1
|
Geng W, Thomas H, Chen Z, Yan Z, Zhang P, Zhang M, Huang W, Ren X, Wang Z, Ding K, Zhang J. Mechanisms of acquired resistance to HER2-Positive breast cancer therapies induced by HER3: A comprehensive review. Eur J Pharmacol 2024; 977:176725. [PMID: 38851563 DOI: 10.1016/j.ejphar.2024.176725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wujun Geng
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Holly Thomas
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhixiu Yan
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
| |
Collapse
|
2
|
Xue Y, Wang R, Yao T, Fang Q, Chen J, Liu X, Han Q, Wang X. Genome-wide identification and characterization of large yellow croaker (Larimichthys crocea) suppressors of cytokine signaling (SOCS) in immune response to Pseudomonas plecoglossicida infection and acute hypoxia stress. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109669. [PMID: 38849106 DOI: 10.1016/j.fsi.2024.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The suppressor of cytokine signaling (SOCS) gene family is a group of genes involved in the negative regulation of cytokine signal transduction. The members of this family play a crucial role in regulating immune and inflammatory processes. However, comprehensive investigations of these genes have not yet been conducted in the economically significant fish large yellow croaker (Larimichthys crocea). In this study, a total of 13 SOCS genes (LcSOCS1a, LcSOCS1b, LcSOCS2, LcSOCS3a, LcSOCS3b, LcSOCS4, LcSOCS5a, LcSOCS5b, LcSOCS6, LcSOCS7a, LcSOCS7b, LcCISHa and LcCISHb) were identified and analyzed in L. crocea. The phylogenetic tree revealed a high conservation of SOCS genes in evolution, and the gene structure and motif analysis indicated a high similarity in the structure of LcSOCSs in the same subfamily. In addition, the expression patterns of LcSOCSs showed that LcSOCS1b was significantly down-regulated in all time under acute hypoxia stress, but it was markedly up-regulated throughout the entire process after P. plecoglossicida infection, revealing its different immune effects to two stresses. Besides, LcSOCS2a, LcSOCS6 and LcSOCS7a only participated in acute hypoxic stress, while LcSOCS5a was more sensitive to P. plecoglossicida infection. In summary, these results indicated that SOCS genes were involved in stress responses to both biological and non-biological stimuli, setting the foundation for deeper study on the functions of SOCS genes.
Collapse
Affiliation(s)
- Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Qian Fang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
3
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Ma Z, Wu Y, Zhang Y, Zhang W, Jiang M, Shen X, Wu H, Chen X, Di G. Morphologic, cytometric, quantitative transcriptomic and functional characterisation provide insights into the haemocyte immune responses of Pacific abalone ( Haliotis discus hannai). Front Immunol 2024; 15:1376911. [PMID: 39015569 PMCID: PMC11250055 DOI: 10.3389/fimmu.2024.1376911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 07/18/2024] Open
Abstract
In recent years, the abalone aquaculture industry has been threatened by the bacterial pathogens. The immune responses mechanisms underlying the phagocytosis of haemocytes remain unclear in Haliotis discus hannai. It is necessary to investigate the immune mechanism in response to these bacterial pathogens challenges. In this study, the phagocytic activities of haemocytes in H. discus hannai were examined by flow cytometry combined with electron microscopy and transcriptomic analyses. The results of Vibrio parahaemolyticus, Vibrio alginolyticus and Staphylococcus aureu challenge using electron microscopy showed a process during phagosome formation in haemocytes. The phagocytic rate (PP) of S. aureus was higher than the other five foreign particles, which was about 63%. The PP of Vibrio harveyi was about 43%, the PP peak of V. alginolyticus in haemocyte was 63.7% at 1.5 h. After V. parahaemolyticus and V. alginolyticus challenge, acid phosphatase, alkaline phosphatase, total superoxide dismutase, lysozyme, total antioxidant capacity, catalase, nitric oxide synthase and glutathione peroxidase activities in haemocytes were measured at different times, differentially expressed genes (DEGs) were identified by quantitative transcriptomic analysis. The identified DEGs after V. parahaemolyticus challenge included haemagglutinin/amebocyte aggregation factor-like, supervillin-like isoform X4, calmodulin-like and kyphoscoliosis peptidase-like; the identified DEGs after V. alginolyticus challenge included interleukin-6 receptor subunit beta-like, protein turtle homolog B-like, rho GTPase-activating protein 6-like isoform X2, leukocyte surface antigen CD53-like, calponin-1-like, calmodulin-like, troponin C, troponin I-like isoform X4, troponin T-like isoform X18, tumor necrosis factor ligand superfamily member 10-like, rho-related protein racA-like and haemagglutinin/amebocyte aggregation factor-like. Some immune-related KEGG pathways were significantly up-regulated or down-regulated after challenge, including thyroid hormone synthesis, Th17 cell differentiation signalling pathway, focal adhesion, melanogenesis, leukocyte transendothelial migration, inflammatory mediator regulation of TRP channels, ras signalling pathway, rap1 signalling pathway. This study is the first step towards understanding the H. discus hannai immune system by adapting several tools to gastropods and providing a first detailed morpho-functional study of their haemocytes.
