1
|
Andreozzi CL, Merenlender AM. Microclimatic drivers of winter bat activity in coast redwood forests. J Mammal 2024; 105:988-1000. [PMID: 39345855 PMCID: PMC11427540 DOI: 10.1093/jmammal/gyae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/13/2024] [Indexed: 10/01/2024] Open
Abstract
Bats are among the least well-known mammals, particularly in terms of their behavior and activity patterns during the winter. Here, we use passive acoustic monitoring to overcome some of the challenges inherent in surveying cryptic forest bats during the wet season to quantify overwintering behavior for 11 species in California coast redwood forests under varying microclimates. Because different species are active at different forest heights, we also examined the effect of acoustic detector placement (treetop or ground level). Generalized linear mixed models were used to relate acoustic detection probability for 8 species to daytime and nighttime temperature, relative humidity, water vapor pressure, and detector placement. The results indicate that daytime maximum temperature best explained variation in nightly probability of detection, and temperature threshold at which bats were predicted to be detected varied considerably across species. By using more precise species detection methods, we were able to resolve significant differences in activity patterns between Myotis yumanensis and M. californicus, 2 species with similar acoustic signatures that are often lumped together. Myotis californicus was predicted to have a 50% probability of detection at maximum daytime temperature as low as 12.5 °C, whereas M. yumanensis was not predicted to have 50% detection probability until maximum daytime temperature was at least 22 °C, suggesting that M. californicus spends less time in torpor. Also, monitoring at the top of the canopy revealed 4 migratory species to be present in the ecosystem on significantly more monitoring nights than could be observed using conventional ground-based monitoring methods. Improving winter bat survey methods provides evidence that diverse bat species are more active in redwood forests during the winter than previously documented. This finding suggests that coastal forests could provide important winter bat habitat for both resident and migratory species.
Collapse
Affiliation(s)
- Chelsea L Andreozzi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720, United States
| | - Adina M Merenlender
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720, United States
| |
Collapse
|
2
|
Welman S, Breit AM, Levesque DL, Nowack J. The upper limit of thermoneutrality is not indicative of thermotolerance in bats. J Therm Biol 2024; 124:103933. [PMID: 39208468 DOI: 10.1016/j.jtherbio.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
To assess the vulnerability of birds and mammals to climate change recent studies have used the upper critical limit of thermoneutrality (TUC) as an indicator of thermal tolerance. But, the association between TUC and thermal tolerance is not straightforward and most studies describe TUC based solely on a deviation in metabolism from basal levels, without also considering the onset of evaporative cooling. It was argued recently that certain torpor-using bat species who survived prolonged exposure to high ambient temperatures (i.e. high thermal tolerance) experienced during extreme heat events did so by entering torpor and using facultative heterothermy to thermoconform and save on body water. Assuming that TUC is indicative of thermal tolerance, we expect TUC in torpor-using species to be higher than that of species which are obligate homeotherms, albeit that this distinction is based on confirmation of torpor use at low temperatures. To test this prediction, we performed a phylogenetically informed comparison of bat species known to use torpor (n = 48) and homeothermic (n = 16) bat species using published thermoregulatory datasets to compare the lower critical limit of thermoneutrality (TLC) and TUC in relation to body temperature. The influence of diet, biogeographical region, body mass and basal metabolic rate (BMR) was also considered. Body mass had a positive relationship with BMR, an inverse relationship with TLC and no relationship with TUC. Normothermic body temperature scaled positively with BMR, TLC and TUC. There was no relationship between diet or region and BMR, but both influenced thermal limits. Torpor-using bats had lower body mass and body temperatures than homeothermic bats, but there was no difference in BMR, TLC and TUC between them. Exceptional examples of physiological flexibility were observed in 34 torpor-using species and eight homeothermic species, which included 15 species of bats maintaining BMR-level metabolism at ambient temperatures as high as 40 °C (and corresponding body temperatures ∼39.2 °C). However, we argue that TUC based on metabolism alone is not an appropriate indicator of thermal tolerance as it disregards differences in the ability of animals to tolerate higher levels of hyperthermia, importance of hydration status and capacity for evaporative cooling. Also, the variability in TUC based on diet challenges the idea of evolutionary conservatism and warrants further consideration.
Collapse
Affiliation(s)
- Shaun Welman
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa; Department of Zoology, Nelson Mandela University, Gqeberha, 6031, South Africa.
| | - Ana M Breit
- School of Biology and Ecology, University of Maine, 04469 Orono, ME, USA; School of Life Sciences, University of Nevada Las Vegas, 89154, Las Vegas, NV, USA
| | | | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF, Liverpool, UK
| |
Collapse
|
3
|
Hunter SB, Oedin M, Weeds J, Mathews F. Exploring the potential for online data sources to enhance species threat mapping through the case study of global bat exploitation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14242. [PMID: 38439694 DOI: 10.1111/cobi.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 12/23/2023] [Indexed: 03/06/2024]
Abstract
Expanding digital data sources, including social media and online news, provide a low-cost way to examine human-nature interactions, such as wildlife exploitation. However, the extent to which using such data sources can expand or bias understanding of the distribution and intensity of threats has not been comprehensively assessed. To address this gap, we quantified the geographical and temporal distribution of online sources documenting the hunting and trapping, consumption, or trade of bats (Chiroptera) and compared these with the distribution of studies obtained from a systematic literature search and species listed as threatened by exploitation on the International Union for Conservation of Nature Red List. Online records were collected using automated searches of Facebook, Twitter, Google, and Bing and were filtered using machine classification. This yielded 953 relevant social media posts and web pages, encompassing 1099 unique records of bat exploitation from 84 countries. Although the number of records per country was significantly predicted by the number of academic studies per country, online records provided additional locations and more recent records of bat exploitation, including 22 countries not present in academic literature. This demonstrates the value of online resources in providing more complete geographical representation. However, confounding variables can bias the analysis of spatiotemporal trends. Online bat exploitation records showed peaks in 2020 and 2014, after accounting for increases in internet users through time. The second of these peaks could be attributed to the COVID-19 outbreak, and speculation about the role of bats in its epidemiology, rather than to true changes in exploitation. Overall, our results showed that data from online sources provide additional knowledge on the global extent of wildlife exploitation, which could be used to identify early warnings of emerging threats and pinpoint locations for further research.
Collapse
Affiliation(s)
| | - Malik Oedin
- Province Nord de la Nouvelle-Calédonie, Pouembout, New Caledonia
| | - Julie Weeds
- School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Fiona Mathews
- School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
4
|
Srinivasulu A, Zeale MRK, Srinivasulu B, Srinivasulu C, Jones G, González‐Suárez M. Future climatically suitable areas for bats in South Asia. Ecol Evol 2024; 14:e11420. [PMID: 38774139 PMCID: PMC11106050 DOI: 10.1002/ece3.11420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Climate change majorly impacts biodiversity in diverse regions across the world, including South Asia, a megadiverse area with heterogeneous climatic and vegetation regions. However, climate impacts on bats in this region are not well-studied, and it is unclear whether climate effects will follow patterns predicted in other regions. We address this by assessing projected near-future changes in climatically suitable areas for 110 bat species from South Asia. We used ensemble ecological niche modelling with four algorithms (random forests, artificial neural networks, multivariate adaptive regression splines and maximum entropy) to define climatically suitable areas under current conditions (1970-2000). We then extrapolated near future (2041-2060) suitable areas under four projected scenarios (combining two global climate models and two shared socioeconomic pathways, SSP2: middle-of-the-road and SSP5: fossil-fuelled development). Projected future changes in suitable areas varied across species, with most species predicted to retain most of the current area or lose small amounts. When shifts occurred due to projected climate change, new areas were generally northward of current suitable areas. Suitability hotspots, defined as regions suitable for >30% of species, were generally predicted to become smaller and more fragmented. Overall, climate change in the near future may not lead to dramatic shifts in the distribution of bat species in South Asia, but local hotspots of biodiversity may be lost. Our results offer insight into climate change effects in less studied areas and can inform conservation planning, motivating reappraisals of conservation priorities and strategies for bats in South Asia.
