1
|
Satake A, Hagiwara T, Nagano AJ, Yamaguchi N, Sekimoto K, Shiojiri K, Sudo K. Plant Molecular Phenology and Climate Feedbacks Mediated by BVOCs. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:605-627. [PMID: 38382906 DOI: 10.1146/annurev-arplant-060223-032108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene-environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | | | - Kengo Sudo
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| |
Collapse
|
2
|
Isaacman-VanWertz G, Frazier G, Willison J, Faiola C. Missing Measurements of Sesquiterpene Ozonolysis Rates and Composition Limit Understanding of Atmospheric Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7937-7946. [PMID: 38669108 PMCID: PMC11080055 DOI: 10.1021/acs.est.3c10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Emissions of biogenic reactive carbon significantly influence atmospheric chemistry, contributing to the formation and destruction of secondary pollutants, such as secondary organic aerosol and ozone. While isoprene and monoterpenes are a major fraction of emissions and have been extensively studied, substantially less is known about the atmospheric impacts of higher-molecular-weight terpenes such as sesquiterpenes. In particular, sesquiterpenes have been proposed to play a significant role in ozone chemical loss due to the very high ozone reaction rates of certain isomers. However, relatively little data are available on the isomer-resolved composition of this compound class or its role in ozone chemistry. This study examines the chemical diversity of sesquiterpenes and availability of ozone reaction rate constants to evaluate the current understanding of their ozone reactivity. Sesquiterpenes are found to be highly diverse, with 72 different isomers reported and relatively few isomers that contribute a large mass fraction across all studies. For the small number of isomers with known ozone reaction rates, estimated rates may be 25 times higher or lower than measurements, indicating that estimated reaction rates are highly uncertain. Isomers with known ozone reaction rates make up approximately half of the mass of sesquiterpenes in concentration and emission measurements. Consequently, the current state of the knowledge suggests that the total ozone reactivity of sesquiterpenes cannot be quantified without very high uncertainty, even if isomer-resolved composition is known. These results are in contrast to monoterpenes, which are less diverse and for which ozone reaction rates are well-known, and in contrast to hydroxyl reactivity of monoterpenes and sesquiterpenes, for which reaction rates can be reasonably well estimated. Improved measurements of a relatively small number of sesquiterpene isomers would reduce uncertainties and improve our understanding of their role in regional and global ozone chemistry.
Collapse
Affiliation(s)
- Gabriel Isaacman-VanWertz
- Charles
E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Graham Frazier
- Charles
E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jeff Willison
- U.S.
Environmental Protection Agency, Research
Triangle Park, Durham, North Carolina 27709, United States
| | - Celia Faiola
- Department
of Ecology and Evolutionary Biology, University
of California Irvine, Irvine, California 92697-2525, United States
- Department
of Chemistry, University of California Irvine, Irvine, California 92697-2525, United States
| |
Collapse
|
3
|
Zhang R, Yang W, Pan Q, Zeng Q, Yan C, Bai X, Liu Y, Zhang L, Li B. Effects of long-term blue light irradiation on carotenoid biosynthesis and antioxidant activities in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Food Res Int 2023; 174:113661. [PMID: 37981380 DOI: 10.1016/j.foodres.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The aim of this study was to investigate the impact of long-term exposure to blue light-emitting diodes (LEDs) on the accumulation of indolic glucosinolates and carotenoids, as well as the plant growth and antioxidant activities in both orange and common Chinese cabbage (Brassica rapa L. ssp. pekinensis). Blue light treatment also induced higher ferric-reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl by 20.66 % and 30.82 % and antioxidant enzyme activities catalase, peroxidase, superoxide dismutase, and the accumulation of non-enzymatic antioxidant substances (total phenols and total flavonoids) in the orange Chinese cabbage. Furthermore, long-term exposure to blue light had negative effects on the net photosynthetic rate and chlorophyll fluorescence levels. Meanwhile, blue light promoted accumulation of Indol-3-ylmethyl glucosinolate (I3M), β-carotene, lutein and zeaxanthin due to the high expression of regulatory and biosynthetic genes of the above metabolic pathways. In particular, lycopene and β-carotene content in orange Chinese cabbage increased by 60.14 % and 65.33 % compared to the ones in common line. The accumulation of carotenoid and increasing antioxidant levels in the orange cabbage line was influenced by long-term blue light irradiation, leading to better tolerance to low temperature and drought stresses. The up-regulation of transcription factors such as BrHY5-2, BrPIF4 and BrMYB12 may also contribute to the increased tolerance in orange Chinese cabbage to extreme environmental stresses. The BrHY5-2 gene could activate carotenoid biosynthetic genes and induce the accumulation of carotenoids. These findings suggested that long-term blue light irradiation could be a promising technique for increasing the nutrition value and enhancing tolerance to low temperature and drought stresses in Chinese cabbage.
Collapse
Affiliation(s)
- Ruixing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiming Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qi Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chengtai Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xue Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yao Liu
- Life Science Research Core Services, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T, Williams J, Rohwer J, Gershenzon J, Schmidt A. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. PLANT PHYSIOLOGY 2023; 192:767-788. [PMID: 36848194 DOI: 10.1093/plphys/kiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.
Collapse
Affiliation(s)
- Toni Krause
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Piera Wiesinger
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Diego González-Cabanelas
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Johann Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
5
|
Laguerre A, Brennan DL, Starry O, Rosenstiel TN, Gall ET. Characterization of Volatile Organic Compound Emissions and CO 2 Uptake from Eco-roof Plants. BUILDING AND ENVIRONMENT 2023; 234:110158. [PMID: 37065504 PMCID: PMC10104446 DOI: 10.1016/j.buildenv.2023.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vegetation plays an important role in biosphere-atmosphere exchange, including emission of biogenic volatile organic compounds (BVOCs) that influence the formation of secondary pollutants. Gaps exist in our knowledge of BVOC emissions from succulent plants, which are often selected for urban greening on building roofs and walls. In this study, we characterize the CO2 uptake and BVOC emission of eight succulents and one moss using proton transfer reaction - time of flight - mass spectrometry in controlled laboratory experiments. CO2 uptake ranged 0 to 0.16 μmol [g DW (leaf dry weight)]-1 s-1 and net BVOC emission ranges -0.10 to 3.11 μg [g DW]-1 h-1. Specific BVOCs emitted or removed varied across plants studied; methanol was the dominant BVOC emitted, and acetaldehyde had the largest removal. Isoprene and monoterpene emissions of studied plants were generally low compared to other urban trees and shrubs, ranging 0 to 0.092 μg [g DW]-1 h-1 and 0 to 0.44 μg [g DW]-1 h-1, respectively. Calculated ozone formation potentials (OFP) of the succulents and moss range 4×10-7 - 4×10-4 g O3 [g DW]-1 d-1. Results of this study can inform selection of plants used in urban greening. For example, on a per leaf mass basis, Phedimus takesimensis and Crassula ovata have OFP lower than many plants presently classified as low OFP and may be promising candidates for greening in urban areas with ozone exceedances.
Collapse
Affiliation(s)
- Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, USA
| | - Danlyn L. Brennan
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - Olyssa Starry
- Portland State University Honors College, Portland, OR, USA
| | | | - Elliott T. Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, OR, USA
| |
Collapse
|
6
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
7
|
Gomes Alves E, Taylor T, Robin M, Pinheiro Oliveira D, Schietti J, Duvoisin Júnior S, Zannoni N, Williams J, Hartmann C, Gonçalves JFC, Schöngart J, Wittmann F, Piedade MTF. Seasonal shifts in isoprenoid emission composition from three hyperdominant tree species in central Amazonia. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:721-733. [PMID: 35357064 DOI: 10.1111/plb.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species - Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea - across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds.