Collapse
Affiliation(s)
- Zeyuan Ma
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunlong Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingmei Jiang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyue Shen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hailian Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guilan Di
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Zahran E, Elbahnaswy S, Mansour AIA, Risha E, Mustafa A, Alqahtani AS, Sebaei MGE, Ahmed F. Dietary algal-sourced zinc nanoparticles promote growth performance, intestinal integrity, and immune response of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2024; 20:276. [PMID: 38926724 PMCID: PMC11201375 DOI: 10.1186/s12917-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Trace elements play a crucial role in fish nutrition, with zinc (Zn) being one of the most important elements. BIO-sourced zinc nanoparticles were synthesized using the green microalga Pediastrum boryanum (BIO-ZnNPs, 29.35 nm). 30 or 60 mg/ kg dry feed of the BIO-ZnNPs (BIO-ZnNPs30 and BIO-ZnNPs60) were mixed with the Nile tilapia (Oreochromis niloticus) basal diet and fed to the fish for 8 weeks to evaluate their impact on fish growth, digestion, intestinal integrity, antioxidative status, and immunity. RESULTS A significant enhancement was observed in all investigated parameters, except for the serum protein profile. BIO-ZnNPs at 60 mg/kg feed elevated the activities of reduced glutathione (GSH) and catalase (CAT), enzymatic antioxidants, but did not induce oxidative stress as reflected by no change in MDA level. Fish intestinal immunity was improved in a dose-dependent manner, in terms of improved morphometry and a higher count of acid mucin-producing goblet cells. Interleukin-8 (IL-8) was upregulated in BIO-ZnNPs30 compared to BIO-ZnNPs60 and control fish groups, while no significant expressions were noted in tumor necrosis factor-alpha (TNFα), nuclear factor kappa B (NFkB), and Caspase3 genes. CONCLUSION Overall, BIO-ZnNPs inclusion at 60 mg/kg feed showed the most advantage in different scenarios, compared to BIO-ZnNPs at 30 mg/kg feed. The positive effects on growth and intestinal health suggest that BIO-ZnNPs supplementation of aquafeeds has many benefits for farmed fish.