Collapse
Affiliation(s)
- Aditya Srinivasulu
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
- ZOO Outreach OrganizationCoimbatoreTamil NaduIndia
| | | | - Bhargavi Srinivasulu
- ZOO Outreach OrganizationCoimbatoreTamil NaduIndia
- Centre for Biodiversity and Conservation StudiesOsmania UniversityHyderabadTelangana StateIndia
| | - Chelmala Srinivasulu
- ZOO Outreach OrganizationCoimbatoreTamil NaduIndia
- Centre for Biodiversity and Conservation StudiesOsmania UniversityHyderabadTelangana StateIndia
- Wildlife Biology and Taxonomy Lab, Department of ZoologyOsmania UniversityHyderabadTelangana StateIndia
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Manuela González‐Suárez
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
5
|
Sharnuud R, Ameca EI. Taxonomy, distribution, and contemporary exposure of terrestrial mammals to floods and human pressure across different areas for biodiversity conservation in China. Integr Zool 2024; 19:458-467. [PMID: 37553291 DOI: 10.1111/1749-4877.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A significant research focus is placed on identifying animal species and areas at future risk to human-induced alterations of the environment and long-term changes in climatic conditions. Yet, the extent to which exposure to extreme climatic events and intense human pressure can increase the risk of harmful impacts on species remains poorly investigated. Focusing on terrestrial mammals in China, one of the world's megadiverse countries, we investigated patterns of contemporary exposure to floods and human pressures and determined their taxonomic representation and distribution across three major area-based conservation schemes, namely, national nature reserves (NNRs), priority areas for biodiversity conservation (PABCs), and key biodiversity areas (KBAs). Among the 440 species assessed with moderate or high exposure to floods, 327 (∼75%) also qualified as moderate or high in exposure to intense human pressure. These species mainly belong to the orders Chiroptera, Eulipotyphla, and Rodentia. Likewise, there were 305, 311, and 311 species with moderate or high exposure to flood and intense human pressure represented across NNRs, PABCs, and KBAs, respectively. Our findings support the prioritization of KBAs for expansion of site-based protection efforts such as NNRs in China, considering threats to species from exposure to adverse effects from both extreme climate and human pressure.
Collapse
Affiliation(s)
- Roman Sharnuud
- MOE Key Laboratory for Biodiversity Science & Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Eric I Ameca
- MOE Key Laboratory for Biodiversity Science & Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland
| |
Collapse
|
6
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33026-1. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
7
|
Henley L, Finch D, Mathews F, Jones O, Woolley TE. A simple and fast method for estimating bat roost locations. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231999. [PMID: 38660598 PMCID: PMC11040240 DOI: 10.1098/rsos.231999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Bats play a pivotal role in pest control, pollination and seed dispersal. Despite their ecological significance, locating bat roosts remains a challenging task for ecologists. Traditional field surveys are time-consuming, expensive and may disturb sensitive bat populations. In this article, we combine data from static audio detectors with a bat movement model to facilitate the detection of bat roosts. Crucially, our technique not only provides a point prediction for the most likely location of a bat roost, but because of the algorithm's speed, it can be applied over an entire landscape, resulting in a likelihood map, which provides optimal searching regions. To illustrate the success of the algorithm and highlight limitations, we apply our technique to greater horseshoe bat (Rhinolophus ferrumequinum) acoustic data acquired from six surveys from four different UK locations and over six different times in the year. Furthermore, we investigate what happens to the accuracy of our predictions in the case that the roost is not contained within the area spanned by the detectors. This innovative approach to searching rural environments holds the potential to greatly reduce the labour required for roost finding, and, hence, enhance the conservation efforts of bat populations and their habitats.
Collapse
Affiliation(s)
- Lucy Henley
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| | - Domhnall Finch
- University of Sussex, John Maynard Smith Building, BrightonBN1 9RH, UK
- National Parks and Wildlife Service, North DublinD07 N7CV, Ireland
| | - Fiona Mathews
- University of Sussex, John Maynard Smith Building, BrightonBN1 9RH, UK
| | - Owen Jones
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| | - Thomas E. Woolley
- Cardiff School of Mathematics, Cardiff University, CardiffCF24 4AG, UK
| |
Collapse
|
8
|
Voigt CC, Bernard E, Huang JCC, Frick WF, Kerbiriou C, MacEwan K, Mathews F, Rodríguez-Durán A, Scholz C, Webala PW, Welbergen J, Whitby M. Toward solving the global green-green dilemma between wind energy production and bat conservation. Bioscience 2024; 74:240-252. [PMID: 38720909 PMCID: PMC11075649 DOI: 10.1093/biosci/biae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 05/12/2024] Open
Abstract
Wind energy production is growing rapidly worldwide in an effort to reduce greenhouse gas emissions. However, wind energy production is not environmentally neutral. Negative impacts on volant animals, such as bats, include fatalities at turbines and habitat loss due to land-use change and displacement. Siting turbines away from ecologically sensitive areas and implementing measures to reduce fatalities are critical to protecting bat populations. Restricting turbine operations during periods of high bat activity is the most effective form of mitigation currently available to reduce fatalities. Compensating for habitat loss and offsetting mortality are not often practiced, because meaningful offsets are lacking. Legal frameworks to prevent or mitigate the negative impacts of wind energy on bats are absent in most countries, especially in emerging markets. Therefore, governments and lending institutions are key in reconciling wind energy production with biodiversity goals by requiring sufficient environmental standards for wind energy projects.
Collapse
Affiliation(s)
| | - Enrico Bernard
- Laboratório de Ciência Aplicada a Conservação da Biodiversidade, Universidade Federal de Pernambuco, Recife, Brazil
| | - Joe Chun-Chia Huang
- Department of Life Science at the National Taiwan Normal University, Taipei City, Taiwan
| | | | - Christian Kerbiriou
- Centre d'Ecologie et des Sciences de la Conservation at the Muséum national d'Histoire naturelle and the Centre National de la Recherche Scientifique at Sorbonne Université Station Marine, in Concarneau, France
| | - Kate MacEwan
- Western EcoSystems Technology, in Cheyenne, Wyoming, United States
| | - Fiona Mathews
- School of Life Sciences at the University of Sussex, Falmer, England, United Kingdom
| | | | - Carolin Scholz
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Paul W Webala
- Department of Forestry and Wildlife Management at Maasai Mara University, Narok, Kenya
| | - Justin Welbergen
- The Hawkesbury Institute for the Environment at Western Sydney University, Richmond, Victoria, Australia
| | - Michael Whitby
- Bat Conservation International, Austin, Texas, United States
| |
Collapse
|
9
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
10
|
Russo D, Jones G, Martinoli A, Preatoni DG, Spada M, Pereswiet‐Soltan A, Cistrone L. Climate is changing, are European bats too? A multispecies analysis of trends in body size. Ecol Evol 2024; 14:e10872. [PMID: 38333101 PMCID: PMC10850807 DOI: 10.1002/ece3.10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
- School of Biological SciencesUniversity of BristolBristolUK
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | - Damiano G. Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | | | | | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
| |
Collapse
|
11
|
Fritts SR, Guest EE, Weaver SP, Hale AM, Morton BP, Hein CD. Experimental trials of species-specific bat flight responses to an ultrasonic deterrent. PeerJ 2024; 12:e16718. [PMID: 38188150 PMCID: PMC10771094 DOI: 10.7717/peerj.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Unintended consequences of increasing wind energy production include bat mortalities from wind turbine blade strikes. Ultrasonic deterrents (UDs) have been developed to reduce bat mortalities at wind turbines. Our goal was to experimentally assess the species-specific effectiveness of three emission treatments from the UD developed by NRG Systems. We conducted trials in a flight cage measuring approximately 60 m × 10 m × 4.4 m (length × width × height) from July 2020 to May 2021 in San Marcos, Texas, USA. A single UD was placed at either end of the flight cage, and we randomly selected one for each night of field trials. Trials focused on a red bat species group (Lasiurus borealis and Lasiurus blossevillii; n = 46) and four species: cave myotis (Myotis velifer; n = 57), Brazilian free-tailed bats (Tadarida brasiliensis; n = 73), evening bats (Nycteceius humeralis; n = 53), and tricolored bats (Perimyotis subflavus; n = 17). The trials occurred during three treatment emissions: low (emissions from subarrays at 20, 26, and 32 kHz), high (emissions from subarrays at 38, 44, and 50 kHz), and combined (all six emission frequencies). We placed one wild-captured bat into the flight cage for each trial, which consisted of an acclimation period, a control period with the UD powered off, and the three emission treatments (order randomly selected), each interspersed with a control period. We tracked bat flight using four thermal cameras placed outside the flight cage. We quantified the effectiveness of each treatment by comparing the distances each bat flew from the UD during each treatment vs. the control period using quantile regression. Additionally, we conducted an exploratory analysis of differences between sex and season and sex within season using analysis of variance. Broadly, UDs were effective at altering the bats' flight paths as they flew farther from the UD during treatments than during controls; however, results varied by species, sex, season, and sex within season. For the red bat group, bats flew farther from the UD during all treatments than during the control period at all percentiles (p < 0.001), and treatments were comparable in effectiveness. For cave myotis, all percentile distances were farther from the UD during each of the treatments than during the control, except the 90th percentile distance during high, and low was most effective. For evening bats and Brazilian free-tailed bats, results were inconsistent, but high and low were most effective, respectively. For tricolored bats, combined and low were significant at the 10th-75th percentiles, high was significant at all percentiles, and combined was most effective. Results suggest UDs may be an effective means of reducing bat mortalities due to wind turbine blade strikes. We recommend that continued research on UDs focus on low emission treatments, which have decreased sound attenuation and demonstrated effectiveness across the bat species evaluated in this study.
