, Peng S, Ou Y, Yang H, Jin J, Li Y, Peng Y. An mRNA-based rabies vaccine induces strong protective immune responses in mice and dogs. Virol J 2022; 19:184. [PMID: 36371169 PMCID: PMC9652961 DOI: 10.1186/s12985-022-01919-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractRabies is a lethal zoonotic disease that is mainly caused by the rabies virus (RABV). Although effective vaccines have long existed, current vaccines take both time and cost to produce. Messenger RNA (mRNA) technology is an emergent vaccine platform that supports rapid vaccine development on a large scale. Here, an optimized mRNA vaccine construct (LVRNA001) expressing rabies virus glycoprotein (RABV-G) was developed in vitro and then evaluated in vivo for its immunogenicity and protective capacity in mice and dogs. LVRNA001 induced neutralizing antibody production and a strong Th1 cellular immune response in mice. In both mice and dogs, LVRNA001 provided protection against challenge with 50-fold lethal dose 50 (LD50) of RABV. With regards to protective efficiency, an extended dosing interval (14 days) induced greater antibody production than 3- or 7-day intervals in mice. Finally, post-exposure immunization against RABV was performed to evaluate the survival rates of dogs receiving two 25 μg doses of LVRNA001 vs. five doses of inactivated vaccine over the course of three months. Survival rate in the LVRNA001 group was 100%, whereas survival rate in the inactivated vaccine control group was only 33.33%. In conclusion, these results demonstrated that LVRNA001 induced strong protective immune responses in mice and dogs, which provides a new and promising prophylactic strategy for rabies.
Collapse
|
15
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
16
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Interferon Inhibition Enhances the Pilot-Scale Production of Rabies Virus in Human Diploid MRC-5 Cells. Viruses 2021; 14:v14010049. [PMID: 35062253 PMCID: PMC8779192 DOI: 10.3390/v14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/21/2022] Open
Abstract
Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-β response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1−), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1− cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.
Collapse
|
18
|
Zhang F, Wu LB, Yu Q, Wang MJ, Zeng XL, Wei XT, Wu ZJ, Cai RL, Hu L. Neurotropic Viruses as a Tool for Neural Circuit-Tracing. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
20
|
Research Advances on the Interactions between Rabies Virus Structural Proteins and Host Target Cells: Accrued Knowledge from the Application of Reverse Genetics Systems. Viruses 2021; 13:v13112288. [PMID: 34835093 PMCID: PMC8617671 DOI: 10.3390/v13112288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Rabies is a lethal zoonotic disease caused by lyssaviruses, such as rabies virus (RABV), that results in nearly 100% mortality once clinical symptoms appear. There are no curable drugs available yet. RABV contains five structural proteins that play an important role in viral replication, transcription, infection, and immune escape mechanisms. In the past decade, progress has been made in research on the pathogenicity of RABV, which plays an important role in the creation of new recombinant RABV vaccines by reverse genetic manipulation. Here, we review the latest advances on the interaction between RABV proteins in the infected host and the applied development of rabies vaccines by using a fully operational RABV reverse genetics system. This article provides a background for more in-depth research on the pathogenic mechanism of RABV and the development of therapeutic drugs and new biologics.
Collapse
|
21
|
Nitschel S, Zaeck LM, Potratz M, Nolden T, te Kamp V, Franzke K, Höper D, Pfaff F, Finke S. Point Mutations in the Glycoprotein Ectodomain of Field Rabies Viruses Mediate Cell Culture Adaptation through Improved Virus Release in a Host Cell Dependent and Independent Manner. Viruses 2021; 13:v13101989. [PMID: 34696419 PMCID: PMC8538267 DOI: 10.3390/v13101989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular details of field rabies virus (RABV) adaptation to cell culture replication are insufficiently understood. A better understanding of adaptation may not only reveal requirements for efficient RABV replication in cell lines, but may also provide novel insights into RABV biology and adaptation-related loss of virulence and pathogenicity. Using two recombinant field rabies virus clones (rRABV Dog and rRABV Fox), we performed virus passages in three different cell lines to identify cell culture adaptive mutations. Ten passages were sufficient for the acquisition of adaptive mutations in the glycoprotein G and in the C-terminus of phosphoprotein P. Apart from the insertion of a glycosylation sequon via the mutation D247N in either virus, both acquired additional and cell line-specific mutations after passages on BHK (K425N) and MDCK-II (R346S or R350G) cells. As determined by virus replication kinetics, complementation, and immunofluorescence analysis, the major bottleneck in cell culture replication was the intracellular accumulation of field virus G protein, which was overcome after the acquisition of the adaptive mutations. Our data indicate that limited release of extracellular infectious virus at the plasma membrane is a defined characteristic of highly virulent field rabies viruses and we hypothesize that the observed suboptimal release of infectious virions is due to the inverse correlation of virus release and virulence in vivo.
