1
|
Franzago M, Borrelli P, Di Nicola M, Cavallo P, D’Adamo E, Di Tizio L, Gazzolo D, Stuppia L, Vitacolonna E. From Mother to Child: Epigenetic Signatures of Hyperglycemia and Obesity during Pregnancy. Nutrients 2024; 16:3502. [PMID: 39458497 PMCID: PMC11510513 DOI: 10.3390/nu16203502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In utero exposure to maternal hyperglycemia and obesity can trigger detrimental effects in the newborn through epigenetic programming. We aimed to assess the DNA methylation levels in the promoters of MC4R and LPL genes from maternal blood, placenta, and buccal swab samples collected in children born to mothers with and without obesity and Gestational Diabetes Mellitus (GDM). METHODS A total of 101 Caucasian mother-infant pairs were included in this study. Sociodemographic characteristics, clinical parameters, physical activity, and adherence to the Mediterranean diet were evaluated in the third trimester of pregnancy. Clinical parameters of the newborns were recorded at birth. RESULTS A negative relationship between MC4R DNA methylation on the fetal side of the GDM placenta and birth weight (r = -0.630, p = 0.011) of newborns was found. MC4R DNA methylation level was lower in newborns of GDM women (CpG1: 2.8% ± 3.0%, CpG2: 3.8% ± 3.3%) as compared to those of mothers without GDM (CpG1: 6.9% ± 6.2%, CpG2: 6.8% ± 5.6%; p < 0.001 and p = 0.0033, respectively), and it was negatively correlated with weight (r = -0.229; p = 0.035), head circumference (r = -0.236; p = 0.030), and length (r = -0.240; p = 0.027) at birth. LPL DNA methylation was higher on the fetal side of the placenta in obese patients as compared to normal-weight patients (66.0% ± 14.4% vs. 55.7% ± 15.2%, p = 0.037), and it was associated with maternal total cholesterol (r = 0.770, p = 0.015) and LDL-c (r = 0.783, p = 0.012). CONCLUSIONS These results support the role of maternal MC4R and LPL methylation in fetal programming and in the future metabolic health of children.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Paola Borrelli
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy; (P.B.); (M.D.N.)
| | - Pierluigi Cavallo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
| | - Ebe D’Adamo
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Diego Gazzolo
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Neonatal Intensive Care Unit, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine, and Health Sciences, “G. D’Annunzio” University, Via dei Vestini, Chieti-Pescara, 66100 Chieti, Italy; (M.F.); (D.G.)
- Center for Advanced Studies and Technology (CAST), “G. D’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
2
|
Sahoo PK, Ravi A, Liu B, Yu J, Natarajan SK. Palmitoleate protects against Lipopolysaccharide-induced Inflammation and Inflammasome Activity. J Lipid Res 2024:100672. [PMID: 39396700 DOI: 10.1016/j.jlr.2024.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases. Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized pro-resolving lipid mediators which take part in resolution of inflammation. Here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone-marrow derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of pro-inflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of pro-inflammatory cytokines. We also observed that palmitoleate was able to block LPS+ATP-induced inflammasome activation mediated cleavage of pro-caspase 1 and pro-interleukin (IL)-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1 derived macrophages and trophoblasts. Co-exposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen activated protein kinases (MAPK) and pretreatment of palmitoleate inhibited the activation of MAPKs and nuclear translocation of nuclear factor kappa B (NF-kB) in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS+palmitate/ATP-induced inflammasome activity and cell death.
Collapse
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aiswariya Ravi
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yang ling, Shaanxi, China
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Kadam L, Veličković M, Stratton K, Nicora CD, Kyle JE, Wang E, Monroe ME, Bramer LM, Myatt L, Burnum-Johnson KE. Changes in maternal blood and placental lipidomic profile in obesity and gestational diabetes: Evidence for sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.605016. [PMID: 39211280 PMCID: PMC11360960 DOI: 10.1101/2024.07.24.605016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Obesity and gestational diabetes (GDM) are associated with adverse pregnancy outcomes and program the offspring for cardiometabolic disease in a sexually dimorphic manner. The placenta transfers lipids to the fetus and uses these substrates to support its own metabolism impacting the amount of substrate available to the growing fetus. Methods We collected maternal plasma and placental villous tissue following elective cesarean section at term from women who were lean (pre-pregnancy BMI 18.5-24.9), obese (BMI>30) and type A2 GDM (matched to obese BMI) with male or female fetus (n=4 each group). Lipids were extracted and fatty acid composition of different lipid classes were analyzed by LC-MS/MS analysis. Significant changes in GDM vs obese, GDM vs lean, and obese vs lean were determined using t-test with a Tukey correction set at p<0.05. Results In placental samples 436 lipids were identified, among which 85 showed significant changes. Of note only in male placentas significant decreases in C22:6 - docosahexaenoic acid (DHA) in phosphatidylcholine (PC) and triglyceride lipid species were seen when comparing tissue from GDM women to lean. In maternal plasma we observed no effect of obesity. GDM or fetal sex. Conclusion This is the first study assessing fatty acid composition of lipids in matched maternal plasma and placental tissue from lean, obese, and GDM women stratified by fetal sex. It highlights how GDM affects distribution of fatty acids in lipid classes changes in a sexually dimorphic manner in the placenta.
Collapse
|
4
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Isadora C. Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lucas C. Pantaleão
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - L W. P. Wong
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- University of Campinas, Faculty of Medical Sciences, Department of Pharmacology, Campinas, Brazil
| | | | - Maria V. Carreira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - John R. B. Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
5
|
Zhang Y, Dai K, Chen X, Cui L, Chen ZJ. Association between being large for gestational age and cardiovascular metabolic health in children conceived from assisted reproductive technology: a prospective cohort study. BMC Med 2024; 22:203. [PMID: 38764021 PMCID: PMC11104001 DOI: 10.1186/s12916-024-03419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND To the best of our knowledge, no study has investigated the potential joint effect of large for gestational age (LGA) and assisted reproductive technology (ART) on the long-term health of children. METHODS This was a prospective cohort study that recruited children whose parents had received ART treatment in the Center for Reproductive Medicine, Shandong Provincial Hospital, affiliated to Shandong University, between January 2006 and December 2017. Linear mixed model was used to compare the main outcomes. The mediation model was used to evaluate the intermediary effect of body mass index (BMI). RESULTS 4138 (29.5%) children born LGA and 9910 (70.5%) children born appropriate for gestational age (AGA) were included in the present study. The offspring ranged from 0.4 to 9.9 years. LGAs conceived through ART were shown to have higher BMI, blood pressure, fasting blood glucose, fasting insulin, and homeostatic model assessment of insulin resistance values, even after controlling for all covariates. The odds of overweight and insulin resistance are also higher in LGA subjects. After adjusting for all covariates, LGAs conceived through ART had BMI and BMI z-scores that were 0.48 kg/m2 and 0.34 units greater than those of AGAs, respectively. The effect of LGA on BMI was identified as early as infancy and remained consistently significant throughout pre-puberty. CONCLUSIONS Compared to AGA, LGA children conceived from ART were associated with increased cardiovascular-metabolic events, which appeared as early as infancy and with no recovery by pre-puberty.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- Institute of Women, Children and Reproductive Health, the Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Kexin Dai
- Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- Institute of Women, Children and Reproductive Health, the Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Xiaojing Chen
- Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- Institute of Women, Children and Reproductive Health, the Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Linlin Cui
- Institute of Women, Children and Reproductive Health, the Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
- , Jinan, China.
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
6
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Monod C, Kotzaeridi G, Linder T, Yerlikaya‐Schatten G, Wegener S, Mosimann B, Henrich W, Tura A, Göbl CS. Maternal overweight and obesity and its association with metabolic changes and fetal overgrowth in the absence of gestational diabetes mellitus: A prospective cohort study. Acta Obstet Gynecol Scand 2024; 103:257-265. [PMID: 38140706 PMCID: PMC10823396 DOI: 10.1111/aogs.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Previous studies indicated an association between fetal overgrowth and maternal obesity independent of gestational diabetes mellitus (GDM). However, the underlying mechanisms beyond this possible association are not completely understood. This study investigates metabolic changes and their association with fetal and neonatal biometry in overweight and obese mothers who remained normal glucose-tolerant during gestation. MATERIAL AND METHODS In this prospective cohort study 893 women who did not develop GDM were categorized according to their pregestational body mass index (BMI): 570 were normal weight, 220 overweight and 103 obese. Study participants received a broad metabolic evaluation before 16 weeks and were followed up until delivery to assess glucose levels during the oral glucose tolerance test (OGTT) at mid-gestation as well as fetal biometry in ultrasound and pregnancy outcome data. RESULTS Increased maternal BMI was associated with an adverse metabolic profile at the beginning of pregnancy, including a lower degree of insulin sensitivity (as assessed by the quantitative insulin sensitivity check index) in overweight (mean difference: -2.4, 95% CI -2.9 to -1.9, p < 0.001) and obese (mean difference: -4.3, 95% CI -5.0 to -3.7, p < 0.001) vs normal weight women. Despite not fulfilling diagnosis criteria for GDM, overweight and obese mothers showed higher glucose levels at fasting and during the OGTT. Finally, we observed increased measures of fetal subcutaneous tissue thickness in ultrasound as well as higher proportions of large-for-gestational-age infants in overweight (18.9%, odds ratio [OR] 1.74, 95% CI 1.08-2.78, p = 0.021) and obese mothers (21.0%, OR 1.99, 95% CI 1.06-3.59, p = 0.027) vs normal weight controls (11.8%). The risk for large for gestational age was further determined by OGTT glucose (60 min: OR 1.11, 95% CI 1.02-1.21, p = 0.013; 120 min: OR 1.13, 95% CI 1.02-1.27, P = 0.025, for the increase of 10 mg/dL) and maternal triglyceride concentrations (OR 1.11, 95% CI 1.01-1.22, p = 0.036, for the increase of 20 mg/dL). CONCLUSIONS Mothers affected by overweight or obesity but not GDM had a higher risk for fetal overgrowth. An impaired metabolic milieu related to increased maternal BMI as well as higher glucose levels at mid-gestation may impact fetal overgrowth in women still in the range of normal glucose tolerance.