Collapse
Affiliation(s)
| | - Emma Elizabeth Guest
- Department of Biology, Texas State University, San Marcos, Texas, United States
- Bowman, San Marcos, Texas, United States
| | | | - Amanda Marie Hale
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States
- Western EcoSystems Technology, Inc., Cheyenne, Wyoming, United States
| | | | - Cris Daniel Hein
- National Renewable Energy Laboratory, Arvada, Colorado, United States
| |
Collapse
|
12
|
Huszarik M, Roodt AP, Wernicke T, Chávez F, Metz A, Link M, Lima-Fernandes E, Schulz R, Entling MH. Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167080. [PMID: 37722422 DOI: 10.1016/j.scitotenv.2023.167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany. Stream sites were located in riparian forests, sheltered from direct exposure to pollutants from agricultural and urban areas. We focused on three bat species associated with riparian areas: Myotis daubentonii, M. cf. brandtii, and Pipistrellus pipistrellus. We found that streams with higher pesticide toxicity and more frequent detection of wastewater also tended to be warmer and have higher nutrient and lower oxygen concentrations. We did not observe a reduction of insect emergence, bat activity or hunting rates in association with pesticide toxicity and wastewater detections. Instead, the activity and hunting rates of Myotis spp. were higher at more polluted sites. The observed increase in bat hunting at more polluted streams suggests that instead of reduced prey availability, chemical pollution at the levels measured in the present study could expose bats to pollutants transported from the stream by emergent aquatic insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany.
| | - Alexis P Roodt
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Teagan Wernicke
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Fernanda Chávez
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Annika Metz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Eva Lima-Fernandes
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf Schulz
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstr. 13, 76857 Eußerthal, Germany
| | - Martin H Entling
- iES Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
13
|
Goletic S, Goletic T, Omeragic J, Supic J, Kapo N, Nicevic M, Skapur V, Rukavina D, Maksimovic Z, Softic A, Alic A. Metagenomic Sequencing of Lloviu Virus from Dead Schreiber's Bats in Bosnia and Herzegovina. Microorganisms 2023; 11:2892. [PMID: 38138036 PMCID: PMC10745292 DOI: 10.3390/microorganisms11122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are a natural host for a number of viruses, many of which are zoonotic and thus present a threat to human health. RNA viruses of the family Filoviridae, many of which cause disease in humans, have been associated with specific bat hosts. Lloviu virus is a Filovirus which has been connected to mass mortality events in Miniopterus schreibersii colonies in Spain and Hungary, and some studies have indicated its immense zoonotic potential. A die-off has been recorded among Miniopterus schreibersii in eastern Bosnia and Herzegovina for the first time, prompting the investigation to determine the causative agent. Bat carcasses were collected and subjected to pathological examination, after which the lung samples with notable histopathological changes, lung samples with no changes and guano were analyzed using metagenomic sequencing and RT-PCR. A partial Lloviu virus genome was sequenced from lung samples with histopathological changes and found to be closely related to Hungarian and Italian virus sequences. Further accumulation of mutations on the GP gene, coding the glycoprotein responsible for cell tropism and host preference, enhances the need for further characterization and monitoring of this virus to prevent spillover events and protect human health.
Collapse
Affiliation(s)
- Sejla Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Teufik Goletic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jasmin Omeragic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Jovana Supic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Naida Kapo
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Melisa Nicevic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Vedad Skapur
- University of Sarajevo—Faculty of Agriculture and Food Sciences, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Dunja Rukavina
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Zinka Maksimovic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Adis Softic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| | - Amer Alic
- University of Sarajevo—Veterinary Faculty, 71000 Sarajevo, Bosnia and Herzegovina; (S.G.); (J.O.); (J.S.); (N.K.); (M.N.); (D.R.); (Z.M.); (A.S.); (A.A.)
| |
Collapse
|
14
|
Tuneu-Corral C, Puig-Montserrat X, Riba-Bertolín D, Russo D, Rebelo H, Cabeza M, López-Baucells A. Pest suppression by bats and management strategies to favour it: a global review. Biol Rev Camb Philos Soc 2023; 98:1564-1582. [PMID: 37157976 DOI: 10.1111/brv.12967] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Fighting insect pests is a major challenge for agriculture worldwide, and biological control and integrated pest management constitute well-recognised, cost-effective ways to prevent and overcome this problem. Bats are important arthropod predators globally and, in recent decades, an increasing number of studies have focused on the role of bats as natural enemies of agricultural pests. This review assesses the state of knowledge of the ecosystem services provided by bats as pest consumers at a global level and provides recommendations that may favour the efficiency of pest predation by bats. Through a systematic review, we assess evidence for predation, the top-down effect of bats on crops and the economic value of ecosystem services these mammals provide, describing the different methodological approaches used in a total of 66 reviewed articles and 18 agroecosystem types. We also provide a list of detailed conservation measures and management recommendations found in the scientific literature that may favour the delivery of this important ecosystem service, including actions aimed at restoring bat populations in agroecosystems. The most frequent recommendations include increasing habitat heterogeneity, providing additional roosts, and implementing laws to protect bats and reduce agrochemical use. However, very little evidence is available on the direct consequences of these practices on bat insectivory in farmland. Additionally, through a second in-depth systematic review of scientific articles focused on bat diet and, as part of the ongoing European Cost Action project CA18107, we provide a complete list of 2308 documented interactions between bat species and their respective insect pest prey. These pertain to 81 bat species belonging to 36 different genera preying upon 760 insect pests from 14 orders in agroecosystems and other habitats such as forest or urban areas. The data set is publicly available and updatable.
Collapse
Affiliation(s)
- Carme Tuneu-Corral
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
- CIBIO-InBIO, Centro de Investigaçaõ em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal
- Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xavier Puig-Montserrat
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| | - Daniel Riba-Bertolín
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, Portici, Naples, 80055, Italy
| | - Hugo Rebelo
- CIBIO-InBIO, Centro de Investigaçaõ em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Mar Cabeza
- Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Adrià López-Baucells
- BiBio, Biodiversity and Bioindicators Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, Granollers, Catalonia, 08402, Spain
| |
Collapse
|
15
|
Jackson RT, Webala PW, Ogola JG, Lunn TJ, Forbes KM. Roost selection by synanthropic bats in rural Kenya: implications for human-wildlife conflict and zoonotic pathogen spillover. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230578. [PMID: 37711150 PMCID: PMC10498048 DOI: 10.1098/rsos.230578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Many wildlife species are synanthropic and use structures built by humans, creating a high-risk interface for human-wildlife conflict and zoonotic pathogen spillover. However, studies that investigate features of urbanizing areas that attract or repel wildlife are currently lacking. We surveyed 85 buildings used by bats and 172 neighbouring buildings unused by bats (controls) in southeastern Kenya during 2021 and 2022 and evaluated the role of microclimate and structural attributes in building selection. We identified eight bat species using buildings, with over 25% of building roosts used concurrently by multiple species. Bats selected taller cement-walled buildings with higher water vapour pressure and lower presence of permanent human occupants. However, roost selection criteria differed across the most common bat species: molossids selected structures like those identified by our main dataset whereas Cardioderma cor selected buildings with lower presence of permanent human occupants. Our results show that roost selection of synanthropic bat species is based on specific buildings attributes. Further, selection criteria that facilitate bat use of buildings are not homogeneous across species. These results provide information on the general mechanisms of bat-human contact in rural settings, as well as specific information on roost selection for synanthropic bats in urbanizing Africa.
Collapse
Affiliation(s)
- Reilly T. Jackson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Joseph G. Ogola
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Tamika J. Lunn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| |
Collapse
|
16
|
Jones BD, Kaufman EJ, Peel AJ. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023; 15:1860. [PMID: 37766267 PMCID: PMC10535902 DOI: 10.3390/v15091860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Co-infection is an underappreciated phenomenon in contemporary disease ecology despite its ubiquity and importance in nature. Viruses, and other co-infecting agents, can interact in ways that shape host and agent communities, influence infection dynamics, and drive evolutionary selective pressures. Bats are host to many viruses of zoonotic potential and have drawn increasing attention in their role as wildlife reservoirs for human spillover. However, the role of co-infection in driving viral transmission dynamics within bats is unknown. Here, we systematically review peer-reviewed literature reporting viral co-infections in bats. We show that viral co-infection is common in bats but is often only reported as an incidental finding. Biases identified in our study database related to virus and host species were pre-existing in virus studies of bats generally. Studies largely speculated on the role co-infection plays in viral recombination and few investigated potential drivers or impacts of co-infection. Our results demonstrate that current knowledge of co-infection in bats is an ad hoc by-product of viral discovery efforts, and that future targeted co-infection studies will improve our understanding of the role it plays. Adding to the broader context of co-infection studies in other wildlife species, we anticipate our review will inform future co-infection study design and reporting in bats. Consideration of detection strategy, including potential viral targets, and appropriate analysis methodology will provide more robust results and facilitate further investigation of the role of viral co-infection in bat reservoirs.