Collapse
Affiliation(s)
- E Gomes Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - T Taylor
- Biology Department, University of Miami, Coral Gables, FL, USA
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Robin
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
| | - D Pinheiro Oliveira
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schietti
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
- Biology Department, Federal University of Amazonas, Manaus, Brazil
| | | | - N Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - C Hartmann
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J F C Gonçalves
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schöngart
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - F Wittmann
- Department of Wetland Ecology, Karlsruhe Institute of Technology, Rastatt, Germany
| | - M T F Piedade
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| |
Collapse
|
8
|
Mu Z, Llusià J, Zeng J, Zhang Y, Asensio D, Yang K, Yi Z, Wang X, Peñuelas J. An Overview of the Isoprenoid Emissions From Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:833030. [PMID: 35668805 PMCID: PMC9163954 DOI: 10.3389/fpls.2022.833030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Terrestrial vegetation is the largest contributor of isoprenoids (a group of biogenic volatile organic compounds (BVOCs)) to the atmosphere. BVOC emission data comes mostly from temperate regions, and less is known about BVOC emissions from tropical vegetation, even though it is estimated to be responsible for >70% of BVOC emissions. This review summarizes the available data and our current understanding of isoprenoid emissions from tropical plant species and the spatial and temporal variation in emissions, which are strongly species-specific and regionally variable. Emission models lacking foliar level data for tropical species need to revise their parameters to account for seasonal and diurnal variation due to differences in dependencies on temperature and light of emissions from plants in other ecosystems. More experimental information and determining how emission capacity varies during foliar development are warranted to account for seasonal variations more explicitly.
Collapse
Affiliation(s)
- Zhaobin Mu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Kaijun Yang
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Zhigang Yi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
9
|
Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions. Int J Mol Sci 2022; 23:ijms23073836. [PMID: 35409196 PMCID: PMC8998555 DOI: 10.3390/ijms23073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.
Collapse
|
10
|
Alicandri E, Covino S, Sebastiani B, Paolacci AR, Badiani M, Sorgonà A, Ciaffi M. Monoterpene Synthase Genes and Monoterpene Profiles in Pinus nigra subsp. laricio. PLANTS (BASEL, SWITZERLAND) 2022; 11:449. [PMID: 35161430 PMCID: PMC8838282 DOI: 10.3390/plants11030449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 05/09/2023]
Abstract
In the present study, we carried out a quantitative analysis of the monoterpenes composition in different tissues of the non-model conifer Pinus nigra J.F. Arnold subsp. laricio Palib. ex Maire (P. laricio, in short). All the P. laricio tissues examined showed the presence of the same fourteen monoterpenes, among which the most abundant were β-phellandrene, α-pinene, and β-pinene, whose distribution was markedly tissue-specific. In parallel, from the same plant tissues, we isolated seven full-length cDNA transcripts coding for as many monoterpene synthases, each of which was found to be attributable to one of the seven phylogenetic groups in which the d1-clade of the canonical classification of plants' terpene synthases can be subdivided. The amino acid sequences deduced from the above cDNA transcripts allowed to predict their putative involvement in the biosynthesis of five of the monoterpenes identified. Transcripts profiling revealed a differential gene expression across the different tissues examined, and was found to be consistent with the corresponding metabolites profiles. The genomic organization of the seven isolated monoterpene synthase genes was also determined.
Collapse
Affiliation(s)
- Enrica Alicandri
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Stefano Covino
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Bartolomeo Sebastiani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, I-06123 Perugia, Italy;
| | - Anna Rita Paolacci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| | - Maurizio Badiani
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Agostino Sorgonà
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy; (E.A.); (M.B.); (A.S.)
| | - Mario Ciaffi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Via S. Camillo De Lellis, s.n.c, I-01100 Viterbo, Italy; (S.C.); (A.R.P.)
| |
Collapse
|
11
|
Swanson L, Li T, Rinnan R. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148516. [PMID: 34174616 DOI: 10.1016/j.scitotenv.2021.148516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Climate change is altering high-latitude ecosystems in multiple facets, including increased insect herbivory pressure and enhanced emissions of volatile organic compounds (VOC) from vegetation. Yet, joint impacts of climatic drivers and insect herbivory on VOC emissions from the Arctic remain largely unknown. We examined how one-month warming by open-top plastic tents, yielding a 3-4 °C air temperature increase, and the natural presence of gall-forming eriophyoid mites, Aculus tetanothrix, individually and in combination, affect VOC emissions from whortle leaved willow, Salix myrsinites, at two elevations in an Arctic heath tundra of Abisko, Northern Sweden. We measured VOC emissions three times in the peak growing season (July) from intact and gall-infested branches using an enclosure technique and gas chromatography-mass spectrometry, and leaf chemical composition using near-infrared reflectance spectroscopy (NIRS). Isoprene accounted for 91% of the VOCs emitted by S. myrsinites. Isoprene emission rates tended to be higher at the high than low elevation during the measurement periods (42 μg g-1 DW h-1 vs. 23 μg g-1 DW h-1) even when temperature differences were accounted for. Experimental warming increased isoprene emissions by approximately 54%, but decreased emissions of some minor compound groups, such as green leaf volatiles (GLV) and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). In contrast, gall-infestation did not affect isoprene emissions but stimulated emissions of DMNT, sesquiterpenes and GLVs, particularly under ambient conditions at the low elevation. The NIRS-based chemical composition of the leaves varied between the two elevations and was affected by warming and gall-infestation. Our study suggests that under elevated temperatures, S. myrsinites increases emissions of isoprene, a highly effective compound for protection against oxidative stress, while an infestation by A. tetanothrix mites induces emissions of herbivore enemy attractants like DMNT, sesquiterpenes and GLVs. Under both conditions, warming effects on isoprene remain but mite effects on DMNT, sesquiterpenes and GLVs diminish.
Collapse
Affiliation(s)
- Laura Swanson
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| |
Collapse
|
12
|
Oku H, Iwai S, Uehara M, Iqbal A, Mutanda I, Inafuku M. Growth condition controls on G-93 parameters of isoprene emission from tropical trees. JOURNAL OF PLANT RESEARCH 2021; 134:1225-1242. [PMID: 34505187 DOI: 10.1007/s10265-021-01344-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (CT1, CT2, and α), growth temperature and light intensity, photosynthesis (ɸ, Pmax), isoprene synthase (IspS) level, and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves. In contrast, there was a lower saturation irradiance in shaded leaves than in sunlit leaves, the same as temperate plants. The photosynthesis rate of shaded leaves showed lower saturation irradiance, similar to the light dependence of isoprene emission. In most cases, the concentration of MEP pathway metabolites was of lower tendency in shaded leaves versus in sunlit leaves, whereas no significant difference was noted in IspS level between sunlit and shaded leaves. Correlation analysis between these parameters found that CT1 of the G-93 parameter was positively correlated with the concentration of DXP and DMADP, whereas CT2 correlated with the concentration of MEP and the average air temperature for the past 48 h. Similarly, α closely associated with the initial slope (ɸ) of photosynthesis rate, and the basal emission factor is also linked to the photon flux of past days. These results suggest that growth conditions may control the temperature dependence of isoprene emission from tropical trees via the changes in the profiles of MEP pathway metabolites, causing alteration in the parameters of the isoprene emission formula.