Collapse
Affiliation(s)
- Eman Zahran
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I A Mansour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Engy Risha
- Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University, Fort Wayne, Indiana, 46805, USA
| | - Arwa Sultan Alqahtani
- College of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Mahmoud G El Sebaei
- College of Veterinary Medicine, Department of Biomedical Sciences, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Faculty of Science, Department of Zoology, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
6
|
Zahran E, Ahmed F, Hassan Z, Ibrahim I, Khaled AA, Palić D, El Sebaei MG. Toxicity Evaluation, Oxidative, and Immune Responses of Mercury on Nile Tilapia: Modulatory Role of Dietary Nannochloropsis oculata. Biol Trace Elem Res 2024; 202:1752-1766. [PMID: 37491615 PMCID: PMC10859351 DOI: 10.1007/s12011-023-03771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
The current study evaluated the potential ameliorative effect of a dietary immune modulator, Nannochloropsis oculata microalga, on the mercuric chloride (HgCl2)-induced toxicity of Nile tilapia. Nile tilapia (45-50 g) were fed a control diet or exposed to ¼ LC50 of HgCl2 (0.3 mg/L) and fed on a medicated feed supplemented with N. oculata (5% and 10% (50 or 100 g/kg dry feed)) for 21 days. Growth and somatic indices, Hg2+ bioaccumulation in muscles, and serum acetylcholinesterase (AChE) activity were investigated. Antioxidant and stress-related gene expression analyses were carried out in gills and intestines. Histopathological examinations of gills and intestines were performed to monitor the traits associated with Hg2+ toxicity or refer to detoxification. Hg2+ toxicity led to significant musculature bioaccumulation, inhibited AChE activity, downregulated genes related to antioxidants and stress, and elicited histopathological changes in the gills and intestine. Supplementation with N. oculata at 10% was able to upregulate the anti-oxidative-related genes while downregulated the stress apoptotic genes in gills and intestines compared to the unexposed group. In addition, minor to no histopathological traits were detected in the gills and intestines of the N. oculata-supplemented diets. Our data showed the benefit of dietary N. oculata in suppressing Hg2+ toxicity, which might support its efficacy as therapeutic/preventive agent to overcome environmental heavy metal pollution in aquatic habitats.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Iman Ibrahim
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Zahran E, Elbahnaswy S, Ahmed F, Risha E, Mansour AT, Alqahtani AS, Awadin W, Sebaei MGE. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Vet Res 2024; 20:107. [PMID: 38500172 PMCID: PMC10946125 DOI: 10.1186/s12917-024-03966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Feed supplements, including essential trace elements are believed to play an important role in augmenting fish immune response. In this context, selenium nanoparticles (SeNPs) in fish diets via a green biosynthesis strategy have attracted considerable interest. In this investigation, selenium nanoparticles (SeNPs, 79.26 nm) synthesized from the green microalga Pediastrum boryanum were incorporated into Nile tilapia diets to explore its beneficial effects on the immune defense and intestinal integrity, in comparison with control basal diets containing inorganic Se source. Nile tilapia (No. 180, 54-57 g) were fed on three formulated diets at concentrations of 0, 0.75, and 1.5 mg/kg of SeNPs for 8 weeks. After the trial completion, tissue bioaccumulation, biochemical indices, antioxidant and pro-inflammatory cytokine-related genes, and intestinal histological examination were analyzed. RESULTS Our finding revealed that dietary SeNPs significantly decreased (P < 0.05) serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and cholesterol, while increasing (P < 0.05) high-density lipoproteins (HDL). The Se concentration in the muscle tissues showed a dose-dependent increase. SeNPs at a dose of 1.5 mg/kg significantly upregulated intestinal interleukin 8 (IL-8) and interleukin 1 beta (IL-1β) gene transcription compared with the control diet. Glutathione reductase (GSR) and glutathione synthetase (GSS) genes were significantly upregulated in both SeNPs-supplemented groups compared with the control. No apoptotic changes or cell damages were observed as indicated by proliferating cell nuclear antigen (PCNA) and caspase-3 gene expression and evidenced histopathologically. SeNPs supplementation positively affects mucin-producing goblet cells (GCs), particularly at dose of 1.5 mg/kg. CONCLUSION Therefore, these results suggest that Green synthesized SeNPs supplementation has promising effects on enhancing Nile tilapia immunity and maintaining their intestinal health.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, Riyadh, 9095011623, Saudi Arabia
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
9
|
El Gamal SA, Adawy RS, Zaki VH, Zahran E. Host-pathogen interaction unveiled by immune, oxidative stress, and cytokine expression analysis to experimental Saprolegnia parasitica infection in Nile tilapia. Sci Rep 2023; 13:9888. [PMID: 37337042 PMCID: PMC10279727 DOI: 10.1038/s41598-023-36892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The present study evaluated the pathogenicity, immunological, and oxidant/antioxidant responses against Saprolegnia parasitica (S. parasitica) infection in Nile tilapia (Oreochromis niloticus). Three groups of Nile tilapia were assigned as the control group (no zoospores exposure). The other two groups were challenged by Saprolegnia zoospores; one was used for sampling, and the other for mortality monitoring. The study lasted 3 weeks and was sampled at three point times at 1, 2, and 3 weeks. Results showed that S. parasitica zoospores were pathogenic to Nile tilapia, causing a cumulative mortality rate of 86.6%. Immunoglobulin M and C- reactive protein (IgM and CRP) levels showed a similar trend being significantly (P < 0.05, P < 0.001) higher in the infected group at weeks 1, 2, and 3, respectively, compared to the control group. Oxidant and antioxidant parameters in gills revealed that Malondialdehyde (MDA) level was significantly higher in the infected group compared to the control group. While catalase, glutathione peroxidase, and superoxide dismutase (CAT, GSH, and SOD) levels were significantly decreased in the infected group compared to the control group. Compared to the control, the tumor necrosis factor-α (TNF-α) gene was firmly upregulated in gill tissue at all-time points, particularly at day 14 post-infection. Meanwhile, Interleukin 1-β (IL-1 β) gene was significantly upregulated only at days 7 and 14 post-infection compared to control. Histopathological examination revealed destructive and degenerative changes in both skin and gills of experimentally infected Nile tilapia. Our findings suggest that Nile tilapia-S. parasitica infection model was successful in better understanding of pathogenicity and host (fish)-pathogen (oomycete) interactions, where the induced oxidative stress and upregulation of particular immune biomarkers in response to S. parasitica infection may play a crucial role in fish defense against oomycetes in fish.