Collapse
Affiliation(s)
- Sabine Nitschel
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Luca M. Zaeck
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Madlin Potratz
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Tobias Nolden
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Verena te Kamp
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
| | - Kati Franzke
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectiology (IMED), 17493 Greifswald-Insel Riems, Germany;
| | - Dirk Höper
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany; (D.H.); (F.P.)
| | - Florian Pfaff
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Diagnostic Virology (IVD), 17493 Greifswald-Insel Riems, Germany; (D.H.); (F.P.)
| | - Stefan Finke
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology (IMVZ), 17493 Greifswald-Insel Riems, Germany; (S.N.); (L.M.Z.); (M.P.); (T.N.); (V.t.K.)
- Correspondence: ; Tel.: +49-38351-71283
| |
Collapse
|
22
|
Yook JS, Kim J, Kim J. Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Front Syst Neurosci 2021; 15:688673. [PMID: 34234652 PMCID: PMC8255632 DOI: 10.3389/fnsys.2021.688673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex neural circuits that underpin brain function and behavior has been a long-standing goal of neuroscience. Yet this is no small feat considering the interconnectedness of neurons and other cell types, both within and across brain regions. In this review, we describe recent advances in mouse molecular genetic engineering that can be used to integrate information on brain activity and structure at regional, cellular, and subcellular levels. The convergence of structural inputs can be mapped throughout the brain in a cell type-specific manner by antero- and retrograde viral systems expressing various fluorescent proteins and genetic switches. Furthermore, neural activity can be manipulated using opto- and chemo-genetic tools to interrogate the functional significance of this input convergence. Monitoring neuronal activity is obtained with precise spatiotemporal resolution using genetically encoded sensors for calcium changes and specific neurotransmitters. Combining these genetically engineered mapping tools is a compelling approach for unraveling the structural and functional brain architecture of complex behaviors and malfunctioned states of neurological disorders.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jihyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Faulkner RL, Wall NR, Callaway EM, Cline HT. Application of Recombinant Rabies Virus to Xenopus Tadpole Brain. eNeuro 2021; 8:ENEURO.0477-20.2021. [PMID: 34099488 PMCID: PMC8260272 DOI: 10.1523/eneuro.0477-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The Xenopus laevis experimental system has provided significant insight into the development and plasticity of neural circuits. Xenopus neuroscience research would be enhanced by additional tools to study neural circuit structure and function. Rabies viruses are powerful tools to label and manipulate neural circuits and have been widely used to study mesoscale connectomics. Whether rabies virus can be used to transduce neurons and express transgenes in Xenopus has not been systematically investigated. Glycoprotein-deleted rabies virus transduces neurons at the axon terminal and retrogradely labels their cell bodies. We show that glycoprotein-deleted rabies virus infects local and projection neurons in the Xenopus tadpole when directly injected into brain tissue. Pseudotyping glycoprotein-deleted rabies with EnvA restricts infection to cells with exogenous expression of the EnvA receptor, TVA. EnvA pseudotyped virus specifically infects tadpole neurons with promoter-driven expression of TVA, demonstrating its utility to label targeted neuronal populations. Neuronal cell types are defined by a combination of features including anatomical location, expression of genetic markers, axon projection sites, morphology, and physiological properties. We show that driving TVA expression in one hemisphere and injecting EnvA pseudotyped virus into the contralateral hemisphere, retrogradely labels neurons defined by cell body location and axon projection site. Using this approach, rabies can be used to identify cell types in Xenopus brain and simultaneously to express transgenes which enable monitoring or manipulation of neuronal activity. This makes rabies a valuable tool to study the structure and function of neural circuits in Xenopus.Significance StatementStudies in Xenopus have contributed a great deal to our understanding of brain circuit development and plasticity, regeneration, and hormonal regulation of behavior and metamorphosis. Here, we show that recombinant rabies virus transduces neurons in the Xenopus tadpole, enlarging the toolbox that can be applied to studying Xenopus brain. Rabies can be used for retrograde labeling and expression of a broad range of transgenes including fluorescent proteins for anatomical tracing and studying neuronal morphology, voltage or calcium indicators to visualize neuronal activity, and photo- or chemosensitive channels to control neuronal activity. The versatility of these tools enables diverse experiments to analyze and manipulate Xenopus brain structure and function, including mesoscale connectivity.