Collapse
Affiliation(s)
- Hirosuke Oku
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Shohei Iwai
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Misaki Uehara
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Asif Iqbal
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Ishmael Mutanda
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Masashi Inafuku
- Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
13
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
14
|
Antioxidant Defenses in Plants: A Dated Topic of Current Interest. Antioxidants (Basel) 2021; 10:antiox10060855. [PMID: 34071788 PMCID: PMC8228735 DOI: 10.3390/antiox10060855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
|
15
|
Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants (Basel) 2021; 10:antiox10050684. [PMID: 33925614 PMCID: PMC8146742 DOI: 10.3390/antiox10050684] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.
Collapse
|
16
|
Protein expression plasticity contributes to heat and drought tolerance of date palm. Oecologia 2021; 197:903-919. [PMID: 33880635 PMCID: PMC8591023 DOI: 10.1007/s00442-021-04907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.
Collapse
|
17
|
Li M, Xu J, Lyu F, Khomenko I, Biasioli F, Villani M, Baldan B, Varotto C. Evolution of isoprene emission in Arecaceae (palms). Evol Appl 2021; 14:902-914. [PMID: 33897811 PMCID: PMC8061277 DOI: 10.1111/eva.13169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Isoprene synthase (IspS) is the sole enzyme in plants responsible for the yearly emission in the atmosphere of thousands of tonnes of the natural hydrocarbon isoprene worldwide. Species of the monocotyledonous family Arecaceae (palms) are among the highest plant emitters, but to date no IspS gene from this family has been identified. Here, we screened with PTR-ToF-MS 18 genera of the Arecaceae for isoprene emission and found that the majority of the sampled species emits isoprene. Putative IspS genes from six different genera were sequenced and three of them were functionally characterized by heterologous overexpression in Arabidopsis thaliana, demonstrating that they encode functional IspS genes. Site-directed mutagenesis and expression in Arabidopsis demonstrated the functional relevance of a novel IspS diagnostic tetrad from Arecaceae, whose most variable amino acids could not preserve catalytic function when substituted by a putatively dicotyledonous-specific tetrad. In particular, mutation of threonine 479 likely impairs the open-closed transition of the enzyme by altering the network of hydrogen bonds between helices H1α, H, and I. These results shed new light on the evolution of IspS in monocots, suggesting that isoprene emission is an ancestral trait within the Arecaceae family. The identification of IspS from Arecaceae provides promising novel enzymes for the production of isoprene in heterologous systems and allows the screening and selection of commercially relevant palm varieties with lower environmental impact.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Jia Xu
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Fuling Lyu
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- Experimental Center of Forestry in North ChinaChinese Academy of ForestryBeijingChina
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | | | - Barbara Baldan
- Botanical Garden of PadovaUniversity of PadovaPadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
18
|
Bertamini M, Faralli M, Varotto C, Grando MS, Cappellin L. Leaf Monoterpene Emission Limits Photosynthetic Downregulation under Heat Stress in Field-Grown Grapevine. PLANTS 2021; 10:plants10010181. [PMID: 33478116 PMCID: PMC7835969 DOI: 10.3390/plants10010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, two Vitis vinifera cv. 'Chardonnay' clones (SMA130 and INRA809) differing due to a mutation (S272P) of the DXS gene encoding for 1-deoxy-D-xylulose-5-phosphate (the first dedicated enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway) and involved in the regulation of isoprenoids biosynthesis were investigated in field trials and laboratory experiments. Leaf monoterpene emission, chlorophyll fluorescence and gas-exchange measurements were assessed over three seasons at different phenological stages and either carried out in in vivo or controlled conditions under contrasting temperatures. A significant (p < 0.001) increase in leaf monoterpene emission was observed in INRA809 when plants were experiencing high temperatures and over two experiments, while no differences were recorded for SMA130. Significant variation was observed for the rate of leaf CO2 assimilation under heat stress, with INRA809 maintaining higher photosynthetic rates and stomatal conductance values than SMA130 (p = 0.003) when leaf temperature increased above 30 °C. At the same time, the maximum photochemical quantum yield of PSII (Fv/Fm) was affected by heat stress in the non-emitting clone (SMA130), while the INRA809 showed a significant resilience of PSII under elevated temperature conditions. Consistent data were recorded between field seasons and temperature treatments in controlled environment conditions, suggesting a strong influence of monoterpene emission on heat tolerance under high temperatures. This work provides further insights on the photoprotective role of isoprenoids in heat-stressed Vitis vinifera, and additional studies should focus on unraveling the mechanisms underlying heat tolerance on the monoterpene-emitter grapevine clone.
Collapse
Affiliation(s)
- Massimo Bertamini
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Michele Faralli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Maria Stella Grando
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
19
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
20
|
Perreca E, Rohwer J, González-Cabanelas D, Loreto F, Schmidt A, Gershenzon J, Wright LP. Effect of Drought on the Methylerythritol 4-Phosphate (MEP) Pathway in the Isoprene Emitting Conifer Picea glauca. FRONTIERS IN PLANT SCIENCE 2020; 11:546295. [PMID: 33163010 PMCID: PMC7581940 DOI: 10.3389/fpls.2020.546295] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/17/2020] [Indexed: 05/27/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis produces chlorophyll side chains and compounds that function in resistance to abiotic stresses, including carotenoids, and isoprene. Thus we investigated the effects of moderate and severe drought on MEP pathway function in the conifer Picea glauca, a boreal species at risk under global warming trends. Although moderate drought treatment reduced the photosynthetic rate by over 70%, metabolic flux through the MEP pathway was reduced by only 37%. The activity of the putative rate-limiting step, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), was also reduced by about 50%, supporting the key role of this enzyme in regulating pathway metabolic flux. However, under severe drought, as flux declined below detectable levels, DXS activity showed no significant decrease, indicating a much-reduced role in controlling flux under these conditions. Both MEP pathway intermediates and the MEP pathway product isoprene incorporate administered 13CO2 to high levels (75-85%) under well-watered control conditions indicating a close connection to photosynthesis. However, this incorporation declined precipitously under drought, demonstrating exploitation of alternative carbon sources. Despite the reductions in MEP pathway flux and intermediate pools, there was no detectable decline in most major MEP pathway products under drought (except for violaxanthin under moderate and severe stress and isoprene under severe stress) suggesting that the pathway is somehow buffered against this stress. The resilience of the MEP pathway under drought may be a consequence of the importance of the metabolites formed under these conditions.
Collapse
Affiliation(s)
- Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Johann Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Francesco Loreto
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Bio-Agroalimentari, Roma, Italy
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
21
|
Montoya OLQ, Niño-Ruiz ED, Pinel N. On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35993-36012. [PMID: 32335834 DOI: 10.1007/s11356-020-08268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.