Collapse
Affiliation(s)
- Cécile Monod
- Department of Obstetrics and GynecologyUniversity Hospital BaselBaselSwitzerland
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Grammata Kotzaeridi
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Tina Linder
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | | | - Silke Wegener
- Clinic of ObstetricsCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Beatrice Mosimann
- Department of Obstetrics and GynecologyUniversity Hospital BaselBaselSwitzerland
| | - Wolfgang Henrich
- Clinic of ObstetricsCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Christian S. Göbl
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Matuszak O, Banach W, Pogorzały B, Muszyński J, Mengesha SH, Bogdański P, Skrypnik D. The Long-Term Effect of Maternal Obesity on the Cardiovascular Health of the Offspring-Systematic Review. Curr Probl Cardiol 2024; 49:102062. [PMID: 37652110 DOI: 10.1016/j.cpcardiol.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Maternal obesity may affect offspring's cardiovascular health. Our literature search using PubMed, Web of Sciences included original English research and Google Scholar articles published over the past ten years, culminating in 96 articles in this topic. A mother's obesity during pregnancy has a negative impact on the cardiovascular risk for their offspring. Dependence was observed in relation to hypertension, coronary artery disease, stroke, and heart failure. The adverse impact of an abnormal diet in pregnant mice on heart hypertrophy was observed, and was also confirmed in human research. Pregnant women with obesity were at greater risk of having a child with innate heart disease than pregnant women with normal mass. To conclude: mother's obesity has a negative impact on the long-term cardiovascular consequences for their offspring, increasing their risk of high blood pressure, coronary heart disease, stroke and heart failure. It also increases the probability of heart hypertrophy and innate heart defects.
Collapse
Affiliation(s)
- Oskar Matuszak
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Weronika Banach
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Bartosz Pogorzały
- Department of Internal Medicine and Cardiology, District Hospital, Juraszów St. 7-19, Poznań, Poland
| | - Józef Muszyński
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Solyana Hailemelekot Mengesha
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences; Poznań, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences; Poznań, Poland.
| |
Collapse
|
10
|
Muro BB, Carnevale RF, Leal DF, Almond GW, Monteiro MS, Poor AP, Schinckel AP, Garbossa CA. The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutr Res Rev 2023; 36:351-371. [PMID: 35748154 DOI: 10.1017/s0954422422000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overnutrition or undernutrition during all or part of the reproductive cycle predisposes sows to metabolic consequences and poor reproductive health which contributes to a decrease in sow longevity and an increase in perinatal mortality. This represents not only an economic problem for the pig industry but also results in poor animal welfare. To maximise profitability and increase sustainability in pig production, it is pivotal to provide researchers and practitioners with synthesised information about the repercussions of maternal obesity or malnutrition on reproductive health and perinatal outcomes, and to pinpoint currently available nutritional managements to keep sows' body condition in an optimal range. Thus, the present review summarises recent work on the consequences of maternal malnutrition and highlights new findings.
Collapse
Affiliation(s)
- Bruno Bd Muro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Rafaella F Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Diego F Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga, SP, Brazil
| | - Glen W Almond
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Matheus S Monteiro
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - André P Poor
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cesar Ap Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| |
Collapse
|
11
|
Perera M, Hawk GS, Nagpal TS, Tinius RA. Social support for exercise from pregnancy to postpartum and the potential impact of a mobile application: A randomized control pilot trial in Southern United States. Prev Med Rep 2023; 36:102485. [PMID: 37954963 PMCID: PMC10637991 DOI: 10.1016/j.pmedr.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
This study compared perceived social support among women of all body mass index (BMI) categories with an attempt to assess the efficacy of the BumptUp® mobile application to improve social support for exercise during pregnancy and postpartum. Thirty-five pregnant women living in Southern United States were included in the sample. The intervention group received access to the BumptUp® mobile application that was designed to promote physical activity during pregnancy and postpartum. The control group received an evidence-based educational brochure. Perceived social support for exercise was assessed at four-time points using the social support and exercise survey. Outcomes were evaluated at 23-25, 35-37 gestational weeks, and 6 and 12 weeks postpartum. Based on their pre-pregnancy weight and height, BMI was computed to categorize participants into lean, overweight, and obese groups. Social support across BMI categories and between control and intervention groups were compared using linear mixed-effect models. Women grouped in the overweight and obese BMI categories reported receiving significantly lower levels of social support for exercise than women in the lean category throughout pregnancy and postpartum during mid-pregnancy, late pregnancy, and at 12 weeks postpartum (p < 0.05). Although the intervention group received higher social support than the control group throughout all four assessment points, the difference was not statistically significant (p > 0.05). Women with a pre-pregnancy BMI of overweight and obese received lower social support for exercise during pregnancy and postpartum. The efficacy of BumptUp® to improve perceived social support for exercise in pregnancy and postpartum was not evident in the results.
Collapse
Affiliation(s)
- Madhawa Perera
- Exercise Science, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Gregory S. Hawk
- Department of Statistics, University of Kentucky, Lexington, KY 40506, USA
| | - Taniya S. Nagpal
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Rachel A. Tinius
- Exercise Science, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
12
|
Omar AK, Li Puma LC, Whitcomb LA, Risk BD, Witt AC, Bruemmer JE, Winger QA, Bouma GJ, Chicco AJ. High-fat diet during pregnancy promotes fetal skeletal muscle fatty acid oxidation and insulin resistance in an ovine model. Am J Physiol Regul Integr Comp Physiol 2023; 325:R523-R533. [PMID: 37642284 PMCID: PMC11178291 DOI: 10.1152/ajpregu.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.
Collapse
Affiliation(s)
- Asma K Omar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Luke A Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Briana D Risk
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| | - Aria C Witt
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Jason E Bruemmer
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Quinton A Winger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
13
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
15
|
Zhang Y, Liu P, Zhou W, Hu J, Cui L, Chen ZJ. Association of large for gestational age with cardiovascular metabolic risks: a systematic review and meta-analysis. Obesity (Silver Spring) 2023; 31:1255-1269. [PMID: 37140379 DOI: 10.1002/oby.23701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 05/05/2023]
Abstract
OBJECTIVE The aim of this study was to clarify the relationships among large for gestational age (LGA) and cardiometabolic risk factors. METHODS PubMed, Web of Science, and the Cochrane Library databases were searched to identify studies on LGA and outcomes of interest, including BMI, blood pressure, glucose metabolism, and lipid profiles. Data were independently extracted by two reviewers. A meta-analysis was performed using a random-effects model. The Newcastle-Ottawa Scale and funnel graph were used to assess the quality and publication bias, respectively. RESULTS Overall, 42 studies involving 841,325 individuals were included. Compared with individuals born appropriate for gestational age, individuals born LGA had higher odds of overweight and obesity (odds ratios [OR] = 1.44, 95% CI: 1.31-1.59), type 1 diabetes (OR = 1.28, 95% CI: 1.15-1.43), hypertension (OR = 1.23, 95% CI: 1.01-1.51), and metabolic syndrome (OR = 1.43, 95%; CI: 1.05-1.96). No significant difference was found in hypertriglyceridemia and hypercholesterolemia. Stratified analyses showed that, compared with individuals born appropriate for gestational age, individuals born LGA had higher odds for overweight and obesity from toddler age to puberty age (toddler age: OR = 2.12, 95% CI: 1.22-3.70; preschool: OR = 1.81, 95% CI: 1.55-2.12; school age: OR = 1.53, 95% CI: 1.09-2.14; puberty: OR = 1.40, 95% CI: 1.11-1.77). CONCLUSIONS LGA is associated with increased odds of obesity and metabolic syndrome later in life. Future studies should focus on elucidating the potential mechanisms and identifying risk factors.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Peihao Liu
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Wei Zhou
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jingmei Hu
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
16
|
Purcell AR, Glastras SJ. Maternal Weight Management to Prevent the Developmental Programming of MAFLD in Offspring of Obese Mothers. Nutrients 2023; 15:2155. [PMID: 37432265 DOI: 10.3390/nu15092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 07/12/2023] Open
Abstract
The global surge of obesity amongst women of reproductive age has raised concerns surrounding the health consequences for their offspring as there is a formidable link between an obesogenic maternal environment and the developmental programming of metabolic dysfunction in the offspring. Specifically, the offspring of mothers with obesity have a three-fold higher risk of developing metabolic-associated fatty liver disease (MAFLD) compared to the offspring of healthy-weight mothers. Given the burgeoning burden of obesity and its comorbidities, it is essential to focus research efforts on methods to alleviate the intergenerational onset of obesity and MAFLD. This review summarizes the current research surrounding the developmental programming of MAFLD in the offspring of mothers with obesity and examines the potential for weight interventions to prevent such metabolic dysfunction in the offspring. It focuses on the benefits of pre-pregnancy interventional strategies, including dietary and exercise intervention, to ameliorate adverse liver health outcomes in the offspring. The utility and translation of these interventions for humans may be difficult for prospective mothers with obesity, thus the use of pre-pregnancy therapeutic weight loss aids, such as glucagon-like peptide-1 receptor agonists, is also discussed.