Collapse
Affiliation(s)
- Samar A El Gamal
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Viola Hassan Zaki
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
10
|
Han P, Wang R, Yao T, Liu X, Wang X. Genome-wide identification of olive flounder (Paralichthys olivaceus) SOCS genes: Involvement in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108515. [PMID: 36603791 DOI: 10.1016/j.fsi.2023.108515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The suppressors of cytokine signaling (SOCS) gene family participates in development and immunity through negative regulation of cytokine signaling pathways. Although the immune response of SOCS gene family members has been extensively characterized in teleost, no similar study has been reported in olive flounder yet. In our present study, a total of 13 SOCSs in olive flounder were identified and characterized systematically. By querying the SOCS sequences of ten teleost fish species, we found there were exactly more members of SOCSs in fish than mammals, which indicated that there were more duplication events occurred in fish than in higher vertebrates. Phylogenetic analysis clearly illuminated that SOCS genes were highly conserved. The analysis of gene structure and motif showed SOCS proteins of olive flounder shared a high level of sequence similarity strikingly. The expression profiles of tissues and developmental stages indicated that SOCS members had a kind of specificity in temporality and spatiality. RNA-Seq analysis of temperature stress and E. Tarda infection demonstrated SOCS members were involved in inflammatory response. In a word, our results would provide a further reference for understanding the mechanism of SOCS genes in olive flounder.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
11
|
Wang G, Liu W, Wang C, Wang J, Liu H, Hao D, Zhang M. Molecular characterization and immunoregulatory analysis of suppressors of cytokine signaling 1 (SOCS1) in black rockfish, Sebastes schlegeli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104355. [PMID: 35077723 DOI: 10.1016/j.dci.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The suppressors of cytokine signaling (SOCS) family are important soluble mediators to inhibit signal transduction via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway in the innate and adaptive immune responses. SOCS1 is the primary regulator of a number of cytokines. In this study, two spliced transcripts of SOCS1 were identified and characterized from black rockfish (Sebastes schlegeli), named SsSOCS1a and SsSOCS1b. SsSOCS1a and SsSOCS1b contained conserved structural and functional domains including KIR region, ESS region, SH2 domain and SOCS box. SsSOCS1a and SsSOCS1b were distributed ubiquitously in all the detected tissues with the higher expression level in liver and spleen. After stimulation in vivo with Vibrio anguillarum and Edwardsiella tarda, the mRNA expression of SsSOCS1a and SsSOCS1b were induced in most of the immune-related tissues, including head kidney, spleen and liver. Meanwhile, poly I:C and IFNγ up-regulated the expression of SsSOCS1a and SsSOCS1b that reached the highest level at 24 h in macrophages in vitro. Luciferase assays in HEK293 cells showed SsSOCS1a and SsSOCS1b had the similar function in inhibiting ISRE activity after poly I:C and IFNγ treatment. Furthermore, KIR domain in black rockfish was determined to have a negative regulatory role in IFN signaling. SsSOCS1a and SsSOCS1b were found to interact strongly with each other by Co-immunoprecipitation analyses. These results indicated that the function of SOCS1 in the negative regulation of IFN signaling is conserved from teleost to mammals which will be helpful to further understanding of the biological functions of teleosts SOCS1 in innate immunity.
