1
|
Wei B, Cheng G, Bi Q, Lu C, Sun Q, Li L, Chen N, Hu M, Lu H, Xu X, Mao G, Wan S, Hu Z, Gu Y, Zheng J, Zhao L, Shen XZ, Liu X, Shi P. Microglia in the hypothalamic paraventricular nucleus sense hemodynamic disturbance and promote sympathetic excitation in hypertension. Immunity 2024; 57:2030-2042.e8. [PMID: 39116878 DOI: 10.1016/j.immuni.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Hypertension is usually accompanied by elevated sympathetic tonicity, but how sympathetic hyperactivity is triggered is not clear. Recent advances revealed that microglia-centered neuroinflammation contributes to sympathetic excitation in hypertension. In this study, we performed a temporospatial analysis of microglia at both morphological and transcriptomic levels and found that microglia in the hypothalamic paraventricular nucleus (PVN), a sympathetic center, were early responders to hypertensive challenges. Vasculature analyses revealed that the PVN was characterized by high capillary density, thin vessel diameter, and complex vascular topology relative to other brain regions. As such, the PVN was susceptible to the penetration of ATP released from the vasculature in response to hemodynamic disturbance after blood pressure increase. Mechanistically, ATP ligation to microglial P2Y12 receptor was responsible for microglial inflammatory activation and the eventual sympathetic overflow. Together, these findings identified a distinct vasculature pattern rendering vulnerability of PVN pre-sympathetic neurons to hypertension-associated microglia-mediated inflammatory insults.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qihang Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Miner Hu
- Department of Cardiology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Haoran Lu
- Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Xuancheng Xu
- Zhejiang Chinese Medical University, Hangzhou 310013, China; Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Zhechun Hu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China; Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Zheng
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministrey of Education, Collage of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310013, China.
| |
Collapse
|
2
|
Gao HL, Yang Y, Tian H, Xu SL, Li BW, Fu LY, Liu KL, Shi XL, Kang YM, Yu XJ. Puerarin Alleviates Blood Pressure via Inhibition of ROS/TLR4/NLRP3 Inflammasome Signaling Pathway in the Hypothalamic Paraventricular Nucleus of Salt-Induced Prehypertensive Rats. Nutrients 2024; 16:2580. [PMID: 39203718 PMCID: PMC11356837 DOI: 10.3390/nu16162580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. PURPOSE The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. METHODS Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. RESULTS We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. CONCLUSION We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi 154007, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Shen-Liang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Bo-Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, China
| |
Collapse
|
3
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
4
|
Strohm AO, Majewska AK. Physical exercise regulates microglia in health and disease. Front Neurosci 2024; 18:1420322. [PMID: 38911597 PMCID: PMC11192042 DOI: 10.3389/fnins.2024.1420322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
There is a well-established link between physical activity and brain health. As such, the effectiveness of physical exercise as a therapeutic strategy has been explored in a variety of neurological contexts. To determine the extent to which physical exercise could be most beneficial under different circumstances, studies are needed to uncover the underlying mechanisms behind the benefits of physical activity. Interest has grown in understanding how physical activity can regulate microglia, the resident immune cells of the central nervous system. Microglia are key mediators of neuroinflammatory processes and play a role in maintaining brain homeostasis in healthy and pathological settings. Here, we explore the evidence suggesting that physical activity has the potential to regulate microglia activity in various animal models. We emphasize key areas where future research could contribute to uncovering the therapeutic benefits of engaging in physical exercise.
Collapse
Affiliation(s)
- Alexandra O. Strohm
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Silva-Filho E, Bikson M, Gebodh N, Khadka N, da Cruz Santos A, Pegado R, do Socorro Brasileiro-Santos M. A pilot randomized controlled trial of transcranial direct current stimulation adjunct to moderate-intensity aerobic exercise in hypertensive individuals. FRONTIERS IN NEUROERGONOMICS 2024; 5:1236486. [PMID: 38660589 PMCID: PMC11040684 DOI: 10.3389/fnrgo.2024.1236486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Background Hypertension is a global issue that is projected to worsen with increasingly obese populations. The central nervous system including the parts of the cortex plays a key role in hemodynamic stability and homeostatic control of blood pressure (BP), making them critical components in understanding and investigating the neural control of BP. This study investigated the effects of anodal transcranial direct current stimulation (tDCS) associated with aerobic physical exercise on BP and heart rate variability in hypertensive patients. Methods Twenty hypertensive patients were randomized into two groups: active tDCS associated with aerobic exercise or sham tDCS associated with aerobic exercise. BP and heart rate variability were analyzed before (baseline) and after twelve non-consecutive sessions. After each tDCS session (2 mA for 20 min), moderate-intensity aerobic exercise was carried out on a treadmill for 40 min. Results A total of 20 patients were enrolled (53.9 ± 10.6 years, 30.1 ± 3.7 Kg/m2). There were no significant interactions between time and groups on diastolic BP during wake, sleep, over 24 and 3 h after the last intervention. Heart rate variability variables showed no significant difference for time, groups and interaction analysis, except for HF (ms2) between groups (p < 0.05). Conclusion Anodal tDCS over the temporal cortex associated with aerobic exercise did not induce improvements in BP and heart rate variability. Clinical trial registration https://ensaiosclinicos.gov.br/rg/RBR-56jg3n/1, identifier: RBR-56jg3n.
Collapse
Affiliation(s)
- Edson Silva-Filho
- Associated Postgraduate Program in Physical Education, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Postgraduate Program in Physiotherapy and Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Santa Cruz, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, United States
| | - Nigel Gebodh
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, United States
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, United States
| | - Amilton da Cruz Santos
- Associated Postgraduate Program in Physical Education, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rodrigo Pegado
- Postgraduate Program in Physiotherapy and Postgraduate Program in Health Science, Federal University of Rio Grande do Norte, Santa Cruz, Brazil
| | | |
Collapse
|
6
|
Bernardo EM, Pedroza AADS, Ferreira DJS, de Andrade SC, Rozendo A, Fernandes MSDS, Silva TL, Fernandes MP, Lagranha CJ. The deleterious effects of maternal protein deprivation on the brainstem are minimized with moderate physical activity by offspring during early life. Appl Physiol Nutr Metab 2024; 49:157-166. [PMID: 37816257 DOI: 10.1139/apnm-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Maternal protein malnutrition during developmental periods might impair the redox state and the brain's excitatory/inhibitory neural network, increasing central sympathetic tone. Conversely, moderate physical exercise at an early age reduces the risk of chronic diseases. Thus, we hypothesized that a moderate training protocol could reduce the harmful effects of a low-protein maternal diet on the brainstem of young male offspring. We used a rat model of maternal protein restriction during the gestational and lactation period followed by an offspring's continuous treadmill exercise. Pregnant rats were divided into two groups according to the protein content in the diet: normoprotein (NP), receiving 17% of casein, and low protein (LP), receiving 8% of casein until the end of lactation. At 30 days of age, the male offspring were further subdivided into sedentary (NP-Sed and LP-Sed) or exercised (NP-Ex and LP-Ex) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. The trained animals performed a treadmill exercise at 50% of the maximal running capacity, 60 min/day, 5 days/week, for 4 weeks. Our results indicate that a low-protein diet promotes deficits in the antioxidant system and a likely mitochondrial uncoupling. On the other hand, physical exercise restores the redox balance, which leads to decreased oxidative stress caused by the diet. In addition, it also promotes benefits to GABAergic inhibitory signaling. We conclude that regular moderate physical exercise performed in youthhood protects the brainstem against changes induced by maternal protein restriction.
Collapse
Affiliation(s)
| | | | | | - Severina Cassia de Andrade
- Neuropsyquiatry and Behavioral Science Graduate Program, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Allifer Rozendo
- Laboratory of Biochemistry and Exercise Biochemistry/CAV, Federal University of Pernambuco, Vitoria de Santo Antao, PE, Brazil
| | | | - Tercya Lucidi Silva
- Neuropsyquiatry and Behavioral Science Graduate Program, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Mariana Pinheiro Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry/CAV, Federal University of Pernambuco, Vitoria de Santo Antao, PE, Brazil
| | - Claudia J Lagranha
- Biochemistry and Physiology Graduate Program, Federal University of Pernambuco, Recife, PE, Brazil
- Neuropsyquiatry and Behavioral Science Graduate Program, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry/CAV, Federal University of Pernambuco, Vitoria de Santo Antao, PE, Brazil
| |
Collapse
|
7
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
8
|
Zheng X, Lu J, Liu J, Zhou L, He Y. HMGB family proteins: Potential biomarkers and mechanistic factors in cardiovascular diseases. Biomed Pharmacother 2023; 165:115118. [PMID: 37437373 DOI: 10.1016/j.biopha.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.