Collapse
Affiliation(s)
- Amanda Renae Purcell
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sarah Jean Glastras
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia
| |
Collapse
|
17
|
Jayasinghe IU, Agampodi TC, Dissanayake AK, Agampodi SB. Early pregnancy metabolic syndrome and risk for adverse pregnancy outcomes: findings from Rajarata Pregnancy Cohort (RaPCo) in Sri Lanka. BMC Pregnancy Childbirth 2023; 23:231. [PMID: 37020187 PMCID: PMC10074348 DOI: 10.1186/s12884-023-05548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Despite the intergenerational effects of metabolic disorders, evidence is greatly lacking on early pregnancy metabolic syndrome (MetS) and its effects on pregnancy outcomes from low- and middle-income countries. Thus, this prospective cohort of South Asian pregnant women aimed to evaluate how early pregnancy MetS would affect pregnancy outcomes. METHODS A prospective cohort study was conducted among first-trimester (T1) pregnant women of Anuradhapura district, Sri Lanka recruited to the Rajarata Pregnancy Cohort in 2019. MetS was diagnosed by the Joint Interim Statement criteria before 13 weeks of gestational age (GA). Participants were followed up until their delivery, and the major outcomes measured were large for gestational age (LGA), small for gestational age (SGA), preterm birth (PTB) and miscarriage (MC). Gestational weight gain, gestational age at delivery and neonatal birth weight were used as measurements to define the outcomes. Additionally, outcome measures were re-assessed with adjusting fasting plasma glucose (FPG) thresholds of MetS to be compatible with hyperglycemia in pregnancy (Revised MetS). RESULTS 2326 T1 pregnant women with a mean age of 28.1 years (SD-5.4), and a median GA of 8.0 weeks (IQR-2) were included. Baseline MetS prevalence was 5.9% (n = 137, 95%CI-5.0-6.9). Only 2027 (87.1%) women from baseline, had a live singleton birth, while 221(9.5%) had MC and 14(0.6%) had other pregnancy losses. Additionally, 64(2.8%) were lost to follow-up. A higher cumulative incidence of LGA, PTB, and MC was noted among the T1-MetS women. T1-MetS carried significant risk (RR-2.59, 95%CI-1.65-3.93) for LGA, but reduced the risk for SGA (RR-0.41, 95%CI-0.29-0.78). Revised MetS moderately increased the risk for PTB (RR-1.54, 95%CI-1.04-2.21). T1-MetS was not associated (p = 0.48) with MC. Lowered FPG thresholds were significantly associated with risk for all major pregnancy outcomes. After adjusting for sociodemographic and anthropometric confounders, revised MetS remained the only significant risk predictor for LGA. CONCLUSION Pregnant women with T1 MetS in this population are at an increased risk for LGA and PTB and a reduced risk for SGA. We observed that a revised MetS definition with lower threshold for FPG compatible with GDM would provide a better estimation of MetS in pregnancy in relation to predicting LGA.
Collapse
Affiliation(s)
- Imasha Upulini Jayasinghe
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka.
| | - Thilini Chanchala Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Ajith Kumara Dissanayake
- Department of Gynaecology and Obstetrics, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Suneth Buddhika Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| |
Collapse
|
18
|
Nieto-Ruiz A, Cerdó T, Jordano B, Torres-Espínola FJ, Escudero-Marín M, García-Ricobaraza M, Bermúdez MG, García-Santos JA, Suárez A, Campoy C. Maternal weight, gut microbiota, and the association with early childhood behavior: the PREOBE follow-up study. Child Adolesc Psychiatry Ment Health 2023; 17:41. [PMID: 36945049 PMCID: PMC10031971 DOI: 10.1186/s13034-023-00589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND AIM Maternal overweight and breastfeeding seem to have a significant impact on the gut microbiota colonization process, which co-occurs simultaneously with brain development and the establishment of the "microbiota-gut-brain axis", which potentially may affect behavior later in life. This study aimed to examine the influence of maternal overweight, obesity and/or gestational diabetes on the offspring behavior at 3.5 years of age and its association with the gut microbiota already established at 18 months of life. METHODS 156 children born to overweight (OV, n = 45), obese (OB, n = 40) and normoweight (NW, n = 71) pregnant women participating in the PREOBE study were included in the current analysis. Stool samples were collected at 18 months of life and gut microbiome was obtained by 16S rRNA gene sequencing. Behavioral problems were evaluated at 3.5 years by using the Child Behavior Checklist (CBCL). ANOVA, Chi-Square Test, ANCOVA, Spearman's correlation, logistic regression model and generalized linear model (GLM) were performed. RESULTS At 3.5 years of age, Children born to OV/OB mothers showed higher scores in behavioral problems than those born to NW mothers. Additionally, offspring born to OB mothers who developed gestational diabetes mellitus (GDM) presented higher scores in attention/deficit hyperactivity and externalizing problems than those born to GDM OV/NW mothers. Fusicatenibacter abundance found at 18 months of age was associated to lower scores in total, internalizing and pervasive developmental problems, while an unidentified genus within Clostridiales and Flavonifractor families abundance showed a positive correlation with anxiety/depression and somatic complaints, respectively. On the other hand, children born to mothers with higher BMI who were breastfed presented elevated anxiety, internalizing problems, externalizing problems and total problems scores; likewise, their gut microbiota composition at 18 months of age showed positive correlation with behavioral problems at 3.5 years: Actinobacteria abundance and somatic complaints and between Fusobacteria abundance and withdrawn behavior and pervasive developmental problems. CONCLUSIONS Our findings suggests that OV/OB and/or GDM during pregnancy is associated with higher behavioral problems scores in children at 3.5 years old. Additionally, associations between early life gut microbiota composition and later mental health in children was also found.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain
| | - Tomás Cerdó
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Belén Jordano
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain
- Clinical University Hospital San Cecilio. Paediatric Service, Granada, Spain
| | - Francisco J Torres-Espínola
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
| | - Mireia Escudero-Marín
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Neurosciences Institute Dr. Federico Oloriz - University of Granada. Health Sciences Technological Park, Avda. del Conocimiento, S/N., 18016, Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain
| | - Mercedes G Bermúdez
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain
| | - José A García-Santos
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre, University of Granada, Health Sciences Technological Park, Avda. del Conocimiento, S/N., 18016, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, Faculty of Medicine, University of Granada, Avda. Investigación 11, 18016, Granada, Spain.
- Biomedical Research Centre, EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18016, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital. Health Sciences Technological Park, 18016, Granada, Spain.
- Neurosciences Institute Dr. Federico Oloriz - University of Granada. Health Sciences Technological Park, Avda. del Conocimiento, S/N., 18016, Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's Node, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Satokar VV, Derraik JGB, Harwood M, Okesene-Gafa K, Beck K, Cameron-Smith D, Garg ML, O'Sullivan JM, Sundborn G, Pundir S, Mason RP, Cutfield WS, Albert BB. Fish oil supplementation during pregnancy and postpartum in mothers with overweight and obesity to improve body composition and metabolic health during infancy: A double-blind randomized controlled trial. Am J Clin Nutr 2023; 117:883-895. [PMID: 36781129 DOI: 10.1016/j.ajcnut.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Maternal obesity during pregnancy is associated with an increased risk of obesity and metabolic disease in the offspring. Supplementation with fish oil (FO), which is insulin sensitizing, during pregnancy in mothers with overweight or obesity may prevent the development of greater adiposity and metabolic dysfunction in their children. OBJECTIVES To determine the effects of FO supplementation throughout the second half of pregnancy and lactation in mothers with overweight or obesity on infant body composition and metabolism. METHODS A double-blind randomized controlled trial of 6 g FO (3.55 g/d of n-3 PUFAs) compared with olive oil (control) from mid-pregnancy until 3 mo postpartum. Eligible women had singleton pregnancies at 12-20 wk of gestation, and BMI ≥ 25 kg/m2. The primary outcome was the infant body fat percentage (DXA scans) at 2 wk of age. Secondary outcomes included maternal metabolic markers during pregnancy, infant anthropometry at 2 wk and 3 mo of age, and metabolic markers at 3 mo. RESULTS A total of 129 mothers were randomized, and 98 infants had a DXA scan at 2 wk. PRIMARY OUTCOME Imputed and nonimputed analyses showed no effects of FO supplementation on infant body fat percentage at age 2 wk. SECONDARY OUTCOMES There were no treatment effects on infant outcomes at 2 wk, but FO infants had a higher BMI z-score (P = 0.025) and ponderal index (P = 0.017) at age 3 mo. FO supplementation lowered maternal triglycerides by 17% at 30 wk of pregnancy (P = 0.0002) and infant triglycerides by 21% at 3 mo of age (P = 0.016) but did not affect maternal or infant insulin resistance. The rate of emergency cesarean section was lower with FO supplementation [aRR = 0.38 (95%CI 0.16, 0.90); P = 0.027]. CONCLUSIONS FO supplementation of mothers with overweight or obesity during pregnancy did not impact infant body composition. There is a need to follow up the offspring to determine whether the observed metabolic effects persist. CLINICAL TRIAL REGISTRY NUMBER This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12617001078347p). In addition, the Universal Trial Number, WHO, was obtained (U1111-1199-5860).