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jingjing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
12
|
Colville C, Alcaraz AJ, Green D, Park B, Xia J, Soufan O, Hruṧka P, Potěšil D, Zdráhal Z, Crump D, Basu N, Hogan N, Hecker M. Characterizing toxicity pathways of fluoxetine to predict adverse outcomes in adult fathead minnows (Pimephales promelas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152747. [PMID: 35026279 DOI: 10.1016/j.scitotenv.2021.152747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 05/17/2023]
Abstract
Current ecotoxicity testing programs are impeded as they predominantly rely on slow and expensive animal tests measuring adverse outcomes. Therefore, new approach methodologies (NAMs) increasingly involve short-term mechanistic assays that employ molecular endpoints to predict adverse outcomes of regulatory relevance. This study aimed to elucidate the application of NAMs in adult fathead minnows using fluoxetine (FLX) as a model compound. Fish were exposed to three FLX concentrations (measured: 2.42, 10.7, and 56.7 μgL-1) and a control. After 96 h, molecular toxicity signatures were characterized using proteomics and transcriptomics analyses in livers and brains of a sub-set of fish. The remaining fish were sampled at 21 days and assessed for liver histopathology and morphometric measurements. Fecundity was monitored throughout the study. In the livers, 56.7 μgL-1 FLX caused enrichment of PPAR signaling in the proteome and fatty acid-related pathways in the transcriptome, potential upstream responses that led to lipid-type vacuolation of hepatocytes, observed via histopathology. Upregulated genes in the brain suggested alterations in serotonin-related signaling processes and reproductive behaviour, which may explain the observed significant decrease in fecundity. While the relationships between molecular responses and adverse outcomes remain complex, this research provided important insights into the mechanistic toxicity of FLX.
Collapse
Affiliation(s)
- Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Othman Soufan
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada; Computer Science Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Pavel Hruṧka
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic; RECETOX, Masaryk University, Brno 625 00, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
13
|
Holzer AS, Piazzon MC, Barrett D, Bartholomew JL, Sitjà-Bobadilla A. To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections. Front Immunol 2021; 12:734238. [PMID: 34603313 PMCID: PMC8481699 DOI: 10.3389/fimmu.2021.734238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Collapse
Affiliation(s)
- Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | - Damien Barrett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal - Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| |
Collapse
|
14
|
Zahran E, El Sebaei MG, Awadin W, Elbahnaswy S, Risha E, Elseady Y. Withania somnifera dietary supplementation improves lipid profile, intestinal histomorphology in healthy Nile tilapia (Oreochromis niloticus), and modulates cytokines response to Streptococcus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:133-141. [PMID: 32738514 DOI: 10.1016/j.fsi.2020.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Despite Withania somnifera (WS), stimulating effects have been investigated on many animal species, its role on lipid profile and intestinal histomorphology in healthy animals, and its modulating role on pro-inflammatory cytokines following infection in fish are yet scarce. In this context, lipid profile, liver, and intestinal histomorphology were measured in Nile tilapia fed with a basal diet or diets containing 2.5 and 5% of supplementary WS for 60 days. Besides, cytokines response was measured at 1, 3,7, and 14 days following Streptococcus iniae (S. iniae) infection after the feeding trial. All lipid profile parameters were nominally lowered, excluding high-density lipoprotein (HDL) that exhibited a significant increase in WS 5% group compared to other groups. Improved gut health integrity was observed, especially in WS 5% group in terms of increased goblet cell numbers, villous height, the width of lamina propria in all parts of the intestine, and a decrease in the diameter of the intestinal lumen of the distal intestine only. A significant down-regulation in the mRNA transcript level of cytokine genes (interleukin 1β/IL-1β, tumor necrosis factor α/TNFα, and interleukin 6/IL-6) was demonstrated in the kidney and spleen of WS-supplemented groups following S. iniae infection compared with the control infected (positive control/PC) group. Our findings give new insights for the potential roles of WS dietary inclusion not only on lipid profile and intestinal health integrity improvement in healthy fish under normal rearing but also as a prophylactic against the infection. Thus, WS can be incorporated as a promising nutraceutical in aquaculture.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy Risha