Collapse
Affiliation(s)
- Xialei Zheng
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Junmi Lu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jing Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liufang Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cardiovascular Medicine, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Yuhu He
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
9
|
Qu X, Hou X, Zhu K, Chen W, Chen K, Sang X, Wang C, Zhang Y, Xu H, Wang J, Hou Q, Lv L, Hou L, Zhang D. Neutrophil extracellular traps facilitate sympathetic hyperactivity by polarizing microglia toward M1 phenotype after traumatic brain injury. FASEB J 2023; 37:e23112. [PMID: 37534961 DOI: 10.1096/fj.202300752r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Traumatic brain injury (TBI), particularly diffuse axonal injury (DAI), often results in sympathetic hyperactivity, which can exacerbate the prognosis of TBI patients. A key component of this process is the role of neutrophils in causing neuroinflammation after TBI by forming neutrophil extracellular traps (NETs), but the connection between NETs and sympathetic excitation following TBI remains unclear. Utilizing a DAI rat model, the current investigation examined the role of NETs and the HMGB1/JNK/AP1 signaling pathway in this process. The findings revealed that sympathetic excitability intensifies and peaks 3 days post-injury, a pattern mirrored by the activation of microglia, and the escalated NETs and HMGB1 levels. Subsequent in vitro exploration validated that HMGB1 fosters microglial activation via the JNK/AP1 pathway. Moreover, in vivo experimentation revealed that the application of anti-HMGB1 and AP1 inhibitors can mitigate microglial M1 polarization post-DAI, effectively curtailing sympathetic hyperactivity. Therefore, this research elucidates that post-TBI, NETs within the PVN may precipitate sympathetic hyperactivity by stimulating M1 microglial polarization through the HMGB1/JNK/AP1 pathway.
Collapse
Affiliation(s)
- Xiaolin Qu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiang Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaixin Zhu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Neurosurgery, The First Naval Hospital of Southern Theater Command, Zhanjiang, China
| | - Wen Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kun Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xianzheng Sang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chenqing Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yelei Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haoxiang Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qibo Hou
- College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Gruenewald T, Seeman TE, Choo TH, Scodes J, Snyder C, Pavlicova M, Weinstein M, Schwartz JE, Mukkamala R, Sloan RP. Cardiovascular variability, sociodemographics, and biomarkers of disease: the MIDUS study. Front Physiol 2023; 14:1234427. [PMID: 37693005 PMCID: PMC10484414 DOI: 10.3389/fphys.2023.1234427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Like heart rate, blood pressure (BP) is not steady but varies over intervals as long as months to as short as consecutive cardiac cycles. This blood pressure variability (BPV) consists of regularly occurring oscillations as well as less well-organized changes and typically is computed as the standard deviation of multiple clinic visit-to-visit (VVV-BP) measures or from 24-h ambulatory BP recordings (ABPV). BP also varies on a beat-to-beat basis, quantified by methods that parse variation into discrete bins, e.g., low frequency (0.04-0.15 Hz, LF). However, beat-to-beat BPV requires continuous recordings that are not easily acquired. As a result, we know little about the relationship between LF-BPV and basic sociodemographic characteristics such as age, sex, and race and clinical conditions. Methods: We computed LF-BPV during an 11-min resting period in 2,118 participants in the Midlife in the US (MIDUS) study. Results: LF-BPV was negatively associated with age, greater in men than women, and unrelated to race or socioeconomic status. It was greater in participants with hypertension but unrelated to hyperlipidemia, hypertriglyceridemia, diabetes, elevated CRP, or obesity. LF-diastolic BPV (DBPV), but not-systolic BPV (SBPV), was negatively correlated with IL-6 and s-ICAM and positively correlated with urinary epinephrine and cortisol. Finally, LF-DBPV was negatively associated with mortality, an effect was rendered nonsignificant by adjustment by age but not other sociodemographic characteristics. Discussion: These findings, the first from a large, national sample, suggest that LF-BPV differs significantly from VVV-BP and ABPV. Confirming its relationship to sociodemographic risk factors and clinical outcomes requires further study with large and representative samples.
Collapse
Affiliation(s)
- Tara Gruenewald
- Department of Psychology, Chapman University, Orange, CA, United States
| | - Teresa E. Seeman
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Tse-Hwei Choo
- Mental Health Data Science Division, New York State Psychiatric Institute, New York, NY, United States
| | - Jennifer Scodes
- Mental Health Data Science Division, New York State Psychiatric Institute, New York, NY, United States
| | - Clayton Snyder
- Mental Health Data Science Division, New York State Psychiatric Institute, New York, NY, United States
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Joseph E. Schwartz
- Renaissance School of Medicine, Stony Brook University, New York, NY, United States
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ramakrishna Mukkamala
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard P. Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
11
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Effects of probiotics on hypertension. Appl Microbiol Biotechnol 2023; 107:1107-1117. [PMID: 36646911 DOI: 10.1007/s00253-023-12369-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
Emerging data have suggested that probiotics had good potential in regulating intestinal flora and preventing hypertension. Some studies in human and animal models have demonstrated probiotic intervention could attenuate hypertension, regulate intestinal flora to increase the abundance of beneficial bacteria, and regulate intestinal microbial metabolites such as trimethylamine oxide, short-chain fatty acids, and polyphenols. However, there is still some debate as to whether probiotics exert effective benefits. These recently published reviews did not systematically expound on the heterogeneity between the effect and mechanism of probiotics with different types, doses, and carriers to exert antihypertensive effects, as well as the possible application of probiotics in the prevention and treatment of hypertension in food and clinic. Here we try to systematically review the association between hypertension and intestinal microflora, the effect of probiotics and their metabolites on hypertension, and the recent research progress on the specific mechanism of probiotics on hypertension. In addition, we also summarized the potential application of probiotics in antihypertension. Future challenges include elucidating the functions of metabolites produced by microorganisms and their downstream pathway or molecules, identifying specific strains, not just microbial communities, and developing therapeutic interventions that target hypertension by modulation of gut microbes and metabolites.
Collapse
|
13
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
14
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
15
|
Yen PSY, Liu YC, Chu CH, Chen SL. Upregulation of Glutamatergic Receptors in Hippocampus and Locomotor Hyperactivity in Aged Spontaneous Hypertensive Rat. Cell Mol Neurobiol 2022; 42:2205-2217. [PMID: 33954807 DOI: 10.1007/s10571-021-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Epidemiologic studies have indicated that chronic hypertension may facilitate the progression of abnormal behavior, such as emotional irritability, hyperactivity, and attention impairment. However, the mechanism of how chronic hypertension affects the brain and neuronal function remains unclear. In this study, 58-week-old male spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) control rats were used. Their locomotor activity and neuronal function were assessed by the open field test, novel object, and Y maze recognition test. Moreover brain tissues were analyzed. We found that the aged SHR exhibited significant locomotor hyperactivity when compared to the WKY rats. However, there was no significant difference in novel object and novel arm recognition between aged SHR and the WKY rats. In the analysis of synaptic membrane protein, the expression of glutamatergic receptors, such as the N-methyl-D-aspartate (NMDA) receptor receptors subunits 2B (GluN2B) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 1 (GluA1) in the hippocampus of SHR were significantly higher than those of WKY rats. In addition, in the synaptic membrane of SHR's hippocampus and medial prefrontal cortex (mPFC), a down-regulation of astrocytes was found, though the excitatory amino acid transporter 2 (EAAT2) remained constant. Moreover, a down-regulation of microglia in the hippocampus and mPFC was seen in the SHR brain. Long-term exposure to high blood pressure causes upregulation of glutamate receptors. The upregulation of glutamatergic receptors in hippocampus may contribute to the hyper-locomotor activity of aged rodents and may as a therapeutic target in hypertension-induced irritability and hyperactivity.