Collapse
Affiliation(s)
- Regina L Faulkner
- Neuroscience Department and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla CA
| | | | | | - Hollis T Cline
- Neuroscience Department and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla CA
| |
Collapse
|
24
|
Yang H, Xiong F, Song YG, Jiang HF, Qin HB, Zhou J, Lu S, Grieco SF, Xu X, Zeng WB, Zhao F, Luo MH. HSV-1 H129-Derived Anterograde Neural Circuit Tracers: Improvements, Production, and Applications. Neurosci Bull 2021; 37:701-719. [PMID: 33367996 PMCID: PMC8099975 DOI: 10.1007/s12264-020-00614-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 10/22/2022] Open
Abstract
Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1 (HSV-1) strain H129 (H129), and have been successfully applied to map diverse neural circuits. Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ge Song
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Fei Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Bin Qin
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Lu
- Shanghai Genechem Co. Ltd., Shanghai, 201203, China
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. Generation of Functional Human 3D Cortico-Motor Assembloids. Cell 2020; 183:1913-1929.e26. [PMID: 33333020 DOI: 10.1016/j.cell.2020.11.017] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/27/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mandeep Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Hannes Vogel
- Departments of Pathology and Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - H Christina Fan
- BD Biosciences, 4040 Campbell Ave Suite 110, Menlo Park, CA 94025, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Miura Y, Li MY, Birey F, Ikeda K, Revah O, Thete MV, Park JY, Puno A, Lee SH, Porteus MH, Pașca SP. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat Biotechnol 2020; 38:1421-1430. [PMID: 33273741 PMCID: PMC9042317 DOI: 10.1038/s41587-020-00763-w] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cortico-striatal projections are critical components of forebrain circuitry that regulate motivated behaviors. To enable the study of the human cortico-striatal pathway and how its dysfunction leads to neuropsychiatric disease, we developed a method to convert human pluripotent stem cells into region-specific brain organoids that resemble the developing human striatum and include electrically active medium spiny neurons. We then assembled these organoids with cerebral cortical organoids in three-dimensional cultures to form cortico-striatal assembloids. Using viral tracing and functional assays in intact or sliced assembloids, we show that cortical neurons send axonal projections into striatal organoids and form synaptic connections. Medium spiny neurons mature electrophysiologically following assembly and display calcium activity after optogenetic stimulation of cortical neurons. Moreover, we derive cortico-striatal assembloids from patients with a neurodevelopmental disorder caused by a deletion on chromosome 22q13.3 and capture disease-associated defects in calcium activity, showing that this approach will allow investigation of the development and functional assembly of cortico-striatal connectivity using patient-derived cells.