Collapse
Affiliation(s)
- Vidit V Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Environmental - Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Matire Harwood
- Department of General Practice and Primary Care, University of Auckland, Auckland, New Zealand
| | - Karaponi Okesene-Gafa
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Beck
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; College of Engineering, Science and Environment, University of Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, New South Wales, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, New South Wales, Australia
| | | | - Gerhard Sundborn
- Department of Pacific Health, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Shikha Pundir
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, New Zealand
| | - Benjamin B Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, New Zealand.
| |
Collapse
|
20
|
Hampl SE, Hassink SG, Skinner AC, Armstrong SC, Barlow SE, Bolling CF, Avila Edwards KC, Eneli I, Hamre R, Joseph MM, Lunsford D, Mendonca E, Michalsky MP, Mirza N, Ochoa ER, Sharifi M, Staiano AE, Weedn AE, Flinn SK, Lindros J, Okechukwu K. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023; 151:e2022060640. [PMID: 36622115 DOI: 10.1542/peds.2022-060640] [Citation(s) in RCA: 292] [Impact Index Per Article: 292.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
|
21
|
Peng H, Li J, Xu H, Wang X, He L, McCauley N, Zhang KK, Xie L. Offspring NAFLD liver phospholipid profiles are differentially programmed by maternal high-fat diet and maternal one carbon supplement. J Nutr Biochem 2023; 111:109187. [PMID: 36270572 DOI: 10.1016/j.jnutbio.2022.109187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Little is known if and how maternal diet affects the liver phospholipid profiles that contribute to non-alcoholic fatty liver disease (NAFLD) development in offspring. We examined NAFLD phenotypes in male offspring mice of either maternal normal-fat diet (NF group), maternal high-fat diet (HF group), maternal methionine supplement (H1S group), or complete one-carbon supplement (H2S group) added to the maternal HF diet during gestation and lactation. HF offspring displayed worsened NAFLD phenotypes induced by post-weaning HF diet, however, maternal one-carbon supplement prevented such outcome. HF offspring also showed a distinct phospholipid profile from the offspring exposed to H1S or H2S diet. Whole genome bisulfite sequencing (WGBS) analysis further identified five pathways involved in phospholipid metabolism altered by different maternal diet interventions. Furthermore, differential methylated regions (DMRs) on Prkca, Dgkh, Plcb1 and Dgki were identified comparing between HF and NF offspring; most of these DMRs were recovered in H2S offspring. These methylation pattern changes were associated with gene expression changes: HF diet significantly reduced while H1S and H2S diet recovered their levels. Maternal HF diet disrupted offspring phospholipid profiles contributing to worsened hepatic steatosis. The maternal one-carbon supplement prevented such effects, probably through DNA methylation modification.
Collapse
Affiliation(s)
- Hui Peng
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Jiangyuan Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Department of Statistics, Texas A&M University, College Station, Texas, USA
| | - Huiting Xu
- Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, USA; Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA.
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
22
|
Wang J, Kuang Y, Shen S, Price MJ, Lu J, Sattar N, He J, Pittavino M, Xia H, Thomas GN, Qiu X, Cheng KK, Nirantharakumar K. Association of maternal lipid levels with birth weight and cord blood insulin: a Bayesian network analysis. BMJ Open 2022; 12:e064122. [PMID: 36581404 PMCID: PMC9806023 DOI: 10.1136/bmjopen-2022-064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To assess the independent association of maternal lipid levels with birth weight and cord blood insulin (CBI) level. SETTING The Born in Guangzhou Cohort Study, Guangzhou, China. PARTICIPANTS Women who delivered between January 2015 and June 2016 and with umbilical cord blood retained were eligible for this study. Those with prepregnancy health conditions, without an available fasting blood sample in the second trimester, or without demographic and glycaemic information were excluded. After random selection, data from 1522 mother-child pairs were used in this study. EXPOSURES AND OUTCOME MEASURES Additive Bayesian network analysis was used to investigate the interdependency of lipid profiles with other metabolic risk factors (prepregnancy body mass index (BMI), fasting glucose and early gestational weight gain) in association with birth weight and CBI, along with multivariable linear regression models. RESULTS In multivariable linear regressions, maternal triglyceride was associated with increased birth weight (adjusted β=67.46, 95% CI 41.85 to 93.06 g per mmol/L) and CBI (adjusted β=0.89, 95% CI 0.06 to 1.72 μU/mL per mmol/L increase), while high-density lipoprotein cholesterol was associated with decreased birth weight (adjusted β=-45.29, 95% CI -85.49 to -5.09 g per mmol/L). After considering the interdependency of maternal metabolic risk factors in the Network analysis, none of the maternal lipid profiles was independently associated with birth weight and CBI. Instead, prepregnancy BMI was the global strongest factor for birth weight and CBI directly and indirectly. CONCLUSIONS Gestational dyslipidaemia appears to be secondary to metabolic dysfunction with no clear association with metabolic adverse outcomes in neonates. Maternal prepregnancy overweight/obesity appears the most influential upstream metabolic risk factor for both maternal and neonatal metabolic health; these data imply weight management may need to be addressed from the preconception period and during early pregnancy.
Collapse
Affiliation(s)
- Jingya Wang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Songying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Malcolm James Price
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jinhua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jianrong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - G Neil Thomas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women's Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
23
|
Amadou C, Nabi O, Serfaty L, Lacombe K, Boursier J, Mathurin P, Ribet C, de Ledinghen V, Zins M, Charles M. Association between birth weight, preterm birth, and nonalcoholic fatty liver disease in a community-based cohort. Hepatology 2022; 76:1438-1451. [PMID: 35474232 PMCID: PMC9796225 DOI: 10.1002/hep.32540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The association between birth weight (BW) and metabolic outcomes has been described since the 1980s but NAFLD has been rarely studied. This study aimed to investigate the association between BW and NAFLD occurrence in adult subjects. APPROACH AND RESULTS The study population consisted of participants from the French nationwide Constances cohort from 2012 to 2019. Participants with a history of chronic viral hepatitis or excessive alcohol consumption were excluded. Noninvasive diagnosis of NAFLD and fibrosis was performed using a combination of the Fatty Liver Index (FLI) and the Forns Index. The relationship between BW and NAFLD was analyzed with a sex-stratified logistic regression model adjusted for sociodemographic parameters, lifestyle, and birth term, whereas liver fibrosis was analyzed with a sex-stratified linear regression model. In total, 55,034 individuals with reliable BW were included (43% men, mean age: 38 years). NAFLD (FLI ≥ 60) was present in 5530 individuals (10%). Multivariate logistic regression showed a significant U-shaped relationship between BW and NAFLD, with no significant interaction with sex. A significant and slightly decreasing association was found between BW and Forns Index (β = -0.05; p = 0.04). Premature birth (OR, 1.23; 95% CI, 1.03-1.48 for birth between 33 and 37 weeks versus ≥ 37 weeks) was associated with NAFLD, with a significant direct effect of premature birth, and without an indirect effect of low BW in mediation analysis. Forns Index was not significantly higher in participants with preterm birth compared to full-term birth. CONCLUSIONS This large prospective adult-based cohort confirms the relationship between BW and NAFLD occurrence.
Collapse
Affiliation(s)
- Coralie Amadou
- Paris‐Saclay UniversityParisFrance,Department of Diabetes and EndocrinologySud‐Francilien HospitalCorbeil‐EssonnesFrance
| | - Oumarou Nabi
- Inserm Unité Mixte de Recherche‐S1136Institut Pierre‐Louis Epidémiologie et Santé PubliqueSorbonne UniversitéParisFrance
| | - Lawrence Serfaty
- Hepatogastroenterology DepartmentHôpital HautepierreHôpitaux Universitaires de StrasbourgStrasbourgFrance,Inserm Unité Mixte de Recherche_S938Sorbonne UniversitéParisFrance
| | - Karine Lacombe
- Inserm Unité Mixte de Recherche‐S1136Institut Pierre‐Louis Epidémiologie et Santé PubliqueSorbonne UniversitéParisFrance
| | - Jérôme Boursier
- Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques LaboratoryUnité Propre de Recherche de l'Enseignement Supérieur EA3859Structure Fédérative de Recherche 4208Angers UniversityAngersFrance,Hepato‐Gastroenterology DepartmentAngers University HospitalAngersFrance
| | - Philippe Mathurin
- Hepato‐GastroenterologyCentre hospitalier universitaire LilleLilleFrance
| | - Céline Ribet
- Unité Mixte de Recherche 011Population‐Based Epidemiological CohortsInsermVillejuifFrance
| | - Victor de Ledinghen
- Hepatology UnitHaut‐Lévêque HospitalBordeaux University HospitalPessacFrance,Inserm U1053Bordeaux UniversityBordeauxFrance
| | - Marie Zins
- Paris‐Saclay UniversityParisFrance,Unité Mixte de Recherche 011Population‐Based Epidemiological CohortsInsermVillejuifFrance
| | - Marie‐Aline Charles
- Centre for Research in Epidemiology and StatisticsInsermInstitut National de Recherche Pour l'agriculture, l'alimentation et l'environnementParisFrance
| |
Collapse
|
24
|
Hu Z, Han L, Liu J, Fowke JH, Han JC, Kakhniashvili D, LeWinn KZ, Bush NR, Mason WA, Zhao Q. Prenatal metabolomic profiles mediate the effect of maternal obesity on early childhood growth trajectories and obesity risk: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study. Am J Clin Nutr 2022; 116:1343-1353. [PMID: 36055779 PMCID: PMC9630879 DOI: 10.1093/ajcn/nqac244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Maternal prepregnancy obesity is an important risk factor for offspring obesity, which may partially operate through prenatal programming mechanisms. OBJECTIVES The study aimed to systematically identify prenatal metabolomic profiles mediating the intergenerational transmission of obesity. METHODS We included 450 African-American mother-child pairs from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study pregnancy cohort. LC-MS was used to conduct metabolomic profiling on maternal plasma samples of the second trimester. The childhood growth outcomes of interest included BMI trajectories from birth to age 4 y (rising-high-, moderate-, and low-BMI trajectories) as well as overweight/obesity (OWO) risk at age 4 y. Mediation analysis was conducted to identify metabolite mediators linking maternal OWO and childhood growth outcomes. The potential causal effects of maternal OWO on metabolite mediators were examined using the Mendelian randomization (MR) method. RESULTS Among the 880 metabolites detected in the maternal plasma during pregnancy, 14 and 11 metabolites significantly mediated the effects of maternal prepregnancy OWO on childhood BMI trajectories and the OWO risk at age 4 y, respectively, and 5 mediated both outcomes. The MR analysis suggested 6 of the 20 prenatal metabolite mediators might be causally influenced by maternal prepregnancy OWO, most of which are from the pathways related to the metabolism of amino acids (hydroxyasparagine, glutamate, and homocitrulline), sterols (campesterol), and nucleotides (N2,N2-dimethylguanosine). CONCLUSIONS Our study provides further evidence that prenatal metabolomic profiles might mediate the effect of maternal OWO on early childhood growth trajectories and OWO risk in offspring. The metabolic pathways, including identified metabolite mediators, might provide novel intervention targets for preventing the intrauterine development of obesity in the offspring of mothers with obesity.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Luhang Han