Collapse
Affiliation(s)
- Brent D. Jones
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | | | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
17
|
Alipek S, Maelzer M, Paumen Y, Schauer-Weisshahn H, Moll J. An Efficient Neural Network Design Incorporating Autoencoders for the Classification of Bat Echolocation Sounds. Animals (Basel) 2023; 13:2560. [PMID: 37627350 PMCID: PMC10451853 DOI: 10.3390/ani13162560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Bats are widely distributed around the world, have adapted to many different environments and are highly sensitive to changes in their habitat, which makes them essential bioindicators of environmental changes. Passive acoustic monitoring over long durations, like months or years, accumulates large amounts of data, turning the manual identification process into a time-consuming task for human experts. Automated acoustic monitoring of bat activity is therefore an effective and necessary approach for bat conservation, especially in wind energy applications, where flying animals like bats and birds have high fatality rates. In this work, we provide a neural-network-based approach for bat echolocation pulse detection with subsequent genus classification and species classification under real-world conditions, including various types of noise. Our supervised model is supported by an unsupervised learning pipeline that uses autoencoders to compress linear spectrograms into latent feature vectors that are fed into a UMAP clustering algorithm. This pipeline offers additional insights into the data properties, aiding in model interpretation. We compare data collected from two locations over two consecutive years sampled at four heights (10 m, 35 m, 65 m and 95 m). With sufficient data for each labeled bat class, our model is able to comprehend the full echolocation soundscape of a species or genus while still being computationally efficient and simple by design. Measured classification F1 scores in a previously unknown test set range from 92.3% to 99.7% for species and from 94.6% to 99.4% for genera.
Collapse
Affiliation(s)
- Sercan Alipek
- Department of Physics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany; (M.M.); (J.M.)
| | - Moritz Maelzer
- Department of Physics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany; (M.M.); (J.M.)
| | - Yannick Paumen
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany;
| | | | - Jochen Moll
- Department of Physics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany; (M.M.); (J.M.)
| |
Collapse
|
18
|
Teixeira S, Smeraldo S, Russo D. Unveiling the Potential Distribution of the Highly Threatened Madeira Pipistrelle ( Pipistrellus maderensis): Do Different Evolutionary Significant Units Exist? BIOLOGY 2023; 12:998. [PMID: 37508426 PMCID: PMC10376549 DOI: 10.3390/biology12070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The isolation of islands has played a significant role in shaping the unique evolutionary histories of many species of flora and fauna, including bats. One notable example is the Madeira pipistrelle (Pipistrellus maderensis), which inhabits the Macaronesian archipelagos of the Azores, Madeira, and the Canary Islands. Despite the high biogeographic and conservation importance of this species, there is limited information on its ecology and evolutionary history across different archipelagos. In our study, we employed species distribution models (SDMs) to identify suitable habitats for the Madeira pipistrelle and determine the environmental factors influencing its distribution. Additionally, we conducted molecular comparisons using mitochondrial DNA data from various Macaronesian islands. Molecular analyses provided compelling evidence for the presence of distinct Evolutionary Significant Units on the different archipelagos. We identified distinct haplotypes in the populations of Madeira and the Canary Islands, with a genetic distance ranging from a minimum of 2.4% to a maximum of 3.3% between samples from different archipelagos. In support of this, SDMs highlighted relevant dissimilarities between the environmental requirements of the populations of the three archipelagos, particularly the climatic niche. Our research demonstrates that deeper investigations that combine ecological, morphological, and genetic areas are necessary to implement tailored conservation strategies.
Collapse
Affiliation(s)
- Sérgio Teixeira
- Faculty of Life Sciences (FCV), Universidade da Madeira, Campus da Penteada, 9000-082 Funchal, Madeira, Portugal
| | - Sonia Smeraldo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, Portici, 80055 Naples, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute, 2, Portici, 80055 Naples, Italy
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, Portici, 80055 Naples, Italy
| |
Collapse
|
19
|
Brown N, Escobar LE. A review of the diet of the common vampire bat ( Desmodus rotundus) in the context of anthropogenic change. Mamm Biol 2023; 103:1-21. [PMID: 37363038 PMCID: PMC10258787 DOI: 10.1007/s42991-023-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
The common vampire bat (Desmodus rotundus) maintains a diverse, sanguivorous diet, utilizing a broad range of prey taxa. As anthropogenic change alters the distribution of this species, shifts in predator-prey interactions are expected. Understanding prey richness and patterns of prey selection is, thus, increasingly informative from ecological, epidemiological, and economic perspectives. We reviewed D. rotundus diet and assessed the geographical, taxonomical, and behavioral features to find 63 vertebrate species within 21 orders and 45 families constitute prey, including suitable host species in regions of invasion outside D. rotundus' range. Rodentia contained the largest number of species utilized by D. rotundus, though cattle were the most commonly reported prey source, likely linked to the high availability of livestock and visibility of bite wounds compared to wildlife. Additionally, there was tendency to predate upon species with diurnal activity and social behavior, potentially facilitating convenient and nocturnal predation. Our review highlights the dietary heterogeneity of D. rotundus across its distribution. We define D. rotundus as a generalist predator, or parasite, depending on the ecological definition of its symbiont roles in an ecosystem (i.e., lethal vs. non-lethal blood consumption). In view of the eminent role of D. rotundus in rabies virus transmission and its range expansion, an understanding of its ecology would benefit public health, wildlife management, and agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42991-023-00358-3.
Collapse
Affiliation(s)
- Natalie Brown
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA
- Global Change Center, Virginia Tech, Blacksburg, VA USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA
- Doctorado en Agrociencias, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Carrera 7 No. 179-03, Bogotá, Colombia
| |
Collapse
|
20
|
Niga Y, Fujioka E, Heim O, Nomi A, Fukui D, Hiryu S. A glimpse into the foraging and movement behaviour of Nyctalus aviator; a complementary study by acoustic recording and GPS tracking. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230035. [PMID: 37388314 PMCID: PMC10300664 DOI: 10.1098/rsos.230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Species of open-space bats that are relatively large, such as bats from the genus Nyctalus, are considered as high-risk species for collisions with wind turbines (WTs). However, important information on their behaviour and movement ecology, such as the locations and altitudes at which they forage, is still fragmentary, while crucial for their conservation in light of the increasing threat posed by progressing WT construction. We adopted two different methods of microphone array recordings and GPS-tracking capturing data from different spatio-temporal scales in order to gain a complementary understanding of the echolocation and movement ecology of Nyctalus aviator, the largest open-space bat in Japan. Based on microphone array recordings, we found that echolocation calls during natural foraging are adapted for fast flight in open-space optimal for aerial-hawking. In addition, we attached a GPS tag that can simultaneously monitor feeding buzz occurrence, and confirmed that foraging occurred at 300 m altitude and that the flight altitude in mountainous areas is consistent with the turbine conflict zone, suggesting that the birdlike noctule is a high-risk species in Japan. Further investigations on this species could provide valuable insights into their foraging and movement ecology, facilitating the development of a risk assessment regarding WTs.
Collapse
Affiliation(s)
- Yoshifumi Niga
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Emyo Fujioka
- Organization for Research Initiatives and Development, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto 610-0321, Japan
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Olga Heim
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Akito Nomi
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
21
|
López-Baucells A, Revilla-Martín N, Mas M, Alonso-Alonso P, Budinski I, Fraixedas S, Fernández-Llamazares Á. Newspaper Coverage and Framing of Bats, and Their Impact on Readership Engagement. ECOHEALTH 2023:10.1007/s10393-023-01634-x. [PMID: 37247188 DOI: 10.1007/s10393-023-01634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
The media is a valuable pathway for transforming people's attitudes towards conservation issues. Understanding how bats are framed in the media is hence essential for bat conservation, particularly considering the recent fearmongering and misinformation about the risks posed by bats. We reviewed bat-related articles published online no later than 2019 (before the recent COVID19 pandemic), in 15 newspapers from the five most populated countries in Western Europe. We examined the extent to which bats were presented as a threat to human health and the assumed general attitudes towards bats that such articles supported. We quantified press coverage on bat conservation values and evaluated whether the country and political stance had any information bias. Finally, we assessed their terminology and, for the first time, modelled the active response from the readership based on the number of online comments. Out of 1095 articles sampled, 17% focused on bats and diseases, 53% on a range of ecological and conservation topics, and 30% only mention bats anecdotally. While most of the ecological articles did not present bats as a threat (97%), most articles focusing on diseases did so (80%). Ecosystem services were mentioned on very few occasions in both types (< 30%), and references to the economic benefits they provide were meagre (< 4%). Disease-related concepts were recurrent, and those articles that framed bats as a threat were the ones that garnered the highest number of comments. Therefore, we encourage the media to play a more proactive role in reinforcing positive conservation messaging by presenting the myriad ways in which bats contribute to safeguarding human well-being and ecosystem functioning.