Collapse
Affiliation(s)
- Patrick Szu-Ying Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
| | - Yen-Chin Liu
- Department of Anesthesiology, College of Medicine, National Cheng Kung University Hospital (NCKU), NCKU, 100 Shiquan 1st Rd, Sanmin Dist., Kaohsiung City, 807, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, NCKU, Tainan, Taiwan
| | - Shiou-Lan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.
- Department of Medical Research, College of Medicine, KMU Hospital & MSc Program in Tropical Medicine, KMU, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Vieira S, Aguilar BA, Veiga AC, Philbois SV, Freitas ACS, Rodrigues KP, Tank J, Souza HCD. Integrative physiological study of adaptations induced by aerobic physical training in hypertensive hearts. Front Physiol 2022; 13:920196. [PMID: 36060681 PMCID: PMC9437217 DOI: 10.3389/fphys.2022.920196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Aerobic physical training reduces arterial pressure in patients with hypertension owing to integrative systemic adaptations. One of the key factors is the decrease in cardiac sympathetic influence. Thus, we hypothesized that among other causes, cardiac sympathetic influence reduction might be associated with intrinsic cardiac adaptations that provide greater efficiency. Therefore, 14 spontaneously hypertensive rats (SHR group) and 14 normotensive Wistar Kyoto rats (WKY group) were used in this study. Half of the rats in each group were trained to swim for 12 weeks. All animals underwent the following experimental protocols: double blockade of cardiac autonomic receptors with atropine and propranolol; echocardiography; and analysis of coronary bed reactivity and left ventricle contractility using the Langendorff technique. The untrained SHR group had a higher sympathetic tone, cardiac hypertrophy, and reduced ejection fraction compared with the untrained WKY group. In addition, reduced coronary bed reactivity due to increased flow, and less ventricular contractile response to dobutamine and salbutamol administration were observed. The trained SHR group showed fewer differences in echocardiographic parameters as the untrained SHR group. However, the trained SHR group showed a reduction in the cardiac sympathetic influence, greater coronary bed reactivity, and increased left intraventricular pressure. In conclusion, aerobic physical training seems to reduce cardiac sympathetic influence and increase contractile strength in SHR rats, besides the minimal effects on cardiac morphology. This reduction suggests intrinsic cardiac adaptations resulting in beneficial adjustments of coronary bed reactivity associated with greater left ventricular contraction.
Collapse
Affiliation(s)
- Suenimeire Vieira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Bruno A. Aguilar
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Stella V. Philbois
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Caroline S. Freitas
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karine P. Rodrigues
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hugo C. D. Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Hugo C. D. Souza,
| |
Collapse
|
17
|
Tardelli LP, Duchatsch F, Herrera NA, Ruiz TFR, Pagan LU, Vicentini CA, Okoshi K, Amaral SL. Benefits of combined exercise training on arterial stiffness and blood pressure in spontaneously hypertensive rats treated or not with dexamethasone. Front Physiol 2022; 13:916179. [PMID: 36045742 PMCID: PMC9420846 DOI: 10.3389/fphys.2022.916179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dexamethasone (DEX)-induced arterial stiffness is an important side-effect, associated with hypertension and future cardiovascular events, which can be counteracted by exercise training. The aim of this study was to evaluate the mechanisms induced by combined training to attenuate arterial stiffness and hypertension in spontaneously hypertensive rats treated or not with dexamethasone. Spontaneously hypertensive rats (SHR) underwent combined training for 74 days and were treated with dexamethasone (50 µg/kg s. c.) or saline solution during the last 14 days. Wistar rats were used as controls. Echocardiographic parameters, blood pressure (BP) and pulse wave velocity (PWV), as well as histological analyses of the heart and aorta, carotid and femoral arteries were performed. At the beginning, SHR had higher BP and PWV compared with Wistar rats. After 60 days, while BP increased in sedentary SHR, combined exercise training decreased BP and PWV. After 74d, the higher BP and PWV of sedentary SHR was accompanied by autonomic imbalance to the heart, cardiac remodeling, and higher arterial collagen deposition. DEX treatment did not change these parameters. On the other hand, trained SHR had reduced BP and PWV, which was associated with better autonomic balance to the heart, reduced myocardial collagen deposition, as well as lower arterial collagen deposition. The results of this study suggest that combined training, through the reduction of aortic collagen deposition, is an important strategy to reduce arterial stiffness in spontaneously hypertensive rats, and these lower responses were maintained regardless of dexamethasone treatment.
Collapse
Affiliation(s)
- Lidieli P. Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Naiara A. Herrera
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Thalles Fernando R. Ruiz
- Joint Graduate Program in Animal Biology, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Luana U. Pagan
- Department of Internal Medicine, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Carlos A. Vicentini
- Department of Biological Sciences, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Sandra L. Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, SP, Brazil
- Department of Physical Education, São Paulo State University (UNESP), School of Sciences, Bauru, SP, Brazil
- *Correspondence: Sandra L. Amaral,
| |
Collapse
|
18
|
Yuan L, Li Y, Chen M, Xue L, Wang J, Ding Y, Zhang J, Wu S, Ye Q, Zhang S, Yang R, Zhao H, Wu L, Liang T, Xie X, Wu Q. Antihypertensive Activity of Milk Fermented by Lactiplantibacillus plantarum SR37-3 and SR61-2 in L-NAME-Induced Hypertensive Rats. Foods 2022; 11:foods11152332. [PMID: 35954098 PMCID: PMC9367739 DOI: 10.3390/foods11152332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023] Open
Abstract
Probiotic fermented milk can lower the incidence rate of hypertension and is beneficial to the regulation of the intestinal microecology. However, the underlying molecular mechanism remains elusive. Here, we evaluated the role of the gut microbiota and its metabolites in the antihypertensive effect of milk fermented by the Lactiplantibacillus plantarum strains SR37-3 (PFM-SR37-3) and SR61-2 (PFM-SR61-2) in Ng-nitro-L-arginine methyl ester induced hypertensive rats. The results showed that PFM-SR37-3 and PFM-SR61-2 intervention significantly lowered the blood pressure (BP) of NG-nitro-L-arginine methyl ester induced hypertensive rats and attenuated renal injury. In particular, long-term administration of PFM inhibited a progressive elevation in SBP (170.22 ± 8.40 and 133.28 ± 6.09 by model group and PFM-SR37-3 treated model group, respectively, at the end of the 4 weeks; p < 0.01 PFM-SR37-3 treated model group versus model group) and DBP (133.83 ± 5.91 and 103.00 ± 6.41 by model group and PFM-SR37-3 treated model group, respectively, at the end of the 4 weeks; p < 0.01 PFM-SR37-3 treated model group versus model group). PFM-SR37-3 and PFM-SR61-2 reshaped the gut microbiome and metabolome, and especially regulated the metabolic levels of L-phenylalanine, L-methionine and L-valine in the intestine and blood circulation. The analysis of the target organ’s aortic transcriptome indicated that the protective effects of PFM-SR37-3 and PFM-SR61-2 were accompanied by the modulation of the BP circadian rhythm pathway, which was conducive to cardiovascular function. Vascular transcriptomic analysis showed that circadian rhythm and AMPK might be potential targets of hypertension. In addition, the ACE inhibition rates of Lactiplantibacillus plantarum SR37-3 and Lactiplantibacillus plantarum SR61-2 in vitro were 70.5% and 68.9%, respectively. Our research provides new insights into novel and safe options for hypertension treatment.