Collapse
Affiliation(s)
- Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Min-Yin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Omer Revah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Jin-Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Samuel H Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Human Brain Organogenesis Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines (Basel) 2020; 8:E680. [PMID: 33202961 PMCID: PMC7712223 DOI: 10.3390/vaccines8040680] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Natalie M. Kirk
- Comparative Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Morgan E. Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| |
Collapse
|
28
|
Salin P, Blondel D, Kerkerian-Le Goff L, Coulon P. Golgi staining-like retrograde labeling of brain circuits using rabies virus: Focus onto the striatonigral neurons. J Neurosci Methods 2020; 344:108872. [PMID: 32693000 DOI: 10.1016/j.jneumeth.2020.108872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of viral transneuronal tracers in the toolbox of neural tract-tracing methods has been an important addition in the field of connectomics for deciphering circuit-level architecture of the nervous system. One of the added values of viral compared to conventional retrograde tracers, in particular of rabies virus, is to provide a Golgi staining-like view of the infected neurons, revealing the thin dendritic arborizations and the spines that are major post-synaptic seats of neuronal connections. NEWMETHOD Here, we comparatively illustrate the characteristics of the labeling obtained in the same model system, the basal ganglia circuitry, by different retrograde viral tracing approaches, using the Bartha strain of pseudorabies virus, the SAD and CVS strains of rabies virus and by the conventional retrograde tracer cholera toxin B. To best contrast the differences in the capacity of these tracers to reveal the dendritic morphology in details, we focused on one population of first-order infected neurons in the striatum, which exhibit high spine density, after tracer injection in the substantia nigra. RESULTS AND CONCLUSION None of the viruses tested allowed to detect as many neurons as with cholera toxin B, but the SAD and CVS strains of rabies virus had the advantage of enabling detailed Golgi-like visualisation of the dendritic trees, the best numerical detection being offered by the transneuronal rCVS-N2c-P-mCherry while poor labeling was provided by rCVS-N2c-M-GFP. Results also suggest that, besides different viral properties, technical issues about constructs and detection methods contribute to apparently different efficiencies among the viral approaches.
Collapse
Affiliation(s)
- P Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - D Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | | | - P Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Université and CNRS, Marseille, France
| |
Collapse
|
29
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
30
|
Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng W, Hui M, Semler BL, Sandri-Goldin RM. Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron 2020; 107:1029-1047. [PMID: 32755550 DOI: 10.1016/j.neuron.2020.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
Abstract
Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory D Horwitz
- The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 102206, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
31
|
Impact of α-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized α-synuclein rat model of PD. Proc Natl Acad Sci U S A 2020; 117:15209-15220. [PMID: 32541058 PMCID: PMC7334514 DOI: 10.1073/pnas.2001305117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preclinical assessment of the therapeutic potential of dopamine (DA) neuron replacement in Parkinson's disease (PD) has primarily been performed in the 6-hydroxydopamine toxin model. While this is a good model to assess graft function, it does not reflect the pathological features or progressive nature of the disease. In this study, we establish a humanized transplantation model of PD that better recapitulates the main disease features, obtained by coinjection of preformed human α-synuclein (α-syn) fibrils and adeno-associated virus (AAV) expressing human wild-type α-syn unilaterally into the rat substantia nigra (SN). This model gives rise to DA neuron dysfunction and progressive loss of DA neurons from the SN and terminals in the striatum, accompanied by extensive α-syn pathology and a prominent inflammatory response, making it an interesting and relevant model in which to examine long-term function and integrity of transplanted neurons in a PD-like brain. We transplanted DA neurons derived from human embryonic stem cells (hESCs) into the striatum and assessed their survival, growth, and function over 6 to 18 wk. We show that the transplanted cells, even in the presence of ongoing pathology, are capable of innervating the DA-depleted striatum. However, on closer examination of the grafts, we found evidence of α-syn pathology in the form of inclusions of phosphorylated α-syn in a small fraction of the grafted DA neurons, indicating host-to-graft transfer of α-syn pathology, a phenomenon that has previously been observed in PD patients receiving fetal tissue grafts but has not been possible to demonstrate and study in toxin-based animal models.