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Youssef Elseady
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
15
|
Bailey C, Holland JW, Secombes CJ, Tafalla C. A portrait of the immune response to proliferative kidney disease (PKD) in rainbow trout. Parasite Immunol 2020; 42:e12730. [PMID: 32403171 PMCID: PMC7507176 DOI: 10.1111/pim.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Proliferative kidney disease (PKD), caused by the myxozoan Tetracapsuloides bryosalmonae, is one of the most serious parasitic diseases of salmonids in which outbreaks cause severe economic constraints for the aquaculture industry and declines of wild species throughout Europe and North America. Given that rainbow trout (Oncorhynchus mykiss) is one of the most widely farmed freshwater fish and an important model species for fish immunology, most of the knowledge on how the fish immune response is affected during PKD is from this organism. Once rainbow trout are infected, PKD pathogenesis results in a chronic kidney immunopathology mediated by decreasing myeloid cells and increasing lymphocytes. Transcriptional studies have revealed the regulation of essential genes related to T-helper (Th)-like functions and a dysregulated B-cell antibody type response. Recent reports have discovered unique details of teleost B-cell differentiation and functionality and characterized the differential immunoglobulin (Ig)-mediated response. These studies have solidified the rainbow trout T. bryosalmonae system as a sophisticated disease model capable of feeding key advances into mainstream immunology and have contributed essential information to design novel parasite disease prevention strategies. In our following perspective, we summarize these efforts to evaluate the immune mechanisms of rainbow trout during PKD pathogenesis.
Collapse
Affiliation(s)
- Christyn Bailey
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| | - Jason W. Holland
- Aberdeen Oomycete LaboratoryInstitute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research CentreInstitute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA‐INIA)MadridSpain
| |
Collapse
|
16
|
STAT3/SOCS3 axis contributes to the outcome of salmonid whirling disease. PLoS One 2020; 15:e0234479. [PMID: 32542025 PMCID: PMC7295227 DOI: 10.1371/journal.pone.0234479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
There are differences in disease susceptibility to whirling disease (WD) among strains of rainbow trout. The North American strain Trout Lodge (TL) is highly susceptible, whereas the German Hofer (HO) strain is more resistant. The suppressor of cytokine signaling (SOCS) proteins are key in inhibiting cytokine signaling. Their role in modulating the immune response against whirling disease is not completely clear. This study aimed at investigating the transcriptional response of SOCS1 and SOCS3 genes to Myxobolus cerebralis along with that of several upstream regulators and immune response genes. M. cerebralis induced the expression of SOCS1, the IL-6-dependent SOCS3, the anti-inflammatory cytokine IL-10 and the Treg associated transcription factor FOXP3 in TL fish at multiple time points, which likely caused a restricted STAT1 and STAT3 activity affecting the Th17/Treg17 balance. The expression of SOCS1 and the IL-6-dependent SOCS3 was induced constraining the activation of STAT1 and STAT3 in TL fish, thereby causing Th17/Treg17 imbalance and leaving the fish unable to establish a protective immune response against M. cerebralis or control inflammatory reactions increasing susceptibility to WD. Conversely, in HO fish, the expression of SOCS1 and SOCS3 was restrained, whereas the expression of STAT1 and IL-23-mediated STAT3 was induced potentially enabling more controlled immune responses, accelerating parasite clearance and elevating resistance. The induced expression of STAT1 and IL-23-mediated STAT3 likely maintained a successful Th17/Treg17 balance and enabled fish to promote effective immune responses favouring resistance against WD. The results provide insights into the role of SOCS1 and SOCS3 in regulating the activation and magnitude of host immunity in rainbow trout, which may help us understand the mechanisms that underlie the variation in resistance to WD.