Collapse
Affiliation(s)
- Lin Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence:
| |
Collapse
|
19
|
Chen XY, Lin C, Liu GY, Pei C, Xu GQ, Gao L, Wang SZ, Pan YX. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J Appl Physiol (1985) 2022; 132:1460-1467. [PMID: 35546127 DOI: 10.1152/japplphysiol.00459.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) or exercise training (ExT) is beneficial to hypertension, but their combined effects remain unknown. In this study, lentivirus containing enhanced green fluorescent protein (eGFP) and ACE2 were microinjected into the paraventricular nucleus (PVN) of young male spontaneous hypertensive rats (SHRs), and SHRs were assigned into five groups: sedentary (SHR), SHR-ExT, SHR-eGFP, ACE2 gene (SHR-ACE2), and ACE2 gene combined with ExT (SHR-ACE2-ExT). Wistar-Kyoto (WKY) rats were used as a control. ACE2 gene or ExT significantly delayed the elevation of blood pressure, and the combined effect prevented the development and progression of prehypertension. Either ACE2 overexpression or ExT improved arterial baroreflex sensitivity (BRS), whereas the combined effect normalized BRS in SHR. Compared with SHR, SHR-ACE2 and SHR-ExT displayed a significantly higher level of ACE2 protein but had lower plasma norepinephrine (NE) and angiotensin II (AngII) as well as angiotensin II type 1 receptor (AT1) protein expression in the PVN. SHR-ACE2-ExT showed the largest decrease in AngII and AT1 protein expression. Reactive oxygen species (ROS) level and NADPH oxidase (NOX2 and NOX4) protein expression in PVN were also decreased in SHR-ACE2-ExT group than in SHR-ACE2 and SHR-ExT groups. It was concluded that the combined effect has effectively prevented prehypertension progression and baroreflex dysfunction in SHR, which is associated with the reduction in AngII/AT1 axis function and oxidative stress in the PVN.NEW & NOTEWORTHY Angiotensin-converting enzyme 2 (ACE2) gene in combination with exercise training (ExT) delayed the progression of hypertension via normalizing the blunted baroreflex sensitivity (BRS) and inhibiting sympathetic nerve activity (SNA). Its underlying mechanism may be related to the inhibition of AngII/AT1 axis function and central oxidative stress in the paraventricular nucleus (PVN) of prehypertensive rats.
Collapse
Affiliation(s)
- Xiu-Yun Chen
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Cheng Lin
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Guo-Ying Liu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Chun Pei
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Gui-Qing Xu
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Lie Gao
- Department of Cellular and Integrative, Physiology of University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| | - Yan-Xia Pan
- Department of Rehabilitation Medicine, Health School of Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
21
|
Xue B, Cui JL, Guo F, Beltz TG, Zhao ZG, Zhang GS, Johnson AK. Voluntary Exercise Prevents Hypertensive Response Sensitization Induced by Angiotensin II. Front Neurosci 2022; 16:848079. [PMID: 35250473 PMCID: PMC8891537 DOI: 10.3389/fnins.2022.848079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Exercise training has profound effects on the renin-angiotensin system, inflammatory cytokines and oxidative stress, all of which affect autonomic nervous system activity and regulate blood pressure (BP) in both physiological and pathophysiological states. Using the Induction-Delay-Expression paradigm, our previous studies demonstrated that various challenges (stressors) during Induction resulted in hypertensive response sensitization (HTRS) during Expression. The present study tested whether voluntary exercise would protect against subpressor angiotensin (ANG) II-induced HTRS in rats. Adult male rats were given access to either “blocked” (sedentary rats) or functional running (exercise rats) wheels for 12 weeks, and the Induction-Delay-Expression paradigm was applied for the rats during the last 4 weeks. A subpressor dose of ANG II given during Induction produced an enhanced hypertensive response to a pressor dose of ANG II given during Expression in sedentary rats in comparison to sedentary animals that received saline (vehicle control) during Induction. Voluntary exercise did not attenuate the pressor dose of ANG II-induced hypertension but prevented the expression of HTRS seen in sedentary animals. Moreover, voluntary exercise reduced body weight gain and feed efficiency, abolished the augmented BP reduction after ganglionic blockade, reversed the increased mRNA expression of pro-hypertensive components, and upregulated mRNA expression of antihypertensive components in the lamina terminalis and hypothalamic paraventricular nucleus, two key brain nuclei involved in the control of sympathetic activity and BP regulation. These results indicate that exercise training plays a beneficial role in preventing HTRS and that this is associated with shifting the balance of the brain prohypertensive and antihypertensive pathways in favor of attenuated central activity driving sympathetic outflow and reduced BP.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Baojian Xue,
| | - Jun-Ling Cui
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Guo
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Terry G. Beltz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Geng-Shen Zhang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Geng-Shen Zhang,
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA, United States
- François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
22
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
23
|
Souza HCD, Philbois SV, Veiga AC, Aguilar BA. Heart Rate Variability and Cardiovascular Fitness: What We Know so Far. Vasc Health Risk Manag 2021; 17:701-711. [PMID: 34803382 PMCID: PMC8598208 DOI: 10.2147/vhrm.s279322] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Fluctuation analysis in intervals between heartbeats provides important indices related to autonomic modulation of heart rate variability (HRV). These indices are considered predictors of morbidity and mortality as they are frequently altered in patients with chronic degenerative diseases, especially in those with cardiovascular and metabolic diseases. Similarly, a reduction in HRV is common with aging. In all cases, cardiovascular fitness is often reduced to below the predicted values. In turn, increases in cardiovascular fitness through regular physical exercise, especially aerobic exercise, represent an important therapeutic tool capable of promoting positive adjustments in cardiac autonomic modulation. These adjustments are characterized by reduced sympathetic modulatory influence and/or increased vagal modulatory influence on the heart, increasing the HRV. Therefore, several methodological tools have been used to assess the degree of impairment of autonomic modulation and the therapeutic effects of physical exercise. In contrast, establishment of strict protocols in experimental design is a main challenge in establishing HRV analysis as a robust parameter for evaluating cardiovascular homeostasis. Thus, this review aimed to contribute to the understanding of autonomic modulation of HRV and its relationship with cardiovascular fitness, highlighting the advances made thus far, the applicability of analysis tools, and the confounding factors observed frequently.
Collapse
Affiliation(s)
- Hugo Celso Dutra Souza
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Stella Vieira Philbois
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Ana Catarine Veiga
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| | - Bruno Augusto Aguilar
- Department of Health Science, Ribeirão Preto Medical School of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
25
|
Peek V, Harden LM, Damm J, Aslani F, Leisengang S, Roth J, Gerstberger R, Meurer M, von Köckritz-Blickwede M, Schulz S, Spengler B, Rummel C. LPS Primes Brain Responsiveness to High Mobility Group Box-1 Protein. Pharmaceuticals (Basel) 2021; 14:ph14060558. [PMID: 34208101 PMCID: PMC8230749 DOI: 10.3390/ph14060558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
High mobility group box (HMGB)1 action contributes to late phases of sepsis, but the effects of increased endogenous plasma HMGB1 levels on brain cells during inflammation are unclear. Here, we aimed to further investigate the role of HMGB1 in the brain during septic-like lipopolysaccharide-induced inflammation in rats (LPS, 10 mg/kg, i.p.). HMGB-1 mRNA expression and release were measured in the periphery/brain by RT-PCR, immunohistochemistry and ELISA. In vitro experiments with disulfide-HMGB1 in primary neuro-glial cell cultures of the area postrema (AP), a circumventricular organ with a leaky blood–brain barrier and direct access to circulating mediators like HMGB1 and LPS, were performed to determine the direct influence of HMGB1 on this pivotal brain structure for immune-to-brain communication. Indeed, HMGB1 plasma levels stayed elevated after LPS injection. Immunohistochemistry of brains and AP cultures confirmed LPS-stimulated cytoplasmatic translocation of HMGB1 indicative of local HMGB1 release. Moreover, disulfide-HMGB1 stimulation induced nuclear factor (NF)-κB activation and a significant release of interleukin-6, but not tumor necrosis factor α, into AP culture supernatants. However, only a few AP cells directly responded to HMGB1 with increased intracellular calcium concentration. Interestingly, priming with LPS induced a seven-fold higher percentage of responsive cells to HMGB1. We conclude that, as a humoral and local mediator, HMGB1 enhances brain inflammatory responses, after LPS priming, linked to sustained sepsis symptoms.