Collapse
|
32
|
Suzuki T, Morimoto N, Akaike A, Osakada F. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors. Front Neural Circuits 2020; 13:77. [PMID: 31998081 PMCID: PMC6967742 DOI: 10.3389/fncir.2019.00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Neural circuits interconnect to organize large-scale networks that generate perception, cognition, memory, and behavior. Information in the nervous system is processed both through parallel, independent circuits and through intermixing circuits. Analyzing the interaction between circuits is particularly indispensable for elucidating how the brain functions. Monosynaptic circuit tracing with glycoprotein (G) gene-deleted rabies viral vectors (RVΔG) comprises a powerful approach for studying the structure and function of neural circuits. Pseudotyping of RVΔG with the foreign envelope EnvA permits expression of transgenes such as fluorescent proteins, genetically-encoded sensors, or optogenetic tools in cells expressing TVA, a cognate receptor for EnvA. Trans-complementation with rabies virus glycoproteins (RV-G) enables trans-synaptic labeling of input neurons directly connected to the starter neurons expressing both TVA and RV-G. However, it remains challenging to simultaneously map neuronal connections from multiple cell populations and their interactions between intermixing circuits solely with the EnvA/TVA-mediated RV tracing system in a single animal. To overcome this limitation, here, we multiplexed RVΔG circuit tracing by optimizing distinct viral envelopes (oEnvX) and their corresponding receptors (oTVX). Based on the EnvB/TVB and EnvE/DR46-TVB systems derived from the avian sarcoma leukosis virus (ASLV), we developed optimized TVB receptors with lower or higher affinity (oTVB-L or oTVB-H) and the chimeric envelope oEnvB, as well as an optimized TVE receptor with higher affinity (oTVE-H) and its chimeric envelope oEnvE. We demonstrated independence of RVΔG infection between the oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems and in vivo proof-of-concept for multiplex circuit tracing from two distinct classes of layer 5 neurons targeting either other cortical or subcortical areas. We also successfully labeled common input of the lateral geniculate nucleus to both cortico-cortical layer 5 neurons and inhibitory neurons of the mouse V1 with multiplex RVΔG tracing. These oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems allow for differential labeling of distinct circuits to uncover the mechanisms underlying parallel processing through independent circuits and integrated processing through interaction between circuits in the brain.
Collapse
Affiliation(s)
- Toshiaki Suzuki
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akinori Akaike
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
33
|
Integrin β1 Promotes Peripheral Entry by Rabies Virus. J Virol 2020; 94:JVI.01819-19. [PMID: 31666383 DOI: 10.1128/jvi.01819-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.
Collapse
|
34
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
36
|
Dohaku R, Yamaguchi M, Yamamoto N, Shimizu T, Osakada F, Hibi M. Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus. Front Neural Circuits 2019; 13:30. [PMID: 31068795 PMCID: PMC6491863 DOI: 10.3389/fncir.2019.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022] Open
Abstract
The cerebellum is involved in some forms of motor coordination and learning, and in cognitive and emotional functions. To elucidate the functions of the cerebellum, it is important to unravel the detailed connections of the cerebellar neurons. Although the cerebellar neural circuit structure is generally conserved among vertebrates, it is not clear whether the cerebellum receives and processes the same or similar information in different vertebrate species. Here, we performed monosynaptic retrograde tracing with recombinant rabies viruses (RV) to identify the afferent connections of the zebrafish cerebellar neurons. We used a G-deleted RV that expressed GFP. The virus was also pseudotyped with EnvA, an envelope protein of avian sarcoma and leucosis virus (ALSV-A). For the specific infection of cerebellar neurons, we expressed the RV glycoprotein (G) gene and the envelope protein TVA, which is the receptor for EnvA, in Purkinje cells (PCs) or granule cells (GCs), using the promoter for aldolase Ca (aldoca) or cerebellin 12 (cbln12), respectively. When the virus infected PCs in the aldoca line, GFP was detected in the PCs’ presynaptic neurons, including GCs and neurons in the inferior olivary nuclei (IOs), which send climbing fibers (CFs). These observations validated the RV tracing method in zebrafish. When the virus infected GCs in the cbln12 line, GFP was again detected in their presynaptic neurons, including neurons in the pretectal nuclei, the nucleus lateralis valvulae (NLV), the central gray (CG), the medial octavolateralis nucleus (MON), and the descending octaval nucleus (DON). GFP was not observed in these neurons when the virus infected PCs in the aldoca line. These precerebellar neurons generally agree with those reported for other teleost species and are at least partly conserved with those in mammals. Our results demonstrate that the RV system can be used for connectome analyses in zebrafish, and provide fundamental information about the cerebellar neural circuits, which will be valuable for elucidating the functions of cerebellar neural circuits in zebrafish.