Collapse
|
17
|
Vitiello GAF, Amarante MK, Oda JMM, Hirata BKB, de Oliveira CEC, Campos CZ, de Oliveira KB, Guembarovski RL, Watanabe MAE. Transforming growth factor beta 1 (TGFβ1) plasmatic levels in breast cancer and neoplasia-free women: Association with patients' characteristics and TGFB1 haplotypes. Cytokine 2020; 130:155079. [PMID: 32229413 DOI: 10.1016/j.cyto.2020.155079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine that acts in a context-dependent manner. In breast cancer (BC) this cytokine exerts subtype- and stage-specific roles, inhibiting poorly aggressive tumors while enhances the invasive potential of highly aggressive cancers. Single-nucleotide polymorphisms (SNPs) affecting TGFβ1 production largely reflect this pattern of association, but studies investigating systemic TGFβ1 levels in BC patients and their association with clinical features or SNPs produced conflicting conclusions. Therefore, the present work investigated plasmatic TGFβ1 levels through enzyme linked immunosorbent assay (ELISA) in 341 individuals previously genotyped for four TGFB1 SNPs [G-800A (rs1800468), C-509T (rs1800469), T29C (rs1800470) and G74C (rs1800471)], encompassing 184 neoplasia-free women with clinical information regarding health status, 113 treatment-free pre-surgery BC patients and 44 treated BC patients. Results have shown that TGFβ1 levels varied greatly in function of health status in neoplasia-free women, and disease-free individuals had higher TGFβ1 levels than both treatment-free or treated BC patients. There was no correlation between TGFβ1 with clinicopathological features in treatment-free BC general group, but it was negatively correlated with tumor size in luminal-B-HER2+ patients and with histopathological grade in triple-negative group. Also, TGFB1 ACTG haplotype (from G-800A to G74C) was associated with decreased TGFβ1 levels compared to the reference GCTG haplotype, and regression analyses showed that this association was independent of age, health status or BC diagnosis. In conclusion, several factors may influence TGFβ1 levels, and ACTG haplotype seems to be an important factor regulating TGFβ1 production.
Collapse
Affiliation(s)
| | - Marla Karine Amarante
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Julie Massayo Maeda Oda
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Bruna Karina Banin Hirata
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | | | - Clodoaldo Zago Campos
- Department of Clinical Research, Londrina Cancer Hospital, Londrina, PR, Brazil; Department of Clinical Medicine, Health Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | | |
Collapse
|
18
|
Identification of duplicated suppressor of cytokine signaling 3 (SOCS3) genes in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110348. [DOI: 10.1016/j.cbpb.2019.110348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 09/04/2019] [Indexed: 12/28/2022]
|
19
|
Chughtai S. The nuclear translocation of insulin-like growth factor receptor and its significance in cancer cell survival. Cell Biochem Funct 2019; 38:347-351. [PMID: 31875653 DOI: 10.1002/cbf.3479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
Abstract
The nuclear translocation of insulin-like growth factor receptor type 1 (IGF-1R) has been documented in a variety of previous studies. The exact mechanism of this translocation, however, is still poorly understood. Furthermore, the functional role of IGF-1R in the nucleus shows promise of transcriptional control. This function is particularly important in cancer cells. Understanding this role may also give insights into cancer biology and treatment methods. Processes including SUMOylation and clathrin-mediated endocytosis are necessary for IGF-1R nuclear translocation to occur. The antiapoptotic qualities of IGF-1R likely contribute to its function in cancer cells. This review aims to synthesize the work on IGF-1R in order to propose a mechanism of translocation. Using this mechanism, new therapeutic targets can be proposed that hinder the role of IGF-1R in cancer metastasis.