Collapse
Affiliation(s)
- Verena Peek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
| | - Jelena Damm
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Ferial Aslani
- Institute of Anatomy and Cell Biology of the Medical Faculty, Justus Liebig University, 35392 Giessen, Germany;
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
- Correspondence:
| |
Collapse
|
26
|
Dos Santos KM, Moraes DJDA, da Silva MP, Antunes VR. Exercise training rescues the electrical activity of liver-projecting DMNV neurones in response to oxytocin in spontaneously hypertensive rats. J Neuroendocrinol 2021; 33:e12977. [PMID: 33942389 DOI: 10.1111/jne.12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
A neural circuit between the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) constitutes part of an important parasympathetic autonomic pathway that controls hepatic glucose production. Intracerebroventricular injection of insulin activates oxytocinergic neurones in the PVN and elicits the release of oxytocin into the circulation, which plays an important role in the metabolism of glucose. Moreover, the central action of insulin can reduce the concentration of glucose in blood taken from the hepatic vein of Wistar rats via activation of vagal efferent nerves to the liver. This mechanism is impaired in sedentary spontaneously hypertensive rats (SHR). Because aerobic exercise increases vagal tone, partly mediated by increasing the oxytocinergic connections between the PVN and DMNV, we hypothesised that oxytocin (OT) might alter the excitability of liver-projecting DMNV neurones. Thus, we investigated the effects of OT on electrical properties of the liver-projecting DMNV neurones from Wistar, SHR subjected to 4 weeks of exercise training, as well sedentary controls, using whole cell patch-clamping. The results show that OT increased the resting membrane potential of DMNV neurones in Wistar rats, as well as the firing frequency of these cells, but not in sedentary SHR. However, in SHR subjected to 4 weeks of exercise training, the effects of OT on liver-projecting DMNV neurones of were similar to those seen in Wistar rats. These findings show that OT elicits similar changes in the electrophysiological properties of liver-projecting DMNV neurones of Wistar and exercise-trained but not sedentary SHR. These results indicate that exercise training can restore the sensitivity of liver-projecting DMNV neurones of exercise-trained SHR to OT.
Collapse
Affiliation(s)
- Karoline Martins Dos Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Davi José de Almeida Moraes
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Melina Pires da Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
27
|
Tardelli LP, Duchatsch F, Herrera NA, Vicentini CA, Okoshi K, Amaral SL. Differential effects of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats. J Appl Toxicol 2021; 41:1673-1686. [PMID: 33629383 DOI: 10.1002/jat.4155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Dexamethasone (DEX)-induced hypertension is observed in normotensive rats, but little is known about the effects of DEX on spontaneously hypertensive animals (SHR). This study aimed to evaluate the effects of DEX on hemodynamics, cardiac hypertrophy and arterial stiffness in normotensive and hypertensive rats. Wistar rats and SHR were treated with DEX (50 μg/kg s.c., 14 d) or saline. Pulse wave velocity (PWV), echocardiographic parameters, blood pressure (BP), autonomic modulation and histological analyses of heart and thoracic aorta were performed. SHR had higher BP compared with Wistar, associated with autonomic unbalance to the heart. Echocardiographic changes in SHR (vs. Wistar) were suggestive of cardiac remodeling: higher relative wall thickness (RWT, +28%) and left ventricle mass index (LVMI, +26%) and lower left ventricle systolic diameter (LVSD, -19%) and LV diastolic diameter (LVDD, -10%), with slightly systolic dysfunction and preserved diastolic dysfunction. Also, SHR had lower myocardial capillary density and similar collagen deposition area. PWV was higher in SHR due to higher aortic collagen deposition. DEX-treated Wistar rats presented higher BP (~23%) and autonomic unbalance. DEX did not change cardiac structure in Wistar, but PWV (+21%) and aortic collagen deposition area (+21%) were higher compared with control. On the other side, DEX did not change BP or autonomic balance to the heart in SHR, but reduced RWT and LV collagen deposition area (-12% vs. SHRCT ). In conclusion, the results suggest a differential effect of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Lidieli P Tardelli
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, Brazil
| | - Naiara A Herrera
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, Brazil
| | | | - Katashi Okoshi
- Department of Medical Clinic, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, São Carlos, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
28
|
Sayed MA, Eldahshan W, Abdelbary M, Pillai B, Althomali W, Johnson MH, Arbab AS, Ergul A, Fagan SC. Stroke promotes the development of brain atrophy and delayed cell death in hypertensive rats. Sci Rep 2020; 10:20233. [PMID: 33214598 PMCID: PMC7678843 DOI: 10.1038/s41598-020-75450-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major source of disability, affecting up to two thirds of stroke survivors with no available therapeutic options. The condition remains understudied in preclinical models due to its delayed presentation. Although hypertension is a leading risk factor for dementia, how ischemic stroke contributes to this neurodegenerative condition is unknown. In this study, we used a model of hypertension to study the development of PSCI and its mechanisms. Spontaneously hypertensive rats (SHR) were compared to normotensive rats and were subjected to 1-h middle cerebral artery occlusion or sham surgery. Novel object recognition, passive avoidance test and Morris water maze were used to assess cognition. In addition, brain magnetic resonance images were obtained 12-weeks post-stroke and tissue was collected for immunohistochemistry and protein quantification. Stroked animals developed impairment in long-term memory at 4-weeks post-stroke despite recovery from motor deficits, with hypertensive animals showing some symptoms of anhedonia. Stroked SHRs displayed grey matter atrophy and had a two-fold increase in apoptosis in the ischemic borderzone and increased markers of inflammatory cell death and DNA damage at 12 weeks post-stroke. This indicates that preexisting hypertension exacerbates the development of secondary neurodegeneration after stroke beyond its acute effects on neurovascular injury.
Collapse
Affiliation(s)
- Mohammed A Sayed
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Wael Eldahshan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Mahmoud Abdelbary
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
| | - Bindu Pillai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Waleed Althomali
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | | | | | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 914 New Baillie Street, HM Building Room 116, Augusta, GA, 30901, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
29
|
Lee HW, Ahmad M, Wang HW, Leenen FHH. Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides 2020; 82:102058. [PMID: 32507324 DOI: 10.1016/j.npep.2020.102058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) is associated with cardiovascular regulation. Exercise increases plasma BDNF and attenuates activation of central pathways in the PVN and RVLM post myocardial infarction (MI). The present study assessed whether MI alters BDNF-TrkB signaling and intracellular factors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt in the PVN and RVLM of male Wistar rats with or without exercise or treatment with the TrkB blocker ANA-12. A 4-week period of treadmill exercise training was performed in MI rats. A separate experiment was conducted with 2.5 mg/kg ANA-12 in sedentary MI rats. At 5 weeks post MI, in both the PVN and RVLM, the ratio of full-length TrkB (TrkB.FL) and truncated TrkB (TrkB.T1) was decreased. 0.5 mg/kg ANA-12 did not affect BDNF-TrkB signaling and cardiac function post MI, but 2.5 mg/kg ANA-12 further decreased ejection fraction (EF). Exercise increased mature BDNF (mBDNF) and decreased Akt activity in the PVN, whereas in the RVLM, exercise did not affect mBDNF but lowered p-CaMKIIβ. ANA-12 prevented the exercise-induced increase in mBDNF in the PVN and decrease in p-CaMKIIβ in the RVLM. In conclusion, exercise decreases Akt activity in the PVN and decreases p-CaMKIIβ in the RVLM post MI. BDNF-TrkB signaling only mediates the decrease in p-CaMKIIβ in the RVLM. The exercise-induced decreases in Akt activity in the PVN and p-CaMKIIβ in the RVLM may contribute to the attenuation of the decrease in EF and sympathetic hyperactivity post MI.
Collapse
Affiliation(s)
- Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
30
|
da Costa TSR, Masson GS, Eichler RADS, Silva JCDS, Lacchini S, Michelini LC. Training-Induced Deactivation of the AT 1 Receptor Pathway Drives Autonomic Control and Heart Remodeling During the Transition From the Pre- to Hypertensive Phase in Spontaneously Hypertensive Rats. Circ J 2020; 84:1294-1303. [PMID: 32522899 DOI: 10.1253/circj.cj-19-1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effects of hypertension and exercise training (T) on the sequential interplay between renin-angiotensin system (RAS), autonomic control and heart remodeling during the development of hypertension in spontaneously hypertensive rats (SHR), was evaluated. METHODS AND RESULTS Time course changes of these parameters were recorded in 4-week-old SHR submitted to a T or sedentary (S) protocol. Wistar Kyoto rats served as controls. Hemodynamic recordings were obtained in conscious rats at experimental weeks 0, 1, 2, 4, and 8. The left ventricle (LV) was collected to evaluate RAS gene and protein expression, cardiomyocytes' hypertrophy and collagen accumulation. Pre-hypertensive SHR exhibited augmented AT1R gene expression; at 5 weeks, they presented with elevated pressure, increased LV angiotensinogen and ACE mRNA expression, followed by sympathoexcitation (from the 8thweek onwards). Marked AT1R protein content, myocytes's hypertrophy, collagen deposition and increased pressure variability were observed in 12-week-old sedentary SHR. In addition to attenuating all these effects, T activated Mas receptor expression augmented parasympathetic modulation of the heart, and delayed the onset and reduced the magnitude, but did not block the development of genetic hypertension. CONCLUSIONS The close temporal relationship between changes in the LV ACE-Ang II-AT1R axis, autonomic control and cardiac remodeling at both the establishment of hypertension and during exercise training reveals the essential role played by the AT1R pathway in driving cardiac remodeling and autonomic modulation during the transition from the pre- to hypertensive phase.