Collapse
Affiliation(s)
- Ryuji Dohaku
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masahiro Yamaguchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology, Nagoya University, Nagoya, Japan
| |
Collapse
|
37
|
Guo Y, Duan M, Wang X, Gao J, Guan Z, Zhang M. Early events in rabies virus infection—Attachment, entry, and intracellular trafficking. Virus Res 2019; 263:217-225. [DOI: 10.1016/j.virusres.2019.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
|
38
|
Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, Najm IM, Suh H. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest 2018; 129:310-323. [PMID: 30507615 DOI: 10.1172/jci95731] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | | | - Daehoon Lee
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eun Jeoung Ro
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, and
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Wang J, Wang Z, Liu R, Shuai L, Wang X, Luo J, Wang C, Chen W, Wang X, Ge J, He X, Wen Z, Bu Z. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathog 2018; 14:e1007189. [PMID: 30028877 PMCID: PMC6070288 DOI: 10.1371/journal.ppat.1007189] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/01/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. How RABV interacts with host neuron membrane receptors to become internalized and cause rabid symptoms is not yet fully understood. Here, we identified a novel receptor of RABV, which RABV uses to infect neurons. We found that metabotropic glutamate receptor subtype 2 (mGluR2), a member of the G protein-coupled receptor family that is abundant in the central nervous system, directly interacts with RABV glycoprotein to mediate virus entry. RABV infection was drastically decreased after mGluR2 siRNA knock-down in cells. Antibodies to mGluR2 blocked RABV infection in cells in vitro. Moreover, mGluR2 ectodomain soluble protein neutralized the infectivity of RABV cell-adapted strains and a street strain in cells (in vitro) and in mice (in vivo). We further found that RABV and mGluR2 are internalized into cells and transported to early and late endosomes together. These results suggest that mGluR2 is a functional cellular entry receptor for RABV. Our findings may open a door to explore and understand the neuropathogenesis of rabies. Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. How RABV interacts with host neuron membrane receptors to become internalized and cause rabid symptoms is not yet fully understood. Here, we identified metabotropic glutamate receptor subtype 2 (mGluR2) as a novel cellular RABV receptor for host cell entry. mGluR2 directly interacts with RABV G protein and both proteins are internalized together. Our findings may open a door to explore the fundamental molecular mechanisms for rabies neuropathogenesis.
Collapse
Affiliation(s)
- Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zilong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Renqiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xinxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jie Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (ZB); (ZW)
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- * E-mail: (ZB); (ZW)
| |
Collapse
|
40
|
Wu Q, Han Y, Tong Q. Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:211-233. [PMID: 30390293 DOI: 10.1007/978-981-13-1286-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current epidemic of obesity and its associated metabolic syndromes imposes unprecedented challenges to our society. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. The obesity development is due to a disturbed homeostatic control of feeding and energy expenditure, both of which are controlled by an intricate neural network in the brain. Given the inherent complexity of brain networks in controlling feeding and energy expenditure, the understanding of brain-based pathophysiology for obesity development is limited. One key limiting factor in dissecting neural pathways for feeding and energy expenditure is unavailability of techniques that can be used to effectively reduce the complexity of the brain network to a tractable paradigm, based on which a strong hypothesis can be tested. Excitingly, emerging techniques have been involved to be able to link specific groups of neurons and neural pathways to behaviors (i.e., feeding and energy expenditure). In this chapter, novel techniques especially those based on animal models and viral vector approaches will be discussed. We hope that this chapter will provide readers with a basis that can help to understand the literatures using these techniques and with a guide to apply these exciting techniques to investigate brain mechanisms underlying feeding and energy expenditure.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Children's Nutrition Research Center, Research Service of Department of Agriculture of USA, Houston, TX, USA.