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jiawang Liu
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jay H Fowke
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joan C Han
- Departments of Pediatrics and Physiology, University of Tennessee Health Science Center, and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA; Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
| | - David Kakhniashvili
- Proteomics and Metabolomics Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - W Alex Mason
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
25
|
Robertson OC, Marceau K, Duncan RJ, Shirtcliff EA, Leve LD, Shaw DS, Natsuaki M, Neiderhiser JM, Ganiban JM. Prenatal programming of developmental trajectories for obesity risk and early pubertal timing. Dev Psychol 2022; 58:1817-1831. [PMID: 35727305 PMCID: PMC9593554 DOI: 10.1037/dev0001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The thrifty phenotype and fetal overnutrition hypotheses are two developmental hypotheses that originated from the developmental origins of health and disease (DOHaD) perspective. The DOHaD posits that exposures experienced prenatally and early in life may influence health outcomes through altering form and function of internal organs related to metabolic processes. Obesity risk and early pubertal timing might be influenced by similar mechanisms. The thrifty phenotype hypothesis is primarily characterized by experiencing a deprivation of nutrients during gestation paired with an energy rich postnatal environment. The fetal overnutrition hypothesis says that obesity experienced prenatally will be associated with increased lifetime risk of obesity in the offspring. Both hypotheses were tested by examining developmental pathways from genetic and prenatal risk through early growth trajectories (birth to 7 years) to pubertal timing at age 11 years. Participants included 361 children adopted at birth (57% male; 57% non-Hispanic White, 11% Black, 9% Hispanic; adoptive family income Mdn = $70,000-$100,000, birth family income Mdn = < $15,000). Associations between boys' childhood body mass index (BMI) and pubertal timing were confounded by genetics, prenatal risk, and early growth. The thrifty phenotype hypothesis was partially supported for boys' childhood BMI (at ages 4 to 7 years). Both hypotheses were partially supported for girls' childhood BMI but not pubertal timing. A novel Gene × Prenatal Risk interaction showed that genetic risk predicted girls' childhood BMI most strongly at adequate compared with at excessive levels of gestational weight gain. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University
| | - Robert J. Duncan
- Department of Human Development and Family Studies, Purdue University
| | | | | | | | - Misaki Natsuaki
- Department of Psychology, University of California, Riverside
| | | | | |
Collapse
|
26
|
Satokar VV, Vickers MH, Reynolds CM, Ponnampalam AP, Firth EC, Garg ML, Barrett CJ, Cutfield WS, Albert BB. Fish oil supplementation of rats fed a high fat diet during pregnancy improves offspring insulin sensitivity. Front Nutr 2022; 9:968443. [PMID: 36118754 PMCID: PMC9481032 DOI: 10.3389/fnut.2022.968443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn rats, a maternal high-fat diet (HFD) leads to adverse metabolic changes in the adult offspring, similar to the children of mothers with obesity during pregnancy. Supplementation with a high dose of fish oil (FO) to pregnant rats fed a HFD has been shown to prevent the development of insulin resistance in adult offspring. However, the effects of supplementation at a translationally relevant dose remain unknown.AimTo determine whether supplementation with a human-relevant dose of FO to pregnant rats can prevent the long-term adverse metabolic and cardiovascular effects of a maternal HFD on adult offspring.MethodsFemale rats (N = 100, 90 days of age) were assigned to HFD (45% kcal from fat) or control diet (CD) for 14 days prior to mating and throughout pregnancy and lactation. Following mating, dams received a gel containing 0.05 ml of FO (human equivalent 2–3 ml) or a control gel on each day of pregnancy. This produced 4 groups, CD with control gel, CD with FO gel, HFD with control gel and HFD with FO gel. Plasma and tissue samples were collected at day 20 of pregnancy and postnatal day 2, 21, and 100. Adult offspring were assessed for insulin sensitivity, blood pressure, DXA scan, and 2D echocardiography.ResultsThere was an interaction between maternal diet and FO supplementation on insulin sensitivity (p = 0.005) and cardiac function (p < 0.01). A maternal HFD resulted in impaired insulin sensitivity in the adult offspring (p = 0.005 males, p = 0.001 females). FO supplementation in the context of a maternal HFD prevented the reduction in insulin sensitivity in offspring (p = 0.05 males, p = 0.0001 females). However, in dams consuming CD, FO supplementation led to impaired insulin sensitivity (p = 0.02 males, p = 0.001 females), greater body weight and reduced cardiac ejection fraction.ConclusionThe effects of a human-relevant dose of maternal FO on offspring outcomes were dependent on the maternal diet, so that FO was beneficial to the offspring if the mother consumed a HFD, but deleterious if the mother consumed a control diet. This study suggests that supplementation with FO should be targeted to women expected to have abnormalities of metabolism such as those with overweight and obesity.
Collapse
Affiliation(s)
- Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M. Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Anna P. Ponnampalam
- Manaaki Mānawa – The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Elwyn C. Firth
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Manohar L. Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Carolyn J. Barrett
- Manaaki Mānawa – The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Wayne S. Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start – National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Benjamin B. Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start – National Science Challenge, University of Auckland, Auckland, New Zealand
- *Correspondence: Benjamin B. Albert,
| |
Collapse
|
27
|
Marley AR, Ryder JR, Turcotte LM, Spector LG. Maternal obesity and acute lymphoblastic leukemia risk in offspring: A summary of trends, epidemiological evidence, and possible biological mechanisms. Leuk Res 2022; 121:106924. [PMID: 35939888 DOI: 10.1016/j.leukres.2022.106924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Acute lymphoblastic leukemia, a heterogenous malignancy characterized by uncontrolled proliferation of lymphoid progenitors and generally initiated in utero, is the most common pediatric cancer. Although incidence of ALL has been steadily increasing in recent decades, no clear reason for this trend has been identified. Rising concurrently with ALL incidence, increasing maternal obesity rates may be partially contributing to increasing ALL prevelance. Epidemiological studies, including a recent meta-analysis, have found an association between maternal obesity and leukemogenesis in offspring, although mechanisms underlying this association remain unknown. Therefore, the purpose of this review is to propose possible mechanisms connecting maternal obesity to ALL risk in offspring, including changes to fetal/neonatal epigenetics, altered insulin-like growth factor profiles and insulin resistance, modified adipokine production and secretion, changes to immune cell populations, and impacts on birthweight and childhood obesity/adiposity. We describe how each proposed mechanism is biologically plausible due to their connection with maternal obesity, presence in neonatal and/or fetal tissue, observation in pediatric ALL patients at diagnosis, and association with leukemogenesis, A description of ALL and maternal obesity trends, a summary of epidemiological evidence, a discussion of the pathway from intrauterine environment to subsequent malignancy, and propositions for future directions are also presented.
Collapse
Affiliation(s)
- Andrew R Marley
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA.
| | - Justin R Ryder
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Center for Pediatric Obesity Medicine, Department of Pediatrics, University of Minnesota, 2450 Riverside Ave S AO-102, Minneapolis, MN 55454, USA
| | - Lucie M Turcotte
- Division of Hematology/Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 484, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, 420 Delaware St SE MMC 715, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Rodríguez-Cano AM, González-Ludlow I, Suárez-Rico BV, Montoya-Estrada A, Piña-Ramírez O, Parra-Hernández SB, Reyes-Muñoz E, Estrada-Gutierrez G, Calzada-Mendoza CC, Perichart-Perera O. Ultra-Processed Food Consumption during Pregnancy and Its Association with Maternal Oxidative Stress Markers. Antioxidants (Basel) 2022; 11:antiox11071415. [PMID: 35883909 PMCID: PMC9312096 DOI: 10.3390/antiox11071415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ultra-processed food (UPF) consumption during gestation may lead to increased oxidative stress (OS) and could affect pregnancy outcomes. This study aims to evaluate the association of UPF consumption during pregnancy with circulating levels of OS markers. Diet was assessed (average of three assessments) in 119 pregnant women enrolled in the OBESO perinatal cohort (Mexico), obtaining quantitative data and the percentage of energy that UPFs (NOVA) contributed to the total diet. Sociodemographic, clinical (pregestational body-mass index and gestational weight gain) and lifestyle data were collected. Maternal circulating levels of OS markers (malondialdehyde (MDA), protein carbonylation (PC), and total antioxidant capacity (TAC)) were determined at the third trimester of pregnancy. Adjusted linear regression models were performed to analyze the association between UPFs and OS markers. UPFs represented 27.99% of the total energy intake. Women with a lower UPF consumption (<75 percentile°) presented a higher intake of fiber, ω-3, ω-6, and a lower ω-6/3 ratio. Linear regression models showed that UPFs were inversely associated with TAC and MDA. Fiber intake was associated with PC. UPF intake during pregnancy may result in an increase in oxidative stress. When providing nutrition care, limiting or avoiding UPFs may be an intervention strategy that could promote a better antioxidant capacity in the body.