Collapse
Affiliation(s)
| | - Elías D Niño-Ruiz
- Computer Science Department, Universidad del Norte, Barranquilla, Colombia
| | - Nicolás Pinel
- Biodiversity Evolution and Conservation, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
22
|
Jardine KJ, Zorzanelli RF, Gimenez BO, Oliveira Piva LRD, Teixeira A, Fontes CG, Robles E, Higuchi N, Chambers JQ, Martin ST. Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. PHYTOCHEMISTRY 2020; 175:112366. [PMID: 32278887 DOI: 10.1016/j.phytochem.2020.112366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
Tropical forests are acknowledged to be the largest global source of isoprene (C5H8) and monoterpenes (C10H16) emissions, with current synthesis studies suggesting few tropical species emit isoprenoids (20-38%) and do so with highly variable emission capacities, including within the same genera. This apparent lack of a clear phylogenetic thread has created difficulties both in linking isoprenoid function with evolution and for the development of accurate biosphere-atmosphere models. Here, we present a systematic emission study of "hyperdominant" tree species in the Amazon Basin. Across 162 individuals, distributed among 25 botanical families and 113 species, isoprenoid emissions were widespread among both early and late successional species (isoprene: 61.9% of the species; monoterpenes: 15.0%; both isoprene and monoterpenes: 9.7%). The hyperdominant species (69) across the top five most abundant genera, which make up about 50% of all individuals in the Basin, had a similar abundance of isoprenoid emitters (isoprene: 63.8%; monoterpenes: 17.4%; both 11.6%). Among the abundant genera, only Pouteria had a low frequency of isoprene emitting species (15.8% of 19 species). In contrast, Protium, Licania, Inga, and Eschweilera were rich in isoprene emitting species (83.3% of 12 species, 61.1% of 18 species, 100% of 8 species, and 100% of 12 species, respectively). Light response curves of individuals in each of the five genera showed light-dependent, photosynthesis-linked emission rates of isoprene and monoterpenes. Importantly, in every genus, we observed species with light-dependent isoprene emissions together with monoterpenes including β-ocimene. These observations support the emerging view of the evolution of isoprene synthases from β-ocimene synthases. Our results have important implications for understanding isoprenoid function-evolution relationships and the development of more accurate Earth System Models.
Collapse
Affiliation(s)
- Kolby J Jardine
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil.
| | - Raquel F Zorzanelli
- Federal University of Espírito Santo (UFES), Ave. Governador Lindemberg, nº 316, Centro, Jerônimo, Monteiro, ES, 29.550-000, Brazil
| | - Bruno O Gimenez
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | | | - Andrea Teixeira
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Clarissa G Fontes
- College of Biological Sciences, University of Minnesota, 100 Ecology 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emily Robles
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; College of Natural Resources, University of California Berkeley, 260 Mulford Hall, Berkeley, CA, 94720, USA
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Jeffrey Q Chambers
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
23
|
Xu J, Trainotti L, Li M, Varotto C. Overexpression of Isoprene Synthase Affects ABA- and Drought-Related Gene Expression and Enhances Tolerance to Abiotic Stress. Int J Mol Sci 2020; 21:E4276. [PMID: 32560078 PMCID: PMC7352718 DOI: 10.3390/ijms21124276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 01/08/2023] Open
Abstract
Isoprene is the most abundant single biogenic volatile compound emitted by plants. Despite the relevance of this molecule to plant abiotic resistance and its impact on global atmospheric chemistry, little is known about the details of its mechanism of action. Here, we characterized through both physiological and molecular methods the mechanisms of action of isoprene using model transgenic arabidopsis lines overexpressing a monocot isoprene synthase gene. Our results demonstrated the effect that isoprene had on ABA signaling at different tissue-specific, spatial, and temporal scales. In particular, we found that isoprene enhanced stomatal sensitivity to ABA through upregulation of RD29B signaling gene. By contrast, isoprene decreased sensitivity to ABA in germinating seeds and roots, suggesting tissue-specific mechanisms of action. In leaves, isoprene caused the downregulation of COR15A and P5CS genes, suggesting that the enhanced tolerance to water-deprivation stress observed in isoprene-emitting plants may be mediated chiefly by an enhanced membrane integrity and tolerance to osmotic stress.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
- Dipartimento di Biologia, Università degli Studi di Padova, viale Giuseppe Colombo, 3, 35131 Padova, Italy;
| | - Livio Trainotti
- Dipartimento di Biologia, Università degli Studi di Padova, viale Giuseppe Colombo, 3, 35131 Padova, Italy;
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, via Mach 1, 38010 San Michele all’Adige (TN), Italy;
| |
Collapse
|
24
|
Faralli M, Li M, Varotto C. Shoot Characterization of Isoprene and Ocimene-Emitting Transgenic Arabidopsis Plants under Contrasting Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E477. [PMID: 32283654 PMCID: PMC7238224 DOI: 10.3390/plants9040477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Isoprenoids are among the most abundant biogenic volatile compounds (VOCs) emitted by plants, and mediate both biotic and abiotic stress responses. Here, we provide for the first time a comparative analysis of transgenic Arabidopsis lines constitutively emitting isoprene and ocimene. Transgenic lines and Columbia-0 (Col-0) Arabidopsis were characterized under optimal, water stress, and heat stress conditions. Under optimal conditions, the projected leaf area (PLA), relative growth rate, and final dry weight were generally higher in transgenics than Col-0. These traits were associated to a larger photosynthetic capacity and CO2 assimilation rate at saturating light. Isoprene and ocimene emitters displayed a moderately higher stress tolerance than Col-0, showing higher PLA and gas-exchange traits throughout the experiments. Contrasting behaviors were recorded for the two overexpressors under water stress, with isoprene emitters showing earlier stomatal closure (conservative behavior) than ocimene emitters (non-conservative behavior), which might suggest different induced strategies for water conservation and stress adaptation. Our work indicates that (i) isoprene and ocimene emitters resulted in enhanced PLA and biomass under optimal and control conditions and that (ii) a moderate stress tolerance is induced when isoprene and ocimene are constitutively emitted in Arabidopsis, thus providing evidence of their role as a potential preferable trait for crop improvement.
Collapse
Affiliation(s)
| | | | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all’Adige (TN), Italy; (M.F.); (M.L.)
| |
Collapse
|
25
|
Ormeño E, Viros J, Mévy JP, Tonetto A, Saunier A, Bousquet-Mélou A, Fernandez C. Exogenous Isoprene Confers Physiological Benefits in a Negligible Isoprene Emitter ( Acer monspessulanum L. ) Under Water Deficit. PLANTS 2020; 9:plants9020159. [PMID: 32012939 PMCID: PMC7076702 DOI: 10.3390/plants9020159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 01/27/2023]
Abstract
Isoprene, the main volatile released by plants, is known to protect the photosynthetic apparatus in isoprene emitters submitted to oxidative pressures caused by environmental constraints. Whether ambient isoprene contributes to protect negligible plant emitters under abiotic stress conditions is less clear, and no study has tested if ambient isoprene is beneficial during drought periods in plant species that naturally release negligible isoprene emissions. This study examines the effect of exogenous isoprene (20 ppbv) on net photosynthesis, stomatal conductance and production of H2O2 (a reactive oxygen species: ROS) in leaves of Acer monspessulanum (a negligible isoprene emitter) submitted to three watering treatments (optimal, moderate water stress and severe water stress). Results showed that A. monspessulanum exhibited a net photosynthesis increase (+30%) and a relative leaf H2O2 decrease when saplings were exposed to an enriched isoprene atmosphere compared to isoprene-free conditions under moderate water deficit. Such physiological improvement under isoprene exposure was not observed under optimal watering or severe water stress. These findings suggest that when negligible isoprene emitters are surrounded by a very high concentration of isoprene in the ambient air, some plant protection mechanism occurs under moderate water deficit probably related to protection against ROS damage eventually impeding photosynthesis drop.