Collapse
Affiliation(s)
- Adrià López-Baucells
- BiBio - Natural Sciences Museum of Granollers, Avinguda Francesc Macià 51 Baixos, 08402, Granollers, Catalonia, Spain.
| | - Natalia Revilla-Martín
- BiBio - Natural Sciences Museum of Granollers, Avinguda Francesc Macià 51 Baixos, 08402, Granollers, Catalonia, Spain
- Conservation Biology Group (GBiC), Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia (CTFC), Catalonia, Spain
| | - Maria Mas
- BiBio - Natural Sciences Museum of Granollers, Avinguda Francesc Macià 51 Baixos, 08402, Granollers, Catalonia, Spain
| | - Pedro Alonso-Alonso
- CIBIO - Research Centre in Biodiversity and Genetic Resources, Vila do Conde, Distrito do Porto, Portugal
- Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, AZ, 85745, USA
| | - Ivana Budinski
- BiBio - Natural Sciences Museum of Granollers, Avinguda Francesc Macià 51 Baixos, 08402, Granollers, Catalonia, Spain
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sara Fraixedas
- Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Ecological Research and Forestry Applications (CREAF), Autonomous University of Barcelona, Barcelona, Spain
| | - Álvaro Fernández-Llamazares
- Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institut de Ciència i Tecnologia Ambientals (ICTA), Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Rieger A, Just FT, Michelakaki E, Eddicks L, Gager AM, Schöl H, Gohl C, Steinmetz HW, Blutke AF, Denk D. Demodex carolliae in a colony of Seba's short-tailed bats (Carollia perspicillata): clinical, pathological and parasitological findings. J Comp Pathol 2023; 203:5-12. [PMID: 37119605 DOI: 10.1016/j.jcpa.2023.03.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
Seba's short-tailed bats (Carollia perspicillata) are a frugivorous species native to Central and South America. Despite their importance as a reservoir for zoonotic pathogens and their popularity in zoological collection and as research models, there are relatively few reports on non-zoonotic diseases of bats. Mites of the genus Demodex are obligate commensals of the skin of a range of mammals, are highly host-specific and are not associated with clinical disease when present in low numbers. However, infestation with high numbers can result in severe or even fatal disease and substantially affect the well-being of the animals. The clinical, pathological and parasitological findings in 12 Seba's short-tailed bats with demodicosis from a colony kept at Munich Zoo Hellabrunn between 1992 and 2021 are described in this report. From 2002, skin lesions became apparent on the head, especially the periocular region, nose and ears, as well as the genital area of some animals. In advanced cases, skin changes were also present on the abdomen, back and extremities. Gross findings typically included alopecia and thickening of the skin, with the formation of papules, reflecting cystically dilated hair follicles containing myriads of demodecid mites. Histologically, lesions were characterized by a paucicellular lymphocytic dermatitis and folliculitis with perifollicular fibrosis, epidermal hyperplasia, orthokeratotic hyperkeratosis and disproportionately high numbers of intrafollicular arthropods. Demodex carolliae was identified morphologically by light, phase-contrast and electron microscopy. Further characterization was achieved by extraction of parasitic DNA and partial gene sequencing of two mitochondrial genes, 16S rDNA and cox1. This is the first clinicopathological description of generalized demodicosis in Seba's short-tailed bats and includes the first molecular characterization of D. carolliae with provision of a GenBank entry.
Collapse
Affiliation(s)
- Alexandra Rieger
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Frank T Just
- Department for Pathology, Parasitology and Bee Diseases, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764 Oberschleissheim, Germany
| | - Effrosyni Michelakaki
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Lina Eddicks
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Anna M Gager
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Heidrun Schöl
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Christine Gohl
- Münchener Tierpark Hellabrunn AG, Tierparkstr. 30, 81543 Munich, Germany
| | | | - Andreas F Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany
| | - Daniela Denk
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinaerstr. 13, 80539 Munich, Germany.
| |
Collapse
|
23
|
Salinas-Ramos VB, Tomassini A, Ferrari F, Boga R, Russo D. Admittance to Wildlife Rehabilitation Centres Points to Adverse Effects of Climate Change on Insectivorous Bats. BIOLOGY 2023; 12:biology12040543. [PMID: 37106744 PMCID: PMC10136049 DOI: 10.3390/biology12040543] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Climate change is exerting a broad range of (mostly adverse) effects on biodiversity, and more are expected under future scenarios. Impacts on species that deliver key ecosystem services, such as bats, are especially concerning, so their better understanding is key to preventing or mitigating them. Due to their physiological requirements, bats are especially sensitive to environmental temperatures and water availability, and heatwave-related mortality has been reported for flying foxes and, more anecdotally, other bat species. For temperate regions, to date, no study has highlighted an association between temperature extremes and bat mortality, mostly due to the difficulty of relying on data series covering long timespans. Heatwaves may affect bats, causing thermal shock and acute dehydration so bats can fall from the roost and, in some cases, are rescued by the public and brought to wildlife rehabilitation centres (WRCs). In our work, we considered a dataset spanning over 20 years of bat admittance to Italian WRCs, covering 5842 bats, and hypothesised that in summer, the number of admitted bats will increase in hotter weeks and young bats will be more exposed to heat stress than adults. We confirmed our first hypothesis for both the overall sample and three out of five synurbic species for which data were available, whereas hot weeks affected both young and adults, pointing to an especially concerning effect on bat survival and reproduction. Although our study is correlative, the existence of a causative relationship between high temperatures and grounded bats is still the best explanation for the recorded patterns. We urge such a relationship to be explored via extensive monitoring of urban bat roosts to inform appropriate management of bat communities in such environments and preserve the precious ecosystem services such mammals provide, especially insectivory services.
Collapse
Affiliation(s)
- Valeria B Salinas-Ramos
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055 Portici, Italy
| | | | - Fabiana Ferrari
- Piacenza Wildlife Rescue Centre, 29120 Niviano di Rivergano, Italy
| | - Rita Boga
- C.R.A.S. Rimini-Corpolò, via Baracchi 47, 47923 Corpolò, Italy
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università 100, 80055 Portici, Italy
| |
Collapse
|
24
|
Festa F, Ancillotto L, Santini L, Pacifici M, Rocha R, Toshkova N, Amorim F, Benítez-López A, Domer A, Hamidović D, Kramer-Schadt S, Mathews F, Radchuk V, Rebelo H, Ruczynski I, Solem E, Tsoar A, Russo D, Razgour O. Bat responses to climate change: a systematic review. Biol Rev Camb Philos Soc 2023; 98:19-33. [PMID: 36054527 PMCID: PMC10087939 DOI: 10.1111/brv.12893] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Understanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species-rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface-to-volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long-term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta-analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
Collapse
Affiliation(s)
- Francesca Festa
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | - Leonardo Ancillotto
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055, Portici, Napoli, Italy
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Viale dell'Università, 32, Rome, 00185, Italy
| | - Michela Pacifici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Viale dell'Università, 32, Rome, 00185, Italy
| | - Ricardo Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661, Vairão, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisbon, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Nia Toshkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000, Sofia, Bulgaria.,National Museum of Natural History at the Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000, Sofia, Bulgaria
| | - Francisco Amorim
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661, Vairão, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisbon, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Cartuja TA-10, Edificio I, C. Américo Vespucio, s/n, 41092, Sevilla, Spain.,Department of Zoology, Faculty of Sciences, University of Granada, Campus Universitario de Cartuja, Calle Prof. Vicente Callao, 3, 18011, Granada, Spain
| | - Adi Domer
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Daniela Hamidović
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Radnička cesta 80, HR-10000, Zagreb, Croatia.,Croatian Biospelological Society, Rooseveltov trg 6, HR-10000, Zagreb, Croatia
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, 12165, Berlin, Germany
| | - Fiona Mathews
- University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9RH, UK
| | - Viktoriia Radchuk
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661, Vairão, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017, Lisbon, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ireneusz Ruczynski
- Mammal Research Institute Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Estelle Solem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Asaf Tsoar
- Israel Nature and Parks Authority, Southern District Omer Industrial Park, P.O. Box 302, Omer, Israel
| | - Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, via Università, 100, 80055, Portici, Napoli, Italy
| | - Orly Razgour
- Biosciences, University of Exeter, Streatham Campus, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| |
Collapse
|
25
|
The annual occurrence of mass mortality at a Common Pipistrelle swarming site. EUR J WILDLIFE RES 2023. [DOI: 10.1007/s10344-022-01632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Andreas M, Naďo L, Bendová B, Uhrin M, Maxinová E, Lučan R, Benda P. Trophic niche and diet composition of the northernmost population of the Mediterranean horseshoe bat (Rhinolophus euryale) with conservation implications. MAMMAL RES 2023. [DOI: 10.1007/s13364-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Carandell Baruzzi M. 'Ugly and smelly or useful insect hunters?' Perceptions of and attitudes towards bats in the turn of the twentieth-century public sphere in Barcelona. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2023; 32:103-120. [PMID: 36169341 DOI: 10.1177/09636625221123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, historians and sociologists of science have shown how turn of the century natural history research and its public communication in Barcelona was intrinsically attached to certain political orientations and the historical context. Likewise, the way society perceived bats and promoted their ecological services has been increasingly researched by the community of bat researchers. In this article, I describe attitudes towards and perceptions of bats in the 'public sphere' of Barcelona in that period and examine them using public communication of science and history of science analytical tools. I performed an exhaustive search of the available newspaper and magazine articles using the Catalan and Spanish words for 'bat' in the online search engines of the national Catalan and Spanish libraries from 1888 to 1929. I compiled and reviewed a wide range of periodicals, covering different political orientations and representing several different types of publication. The articles were classified into four different categories. First, bats were commonly used as a symbol to represent the city and right-wing, conservative politics. Second, bats were often linked to negative adjectives that portrayed them as ugly, disgusting or diabolic. Third, many articles made an active effort to stop children chasing and killing bats. And fourth, I also identified a non-organised group of popularisers across the whole media spectrum who promoted what we call today the ecological services provided by bats, and especially their role as agricultural pest controllers. This study provides a better understanding of science popularisation, and specifically, perceptions of and attitudes towards bats during the studied period. This approach illustrates how historical accounts can be used today to improve perceptions of bats and suggest a more complex context of science popularisation.