Collapse
Affiliation(s)
- Ameyalli M. Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Miguel Hidalgo, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Isabel González-Ludlow
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Blanca V. Suárez-Rico
- Community Interventions Research Branch, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Araceli Montoya-Estrada
- Gynecological and Perinatal Endocrinology Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico; (A.M.-E.); (E.R.-M.)
| | - Omar Piña-Ramírez
- Bioinformatics and Statistical Analysis Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Sandra B. Parra-Hernández
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Enrique Reyes-Muñoz
- Gynecological and Perinatal Endocrinology Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico; (A.M.-E.); (E.R.-M.)
| | - Guadalupe Estrada-Gutierrez
- Research Division, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
| | - Claudia C. Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Miguel Hidalgo, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Coordination, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Miguel Hidalgo, Mexico City 11000, Mexico;
- Correspondence:
| |
Collapse
|
29
|
Anti-inflammatory diets reduce the risk of excessive gestational weight gain in urban South Africans from the Soweto First 1000-Day Study (S1000). Eur J Nutr 2022; 61:3929-3941. [PMID: 35764725 PMCID: PMC9244370 DOI: 10.1007/s00394-022-02931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
Purpose To (i): examine whether maternal dietary inflammation assessed using the dietary inflammatory index (DII) is associated with gestational weight gain (GWG) and delivery outcomes in urban South African women from the Soweto First 1000-Day Study (S1000); and (ii): explore whether serum high-sensitivity c-reactive protein (hs-CRP) levels mediate these associations. Methods Energy-adjusted-DII (E-DII™) scores were calculated for 478 pregnant women using a quantitative food frequency questionnaire. GWG (kg/week) was assessed via anthropometry and hs-CRP concentrations were assessed in a sub-sample at < 14 (n = 263) and at 24–28 (n = 270) weeks gestational age. Multivariable linear and logistic regression models were used to examine associations between maternal E-DII scores, GWG, hs-CRP concentrations, and delivery outcomes. Results Positive vs. negative E-DII scores were associated with an increased odds of excessive weight gain (OR (95% CI): 2.23 (1.20; 4.14); P = 0.01) during pregnancy. Higher hs-CRP concentrations in the first trimester were associated with lower weight-for-length z-score (β (95% CI): −0.06 (−0.11; −0.01) per 1 mg/l hs-CRP; P = 0.02) and a reduction in odds of a large-for-gestational age delivery (OR (95% CI): 0.66 (0.47; 0.94); P = 0.02). Higher hs-CRP concentrations in the second trimester were associated with an increased odds of delivering preterm (OR (95% CI): 1.16 (1.01; 1.32); P = 0.03). Conclusions Consumption of an anti-inflammatory diet during pregnancy reduced the risk of excessive GWG in a rapidly urbanising setting (Soweto, South Africa), where obesity prevalence rates are high. Further research is needed to better understand how maternal diet may ameliorate the effects of maternal adiposity on inflammatory milieu and fetal programming. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02931-x.
Collapse
|
30
|
Koemel NA, Skilton MR. Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition. Curr Nutr Rep 2022; 11:318-328. [PMID: 35192186 PMCID: PMC9174131 DOI: 10.1007/s13668-022-00402-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Early life presents a pivotal period during which nutritional exposures are more likely to cause epigenetic modifications, which may impact an individual's health during adulthood. This article reviews the current evidence regarding maternal and early childhood nutritional exposures and their role in epigenetic aging. RECENT FINDINGS Maternal and early life consumption of diets higher in fiber, antioxidants, polyphenols, B vitamins, vitamin D, and ω-3 fatty acids is associated with slower epigenetic aging. Conversely, diets higher in glycemic load, fat, saturated fat, and ω-6 fatty acids demonstrate a positive association with epigenetic aging. Maternal and early life nutrition directly and indirectly influences epigenetic aging via changes in one-carbon metabolism, cardiometabolic health, and the microbiome. Clinical trials are warranted to determine the specific foods, dietary patterns, and dietary supplements that will normalize or lower epigenetic aging across the life course.
Collapse
Affiliation(s)
- Nicholas A. Koemel
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael R. Skilton
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
31
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
32
|
Rastogi S, Rastogi D. The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Front Cardiovasc Med 2022; 9:844905. [PMID: 35391836 PMCID: PMC8980933 DOI: 10.3389/fcvm.2022.844905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Obesity has reached pandemic proportions in the last few decades. The global increase in obesity has contributed to an increase in the number of pregnant women with pre-pregnancy obesity or with excessive gestational weight gain. Obesity during pregnancy is associated with higher incidence of maternal co-morbidities such as gestational diabetes and hypertension. Both obesity during pregnancy and its associated complications are not only associated with immediate adverse outcomes for the mother and their newborns during the perinatal period but, more importantly, are linked with long-term morbidities in the offsprings. Neonates born to women with obesity are at higher risk for cardiac complications including cardiac malformations, and non-structural cardiac issues such as changes in the microvasculature, e.g., elevated systolic blood pressure, and overt systemic hypertension. Pulmonary diseases associated with maternal obesity include respiratory distress syndrome, asthma during childhood and adolescence, and adulthood diseases, such as chronic obstructive pulmonary disease. Sequelae of short-term complications compound long-term outcomes such as long-term obesity, hypertension later in life, and metabolic complications including insulin resistance and dyslipidemia. Multiple mechanisms have been proposed to explain these adverse outcomes and are related to the emerging knowledge of pathophysiology of obesity in adults. The best investigated ones include the role of obesity-mediated metabolic alterations and systemic inflammation. There is emerging evidence linking metabolic and immune derangements to altered biome, and alteration in epigenetics as one of the intermediary mechanisms underlying the adverse outcomes. These are initiated as part of fetal adaptation to obesity during pregnancy which are compounded by rapid weight gain during infancy and early childhood, a known complication of obesity during pregnancy. This newer evidence points toward the role of specific nutrients and changes in biome that may potentially modify the adverse outcomes observed in the offsprings of women with obesity.
Collapse
Affiliation(s)
- Shantanu Rastogi
- Division of Neonatology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
33
|
Associations between maternal pre-pregnancy body mass index and neonatal neurobehavior in infants born before 30 weeks gestation. J Perinatol 2022; 42:483-490. [PMID: 35132152 PMCID: PMC9007858 DOI: 10.1038/s41372-021-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the relationship between maternal pre-pregnancy body mass index (BMI) and neonatal neurobehavior in very premature infants. STUDY DESIGN Multi-center prospective observational study of 664 very preterm infants with 227 born to obese mothers. The NICU Network Neurobehavioral Scale (NNNS) assessed neurobehavior at NICU discharge. RESULTS Elevated BMI combined with infection increased the odds of having the most poorly regulated NNNS profile by 1.9 times per BMI SD. Infants born to mothers with elevated BMI in combination with: infection had poorer self-regulation, chorioamnionitis had increased asymmetrical reflexes, diabetes had poorer attention, and low SES required more handling. CONCLUSION Maternal pre-pregnancy BMI alone did not affect short-term neonatal neurobehavior in infants born before 30 weeks gestation. Infants born to mothers with elevated pre-pregnancy weight in addition to infections, diabetes, or socioeconomic adversity demonstrated increased risk of having the most poorly regulated NNNS profile and deficits in multiple domains.
Collapse
|
34
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
35
|
Anafy A, Moran-Lev H, Shapira N, Priel M, Oren A, Mangel L, Mandel D, Lubetzky R. The Glycemic Response to Infant Formulas: A Randomized Clinical Trial. Nutrients 2022; 14:nu14051064. [PMID: 35268039 PMCID: PMC8912504 DOI: 10.3390/nu14051064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/23/2023] Open
Abstract
Background: Commercial infant formulas attempt to imitate human milk’s unique composition. However, lactose-free and milk protein-free formulas are often chosen due to medical reasons or personal preferences. The aim of this study was to determine the glycemic and insulinemic indices of a variety of infant formulas. Methods: We conducted a three-arm, randomized, double-blind, crossover study. Participants were 25–40-year-old healthy adults. Three commercial infant formulas (cow’s milk protein-based [“standard”], soy protein-based, and lactose-free) were randomly given to each participant. Glycemic and insulinemic responses were determined and compared between the three formulas. Results: Twenty subjects were enrolled (11 females/9 males, mean age 32.8 ± 2.9 years). No significant difference was found in the glycemic index between the three formulas (21.5, 29.1, and 21.5 for the standard, soy protein-based, and lactose-free formulas, respectively, p = 0.21). However, maximal glucose levels were significantly higher for the soy protein-based formula compared to both the standard and lactose-free formulas (111.5 compared to 101.8 and 105.8 mg/dL, respectively, p = 0.001). Conclusion: Cow’s milk protein-based, soy protein-based, and lactose-free formulas have a similar glycemic index. However, soy protein-based formula produced a significantly higher increase in postprandial glucose levels. The implication and biological significance of these results have yet to be determined.
Collapse
Affiliation(s)
- Adi Anafy
- Department of Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (H.M.-L.); (M.P.); (R.L.)
- Pediatric Gastroenterology Institute, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
- Correspondence: ; Tel.: +972-3-6974519
| | - Hadar Moran-Lev
- Department of Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (H.M.-L.); (M.P.); (R.L.)
- Pediatric Gastroenterology Institute, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
| | - Niva Shapira
- Department of Nutrition, School of Health Professions, Ashkelon Academic College, Ashkelon 78211, Israel;
| | - Meital Priel
- Department of Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (H.M.-L.); (M.P.); (R.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
| | - Asaf Oren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
- Pediatric Endocrinology and Metabolic Disease Unit, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Laurence Mangel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
- Department of Neonatology, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Dror Mandel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
- Department of Neonatology, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ronit Lubetzky
- Department of Pediatrics, Dana Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; (H.M.-L.); (M.P.); (R.L.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.O.); (L.M.); (D.M.)
| |
Collapse
|
36
|
Corken A, Thakali KM. Maternal Obesity Programming of Perivascular Adipose Tissue and Associated Immune Cells: An Understudied Area With Few Answers and Many Questions. Front Physiol 2022; 12:798987. [PMID: 35126181 PMCID: PMC8815821 DOI: 10.3389/fphys.2021.798987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
At present, the worldwide prevalence of obesity has become alarmingly high with estimates foreshadowing a continued escalation in the future. Furthermore, there is growing evidence attributing an individual’s predisposition for developing obesity to maternal health during gestation. Currently, 60% of pregnancies in the US are to either overweight or obese mothers which in turn contributes to the persistent rise in obesity rates. While obesity itself is problematic, it conveys an increased risk for several diseases such as diabetes, inflammatory disorders, cancer and cardiovascular disease (CVD). Additionally, as we are learning more about the mechanisms underlying CVD, much attention has been brought to the role of perivascular adipose tissue (PVAT) in maintaining cardiovascular health. PVAT regulates vascular tone and for a significant number of individuals, obesity elicits PVAT disruption and dysregulation of vascular function. Obesity elicits changes in adipocyte and leukocyte populations within PVAT leading to an inflammatory state which promotes vasoconstriction thereby aiding the onset/progression of CVD. Our current understanding of obesity, PVAT and CVD has only been examined at the individual level without consideration for a maternal programming effect. It is unknown if maternal obesity affects the propensity for PVAT remodeling in the offspring, thereby enhancing the obesity/CVD link, and what role PVAT leukocytes play in this process. This perspective will focus on the maternal contribution of the interplay between obesity, PVAT disruption and CVD and will highlight the leukocyte/PVAT interaction as a novel target to stem the tide of the current obesity epidemic and its secondary health consequences.