Collapse
Affiliation(s)
- Elena Ormeño
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
- Correspondence: ; Tel.: +33-413-55-12-26
| | - Justine Viros
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Jean-Philippe Mévy
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Alain Tonetto
- Platform of analytical and technological research and imaging, FR1739, CNRS, Aix-Marseille Univ, Centrale Marseille, 13003 Marseille, France;
| | - Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Anne Bousquet-Mélou
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| | - Catherine Fernandez
- CNRS, Aix Marseille Univ, Avignon Univ, IRD, IMBE, 13331 Marseille, France; (J.V.); (J.-P.M.); (A.B.-M.); (C.F.)
| |
Collapse
|
26
|
Lehnert AS, Perreca E, Gershenzon J, Pohnert G, Trumbore SE. Simultaneous Real-Time Measurement of Isoprene and 2-Methyl-3-Buten-2-ol Emissions From Trees Using SIFT-MS. FRONTIERS IN PLANT SCIENCE 2020; 11:578204. [PMID: 33329639 PMCID: PMC7728719 DOI: 10.3389/fpls.2020.578204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
The C5 hemiterpenes isoprene and 2-methyl-3-buten-2-ol (MBO) are important biogenic volatiles emitted from terrestrial vegetation. Isoprene is emitted from many plant groups, especially trees such as Populus, while emission of MBO is restricted to certain North American conifers, including species of Pinus. MBO is also a pheromone emitted by several conifer bark beetles. Both isoprene and MBO have typically been measured by proton-transfer reaction mass spectrometry (PTR-MS), but this method cannot accurately distinguish between them because of their signal overlap. Our study developed a method for using selective ion flow tube mass spectrometry (SIFT-MS) that allows simultaneous on-line measurement of isoprene and MBO by employing different reagent ions. The use of m/z(NO+) = 68 u for isoprene and m/z(O2 +) = 71 u for MBO gave minimal interference between the compounds. We tested the suitability of the method by measuring the emission of young trees of Populus, Picea, and Pinus. Our results largely confirm previous findings that Populus nigra, Picea glauca, and Picea abies emit isoprene and Pinus ponderosa emits MBO, but we also found MBO to be emitted by Picea abies. Thus SIFT-MS provides a reliable, easy to use, on-line measuring tool to distinguish between isoprene and MBO. The method should be of use to atmospheric chemists, tree physiologists and forest entomologists, among others.
Collapse
Affiliation(s)
- Ann-Sophie Lehnert
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Jena, Germany
- *Correspondence: Ann-Sophie Lehnert,
| | - Erica Perreca
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Jena, Germany
| | - Susan E. Trumbore
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
27
|
Impact of Drought and Salinity on Sweetgum Tree (Liquidambar styraciflua L.): Understanding Tree Ecophysiological Responses in the Urban Context. FORESTS 2019. [DOI: 10.3390/f10111032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding urban tree responses to drought, salt stress, and co-occurring stresses, as well as the capability to recover afterward, is important to prevent the cited stresses’ negative effects on tree performance and ecological functionality. We investigated the impact of drought and salinity, alone and in combination, on leaf water potential, gas exchange, chlorophyll a fluorescence, xanthophyll cycle pigments, and isoprene emission of the urban tree species Liquidambar styraciflua L. Generally, drought had a rapid negative impact, while the effect of salt stress was more long lasting. Both stressors significantly decreased photosynthesis, transpiration, and stomatal conductance, as well as the maximum quantum efficiency of photosystem II (Fv/Fm) and the photochemical efficiency of PSII (ΦPSII), but increased nonphotochemical quenching (NPQ). Under stress conditions, a strong negative correlation between the PSII efficiency and the xanthophyll cycle pigment composition indicated a nocturnal retention of zeaxanthin and antheraxanthin in a state primed for energy dissipation. Drought and salt stress inhibited isoprene emission from leaves, although its emission was less responsive to stresses than stomatal conductance and photosynthesis. Full recovery of photosynthetic parameters took place after rewatering and washing off of excess salt, indicating that no permanent damage occurred, and suggesting downregulation rather than permanent impairment of the photosynthetic apparatus. Sweetgum trees were capable of withstanding and surviving moderate drought and salt events by activating defense mechanisms conferring tolerance to environmental stresses, without increasing the emission in the atmosphere of the highly reactive isoprene.
Collapse
|
28
|
Gionfriddo M, De Gara L, Loreto F. Directed Evolution of Plant Processes: Towards a Green (r)Evolution? TRENDS IN PLANT SCIENCE 2019; 24:999-1007. [PMID: 31604600 DOI: 10.1016/j.tplants.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 05/13/2023]
Abstract
Directed evolution (DE) is a powerful approach for generating proteins with new chemical and physical properties. It mimics the principles of Darwinian evolution by imposing selective pressure on a large population of molecules harboring random genetic variation in DNA, such that sequences with specific desirable properties are generated and selected. We propose that combining DE and genome-editing (DE-GE) technologies represents a powerful tool to discover and integrate new traits into plants for agronomic and biotechnological gain. DE-GE has the potential to deliver a new green (r)evolution research platform that can provide novel solutions to major trait delivery aspirations for sustainable agriculture, climate-resilient crops, and improved food security and nutritional quality.
Collapse
Affiliation(s)
- Matteo Gionfriddo
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico, University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Francesco Loreto
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Department of Biology, University Federico II, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
29
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, Navajas D, Peñuelas J, Hussey PJ, Knight MR, Loreto F. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. THE NEW PHYTOLOGIST 2019; 223:1307-1318. [PMID: 30980545 DOI: 10.1111/nph.15847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/07/2019] [Indexed: 05/13/2023]
Abstract
At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Ignasi Jorba
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Timothy J Hawkins
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Daniel Navajas
- University of Barcelona and Institute for Bioengineering of Catalonia - The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, DH1 3LE, Durham, UK
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, 00185, Rome, Italy
- Department of Biology, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| |
Collapse
|
31
|
Taylor TC, Smith MN, Slot M, Feeley KJ. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. PLANT, CELL & ENVIRONMENT 2019; 42:2448-2457. [PMID: 30993708 DOI: 10.1111/pce.13564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 05/07/2023]
Abstract
Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non-emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co-occurring tropical tree and liana species to test whether isoprene-emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non-emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene-emitting species than for non-emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt ) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non-emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co-limit photosynthesis above Topt . Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co-occurring non-emitting species.
Collapse
Affiliation(s)
- Tyeen C Taylor
- Department of Biological Sciences, University of Miami, Coral Gables, FL
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Kenneth J Feeley
- Department of Biological Sciences, University of Miami, Coral Gables, FL
| |
Collapse
|
32
|
Guidolotti G, Pallozzi E, Gavrichkova O, Scartazza A, Mattioni M, Loreto F, Calfapietra C. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: A 13 C labelling study. PLANT, CELL & ENVIRONMENT 2019; 42:1929-1938. [PMID: 30663094 DOI: 10.1111/pce.13521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13 C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat-stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat-stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.