Collapse
|
28
|
McSweeny T, Brooks DM. SOME OBSERVATIONS OF SEVERE WEATHER EVENTS ON A LARGE URBAN POPULATION OF FREE-TAILED BATS (TADARIDA BRASILIENSIS). SOUTHWEST NAT 2022. [DOI: 10.1894/0038-4909-66.4.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Timothy McSweeny
- Houston Museum of Natural Science, 5555 Hermann Park Drive, Houston, TX 77030-1799
| | - Daniel M. Brooks
- Houston Museum of Natural Science, 5555 Hermann Park Drive, Houston, TX 77030-1799
| |
Collapse
|
29
|
Bat Use of Hollows in California’s Old-Growth Redwood Forests: From DNA to Ecology. Animals (Basel) 2022; 12:ani12212950. [DOI: 10.3390/ani12212950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of roosting resources, either through disturbance or removal, negatively affects bats. Identifying sensitive species and determining roost requirements are critical components in conserving their habitat. Cavity-roosting bats on the North Coast of California are known to use hollows in large redwood trees. In this study, we examined the factors determining the use of basal tree hollows by different bat species at eight redwood forest sites in Del Norte, Humboldt, and Mendocino Counties, California. Bat guano was collected from 179 basal hollow roosts from 2017 to 2018, and guano mass was used as an index of roosting activity. Nine bat species and one species group were identified by analysis of DNA in guano. We made a total of 253 identifications from 83 hollows into the 10 species categories. The most prevalent species were Myotis californicus (California myotis; 28.5% of all identifications), the Myotis evotis-Myotis thysanodes group (17.4%), Corynorhinus townsendii (17.0%), and Myotis volans (15.0%). We evaluated the extent to which habitat variables at the scales of the hollow, vicinity, and site influenced the level of roost use. The correlations between guano mass and habitat variables were examined using generalized additive mixed models. At the hollow scale, guano mass increased with ceiling height above the opening. At the vicinity scale, guano mass increased with less cover of small trees. At the site scale, there was no association between guano mass and distance to foraging areas, elevation, or the number of nearby hollows. These tree hollow roost preferences can inform land managers when planning the management and conservation of redwood forests.
Collapse
|
30
|
Weinberg M, Mazar O, Rachum A, Chen X, Goutink S, Lifshitz N, Winter-Livneh R, Czirják GÁ, Yovel Y. Seasonal challenges of tropical bats in temperate zones. Sci Rep 2022; 12:16869. [PMID: 36207354 PMCID: PMC9546901 DOI: 10.1038/s41598-022-21076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
To examine the challenges faced by free-ranging Rousettus aegyptiacus living at the northern edge of their distribution, we performed a retrospective analysis of 2196 clinical cases reported by a bat rescue NGO over a period of 36 months, from throughout Israel. All cases of injured bats were evaluated and categorized according to date, place, sex, age, and etiology of the morbidity. The data analysis revealed an increase in all types of morbidity during the wintertime, with more than two-fold the number of cases per week compared to in the summer, over three consecutive years. Moreover, we found that the number of abandoned pups peaked during spring and summer, when adult morbidity is minimal. We characterized two prominent types of previously undescribed morbidities in R. aegyptiacus. We also employed GPS tracking to monitor the movement and foraging of dozens of bats, and to examine the potential correlates of elevated winter morbidity. Our results suggest that it is mainly harsh weather that drives the observed winter morbidity, with food limitations playing a minor-role. We hypothesize that R. aegyptiacus, of tropical origin, is facing major seasonal survival difficulties near the northern edge of its distribution, probably limiting its spread further northwards still.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Amutat Atalef, The Israeli Bat Sanctuary (NGO), Beit-Shemesh, Israel.
| | - Omer Mazar
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Adi Rachum
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Xing Chen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sophia Goutink
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Nora Lifshitz
- Amutat Atalef, The Israeli Bat Sanctuary (NGO), Beit-Shemesh, Israel
| | - Rona Winter-Livneh
- Open Landscape Institute (OLI), The Steinhardt Museum of Natural History, Tel-Aviv University, Tel Aviv, Israel
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel.,National Research Center for Biodiversity Studies, The Steinhardt Museum of Natural History, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Sánchez CA, Penrose MT, Kessler MK, Becker DJ, McKeown A, Hannappel M, Boyd V, Camus MS, Padgett-Stewart T, Hunt BE, Graves AF, Peel AJ, Westcott DA, Rainwater TR, Chumchal MM, Cobb GP, Altizer S, Plowright RK, Boardman WSJ. Land use, season, and parasitism predict metal concentrations in Australian flying fox fur. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156699. [PMID: 35710009 DOI: 10.1016/j.scitotenv.2022.156699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Urban-living wildlife can be exposed to metal contaminants dispersed into the environment through industrial, residential, and agricultural applications. Metal exposure carries lethal and sublethal consequences for animals; in particular, heavy metals (e.g. arsenic, lead, mercury) can damage organs and act as carcinogens. Many bat species reside and forage in human-modified habitats and could be exposed to contaminants in air, water, and food. We quantified metal concentrations in fur samples from three flying fox species (Pteropus fruit bats) captured at eight sites in eastern Australia. For subsets of bats, we assessed ectoparasite burden, haemoparasite infection, and viral infection, and performed white blood cell differential counts. We examined relationships among metal concentrations, environmental predictors (season, land use surrounding capture site), and individual predictors (species, sex, age, body condition, parasitism, neutrophil:lymphocyte ratio). As expected, bats captured at sites with greater human impact had higher metal loads. At one site with seasonal sampling, bats had higher metal concentrations in winter than in summer, possibly owing to changes in food availability and foraging. Relationships between ectoparasites and metal concentrations were mixed, suggesting multiple causal mechanisms. There was no association between overall metal load and neutrophil:lymphocyte ratio, but mercury concentrations were positively correlated with this ratio, which is associated with stress in other vertebrate taxa. Comparison of our findings to those of previous flying fox studies revealed potentially harmful levels of several metals; in particular, endangered spectacled flying foxes (P. conspicillatus) exhibited high concentrations of cadmium and lead. Because some bats harbor pathogens transmissible to humans and animals, future research should explore interactions between metal exposure, immunity, and infection to assess consequences for bat and human health.
Collapse
Affiliation(s)
- Cecilia A Sánchez
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Michael T Penrose
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | | | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | | | | | - Victoria Boyd
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity Business Unit, The Australian Centre for Disease Preparedness (ACDP), Geelong, VIC, Australia
| | - Melinda S Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ticha Padgett-Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Brooklin E Hunt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Amelia F Graves
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center and Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC, USA
| | | | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
32
|
Rojas VG, Loeb SC, O'Keefe JM. Applying mobile acoustic surveys to model bat habitat use across sinuous routes. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa G. Rojas
- Center for Bat Research, Outreach, and Conservation Indiana State University 600 Chestnut Street Terre Haute IN 47809 USA
| | - Susan C. Loeb
- United States Department of Agriculture Forest Service Southern Research Station, 233 Lehotsky Hall, Clemson University Clemson SC 29634 USA
| | - Joy M. O'Keefe
- Center for Bat Research, Outreach, and Conservation Indiana State University 600 Chestnut Street Terre Haute IN 47809 USA
| |
Collapse
|
33
|
Predicted impacts of climate change and extreme temperature events on the future distribution of fruit bat species in Australia. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Pulscher LA, Peel AJ, Rose K, Welbergen JA, Baker ML, Boyd V, Low‐Choy S, Edson D, Todd C, Dorrestein A, Hall J, Todd S, Broder CC, Yan L, Xu K, Peck GR, Phalen DN. Serological evidence of a pararubulavirus and a betacoronavirus in the geographically isolated Christmas Island flying-fox (Pteropus natalis). Transbound Emerg Dis 2022; 69:e2366-e2377. [PMID: 35491954 PMCID: PMC9529767 DOI: 10.1111/tbed.14579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species.