Collapse
Affiliation(s)
| | - Gustavo Santos Masson
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo
| | | | | | - Silvia Lacchini
- Department of Anatomy, Biomedical Sciences Institute, University of Sao Paulo
| | | |
Collapse
|
31
|
Anti-hypertensive effect of hydrogen peroxide acting centrally. Hypertens Res 2020; 43:1192-1203. [PMID: 32461634 DOI: 10.1038/s41440-020-0474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
Intracerebroventricular (icv) injection of hydrogen peroxide (H2O2) or the increase of endogenous H2O2 centrally produced by catalase inhibition with 3-amino-1,2,4-triazole (ATZ) injected icv reduces the pressor responses to central angiotensin II (ANG II) in normotensive rats. In the present study, we investigated the changes in the arterial pressure and in the pressor responses to ANG II icv in spontaneously hypertensive rats (SHRs) and 2-kidney, 1-clip (2K1C) hypertensive rats treated with H2O2 injected icv or ATZ injected icv or intravenously (iv). Adult male SHRs or Holtzman rats (n = 5-10/group) with stainless steel cannulas implanted in the lateral ventricle were used. In freely moving rats, H2O2 (5 μmol/1 μl) or ATZ (5 nmol/1 μl) icv reduced the pressor responses to ANG II (50 ng/1 µl) icv in SHRs (11 ± 3 and 17 ± 4 mmHg, respectively, vs. 35 ± 6 mmHg) and 2K1C hypertensive rats (3 ± 1 and 16 ± 3 mmHg, respectively, vs. 26 ± 2 mmHg). ATZ (3.6 mmol/kg of body weight) iv alone or combined with H2O2 icv also reduced icv ANG II-induced pressor response in SHRs and 2K1C hypertensive rats. Baseline arterial pressure was also reduced (-10 to -15 mmHg) in 2K1C hypertensive rats treated with H2O2 icv and ATZ iv alone or combined and in SHRs treated with H2O2 icv alone or combined with ATZ iv. The results suggest that exogenous or endogenous H2O2 acting centrally produces anti-hypertensive effects impairing central pressor mechanisms activated by ANG II in SHRs or 2K1C hypertensive rats.
Collapse
|
32
|
Xu ML, Yu XJ, Zhao JQ, Du Y, Xia WJ, Su Q, Du MM, Yang Q, Qi J, Li Y, Zhou SW, Zhu GQ, Li HB, Kang YM. Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicol Appl Pharmacol 2020; 394:114950. [PMID: 32147540 DOI: 10.1016/j.taap.2020.114950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays crucial roles in central cardiovascular regulation. Increasing evidence in humans and rodents shows that vitamin D intake is important for achieving optimal cardiovascular function. The purpose of this study was to investigate whether calcitriol, an active form of vitamin D, improves autonomic and cardiovascular function in hypertensive rats and whether PVN oxidative stress and inflammation are involved in these beneficial effects. Male spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were treated with either calcitriol (40 ng/day) or vehicle (0.11 μL/h) through chronic PVN infusion for 4 weeks. Blood pressure and heart rate were recorded continuously by radiotelemetry. PVN tissue, heart and plasma were collected for molecular and histological analysis. Compared to WKY rats, SHR exhibited increased systolic blood pressure, sympathetic drive, and cardiac hypertrophy and remodeling. These were associated with higher mRNA and protein expression levels of high mobility box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), proinflammatory cytokines, NADPH oxidase subunit in the PVN. In addition, increased norepinephrine in plasma, elevated reactive oxygen species levels and activation of microglia in the PVN were also observed in SHR. Chronic calcitriol treatment ameliorated these changes but not in WKY rats. Our results demonstrate that chronic infusion of calcitriol in the PVN ameliorates hypertensive responses, sympathoexcitation and retains cardiovascular function in SHR. Reduced inflammation and oxidative stress within the PVN are involved in these calcitriol-induced effects.
Collapse
Affiliation(s)
- Meng-Lu Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian-Qiang Zhao
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Yan Du
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qing Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shao-Wen Zhou
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
33
|
Donertas Ayaz B, Zubcevic J. Gut microbiota and neuroinflammation in pathogenesis of hypertension: A potential role for hydrogen sulfide. Pharmacol Res 2020; 153:104677. [PMID: 32023431 PMCID: PMC7056572 DOI: 10.1016/j.phrs.2020.104677] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Inflammation and gut dysbiosis are hallmarks of hypertension (HTN). Hydrogen sulfide (H2S) is an important freely diffusing molecule that modulates the function of neural, cardiovascular and immune systems, and circulating levels of H2S are reduced in animals and humans with HTN. While most research to date has focused on H₂S produced endogenously by the host, H2S is also produced by the gut bacteria and may affect the host homeostasis. Here, we review an association between neuroinflammation and gut dysbiosis in HTN, with special emphasis on a potential role of H2S in this interplay.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States; Department of Pharmacology, College of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
34
|
Qi J, Yu XJ, Fu LY, Liu KL, Gao TT, Tu JW, Kang KB, Shi XL, Li HB, Li Y, Kang YM. Exercise Training Attenuates Hypertension Through TLR4/MyD88/NF-κB Signaling in the Hypothalamic Paraventricular Nucleus. Front Neurosci 2019; 13:1138. [PMID: 31708733 PMCID: PMC6821652 DOI: 10.3389/fnins.2019.01138] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Exercise training (ExT) is beneficial for cardiovascular health, yet the central mechanism by which aerobic ExT attenuates the hypertensive responses remains unclear. Activation of pro-inflammatory cytokines (PICs) in the hypothalamic paraventricular nucleus (PVN) is important for the sympathoexcitation and hypertensive response. We thus hypothesized that aerobic ExT can decrease the blood pressure of hypertensive rats by reducing the levels of PICs through TLR4/MyD88/NF-κB signaling within the PVN. To examine this hypothesis, two-kidney-one-clip (2K1C) renovascular hypertensive rats were assigned to two groups: sedentary or exercise training and examined for 8 weeks. At the same time, bilateral PVN infusion of vehicle or TAK242, a TLR4 inhibitor, was performed on both groups. As a result, the systolic blood pressure (SBP), renal sympathetic nerve activity (RSNA) and plasma levels of norepinephrine (NE), epinephrine (EPI) were found significantly increased in 2K1C hypertensive rats. These rats also had higher levels of Fra-like activity, NF-κB p65 activity, TLR4, MyD88, IL-1β and TNF-α in the PVN than SHAM rats. Eight weeks of ExT attenuated the RSNA and SBP, repressed the NF-κB p65 activity, and reduced the increase of plasma levels of NE, EPI, and the expression of Fra-like, TLR4, MyD88, IL-1β and TNF-α in the PVN of 2K1C rats. These findings are highly similar to the results in 2K1C rats with bilateral PVN infusions of TLR4 inhibitor (TAK242). This suggests that 8 weeks of aerobic ExT may decrease blood pressure in hypertensive rats by reducing the PICs activation through TLR4/MyD88/NF-κB signaling within the PVN, and thus delays the progression of 2K1C renovascular hypertension.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Tian-Tian Gao
- School of Clinical Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Wei Tu
- School of Clinical Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Li Y, Wei B, Liu X, Shen XZ, Shi P. Microglia, autonomic nervous system, immunity and hypertension: Is there a link? Pharmacol Res 2019; 155:104451. [PMID: 31557524 DOI: 10.1016/j.phrs.2019.104451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/17/2019] [Accepted: 09/06/2019] [Indexed: 01/19/2023]
Abstract
Hypertension ranks the most common risk factor for cardiovascular diseases, and it affects almost one third of adult population globally. Emerging evidence indicates that immune activation is highly involved in the entire progress of hypertension and end organ damage. In addition to immunity, autonomic nervous system, particularly sympathetic nervous system, is one of the most conserved systems to maintain body homeostasis. Immune and sympathetic activities are found simultaneously increased in hypertension, suggesting a synergistic action of these two systems in the progression of this disease. Microglia, the primary immune cells in the central nervous system, have been suggested in the regulation of sympathetic outflow; depletion of microglia alters neuroinflammation and pressor responses in hypertensive models. In this review, we firstly updated the current understanding on microglial ontogeny and functions in both steady state and diseases. Then we reviewed on the interaction between autonomic nervous system and peripheral immunity in hypertension. Microglia bridge the central and peripheral inflammation via regulating the sympathetic nerve activity in hypertension. Future exploration of the molecular linkage of this pathway may provide novel therapeutic angel for hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- You Li