Collapse
Affiliation(s)
- Gabriele Guidolotti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Monterotondo Scalo, 01500, Italy
| | - Emanuele Pallozzi
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Monterotondo Scalo, 01500, Italy
| | - Olga Gavrichkova
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
- Department of Landscape Design and Sustainable Ecosystems, Agrarian-technological Institute, RUDN University, Moscow, 117198, Russia
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa, 56124, Italy
| | - Michele Mattioni
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
| | - Carlo Calfapietra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
| |
Collapse
|
33
|
Feng Z, Yuan X, Fares S, Loreto F, Li P, Hoshika Y, Paoletti E. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. PLANT, CELL & ENVIRONMENT 2019; 42:1939-1949. [PMID: 30767225 DOI: 10.1111/pce.13535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 05/03/2023]
Abstract
Isoprene and monoterpenes (MTs) are among the most abundant and reactive volatile organic compounds produced by plants (biogenic volatile organic compounds). We conducted a meta-analysis to quantify the mean effect of environmental factors associated to climate change (warming, drought, elevated CO2 , and O3 ) on the emission of isoprene and MTs. Results indicated that all single factors except warming inhibited isoprene emission. When subsets of data collected in experiments run under similar change of a given environmental factor were compared, isoprene and photosynthesis responded negatively to elevated O3 (-8% and -10%, respectively) and drought (-15% and -42%), and in opposite ways to elevated CO2 (-23% and +55%) and warming (+53% and -23%, respectively). Effects on MTs emission were usually not significant, with the exceptions of a significant stimulation caused by warming (+39%) and by elevated O3 (limited to O3 -insensitive plants, and evergreen species with storage organs). Our results clearly highlight individual effects of environmental factors on isoprene and MT emissions, and an overall uncoupling between these secondary metabolites produced by the same methylerythritol 4-phosphate pathway. Future results from manipulative experiments and long-term observations may help untangling the interactive effects of these factors and filling gaps featured in the current meta-analysis.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Silvano Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Forestry and Wood, Arezzo, 52100, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
- Department of Biology, University Federico II, Naples, 80138, Italy
| | - Pin Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yasutomo Hoshika
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), 50019, Italy
| |
Collapse
|
34
|
Paixão JS, Da Silva JR, Ruas KF, Rodrigues WP, Filho JAM, Bernado WDP, Abreu DP, Ferreira LS, Gonzalez JC, Griffin KL, Ramalho JC, Campostrini E. Photosynthetic capacity, leaf respiration and growth in two papaya ( Carica papaya) genotypes with different leaf chlorophyll concentrations. AOB PLANTS 2019; 11:plz013. [PMID: 30949326 PMCID: PMC6441136 DOI: 10.1093/aobpla/plz013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 06/06/2023]
Abstract
Golden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as 'Sunrise Solo', which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour 'Sunrise Solo' and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yield.
Collapse
Affiliation(s)
- Jéssica Sousa Paixão
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Jefferson Rangel Da Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Rodovia Anhanguera, Cordeirópolis, São Paulo, Brazil
| | - Katherine Fraga Ruas
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - José Altino Machado Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rual, Rua Afonso Sarlo, Bento, Ferreira, Vitória, Espírito Santo, Brazil
| | - Wallace de Paula Bernado
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Deivisson Pelegrino Abreu
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciene Souza Ferreira
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Kevin Lee Griffin
- Department of Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - José Cochicho Ramalho
- Lab. Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Av. República, Oeiras, Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Austen N, Walker HJ, Lake JA, Phoenix GK, Cameron DD. The Regulation of Plant Secondary Metabolism in Response to Abiotic Stress: Interactions Between Heat Shock and Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2019; 10:1463. [PMID: 31803207 PMCID: PMC6868642 DOI: 10.3389/fpls.2019.01463] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/22/2019] [Indexed: 05/06/2023]
Abstract
Future climate change is set to have an impact on the physiological performance of global vegetation. Increasing temperature and atmospheric CO2 concentration will affect plant growth, net primary productivity, photosynthetic capability, and other biochemical functions that are essential for normal metabolic function. Alongside the primary metabolic function effects of plant growth and development, the effect of stress on plant secondary metabolism from both biotic and abiotic sources will be impacted by changes in future climate. Using an untargeted metabolomic fingerprinting approach alongside emissions measurements, we investigate for the first time how elevated atmospheric CO2 and temperature both independently and interactively impact on plant secondary metabolism through resource allocation, with a resulting "trade-off" between secondary metabolic processes in Salix spp. and in particular, isoprene biosynthesis. Although it has been previously reported that isoprene is suppressed in times of elevated CO2, and that isoprene emissions increase as a response to short-term heat shock, no study has investigated the interactive effects at the metabolic level. We have demonstrated that at a metabolic level isoprene is still being produced during periods of both elevated CO2 and temperature, and that ultimately temperature has the greater effect. With global temperature and atmospheric CO2 concentrations rising as a result of anthropogenic activity, it is imperative to understand the interactions between atmospheric processes and global vegetation, especially given that global isoprene emissions have the potential to contribute to atmospheric warming mitigation.
Collapse
Affiliation(s)
- Nichola Austen
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Heather J Walker
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Janice Ann Lake
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gareth K Phoenix
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
36
|
Velikova V, Tsonev T, Tattini M, Arena C, Krumova S, Koleva D, Peeva V, Stojchev S, Todinova S, Izzo LG, Brunetti C, Stefanova M, Taneva S, Loreto F. Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. CONSERVATION PHYSIOLOGY 2018; 6:coy073. [PMID: 30591840 PMCID: PMC6301291 DOI: 10.1093/conphys/coy073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Platanus orientalis covers a very fragmented area in Europe and, at the edge of its natural distribution, is considered a relic endangered species near extinction. In our study, it was hypothesized that individuals from the edge of the habitat, with stronger climate constrains (drier and warmer environment, Italy, IT ecotype), developed different mechanisms of adaptation than those growing under optimal conditions at the center of the habitat (more humid and colder environment, Bulgaria, BG ecotype). Indeed, the two P. orientalis ecotypes displayed physiological, structural and functional differences already under control (unstressed) conditions. Adaptation to a dry environment stimulated constitutive isoprene emission, determined active stomatal behavior, and modified chloroplast ultrastructure, ultimately allowing more effective use of absorbed light energy for photochemistry. When exposed to short-term acute drought stress, IT plants showed active stomatal control that enhanced instantaneous water use efficiency, and stimulation of isoprene emission that sustained photochemistry and reduced oxidative damages to membranes, as compared to BG plants. None of the P. orientalis ecotypes recovered completely from drought stress after re-watering, confirming the sensitivity of this mesophyte to drought. Nevertheless, the IT ecotype showed less damage and better stability at the level of chloroplast membrane parameters when compared to the BG ecotype, which we interpret as possible adaptation to hostile environments and improved capacity to cope with future, likely more recurrent, drought stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, Italy
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | | | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Svetoslav Stojchev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | | | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
37
|
Brunetti C, Loreto F, Ferrini F, Gori A, Guidi L, Remorini D, Centritto M, Fini A, Tattini M. Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress. TREE PHYSIOLOGY 2018; 38:1640-1654. [PMID: 30137639 DOI: 10.1093/treephys/tpy089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/24/2018] [Indexed: 05/19/2023]
Abstract
Over the past decades, introduction of many fast-growing hygrophilic, and economically valuable plants into xeric environments has occurred. However, production and even survival of these species may be threatened by harsh climatic conditions unless an effective physiological and metabolic plasticity is available. Moringa oleifera Lam., a multipurpose tree originating from humid sub-tropical regions of India, is widely cultivated in many arid countries because of its multiple uses. We tested whether M. oleifera can adjust primary and secondary metabolism to efficiently cope with increasing water stress. It is shown that M. oleifera possesses an effective isohydric behavior. Water stress induced a quick and strong stomatal closure, driven by abscisic acid (ABA) accumulation, and leading to photosynthesis inhibition with consequent negative effects on biomass production. However, photochemistry was not impaired and maximal fluorescence and saturating photosynthesis remained unaffected in stressed leaves. We report for the first time that M. oleifera produces isoprene, and show that isoprene emission increased three-fold during stress progression. It is proposed that higher isoprene biosynthesis helps leaves cope with water stress through its antioxidant or membrane stabilizing action, and also indicates a general MEP (methylerythritol 4-phosphate) pathway activation that further helps protect photosynthesis under water stress. Increased concentrations of antioxidant flavonoids were also observed in water stressed leaves, and probably cooperate in limiting irreversible effects of the stress in M. oleifera leaves. The observed metabolic and phenotypic plasticity may facilitate the establishment of M. oleifera in xeric environments, sustaining the economic and environmental value of this plant.