Collapse
Affiliation(s)
- Laura A. Pulscher
- Faculty of ScienceSydney School of Veterinary ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Alison J. Peel
- Centre for Planetary Health and Food SecurityGriffith UniversityNathanQueenslandAustralia
| | - Karrie Rose
- Australian Registry of Wildlife HealthTaronga Conservation Society AustraliaMosmanNew South WalesAustralia
| | - Justin A. Welbergen
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Michelle L. Baker
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - Victoria Boyd
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - Samantha Low‐Choy
- Centre for Planetary Health and Food SecurityGriffith UniversityNathanQueenslandAustralia
- Office of the Vice ChancellorArts/Education/LawGriffith UniversityBrisbaneQueenslandAustralia
| | - Dan Edson
- Department of AgricultureWater and the EnvironmentCanberraAustralian Capital TerritoryAustralia
| | - Christopher Todd
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Annabel Dorrestein
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Jane Hall
- Australian Registry of Wildlife HealthTaronga Conservation Society AustraliaMosmanNew South WalesAustralia
| | - Shawn Todd
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | | | - Lianying Yan
- Department of MicrobiologyUniformed Services UniversityBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Kai Xu
- Department of Veterinary BiosciencesCollege of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Grantley R. Peck
- Australian Centre for Disease Preparedness, Health and Biosecurity Business UnitCommonwealth Scientific and Industrial Research OrganizationGeelongVictoriaAustralia
| | - David N. Phalen
- Faculty of ScienceSydney School of Veterinary ScienceUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
35
|
Bach P, Voigt CC, Göttsche M, Bach L, Brust V, Hill R, Hüppop O, Lagerveld S, Schmaljohann H, Seebens‐Hoyer A. Offshore and coastline migration of radio‐tagged Nathusius' pipistrelles. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | | | | | - Vera Brust
- Institute of Avian Research Wilhelmshaven Germany
| | | | - Ommo Hüppop
- Institute of Avian Research Wilhelmshaven Germany
| | | | - Heiko Schmaljohann
- Institute of Avian Research Wilhelmshaven Germany
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg Oldenburg Germany
| | | |
Collapse
|
36
|
Martin-Regalado CN, Pedersen SC, Lavariega MC. Alopecia in Bats. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cintia N. Martin-Regalado
- Instituto Tecnológico del Valle de Oaxaca, Tecnológico Nacional de México, 71230 Santa Cruz Xoxocotlán, Oaxaca, México
| | - Scott C. Pedersen
- Department of Biology and Microbiology, South Dakota State University, 1175 Medary Avenue, Brookings, SD 57006, USA
| | - Mario C. Lavariega
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230 Santa Cruz Xoxocotlán, Oaxaca, México
| |
Collapse
|
37
|
Aronson J. Current State of Knowledge of Wind Energy Impacts on Bats in South Africa. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonathan Aronson
- Camissa Sustainability Consulting, Wenslauerstraat 4-3 1053BA Amsterdam, Netherlands
| |
Collapse
|
38
|
Bosco-Lauth AM, Porter SM, Fox KA, Wood ME, Neubaum D, Quilici M. Experimental Infection of Brazilian Free-Tailed Bats (Tadarida brasiliensis) with Two Strains of SARS-CoV-2. Viruses 2022; 14:v14081809. [PMID: 36016431 PMCID: PMC9412320 DOI: 10.3390/v14081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presumed to have originated from wildlife and shares homology with other bat coronaviruses. Determining the susceptibility of North American bat species to SARS-CoV-2 is of utmost importance for making decisions regarding wildlife management, public health, and conservation. In this study, Brazilian free-tailed bats (Tadarida brasiliensis) were experimentally infected with two strains of SARS-CoV-2 (parental WA01 and Delta variant), evaluated for clinical disease, sampled for viral shedding and antibody production, and analyzed for pathology. None of the bats (n = 18) developed clinical disease associated with infection, shed infectious virus, or developed histopathological lesions associated with SARS-CoV-2 infection. All bats had low levels of viral RNA in oral swabs, six bats had low levels of viral RNA present in the lungs during acute infection, and one of the four bats that were maintained until 28 days post-infection developed a neutralizing antibody response. These findings suggest that Brazilian free-tailed bats are permissive to infection by SARS-CoV-2, but they are unlikely to contribute to environmental maintenance or transmission.
Collapse
Affiliation(s)
- Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence:
| | - Stephanie M. Porter
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80523, USA
| | - Karen A. Fox
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Mary E. Wood
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Daniel Neubaum
- Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - Marissa Quilici
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
39
|
Diggins CA, Ford WM. Seasonal Activity Patterns of Bats in High-Elevation Conifer Sky Islands. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Corinne A. Diggins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 28061, USA
| | - W. Mark Ford
- U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Blacksburg, VA 28061, USA
| |
Collapse
|
40
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
41
|
Bennett EM, Florent SN, Venosta M, Gibson M, Jackson A, Stark E. Curtailment as a successful method for reducing bat mortality at a southern Australian wind farm. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emma M. Bennett
- Elmoby Ecology Studio 23 Suburban St Clunes Victoria 3370 Australia
- School of Biology Monash University Melbourne Victoria Australia
| | | | | | | | | | | |
Collapse
|
42
|
Ellerbrok JS, Delius A, Peter F, Farwig N, Voigt CC. Activity of forest specialist bats decreases towards wind turbines at forest sites. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia S. Ellerbrok
- Conservation Ecology, Department of Biology University of Marburg Karl‐von‐Frisch‐Str. 8, 35043 Marburg Germany
- Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17, 10315 Berlin Germany
| | - Anna Delius
- Conservation Ecology, Department of Biology University of Marburg Karl‐von‐Frisch‐Str. 8, 35043 Marburg Germany
| | - Franziska Peter
- Natural Resource Conservation University Kiel Olshausenstr. 75, 24118 Kiel Germany
| | - Nina Farwig
- Conservation Ecology, Department of Biology University of Marburg Karl‐von‐Frisch‐Str. 8, 35043 Marburg Germany
| | - Christian C. Voigt
- Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Str. 17, 10315 Berlin Germany
| |
Collapse
|
43
|
Loeb SC, Winters EA. Changes in hibernating tricolored bat ( Perimyotis subflavus) roosting behavior in response to white-nose syndrome. Ecol Evol 2022; 12:e9045. [PMID: 35822112 PMCID: PMC9259850 DOI: 10.1002/ece3.9045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding animals' behavioral and physiological responses to pathogenic diseases is critical for management and conservation. One such disease, white-nose syndrome (WNS), has greatly affected bat populations throughout eastern North America leading to significant population declines in several species. Although tricolored bat (Perimyotis subflavus) populations have experienced significant declines, little research has been conducted on their responses to the disease, particularly in the southeastern United States. Our objective was to document changes in tricolored bat roost site use after the appearance of WNS in a hibernaculum in the southeastern U.S. and relate these to microsite temperatures, ambient conditions, and population trends. We censused a tricolored bat hibernaculum in northwestern South Carolina, USA, once each year between February 26 and March 2, 2014-2021, and recorded species, section of the tunnel, distance from the entrance, and wall temperature next to each bat. The number of tricolored bats in the hibernaculum dropped by 90.3% during the first 3 years after the arrival of WNS. However, numbers stabilized and slightly increased from 2018 to 2021. Prior to the arrival of WNS, 95.6% of tricolored bats roosted in the back portion of the tunnel that was the warmest. After the arrival of WNS, we observed a significant increase in the proportion of bats using the front, colder portions of the tunnel, particularly during the period of population stabilization and increase. Roost temperatures of bats were also positively associated with February external temperatures. Our results suggest that greater use of the colder sections of the tunnel by tricolored bats could have led to increased survival due to slower growth rates of the fungus that causes WNS in colder temperatures or decreased energetic costs associated with colder hibernation temperatures. Thus, management actions that provide cold hibernacula may be an option for long-term management of hibernacula, particularly in southern regions.
Collapse
Affiliation(s)
- Susan C. Loeb
- U.S. Forest ServiceSouthern Research StationClemsonSouth CarolinaUSA
| | - Eric A. Winters
- U.S. Forest ServiceSouthern Research StationClemsonSouth CarolinaUSA
| |
Collapse
|
44
|
Amponsah‐Mensah K, Cunningham AA, Wood JLN, Ntiamoa‐Baidu Y. Roosting behavior and roost selection by
Epomophorus gambianus
(Pteropodidae) in a west African rural landscape. Biotropica 2022. [DOI: 10.1111/btp.13127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Yaa Ntiamoa‐Baidu
- Centre for Biodiversity Conservation Research University of Ghana Accra Ghana
- Department of Animal Biology and Conservation Science University of Ghana Accra Ghana
| |
Collapse
|
45
|
Starbuck CA, Dickson BG, Chambers CL. Informing wind energy development: Land cover and topography predict occupancy for Arizona bats. PLoS One 2022; 17:e0268573. [PMID: 35657796 PMCID: PMC9165840 DOI: 10.1371/journal.pone.0268573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Wind energy is a growing source of renewable energy with a 3-fold increase in use globally over the last decade. However, wind turbines cause bat mortality, especially for migratory species. The southwest United States has high bat species diversity and is an important area for migratory species, although little is known about their seasonal distribution. To examine potential risk to bats in areas proposed for wind energy development, we characterized bat occupancy spatially and temporally across northern Arizona, identifying use during summer when bats are reproductively active and fall during the migratory season. Our objectives were to determine occupancy of migratory species and species of greatest conservation need and develop a probability of occupancy map for species to identify areas of potential conflict with wind energy development. We selected 92 sites in 10 clusters with potential for development and used acoustic detectors to sample bats in the summer and fall of 2016 and 2017 for 6 nights per site per year. We predicted response of migratory bat species and species of special concern to 9 landscape variables using Program MARK. During summer, higher densities of forest on the landscape resulted in a higher probability of occupancy of migratory species such as hoary bats (Lasiurus cinereus), silver-haired bats (Lasionycteris noctivagans), big free-tailed bats (Nyctinomops macrotis), and species of conservation need such as spotted bats (Euderma maculatum). During the fall, higher concentration of valleys on the landscape predicted occupancy of hoary bats, big free-tailed bats, and spotted bats. High bat occupancy in the fall was also associated with higher elevation and close proximity to forests. We recommend that wind turbines be placed in open, flat grasslands away from forested landscapes and concentrations of valleys or other topographic variation.