Collapse
Affiliation(s)
- Adam Corken
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Keshari M. Thakali,
| |
Collapse
|
37
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
38
|
Koemel NA, Senior AM, Dissanayake HU, Ross J, McMullan RL, Kong Y, Phang M, Hyett J, Raubenheimer D, Gordon A, Simpson SJ, Skilton MR. Maternal dietary fatty acid composition and newborn epigenetic aging-a geometric framework approach. Am J Clin Nutr 2022; 115:118-127. [PMID: 34591100 DOI: 10.1093/ajcn/nqab318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Maternal nutrition is associated with epigenetic and cardiometabolic risk factors in offspring. Research in humans has primarily focused on assessing the impact of individual nutrients. OBJECTIVES We sought to assess the collective impact of maternal dietary MUFAs, PUFAs, and SFAs on epigenetic aging and cardiometabolic risk markers in healthy newborn infants using a geometric framework approach. METHODS Body fatness (n = 162), aortic intima-media thickness (aIMT; n = 131), heart rate variability (n = 118), and epigenetic age acceleration (n = 124) were assessed in newborn infants. Maternal dietary intake was cross-sectionally assessed in the immediate postpartum period via a validated 80-item self-administered FFQ. Generalized additive models were used to explore interactive associations of nutrient intake, with results visualized as response surfaces. RESULTS After adjustment for total energy intake, maternal age, gestational age, and sex there was a 3-way interactive association of MUFAs, PUFAs, and SFAs (P = 0.001) with newborn epigenetic aging. This suggests that the nature of each fat class association depends upon one another. Response surfaces revealed MUFAs were positively associated with newborn epigenetic age acceleration only at proportionately lower intakes of SFAs or PUFAs. We also demonstrate a potential beneficial association of omega-3 (n-3) PUFAs with newborn epigenetic age acceleration (P = 0.008). There was no significant association of fat class with newborn aIMT, heart rate variability, or body fatness. CONCLUSIONS In this study, we demonstrated an association between maternal dietary fat class composition and epigenetic aging in newborns. Future research should consider other characteristics such as the source of maternal dietary fatty acids.
Collapse
Affiliation(s)
- Nicholas A Koemel
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Hasthi U Dissanayake
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Sleep Research Group, The University of Sydney, Sydney, Australia
| | - Jason Ross
- CSIRO Health and Biosecurity, Sydney, Australia
| | - Rowena L McMullan
- Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yang Kong
- Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Melinda Phang
- Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jon Hyett
- Sydney Institute for Women, Children and their Families, Sydney Local Health District, Sydney, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Adrienne Gordon
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Institute for Women, Children and their Families, Sydney Local Health District, Sydney, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michael R Skilton
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Sydney Institute for Women, Children and their Families, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
39
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
40
|
The postnatal leptin surge in mice is variable in both time and intensity and reflects nutritional status. Int J Obes (Lond) 2022; 46:39-49. [PMID: 34475504 PMCID: PMC8748198 DOI: 10.1038/s41366-021-00957-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES The murine postnatal leptin surge occurs within the first 4 weeks of life and is critical for neuronal projection development within hypothalamic feeding circuits. Here we describe the influence of nutritional status on the timing and magnitude of the postnatal leptin surge in mice. METHODS Plasma leptin concentrations were measured 1-3 times per week for the first 4 weeks of life in C57BL/6J pups reared in litters adjusted to 3 (small), 7-8 (normal), or 11-12 (large) pups per dam fed breeder chow or raised in litters of 7-8 by dams fed high-fat diet (HFD) ad libitum starting either prior to conception or at parturition. RESULTS Mice raised in small litters become fatter than pups raised in either normal or large litters. The leptin surge in small litter pups starts earlier, lasts longer, and is dramatically larger in magnitude compared to normal litter pups, even when leptin concentrations are normalized to fat mass. In mice reared in large litters, weight gain is diminished and the surge is both significantly delayed and lower in magnitude compared to control pups. Pups reared by HFD-fed dams (starting preconception or at parturition) are fatter and have augmented leptin surge magnitude compared to pups suckled by chow-fed dams. Surge timing varies depending upon nutritional status of the pup; the source of the surge is primarily subcutaneous adipose tissue. At peak leptin surge, within each group, fat mass and plasma leptin are uncorrelated; in comparison with adults, pups overproduce leptin relative to fat mass. Plasma leptin elevation persists longer than previously described; at postnatal day 27 mice continue overproducing leptin relative to fat mass. CONCLUSIONS In mice, small litter size and maternal HFD feeding during the perinatal period augment the plasma leptin surge whereas large litter size is associated with a delayed surge of reduced magnitude.
Collapse
|
41
|
Marchlewicz E, McCabe C, Djuric Z, Hoenerhoff M, Barks J, Tang L, Song PX, Peterson K, Padmanabhan V, Dolinoy DC. Gestational exposure to high fat diets and bisphenol A alters metabolic outcomes in dams and offspring, but produces hepatic steatosis only in dams. CHEMOSPHERE 2022; 286:131645. [PMID: 34426127 PMCID: PMC8595757 DOI: 10.1016/j.chemosphere.2021.131645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 05/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. Perinatal development is a critical window for altered, lifelong health trajectory, and evidence supports the role of perinatal programming in chronic metabolic diseases. To examine the impact of diet and bisphenol A (BPA) on the developmental trajectory of NAFLD in offspring, we exposed dams from pre-gestation through lactation to a human-relevant dose of oral BPA coupled with intake of high fat Western or Mediterranean-style diets. We assessed hepatic steatosis by quantifying hepatic triglycerides (TGs) and metabolic health by measuring body weight, relative organ weights, and serum hormone levels in dams and offspring at postnatal day 10 (PND10) and 10-months of age. In dams, consumption of the Western or Mediterranean diet increased hepatic TGs 1.7-2.4-fold, independent of BPA intake. Among offspring, both perinatal diet and BPA exposure had a greater impact on metabolic outcomes than on hepatic steatosis. At PND10, serum leptin levels were elevated 2.6-4.8-fold in pups exposed to the Mediterranean diet, with a trend for sex-specific effects on body and organ weights. At 10-months, sex-specific increases in organ weight and hormone levels were observed in mice perinatally exposed to Western + BPA or Mediterranean + BPA. These findings suggest lifestage-specific interaction of perinatal exposures to experimental diets and BPA on offspring metabolic health without effects on NAFLD later in life. Importantly, alterations in dam phenotype by diet and BPA exposure appear to impact offspring health trajectory, emphasizing the need to define dam diet in assessing effects of environmental exposures on offspring health.
Collapse
Affiliation(s)
- Elizabeth Marchlewicz
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Carolyn McCabe
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Barks
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Tang
- Department of Biostatistics, University of Pittsburgh, Pittsburg, PA, USA
| | - Peter X Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen Peterson
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev 2022; 23 Suppl 1:e13389. [PMID: 34816569 DOI: 10.1111/obr.13389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene-environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0-18 years) were included. The risk of bias was assessed with a modified Newcastle-Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Evangelos Handakas
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Unit of Molecular and Genetic Epidemiology, Human Genetic Foundation (HuGeF), Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
43
|
Ma C, Iwai-Shimada M, Nakayama SF, Isobe T, Kobayashi Y, Tatsuta N, Taniguchi Y, Sekiyama M, Michikawa T, Yamazaki S, Kamijima M. Association of prenatal exposure to cadmium with neurodevelopment in children at 2 years of age: The Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2021; 156:106762. [PMID: 34256298 DOI: 10.1016/j.envint.2021.106762] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal cadmium exposure has been associated with adverse neurodevelopmental outcomes. However, previous findings are contradictory, and little is known about the potential modifiers of the cadmium-related neurodevelopmental risk. We investigated the associations between prenatal cadmium exposure and neurodevelopment in 2-year-old children and examined the influence of mother/child characteristics. METHODS We recruited 3545 mother-child pairs from the Japan Environment and Children's Study. We collected maternal blood during mid/late pregnancy and cord blood at delivery, and measured cadmium concentrations using inductively coupled plasma mass spectrometry. Neurodevelopment was assessed using the Kyoto Scale of Psychological Development (KSPD), which includes cognitive-adaptive (C-A), language-social (L-S), postural-motor (P-M) and developmental quotient (DQ) domains. Associations between cadmium and KSPD scores were tested using multivariable models after controlling for confounders. RESULTS Median levels (interquartile ranges) of cadmium in maternal and cord blood were 0.70 (0.52-0.95) and 0.04 (0.03-0.06) μg/L, respectively. Maternal blood cadmium concentrations were inversely associated with P-M scores in boys (β = -1.4, 95% confidence interval (CI): -2.7, -0.038), DQ in children of mothers who smoked during pregnancy (β = -2.9, 95% CI: -5.7, -0.12), P-M (β = -5.4, 95% CI: -10, -0.67), C-A (β = -6.1, 95% CI: -11, -1.8), L-S (β = -9.0, 95% CI: -13, -4.8) and DQ scores (β = -6.4, 95% CI: -9.6, -3.1) in children born to mothers with gestational diabetes. Cord blood cadmium concentrations were negatively associated with L-S scores (β = -6.0., 95% CI: -11, -0.91) in children born to mothers with gestational diabetes. CONCLUSIONS Prenatal cadmium exposure was negatively associated with neurodevelopment in boys, in children whose mothers smoked, and in children born to mothers with gestational diabetes. Further studies in other populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Chaochen Ma
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Miyuki Iwai-Shimada
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yayoi Kobayashi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Nozomi Tatsuta
- Department of Development and Environmental Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yu Taniguchi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Makiko Sekiyama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takehiro Michikawa
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
44
|
Daliry A, Pereira ENGDS. Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients 2021; 13:3533. [PMID: 34684534 PMCID: PMC8540774 DOI: 10.3390/nu13103533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The rise in the prevalence of obesity and other related metabolic diseases has been paralleled by an increase in the frequency of neurodevelopmental problems, which has raised the likelihood of a link between these two phenomena. In this scenario, maternal microbiota is a possible linking mechanistic pathway. According to the "Developmental Origins of Health and Disease" paradigm, environmental exposures (in utero and early life) can permanently alter the body's structure, physiology, and metabolism, increasing illness risk and/or speeding up disease progression in offspring, adults, and even generations. Nutritional exposure during early developmental stages may induce susceptibility to the later development of human diseases via interactions in the microbiome, including alterations in brain function and behavior of offspring, as explained by the gut-brain axis theory. This review provides an overview of the implications of maternal nutrition on neurodevelopmental disorders and the establishment and maturation of gut microbiota in the offspring.