Collapse
Affiliation(s)
- Cecilia Brunetti
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy
| | - Francesco Ferrini
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mauro Centritto
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, Sesto Fiorentino (Florence), Italy
| | - Alessio Fini
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Massimiliano Tattini
- National Research Council of Italy, Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
38
|
Fernández-Martínez M, Llusià J, Filella I, Niinemets Ü, Arneth A, Wright IJ, Loreto F, Peñuelas J. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. THE NEW PHYTOLOGIST 2018; 220:773-784. [PMID: 29120052 PMCID: PMC6345376 DOI: 10.1111/nph.14889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/16/2017] [Indexed: 05/04/2023]
Abstract
The emission of isoprenoids (e.g. isoprene and monoterpenes) by plants plays an important defensive role against biotic and abiotic stresses. Little is known, however, about the functional traits linked to species-specific variability in the types and rates of isoprenoids emitted and about possible co-evolution of functional traits with isoprenoid emission type (isoprene emitter, monoterpene emitter or both). We combined data for isoprene and monoterpene emission rates per unit dry mass with key functional traits (foliar nitrogen (N) and phosphorus (P) concentrations, and leaf mass per area) and climate for 113 plant species, covering the boreal, wet temperate, Mediterranean and tropical biomes. Foliar N was positively correlated with isoprene emission, and foliar P was negatively correlated with both isoprene and monoterpene emission rate. Nonemitting plants generally had the highest nutrient concentrations, and those storing monoterpenes had the lowest concentrations. Our phylogenetic analyses found that the type of isoprenoid emission followed an adaptive, rather than a random model of evolution. Evolution of isoprenoids may be linked to nutrient availability. Foliar N and P are good predictors of the type of isoprenoid emission and the rate at which monoterpenes, and to a lesser extent isoprene, are emitted.
Collapse
Affiliation(s)
- Marcos Fernández-Martínez
- Centre of Excellence PLECO (Plant and Vegetation Ecology),
Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Iolanda Filella
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Ülo Niinemets
- Estonian University of Life Sciences, Institute of Agricultural and
Environmental Sciences, 1 Kreutzwaldi, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Almut Arneth
- Karlsruhe Institute of Technology, Atmospheric Environmental
Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ian J. Wright
- Department of Biological Sciences, Macquarie University, NSW 2109,
Australia
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology,
Agriculture and Food Sciences (CNR-DISBA), Piazzale Aldo Moro 7, Rome, Italy
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| |
Collapse
|
39
|
Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, van Haren J, Simova I, Meir P, Ferreira LV, de Camargo PB, da Costa ACL, Enquist BJ, Saleska SR. Isoprene emission structures tropical tree biogeography and community assembly responses to climate. THE NEW PHYTOLOGIST 2018; 220:435-446. [PMID: 29974469 DOI: 10.1111/nph.15304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.
Collapse
Affiliation(s)
- Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sean M McMahon
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD, 21307, USA
| | - Marielle N Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brad Boyle
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Hardner & Gullison Associates, LLC, 15 Woodland Drive, Amherst, NH, 03031, USA
| | - Cyrille Violle
- Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS - Université de Montpellier - Université Paul Valéry Montpellier, EPHE, Montpellier, France
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S. Biosphere Road, Oracle, AZ, 85623, USA
| | - Irena Simova
- Center for Theoretical Study, Charles University, Praha, 11636, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Praha, Czech Republic
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK
| | - Leandro V Ferreira
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, 66040-170, Belém, PA, Brazil
| | - Plinio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, 13400-970, Piracicaba, São Paulo, Brazil
| | - Antonio C L da Costa
- Centro de Geociências, Universidade Federal do Pará, 66017-970, Belém, PA, Brazil
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
40
|
Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. PLANT, CELL & ENVIRONMENT 2018; 41:1673-1682. [PMID: 29601632 DOI: 10.1111/pce.13204] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/22/2023]
Abstract
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress-related genes are significantly up-regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)-3-hexen-1-yl acetate (Z-3-HAC), and that seedlings primed with Z-3-HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.
Collapse
Affiliation(s)
- Tristan M Cofer
- Department of Environmental Science and Ecology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Center for Chemical Ecology, Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Marie Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
41
|
Wang B, Shuman J, Shugart HH, Lerdau MT. Biodiversity matters in feedbacks between climate change and air quality: a study using an individual-based model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:1223-1231. [PMID: 29603469 DOI: 10.1002/eap.1721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Air quality is closely associated with climate change via the biosphere because plants release large quantities of volatile organic compounds (VOC) that mediate both gaseous pollutants and aerosol dynamics. Earlier studies, which considered only leaf physiology and simply scale up from leaf-level enhancements of emissions, suggest that climate warming enhances whole forest VOC emissions, and these increased VOC emissions aggravate ozone pollution and secondary organic aerosol formation. Using an individual-based forest VOC emissions model, UVAFME-VOC, that simulates system-level emissions by explicitly simulating forest community dynamics to the individual tree level, ecological competition among the individuals of differing size and age, and radiative transfer and leaf function through the canopy, we find that climate warming only sometimes stimulates isoprene emissions (the single largest source of non-methane hydrocarbon) in a southeastern U.S. forest. These complex patterns result from the combination of higher temperatures' stimulating emissions at the leaf level but decreasing the abundance of isoprene-emitting taxa at the community level by causing a decline in the abundance of isoprene-emitting species (Quercus spp.). This ecological effect eventually outweighs the physiological one, thus reducing overall emissions. Such reduced emissions have far-reaching implications for the climate-air-quality relationships that have been established on the paradigm of warming-enhancement VOC emissions from vegetation. This local scale modeling study suggests that community ecology rather than only individual physiology should be integrated into future studies of biosphere-climate-chemistry interactions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| | - Jacquelyn Shuman
- Terrestrial Sciences Section, Climate and Global Dynamics, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, Colorado, 80305, USA
| | - Herman H Shugart
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Clark Hall, 291 McCormick Road, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
42
|
Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake. Sci Rep 2018; 8:630. [PMID: 29330538 PMCID: PMC5766545 DOI: 10.1038/s41598-017-18923-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
Biogenic volatile organic compounds (BVOCs) affect atmospheric chemistry, climate and regional air quality in terrestrial and marine atmospheres. Although isoprene is a major BVOC produced in vascular plants, and marine phototrophs release dimethyl sulfide (DMS), lakes have been widely ignored for their production. Here we demonstrate that oligotrophic Lake Constance, a model for north temperate deep lakes, emits both volatiles to the atmosphere. Depth profiles indicated that highest concentrations of isoprene and DMS were associated with the chlorophyll maximum, suggesting that their production is closely linked to phototrophic processes. Significant correlations of the concentration patterns with taxon-specific fluorescence data, and measurements from algal cultures confirmed the phototrophic production of isoprene and DMS. Diurnal fluctuations in lake isoprene suggested an unrecognised physiological role in environmental acclimation similar to the antioxidant function of isoprene that has been suggested for marine biota. Flux estimations demonstrated that lakes are a currently undocumented source of DMS and isoprene to the atmosphere. Lakes may be of increasing importance for their contribution of isoprene and DMS to the atmosphere in the arctic zone where lake area coverage is high but terrestrial sources of BVOCs are small.