| | - Yong Han
- Department of Pediatrics, Baylor College of Medicine, USDA-ARS, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
41
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
42
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
43
|
The phenotype of the RABV glycoprotein determines cellular and global virus load in the brain and is decisive for the pace of the disease. Virology 2017; 511:82-94. [DOI: 10.1016/j.virol.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
|
44
|
Kgaladi J, Faber M, Dietzschold B, Nel LH, Markotter W. Pathogenicity and Immunogenicity of Recombinant Rabies Viruses Expressing the Lagos Bat Virus Matrix and Glycoprotein: Perspectives for a Pan-Lyssavirus Vaccine. Trop Med Infect Dis 2017; 2:tropicalmed2030037. [PMID: 30270894 PMCID: PMC6082111 DOI: 10.3390/tropicalmed2030037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023] Open
Abstract
Lagos bat virus (LBV) is a phylogroup II lyssavirus exclusively found in Africa. Previous studies indicated that this virus is lethal to mice after intracranial and intramuscular inoculation. The antigenic composition of LBV differs substantially from that of rabies virus (RABV) and current rabies vaccines do not provide cross protection against phylogroup II lyssaviruses. To investigate the potential role of the LBV matrix protein (M) and glycoprotein (G) in pathogenesis, reverse genetics technology was used to construct recombinant viruses. The genes encoding the glycoprotein, or the matrix and glycoprotein of the attenuated RABV strain SPBN, were replaced with those of LBV resulting in SPBN-LBVG and SPBN-LBVM-LBVG, respectively. To evaluate the immunogenicity of the LBV G, the recombinant RABV SPBNGAS-LBVG-GAS was constructed with the LBV G inserted between two mutated RABV G genes (termed GAS). All the recombinant viruses were lethal to mice after intracranial (i.c.) inoculation although the pathogenicity of SPBNGAS-LBVG-GAS was lower compared to the other recombinant viruses. Following intramuscular (i.m.) inoculation, only SPBN-LBVM-LBVG was lethal to mice, indicating that both the M and G of LBV play a role in the pathogenesis. Most interestingly, serum collected from mice that were inoculated i.m. with SPBNGAS-LBVG-GAS neutralized phylogroup I and II lyssaviruses including RABV, Duvenhage virus (DUVV), LBV, and Mokola virus (MOKV), indicating that this recombinant virus has potential to be developed as a pan-lyssavirus vaccine.
Collapse
Affiliation(s)
- Joe Kgaladi
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2193, South Africa.
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Bernhard Dietzschold
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| |
Collapse
|
45
|
Ohara S, Sota Y, Sato S, Tsutsui KI, Iijima T. Increased transgene expression level of rabies virus vector for transsynaptic tracing. PLoS One 2017; 12:e0180960. [PMID: 28700657 PMCID: PMC5507306 DOI: 10.1371/journal.pone.0180960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 12/27/2022] Open
Abstract
Viral vectors that can infect neurons transsynaptically and can strongly express foreign genes are useful for investigating the organization of neural circuits. We previously developed a propagation-competent rabies virus (RV) vector based on a highly attenuated HEP-Flury strain (rHEP5.0-CVSG), which selectively infects neurons and propagates between synaptically connected neurons in a retrograde direction. Its relatively low level of transgene expression, however, makes immunostaining necessary to visualize the morphological features of infected neurons. To increase the transgene expression level of this RV vector, in this study we focused on two viral proteins: the large protein (L) and matrix protein (M). We first attempted to enhance the expression of L, which is a viral RNA polymerase, by deleting the extra transcription unit and shortening the intergenic region between the G and L genes. This viral vector (rHEP5.0-GctL) showed increased transgene expression level with efficient transsynaptic transport. We next constructed an RV vector with a rearranged gene order (rHEP5.0-GML) with the aim to suppress the expression of M, which plays a regulatory role in virus RNA synthesis. Although this vector showed high transgene expression level, the efficiency of transsynaptic transport was low. To further evaluate the usability of rHEP5.0-GctL as a transsynaptic tracer, we inserted a fluorescent timer as a transgene, which changes the color of its fluorescence from blue to red over time. This viral vector enabled us the differentiation of primary infected neurons from secondary infected neurons in terms of the fluorescence wavelength. We expect this propagation-competent RV vector to be useful for elucidating the complex organization of the central nervous system.
Collapse
Affiliation(s)
- Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yasuhiro Sota
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- * E-mail:
| |
Collapse
|
46
|
Tornero D, Tsupykov O, Granmo M, Rodriguez C, Grønning-Hansen M, Thelin J, Smozhanik E, Laterza C, Wattananit S, Ge R, Tatarishvili J, Grealish S, Brüstle O, Skibo G, Parmar M, Schouenborg J, Lindvall O, Kokaia Z. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain 2017; 140:692-706. [PMID: 28115364 DOI: 10.1093/brain/aww347] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/20/2016] [Indexed: 12/20/2022] Open
Abstract
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex.