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Bobbo VCD, Jara CP, Mendes NF, Morari J, Velloso LA, Araújo EP. Interleukin-6 Expression by Hypothalamic Microglia in Multiple Inflammatory Contexts: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1365210. [PMID: 31534953 PMCID: PMC6724433 DOI: 10.1155/2019/1365210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a unique cytokine that can play both pro- and anti-inflammatory roles depending on the anatomical site and conditions under which it has been induced. Specific neurons of the hypothalamus provide important signals to control food intake and energy expenditure. In individuals with obesity, a microglia-dependent inflammatory response damages the neural circuits responsible for maintaining whole-body energy homeostasis, resulting in a positive energy balance. However, little is known about the role of IL-6 in the regulation of hypothalamic microglia. In this systematic review, we asked what types of conditions and stimuli could modulate microglial IL-6 expression in murine model. We searched the PubMed and Web of Science databases and analyzed 13 articles that evaluated diverse contexts and study models focused on IL-6 expression and microglia activation, including the effects of stress, hypoxia, infection, neonatal overfeeding and nicotine exposure, lipopolysaccharide stimulus, hormones, exercise protocols, and aging. The results presented in this review emphasized the role of "injury-like" stimuli, under which IL-6 acts as a proinflammatory cytokine, concomitant with marked microglial activation, which drive hypothalamic neuroinflammation. Emerging evidence indicates an important correlation of basal IL-6 levels and microglial function with the maintenance of hypothalamic homeostasis. Advances in our understanding of these different contexts will lead to the development of more specific pharmacological approaches for the management of acute and chronic conditions, like obesity and metabolic diseases, without disturbing the homeostatic functions of IL-6 and microglia in the hypothalamus.
Collapse
Affiliation(s)
- Vanessa C. D. Bobbo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Carlos P. Jara
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Natália F. Mendes
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Lício A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Eliana P. Araújo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| |
Collapse
|
37
|
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis 2019; 10:611-625. [PMID: 31165005 PMCID: PMC6538223 DOI: 10.14336/ad.2018.0707] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.
Collapse
Affiliation(s)
- Rongrong Han
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sun
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Chen D, Cao S, Chang B, Ma T, Gao H, Tong Y, Li T, Han J, Yi X. Increasing hypothalamic nucleobindin 2 levels and decreasing hypothalamic inflammation in obese male mice via diet and exercise alleviate obesity-associated hypogonadism. Neuropeptides 2019; 74:34-43. [PMID: 30503692 DOI: 10.1016/j.npep.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
To explore the role of nesfatin-1 in regulating male reproductive function during energy balance variation, we employed an obese mouse model which was first induced by a high-fat diet (HFD) and followed by interventions of a normal diet (ND) and/or moderate exercise, and then serum reproductive hormones of male mice, hypothalamic nucleobindin 2 (NUCB2)/nesfatin-1, inflammatory factors, and gonadotropin-releasing hormone (GnRH) levels were tested. Our findings showed that both serum nesfatin-1, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels and hypothalamic NUCB2/nesfatin-1 and Gnrh mRNA levels were reduced, whereas, the mRNA and protein levels of hypothalamic tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, inhibitor kappa B kinase β (IKKβ), and nuclear factor (NF)-κB were increased in obese male mice. Diet, exercise, and diet combined with exercise interventions reversed the decreases in serum nesfatin-1, FSH, LH, and T levels; increased hypothalamic NUCB2/nesfatin-1 and Gnrh mRNA levels; and reduced hypothalamic TNF-α, IL-1β, IKKβ, and NF-κB levels. These changes were accompanied by reduced adiposity, and these effects were more obvious in the diet combined with exercise group. Overall, our findings suggested that the hypogonadotropic hypogonadism associated with obesity may be induced by reduced hypothalamic NUCB2/nesfatin-1 levels, which attenuated the stimulatory effect on GnRH directly or indirectly by suppressing its anti-inflammatory effect in the brain. Diet and/or exercise interventions were able to alleviate the hypogonadotropic hypogonadism associated with obesity, potentially by increasing hypothalamic NUCB2/nesfatin-1 levels.
Collapse
Affiliation(s)
- Dequan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Physical Education, Minnan Normal Universtiy, Zhangzhou, Fujian 363000, PR China
| | - Shicheng Cao
- Department of Sport Medicine, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Bo Chang
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Tie Ma
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Haining Gao
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Yao Tong
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Tao Li
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Junchao Han
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Xuejie Yi
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China.
| |
Collapse
|
39
|
Gomes GF, Peixoto RDDF, Maciel BG, Santos KFD, Bayma LR, Feitoza Neto PA, Fernandes TN, de Abreu CC, Casseb SMM, de Lima CM, de Oliveira MA, Diniz DG, Vasconcelos PFDC, Sosthenes MCK, Diniz CWP. Differential Microglial Morphological Response, TNFα, and Viral Load in Sedentary-like and Active Murine Models After Systemic Non-neurotropic Dengue Virus Infection. J Histochem Cytochem 2019; 67:419-439. [PMID: 30924711 DOI: 10.1369/0022155419835218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
Collapse
Affiliation(s)
- Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Railana Deise da Fonseca Peixoto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Brenda Gonçalves Maciel
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Kedma Farias Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Lohrane Rosa Bayma
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Pedro Alves Feitoza Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cintya Castro de Abreu
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | | | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brasil
| |
Collapse
|
40
|
Li HB, Yu XJ, Bai J, Su Q, Wang ML, Huo CJ, Xia WJ, Yi QY, Liu KL, Fu LY, Zhu GQ, Qi J, Kang YM. Silencing salusin β ameliorates heart failure in aged spontaneously hypertensive rats by ROS-relative MAPK/NF-κB pathways in the paraventricular nucleus. Int J Cardiol 2018; 280:142-151. [PMID: 30581101 DOI: 10.1016/j.ijcard.2018.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sustained hypertension is a major cause of heart failure in aging hypertensive patients. Salusin β, a novel bioactive peptide of 20 amino acids, has been reported to participate in various cardiovascular diseases, including hypertension. We therefore hypothesized that central knockdown of salusin β might be effective for hypertension-induced heart failure treatment. METHODS AND RESULTS Eighteen-month-old male aged spontaneously hypertensive rats (SHR) with heart failure and WKY rats were microinjected with either a specific adenoviral vector encoding salusin β shRNA (Ad-Sal-shRNA) or a scramble shRNA (Ad-Scr-shRNA) in the hypothalamic paraventricular nucleus (PVN) for 4 weeks. Radiotelemetry and echocardiography were used for measuring blood pressure and cardiac function, respectively. Blood samples and heart were harvested for evaluating plasma norepinephrine, tyrosine hydroxylase, and cardiac morphology, respectively. The mesenteric arteries were separated for measurement of vascular responses. The PVN was analyzed for salusin β, proinflammatory cytokines (PICs), mitogen-activated protein kinase (MAPK), NF-κB, and reactive oxygen species (ROS) levels. Compared with normotensive rats, aging SHR with heart failure had dramatically increased salusin β expression. Silencing salusin β with Ad-Sal-shRNA attenuated arterial pressure and improved autonomic function, cardiac and vascular dysfunction in aging SHR with heart failure, but not in aging WKY rats. Knockdown of salusin β significantly reduced paraventricular nucleus PICs levels, MAPK and NF-κB activity, and ROS levels in aging SHR with heart failure. CONCLUSION These data demonstrate that in aging SHR, the heart failure that was developed during the end stage of hypertension could be ameliorated by silencing salusin β.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Juan Bai
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Mo-Lin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China; Department of immunology, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiu-Yue Yi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
41
|
Sardeli AV, Gáspari AF, Santos WMD, Moraes DFG, Gadelha VB, Santos LDC, Ferreira MLV, Prudêncio SMDJ, Bonfante ILP, Rodrigues B, Cavaglieri CR, Fernhall B, Chacon-Mikahil MPT. Time-course of health-related adaptations in response to combined training in hypertensive elderly: immune and autonomic modulation interactions. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800040007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Amanda V. Sardeli
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200-H1214. [PMID: 30095973 PMCID: PMC6297824 DOI: 10.1152/ajpheart.00216.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.