Collapse
Affiliation(s)
- Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | | |
Collapse
|
45
|
Rotevatn TA, Mortensen RN, Ullits LR, Torp-Pedersen C, Overgaard C, Høstgaard AMB, Bøggild H. Early-life childhood obesity risk prediction: A Danish register-based cohort study exploring the predictive value of infancy weight gain. Pediatr Obes 2021; 16:e12790. [PMID: 33783137 DOI: 10.1111/ijpo.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Information on postnatal weight gain is important for predicting later overweight and obesity, but it is unclear whether inclusion of this postnatal predictor improves the predictive performance of a comprehensive model based on prenatal and birth-related predictors. OBJECTIVES To compare performance of prediction models based on predictors available at birth, with and without information on infancy weight gain during the first year when predicting childhood obesity risk. METHODS A Danish register-based cohort study including 55.041 term children born between January 2004 and July 2011 with birthweight >2500 g registered in The Children's Database was used to compare model discrimination, reclassification, sensitivity and specificity of two models predicting risk of childhood obesity at school age. Each model consisted of eight predictors available at birth, one additionally including information on weight gain during the first 12 months of life. RESULTS The area under the receiving operating characteristic curve increased from 0.785 (95% confidence interval (CI) [0.773-0.798]) to 0.812 (95% CI [0.801-0.824]) after adding weight gain information when predicting childhood obesity. Adding this information correctly classified 30% more children without obesity and 21% with obesity and improved sensitivity from 0.42 to 0.48. Specificity remained unchanged at 0.91. CONCLUSION Adding infancy weight gain information improves discrimination, reclassification and sensitivity of a comprehensive prediction model based on predictors available at birth.
Collapse
Affiliation(s)
- Torill Alise Rotevatn
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | | | - Line Rosenkilde Ullits
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Christian Torp-Pedersen
- Department of Cardiology and Clinical Investigation, Nordsjaellands Hospital, Hillerød, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Overgaard
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Anna Marie Balling Høstgaard
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Henrik Bøggild
- Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark.,Unit of Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
46
|
Araujo-Silva VC, Santos-Silva A, Lourenço AS, Barros-Barbosa CM, Moraes-Souza RQ, Soares TS, Karki B, Paula VG, Sinzato YK, Damasceno DC, Volpato GT. Congenital Anomalies Programmed by Maternal Diabetes and Obesity on Offspring of Rats. Front Physiol 2021; 12:701767. [PMID: 34447317 PMCID: PMC8383734 DOI: 10.3389/fphys.2021.701767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Embryo-fetal exposure to maternal disorders during intrauterine life programs long-term consequences for the health and illness of offspring. In this study, we evaluated whether mild diabetic rats that were given high-fat/high-sugar (HF/HS) diet presented maternal and fetal changes at term pregnancy. Female rats received citrate buffer (non-diabetic-ND) or streptozotocin (diabetic-D) after birth. According to the oral glucose tolerance test (OGTT), the experimental groups (n = 11 animals/group) were composed of non-diabetic and diabetic receiving standard diet (S) or HF/HS diet. High-fat/high-sugar diet (30% kcal of lard) in chow and water containing 5% sucrose and given 1 month before mating and during pregnancy. During and at the end of pregnancy, obesity and diabetes features were determined. After laparotomy, blood samples, periovarian fat, and uterine content were collected. The diabetic rats presented a higher glycemia and percentage of embryonic losses when compared with the NDS group. Rats DHF/HS presented increased obesogenic index, caloric intake, and periovarian fat weight and reduced gravid uterus weight in relation to the other groups. Besides, this association might lead to the inflammatory process, confirmed by leukocytosis. Obese rats (NDHF/HS and DHF/HS) showed higher triglyceride levels and their offspring with lower fetal weight and ossification sites, indicating intrauterine growth restriction. This finding may contribute to vascular alterations related to long-term hypertensive disorders in adult offspring. The fetuses from diabetic dams showed higher percentages of skeletal abnormalities, and DHF/HS dams still had a higher rate of anomalous fetuses. Thus, maternal diabetes and/or obesity induces maternal metabolic disorders that contribute to affect fetal development and growth.
Collapse
Affiliation(s)
- Vanessa Caruline Araujo-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Alice Santos-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Andressa Silva Lourenço
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Cristielly Maria Barros-Barbosa
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Thaigra Sousa Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.,Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Program on Tocogynecology, São Paulo State University, Botucatu, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
47
|
Frayre J, Frayre P, Wong I, Mithani A, Bishop S, Mani C, Ponce-Rubio K, Virk R, Morris MJ, Na ES. Perinatal exposure to high fat diet alters expression of MeCP2 in the hypothalamus. Behav Brain Res 2021; 415:113518. [PMID: 34391798 DOI: 10.1016/j.bbr.2021.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a complex disease that is the result of a number of different factors including genetic, environmental, and endocrine abnormalities. Given that monogenic forms of obesity are rare, it is important to identify other mechanisms that contribute to its etiology. Methyl-Cp-G binding protein 2 (MeCP2) is a neuroepigenetic factor that binds to methylated regions of DNA to influence transcription. Past studies demonstrate that disruption in MeCP2 function produces obesity in mice. Using a diet-induced obesity mouse model, we show that perinatal exposure to high fat diet significantly decreases MeCP2 protein expression in the hypothalamus of female mice, effects not seen when high fat diet is given to mice during adulthood. Moreover, these effects are seen specifically in a subregion of the hypothalamus known as the arcuate nucleus with females having decreased MeCP2 expression in rostral areas and males having decreased MeCP2 expression in intermediate regions of the arcuate nucleus. Interestingly, mice gain more weight when exposed to high fat diet during adulthood relative to mice exposed to high fat diet perinatally, suggesting that perhaps high fat diet exposure during adulthood may be affecting mechanisms independent of MeCP2 function. Collectively, our data demonstrate that there are developmentally sensitive periods in which MeCP2 expression is influenced by high fat diet exposure and this occurs in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Jessica Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Priscila Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ida Wong
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Anusha Mithani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Stephanie Bishop
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Chelsy Mani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Karen Ponce-Rubio
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ruvaid Virk
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Michael J Morris
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Elisa S Na
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| |
Collapse
|
48
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
49
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
50
|
Rugină C, Mărginean CO, Meliţ LE, Huţanu A, Ghiga DV, Modi V, Mărginean C. Gestational obesity and subclinical inflammation: The pathway from simple assessment to complex outcome (STROBE-compliant article). Medicine (Baltimore) 2021; 100:e26055. [PMID: 34011122 PMCID: PMC8137052 DOI: 10.1097/md.0000000000026055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity and excessive gestational weight gain (GWG) are associated with pregnancy-related complications, poor birth outcomes, and increased birth weight (BW).The aims of this study were to assess the relationship between excessive GWG and gestational inflammatory status in terms of blood parameters, as well as its influence on newborn's outcomes.We performed a prospective study on 176 pregnant women divided into 2 groups depending on the GWG: group 1-normal GWG, 80 cases; and group 2-high GWG, 96 cases. The statistical analysis was performed using the GraphPad Prism program, trial variant. We performed a thorough anamnesis and clinical examination in all mothers and their newborns, as well as an assessment of multiple laboratory parameters.The levels of both platelets and triglycerides were significantly higher in pregnant women from high GWG group (P = .0165/P = .0247). The newborns whose mothers presented an excessive GWG were found with a significantly higher BW as compared to those with normal GWG mothers (P = .0023). We obtained a positive correlation between the mothers' and newborns' values for hemoglobin, high-density lipoprotein, leucocytes, and platelets/lymphocytes ratio (P = .0002/P = .0313/P = .0137). Moreover, a significant positive correlation was found between GWG and BW (r = 0.2049, 95% CI: 0.0588-0.3425, P = .0064).Our findings sustain the hypothesis that maternal obesity is a risk factor for macrosomia and childhood obesity since we found a positive correlation between GWG and BW. Women with high GWG expressed significantly higher levels of platelets and triglycerides suggesting a subclinical inflammation associated to excessive fat accumulation. The inflammation transfer from mother to fetus in our study was suggested by the positive correlations between maternal and neonatal leukocytes and platelets/lymphocytes ratio.
Collapse
Affiliation(s)
| | | | | | - Adina Huţanu
- Research Laboratory, Center for Advanced Medical and Pharmaceutical Research
| | | | - Viviana Modi
- Department of Obstetrics and Gynecology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Claudiu Mărginean
- Department of Obstetrics and Gynecology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| |
Collapse
|