Collapse
|
43
|
Wilson J, Gering S, Pinard J, Lucas R, Briggs BR. Bio-production of gaseous alkenes: ethylene, isoprene, isobutene. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:234. [PMID: 30181774 PMCID: PMC6114056 DOI: 10.1186/s13068-018-1230-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed.
Collapse
Affiliation(s)
- James Wilson
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Sarah Gering
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Ryan Lucas
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| |
Collapse
|
44
|
Li M, Xu J, Algarra Alarcon A, Carlin S, Barbaro E, Cappellin L, Velikova V, Vrhovsek U, Loreto F, Varotto C. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases. Mol Biol Evol 2017; 34:2583-2599. [PMID: 28637270 PMCID: PMC5850473 DOI: 10.1093/molbev/msx178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Jia Xu
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Alberto Algarra Alarcon
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, San Michele all’Adige (TN), Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (TN), Italy
| |
Collapse
|
45
|
Fini A, Brunetti C, Loreto F, Centritto M, Ferrini F, Tattini M. Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change. FRONTIERS IN PLANT SCIENCE 2017; 8:1281. [PMID: 28798754 PMCID: PMC5526906 DOI: 10.3389/fpls.2017.01281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 05/12/2023]
Abstract
The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection.
Collapse
Affiliation(s)
- Alessio Fini
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Science, National Research Council of ItalyRome, Italy
| | - Mauro Centritto
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Trees and Timber InstituteSesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| | - Massimiliano Tattini
- Department of Biology, Agriculture and Food Science, National Research Council of Italy, Institute for Sustainable Plant ProtectionSesto Fiorentino, Italy
| |
Collapse
|
46
|
Ahrar M, Doneva D, Tattini M, Brunetti C, Gori A, Rodeghiero M, Wohlfahrt G, Biasioli F, Varotto C, Loreto F, Velikova V. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2439-2451. [PMID: 28449129 DOI: 10.1093/jxb/erx125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arundo donax has been identified as an important biomass and biofuel crop. Yet, there has been little research on photosynthetic and metabolic traits, which sustain the high productivity of A. donax under drought conditions. This study determined phenotypic differences between two A. donax ecotypes coming from stands with contrasting adaptation to dry climate. We hypothesized that the Bulgarian (BG) ecotype, adapted to drier conditions, exhibits greater drought tolerance than the Italian (IT) ecotype, adapted to a more mesic environment. Under well-watered conditions the BG ecotype was characterized by higher photosynthesis, mesophyll conductance, intrinsic water use efficiency, PSII efficiency, isoprene emission rate and carotenoids, whereas the IT ecotype showed higher levels of hydroxycinnamates. Photosynthesis of water-stressed plants was mainly limited by diffusional resistance to CO2 in BG, and by biochemistry in IT. Recovery of photosynthesis was more rapid and complete in BG than in IT, which may indicate better stability of the photosynthetic apparatus associated to enhanced induction of volatile and non-volatile isoprenoids and phenylpropanoid biosynthesis. This study shows that a large phenotypic plasticity among A. donax ecotypes exists, and may be exploited to compensate for the low genetic variability of this species when selecting plant productivity in constrained environments.
Collapse
Affiliation(s)
- Mastaneh Ahrar
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Massimiliano Tattini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, Italy
| | - Cecilia Brunetti
- The National Research Council of Italy (CNR), Trees and Timber Institute, Sesto Fiorentino, Florence, Italy
- Department of Plant, Soil and Environmental Sciences, University of Florence, Florence, Italy
| | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Mirco Rodeghiero
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Georg Wohlfahrt
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Volatile Compound Facility, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Francesco Loreto
- The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Science, Rome, Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
47
|
Velikova V, Brunetti C, Tattini M, Doneva D, Ahrar M, Tsonev T, Stefanova M, Ganeva T, Gori A, Ferrini F, Varotto C, Loreto F. Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. PLANT, CELL & ENVIRONMENT 2016; 39:2185-97. [PMID: 27351898 DOI: 10.1111/pce.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 05/26/2023]
Abstract
Physiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought-stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non-volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy.
| | - Cecilia Brunetti
- Trees and Timber Institute, The National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino, 50019, Florence, Italy
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Mastaneh Ahrar
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
- Institute of Ecology, University of Innsbruck, Austria
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | | | - Tsveta Ganeva
- Faculty of Biology, Sofia University, 1113, Sofia, Bulgaria
| | - Antonella Gori
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Francesco Ferrini
- Department of Plant, Soil and Environmental Sciences, University of Florence, Viale delle Idee 30, Sesto Fiorentino, 50019, Florence, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), 00185, Rome, Italy
| |
Collapse
|
48
|
El Khawand M, Crombie AT, Johnston A, Vavlline DV, McAuliffe JC, Latone JA, Primak YA, Lee SK, Whited GM, McGenity TJ, Murrell JC. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ Microbiol 2016; 18:2743-53. [PMID: 27102583 DOI: 10.1111/1462-2920.13345] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs. Although methanotrophs, capable of growth on methane, have been intensively studied, we know little of isoprene biodegradation. Here, we report the isolation of two isoprene-degrading strains from the terrestrial environment and describe the design and testing of polymerase chain reaction (PCR) primers targeting isoA, the gene encoding the active-site component of the conserved isoprene monooxygenase, which are capable of retrieving isoA sequences from isoprene-enriched environmental samples. Stable isotope probing experiments, using biosynthesized (13) C-labelled isoprene, identified the active isoprene-degrading bacteria in soil. This study identifies novel isoprene-degrading strains using both culture-dependent and, for the first time, culture-independent methods and provides the tools and foundations for continued investigation of the biogeography and molecular ecology of isoprene-degrading bacteria.
Collapse
Affiliation(s)
| | | | | | - Dmitrii V Vavlline
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Joseph C McAuliffe
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Jacob A Latone
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Yuliya A Primak
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Sang-Kyu Lee
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Gregg M Whited
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| | | | - J Colin Murrell
- University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
49
|
Dani KGS, Fineschi S, Michelozzi M, Loreto F. Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? PLANT, CELL & ENVIRONMENT 2016; 39:1103-11. [PMID: 26729201 DOI: 10.1111/pce.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/06/2015] [Accepted: 12/16/2015] [Indexed: 05/09/2023]
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, 2109, New South Wales, Australia
| | - Silvia Fineschi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marco Michelozzi
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185, Roma, Italy
| |
Collapse
|
50
|
Kessler A. Introduction to a Virtual Special Issue on plant volatiles. THE NEW PHYTOLOGIST 2016; 209:1333-1337. [PMID: 26840247 DOI: 10.1111/nph.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|