Collapse
Affiliation(s)
- Roger A Dampney
- Department of Physiology, University of Sydney , Sydney, New South Wales , Australia
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - De-Pei Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
43
|
Mi Y, Wu Q, Yuan W, Chen F, Du D. Role of microglia M1/M2 polarisation in the paraventricular nucleus: New insight into the development of stress-induced hypertension in rats. Auton Neurosci 2018; 213:71-80. [DOI: 10.1016/j.autneu.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
|
44
|
Zucker IH, Musch TI. Benefits of exercise training on cardiovascular dysfunction: molecular and integrative. Am J Physiol Heart Circ Physiol 2018; 315:H1027-H1031. [PMID: 30074833 DOI: 10.1152/ajpheart.00516.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise training has been shown to ameliorate a wide variety of cardiovascular disorders. The mechanisms by which long-term benefits of exercise training are mediated remains incomplete, despite intense research in this area. Exactly how the act of chronic exercise improves function in every tissue is unknown, but many of the cellular, molecular, and genetic mechanisms are becoming progressively clearer. This "Perspectives" article reviews the contributions of 15 articles published in the American Journal of Physiology-Heart and Circulatory Physiology in response to a Call for Papers in this area. Here, we summarize the contributions of these studies at the cardiac, vascular, immune, and molecular levels. We discuss the translational benefit of these studies and conclude that the beneficial effects of exercise training in cardiovascular disease is due to a large interplay of cellular and molecular mediators in the heart and peripheral vasculature as well as changes in neural elements that regulate blood pressure and blood flow. Readers are encouraged to evaluate and learn from this collection of novel studies.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Timothy I Musch
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
45
|
Winklewski PJ, Radkowski M, Demkow U. Neuroinflammatory mechanisms of hypertension: potential therapeutic implications. Curr Opin Nephrol Hypertens 2018; 25:410-6. [PMID: 27490783 DOI: 10.1097/mnh.0000000000000250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Inflammation of forebrain and hindbrain nuclei has recently been highlighted as an emerging factor in the pathogenesis of neurogenic hypertension. The aim of this review is to summarize the state of the art in this field and to discuss recently discovered pathophysiological mechanisms, opening new perspectives for therapeutic application. RECENT FINDINGS Microglia Toll-like receptor 4 causally links angiotensin II (AngII)-mediated microglia cell activation and oxidative stress within the hypothalamic paraventricular nucleus (PVN). Toll-like receptor 4 can also be activated by lipopolysaccharides. PVN infusion of nuclear factor κB inhibitor lowers the blood pressure and ameliorates cardiac hypertrophy. Ang-(1-7) exerts direct effects on microglia, causing a reduction in both baseline and prorenin-induced release of proinflammatory cytokines. A compromised blood-brain barrier (BBB) constitutes a complementary mechanism that exacerbates AngII-driven neurohumoral activation, contributing to the development of hypertension. SUMMARY PVN and BBB seem to be pivotal targets for therapeutic intervention in hypertension. Recent advances in imaging techniques enable visualization of the inflammatory state in microglia and BBB integrity in humans. AngII type I receptor blockers and AngII-converting enzyme inhibitors are the most likely candidates for controlled randomized trials in humans aimed at amelioration of brain inflammation in the forthcoming years.
Collapse
Affiliation(s)
- Pawel J Winklewski
- aInstitute of Human Physiology, Medical University of Gdansk, GdanskbDepartment of Immunopathology of Infectious and Parasitic DiseasescDepartment of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
46
|
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front Physiol 2017; 8:1048. [PMID: 29311978 PMCID: PMC5733101 DOI: 10.3389/fphys.2017.01048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The blood-brain barrier (BBB) is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II) access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR) exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD) leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN), nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T) or kept sedentary (S) for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2). BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis), these effects preceding the appearance of resting bradycardia (T4) and partial pressure fall (T8). In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula) we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining) are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2), suggesting the prominent role of this nucleus in driven hypertension-induced deficits. These original set of data suggest that reduced local Ang II content (and decreased activation of its downstream pathways) is an essential and early-activated mechanism to maintain BBB integrity in trained SHR and uncovers a novel beneficial effect of exercise training to improve autonomic control even in the presence of hypertension.
Collapse
Affiliation(s)
- Leila Buttler
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Jordão
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matheus G Fragas
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Ruggeri
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation. Stroke 2017; 48:2557-2564. [PMID: 28698257 DOI: 10.1161/strokeaha.117.017370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. CONCLUSIONS Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.
Collapse
Affiliation(s)
- You Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Xiao Z Shen
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Liang Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Tuantuan V Zhao
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Kenneth E Bernstein
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Alan K Johnson
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Patrick Lyden
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Jianmin Fang
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Peng Shi
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.).
| |
Collapse
|
48
|
Li Y, Zhao Z, Cai J, Gu B, Lv Y, Zhao L. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats. Front Aging Neurosci 2017; 9:212. [PMID: 28713263 PMCID: PMC5491914 DOI: 10.3389/fnagi.2017.00212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/16/2017] [Indexed: 01/11/2023] Open
Abstract
A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN.
Collapse
Affiliation(s)
- Yan Li
- Department of Exercise Physiology, Beijing Sport UniversityBeijing, China
| | - Ziqi Zhao
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport UniversityBeijing, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport UniversityBeijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport UniversityBeijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport UniversityBeijing, China.,Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport UniversityBeijing, China
| |
Collapse
|
49
|
Glass MJ, Chan J, Pickel VM. Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 2017; 352:262-272. [PMID: 28385632 PMCID: PMC5522011 DOI: 10.1016/j.neuroscience.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
Abstract
The immune/inflammatory signaling molecule tumor necrosis factor α (TNFα) is an important mediator of both constitutive and plastic signaling in the brain. In particular, TNFα is implicated in physiological processes, including fever, energy balance, and autonomic function, known to involve the hypothalamic paraventricular nucleus (PVN). Many critical actions of TNFα are transduced by the TNFα type 1 receptor (TNFR1), whose activation has been shown to potently modulate classical neural signaling. There is, however, little known about the cellular sites of action for TNFR1 in the PVN. In the present study, high-resolution electron microscopic immunocytochemistry was used to demonstrate the ultrastructural distribution of TNFR1 in the PVN. Labeling for TNFR1 was found in somata and dendrites, and to a lesser extent in axon terminals and glia in the PVN. In dendritic profiles, TNFR1 was mainly present in the cytoplasm, and in association with presumably functional sites on the plasma membrane. Dendritic profiles expressing TNFR1 were contacted by axon terminals, which formed non-synaptic appositions, as well as excitatory-type and inhibitory-type synaptic specializations. A smaller population of TNFR1-labeled axon terminals making non-synaptic appositions, and to a lesser extent synaptic contacts, with unlabeled dendrites was also identified. These findings indicate that TNFR1 is structurally positioned to modulate postsynaptic signaling in the PVN, suggesting a mechanism whereby TNFR1 activation contributes to cardiovascular and other autonomic functions.
Collapse
Affiliation(s)
- Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States.
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
50
|
Physical training associated with Enalapril but not to Losartan, results in better cardiovascular autonomic effects. Auton Neurosci 2017; 203:33-40. [DOI: 10.1016/j.autneu.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/13/2023]
|