Collapse
Affiliation(s)
- Clarissa A. Starbuck
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Brett G. Dickson
- Lab of Landscape Ecology and Conservation Biology, Landscape Conservation Initiative, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Carol L. Chambers
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
46
|
Novel passive detection approach reveals low breeding season survival and apparent lactation cost in a critically endangered cave bat. Sci Rep 2022; 12:7390. [PMID: 35513411 PMCID: PMC9072322 DOI: 10.1038/s41598-022-11404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Capture-mark-recapture/resight (CMR) methods are used for survival-rate studies, yet are often limited by small sample sizes. Advances in passive integrated transponder (PIT) technology have enabled passive detection or ‘resight’ of marked individuals using large antennas with greater read-ranges than previously possible. We used passively-detected resight data and CMR models to study survival rates of the southern bent-winged bat Miniopterus orianae bassanii, a critically endangered, cave-dwelling bat. Over three years, we used PIT-tagging to monitor 2966 individuals at the species’ largest breeding aggregation, using daily detection data (> 1.6 million detections) to estimate seasonal survival probabilities, structured by age, sex and reproductive status, and parameterise population projection matrices. This has hitherto been impossible using traditional CMR methods due to disturbance risk and low recapture rates. Bats exhibited lowest apparent seasonal survival over summer and autumn, particularly for reproductive females in summer (when lactating) and juveniles in autumn (after weaning), and high survival in winter. Lowest survival rates coincided with severe drought in summer–autumn 2016, suggesting that dry conditions affect population viability. Under all likely demographic assumptions, population projection matrices suggested the population is in deterministic decline, requiring urgent action to reduce extinction risk. Passively-collected resight data can now be used in combination with CMR models to provide extensive, robust information for targeted wildlife population management.
Collapse
|
47
|
Rabie PA, Welch-Acosta B, Nasman K, Schumacher S, Schueller S, Gruver J. Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. PLoS One 2022; 17:e0266500. [PMID: 35395032 PMCID: PMC8992975 DOI: 10.1371/journal.pone.0266500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Current research estimates hundreds of thousands of turbine-related bat fatalities in North America annually. In an effort to reduce impacts of wind energy production on bat populations, many facilities implement operational curtailment strategies that limit turbine blade rotation during conditions when nighttime wind speeds are low. Incorporating real-time bat activity data into wind speed-only curtailment (WOC) strategies may increase operational flexibility by allowing turbines to operate normally when bats are not present near turbines. We evaluated costs and benefits of implementing the Turbine Integrated Mortality Reduction (TIMR) system, an approach that informs a curtailment-triggering algorithm based on wind speed and real-time bat acoustic data, compared to a WOC strategy in which turbines were curtailed below 4.5 meters per second (m/s) at a wind energy facility in Fond Du Lac County, Wisconsin. TIMR is a proprietary system and we had no access to the acoustic data or bat call analysis software. Operational parameters for the TIMR system were set to allow curtailment at all wind speeds below 8.0 m/s during the study period when bats were acoustically detected. Overall, the TIMR system reduced fatalities by 75% compared to control turbines, while the WOC strategy reduced fatalities by 47%. An earlier analysis of the same TIMR data neglected to account for carcasses occurring outside the plot boundary and estimated an 84.5% fatality reduction due to the TIMR system. Over the study period, bat activity led to curtailment of TIMR turbines during 39.4% of nighttime hours compared to 31.0% of nighttime hours for WOC turbines, and revenue losses were approximately 280% as great for TIMR turbines as for turbines operated under the WOC strategy. The large cost difference between WOC and TIMR was driven by the 4.5 m/s versus 8.0 m/s wind speed thresholds for curtailment, but our study site has a relatively low average wind speed, which may also have contributed; other wind operators considering the TIMR system will need to consider their ability to absorb production losses in relation to their need to reduce bat fatality rates.
Collapse
Affiliation(s)
- Paul A. Rabie
- Western EcoSystems Technology, Inc., Laramie, Wyoming, United States of America
- * E-mail:
| | - Brandi Welch-Acosta
- Western EcoSystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Kristen Nasman
- Western EcoSystems Technology, Inc., Fort Collins, Colorado, United States of America
| | | | | | - Jeffery Gruver
- Rocky Mountain Bat Conservancy, Laramie, Wyoming, United States of America
| |
Collapse
|
48
|
Kafash A, Ashrafi S, Yousefi M. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25881-25891. [PMID: 34851481 DOI: 10.1007/s11356-021-17412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Bats provide important ecosystem services but face severe threats due to land and climate changes. Although bats are an important component of mammal diversity in Iran, the ecology of many species remains virtually unstudied in the country. Here we applied the maximum entropy approach to model habitat suitability of bat species in Iran, identify the most important variables for their distribution, predict high priority areas for field monitoring and conservation, and estimate the coverage of the bat species' suitable habitats by the existing protected areas. We created a richness map for the twelve species to identify high priority areas for field monitoring and conservation. The results of species distribution modeling showed that Pipistrellus kuhlii (828,977.2 km2) and Miniopterus pallidus (646,581.9 km2) had the largest distribution ranges and Rhinopoma microphyllum (211,202.7 km2) and Rousettus aegyptiacus (218,278.6 km2) had the smallest distribution ranges in Iran. By averaging the importance of each ecological variable across the 12 species, we found that distance to forests (with a negative association) is the most important ecological driver of bat distribution in Iran. The Zagros Mountains were identified as a hotspot of bats based on the distribution of the 12 species. Our findings showed that small proportions of each species suitable habitats were covered by protected areas and protected suitable habitats varied from 3.2%for Pipistrellus kuhlii to15.9% for Tadarida teniotis. This study highlights the importance of forests for bat conservation showing that forest conservation is a high priority in the country. Areas which have the highest richness should be prioritized for field monitoring and conservation.
Collapse
Affiliation(s)
- Anooshe Kafash
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Sohrab Ashrafi
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Tehran, Iran.
| | - Masoud Yousefi
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Rabies as a Potential Cause of Mass Mortality Events in North American Bat Species. J Wildl Dis 2022; 58:465-468. [PMID: 35255121 DOI: 10.7589/jwd-d-21-00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
Rabies-association bat mortality events are rarely reported, suggesting that rabies is not a significant cause of bat mass mortality. Three bat die-offs in National Park Service units were attributed to rabies, highlighting the value of including rabies, and rabies virus strain spillover events, as a differential in mass mortality events.
Collapse
|
50
|
Beattie I, Schofer D, McGregor G, Lee MJ, Lee LKF, Himsworth CG, Byers KA. An Investigation of Bat Mortality in British Columbia, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identifying causes of wildlife mortality can yield an understanding of the factors that impact wildlife health. This is particularly significant for species that are facing population declines because this information can inform conservation and management practices. We evaluated causes of mortality for bats in British Columbia submitted to the provincial veterinary laboratory between 2015 and 2020, and assessed whether cause of death varied by species and/or was associated with bat characteristics (e.g., sex and body condition). Of the 275 bats included in this study, the most frequent cause of death was cat depredation (24%), followed by blunt force trauma (23%). Bats that died by cat depredation tended to be in good body condition as compared to those that died from other causes, and male bats were more likely to die from blunt force trauma compared with females. Emaciation was also an important cause of mortality (21%) and 8% of bats died due to rabies, with the greatest rabies prevalence in Eptesicus fuscus (Palisot de Beauvois, 1796). Our results demonstrate the potential burden of cat depredation on healthy bats and highlight the need for strategies to decrease cat depredation to support healthy bat populations.
Collapse
Affiliation(s)
- Imara Beattie
- University of Saskatchewan, 7235, Department of Pathology, Saskatoon, Saskatchewan, Canada
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
| | - Delaney Schofer
- University of Saskatchewan, 7235, Department of Pathology, Saskatoon, Saskatchewan, Canada
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
| | - Glenna McGregor
- Animal Health Centre, 113517, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Michael Joseph Lee
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
- The University of British Columbia, 8166, School of Population and Public Health, Vancouver, British Columbia, Canada
| | - Lisa K. F. Lee
- University of Saskatchewan, 7235, Department of Pathology, Saskatoon, Saskatchewan, Canada
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
| | - Chelsea G Himsworth
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
- The University of British Columbia, 8166, School of Population and Public Health, Vancouver, British Columbia, Canada
- Animal Health Centre, 113517, British Columbia Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Kaylee Aileen Byers
- The University of British Columbia, 8166, School of Population and Public Health, Vancouver, British Columbia, Canada
- Canadian Wildlife Health Cooperative, Animal Health Centre, Abbotsford, British Columbia, Canada
| |
Collapse
|