Collapse
Affiliation(s)
- Daniel Tornero
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Oleg Tsupykov
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Marcus Granmo
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Cristina Rodriguez
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Marita Grønning-Hansen
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Jonas Thelin
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Ekaterina Smozhanik
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Cecilia Laterza
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Somsak Wattananit
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Ruimin Ge
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Jemal Tatarishvili
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, and German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 25, D-53127, Bonn, Germany
| | - Galina Skibo
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| |
Collapse
|
47
|
McCue DL, Kasper JM, Hommel JD. Regulation of motivation for food by neuromedin U in the paraventricular nucleus and the dorsal raphe nucleus. Int J Obes (Lond) 2017; 41:120-128. [PMID: 27748746 PMCID: PMC5209284 DOI: 10.1038/ijo.2016.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND Motivation for high-fat food is thought to contribute to excess caloric intake in obese individuals. A novel regulator of motivation for food may be neuromedin U (NMU), a highly-conserved neuropeptide that influences food intake. Although these effects of NMU have primarily been attributed to signaling in the paraventricular nucleus of the hypothalamus (PVN), NMU has also been found in other brain regions involved in both feeding behavior and motivation. We investigate the effects of NMU on motivation for food and food intake, and identify the brain regions mediating these effects. METHODS The motivational state for a particular reinforcer (e.g., high-fat food) can be assessed using a progressive-ratio schedule of reinforcement under which an increasing number of lever presses are required to obtain subsequent reinforcers. Here, we have used a progressive-ratio operant responding paradigm in combination with an assessment of cumulative food intake to evaluate the effects of NMU administration in rats, and identify the brain regions mediating these effects. RESULTS We found that peripheral administration of NMU decreases operant responding for high-fat food in rats. Evaluation of Fos-like immunoreactivity in response to peripheral NMU indicated the PVN and dorsal raphe nucleus (DRN) as sites of action for NMU. NMU infusion into either region mimics the effects of peripheral NMU on food intake and operant responding for food. NMU-containing projections from the lateral hypothalamus (LH) to the PVN and DRN were identified as an endogenous source of NMU. CONCLUSIONS These results identify the DRN as a site of action for NMU, demonstrate that the LH provides endogenous NMU to the PVN and DRN and implicate NMU signaling in the PVN and DRN as a novel regulator of motivation for high-fat foods.
Collapse
Affiliation(s)
- David L. McCue
- Department of Neuroscience, University of Texas Medical Branch, Galveston, TX 77555-0615
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - James M. Kasper
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| | - Jonathan D. Hommel
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX 77555-0615
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-0615
| |
Collapse
|
48
|
Huey R, Hawthorne S, McCarron P. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. J Drug Target 2016; 25:379-385. [DOI: 10.1080/1061186x.2016.1223676] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rachel Huey
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
49
|
Mahadevan A, Suja MS, Mani RS, Shankar SK. Perspectives in Diagnosis and Treatment of Rabies Viral Encephalitis: Insights from Pathogenesis. Neurotherapeutics 2016; 13:477-92. [PMID: 27324391 PMCID: PMC4965414 DOI: 10.1007/s13311-016-0452-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rabies viral encephalitis, though one of the oldest recognized infectious disease of humans, remains an incurable, fatal encephalomyelitis, despite advances in understanding of its pathobiology. Advances in science have led us on the trail of the virus in the host, but the sanctuaries in which the virus remains hidden for its survival are unknown. Insights into host-pathogen interactions have facilitated evolving immunologic therapeutic strategies, though we are far from a cure. Most of the present-day knowledge has evolved from in vitro studies using fixed (attenuated) laboratory strains that may not be applicable in the clinical setting. Much remains to be unraveled about this elusive virus. This review attempts to re-examine the current advances in understanding of the pathobiology of the rabies virus that modulate the diagnosis, treatment, and prevention of this fatal disease.
Collapse
Affiliation(s)
- Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India.
| | - M S Suja
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Susarala K Shankar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| |
Collapse
|
50
|
Jercog P, Rogerson T, Schnitzer MJ. Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals. Cold Spring Harb Perspect Biol 2016; 8:a021824. [PMID: 27048190 PMCID: PMC4852807 DOI: 10.1101/cshperspect.a021824] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca(2+)-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca(2+) indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca(2+) dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain.
Collapse
Affiliation(s)
- Pablo Jercog
- CNC Program, Stanford University, Stanford, California 94305
| | - Thomas Rogerson
- CNC Program, Stanford University, Stanford, California 94305
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, California 94305 Howard Hughes Medical Institute, Stanford University, Stanford, California 94305 James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|