Collapse
Affiliation(s)
- Shahzaib Chughtai
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Sudhagar A, Ertl R, Kumar G, El-Matbouli M. Transcriptome profiling of posterior kidney of brown trout, Salmo trutta, during proliferative kidney disease. Parasit Vectors 2019; 12:569. [PMID: 31783772 PMCID: PMC6884850 DOI: 10.1186/s13071-019-3823-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tetracapsuloides bryosalmonae is a myxozoan parasite which causes economically important and emerging proliferative kidney disease (PKD) in salmonids. Brown trout, Salmo trutta is a native fish species of Europe, which acts as asymptomatic carriers for T. bryosalmonae. There is only limited information on the molecular mechanism involved in the kidney of brown trout during T. bryosalmonae development. We employed RNA sequencing (RNA-seq) to investigate the global transcriptome changes in the posterior kidney of brown trout during T. bryosalmonae development. METHODS Brown trout were exposed to the spores of T. bryosalmonae and posterior kidneys were collected from both exposed and unexposed control fish. cDNA libraries were prepared from the posterior kidney and sequenced. Bioinformatics analysis was performed using standard pipeline of quality control, reference mapping, differential expression analysis, gene ontology, and pathway analysis. Quantitative real time PCR was performed to validate the transcriptional regulation of differentially expressed genes, and their correlation with RNA-seq data was statistically analyzed. RESULTS Transcriptome analysis identified 1169 differentially expressed genes in the posterior kidney of brown trout, out of which 864 genes (74%) were upregulated and 305 genes (26%) were downregulated. The upregulated genes were associated with the regulation of immune system process, vesicle-mediated transport, leucocyte activation, and transport, whereas the downregulated genes were associated with endopeptidase regulatory activity, phosphatidylcholine biosynthetic process, connective tissue development, and collagen catabolic process. CONCLUSION To our knowledge, this is the first RNA-seq based transcriptome study performed in the posterior kidney of brown trout during active T. bryosalmonae development. Most of the upregulated genes were associated with the immune system process, whereas the downregulated genes were associated with other metabolic functions. The findings of this study provide insights on the immune responses mounted by the brown trout on the developing parasite, and the host molecular machineries modulated by the parasite for its successful multiplication and release.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
- Central Institute of Fisheries Education, Rohtak Centre, Rohtak, Haryana India
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
21
|
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol 2019; 36:393-411. [PMID: 30521052 PMCID: PMC6368001 DOI: 10.1093/molbev/msy230] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The SOCS family are key negative regulators of cytokine and growth factor signaling. Typically, 8-17 SOCS genes are present in vertebrate species with eight known in mammals, classified as type I (SOCS4-7) and type II (CISH and SOCS1-3) SOCS. It was believed that the type II SOCS were expanded through the two rounds of whole genome duplication (1R and 2R WGDs) from a single CISH/SOCS1-3 precursor. Previously, 12 genes were identified in rainbow trout but here we report 15 additional loci are present, and confirm 26 of the genes are expressed, giving rainbow trout the largest SOCS gene repertoire identified to date. The discovery of the additional SOCS genes in trout has led to a novel model of SOCS family evolution, whereby the vertebrate SOCS gene family was derived from CISH/SOCS2, SOCS1/SOCS3, SOCS4/5, SOCS6, and SOCS7 ancestors likely present before the two WGD events. It is also apparent that teleost SOCS2b, SOCS4, and SOCS5b molecules are not true orthologues of mammalian SOCS2, SOCS4, and SOCS5, respectively. The rate of SOCS gene structural changes increased from 2R vertebrates, to 4R rainbow trout, and the genes with structural changes show large differences and low correlation coefficient of expression levels relative to their paralogues, suggesting a role of structural changes in expression and functional diversification. This study has important impacts in the functional prediction and understanding of the SOCS gene family in different vertebrates, and provides a framework for determining how many SOCS genes could be expected in a particular vertebrate species/lineage.
Collapse
Affiliation(s)
- Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, P.R. China.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
22
|
Gorgoglione B, Taylor NGH, Holland JW, Feist SW, Secombes CJ. Immune response modulation upon sequential heterogeneous co-infection with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta). FISH & SHELLFISH IMMUNOLOGY 2019; 88:375-390. [PMID: 30797951 DOI: 10.1016/j.fsi.2019.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous and sequential infections often occur in wild and farming environments. Despite growing awareness, co-infection studies are still very limited, mainly to a few well-established human models. European salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE notifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co-infection model was established to assess if the responses elicited in co-infected fish are modulated, when compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected fish. A typical histophlogosis associated with histozoic extrasporogonic T. bryosalmonae was detected together with acute inflammation, haemorrhaging and necrosis due to the viral infection. The host immune response was measured in terms of key marker genes expression in kidney tissues. During T. bryosalmonae/VHSV-Ia co-infection, modulation of pro-inflammatory and antimicrobial peptide genes was strongly influenced by the viral infection, with a protracted inflammatory status, perhaps representing a negative side effect in these fish. Earlier activation of the cellular and humoral responses was detected in co-infected fish, with a more pronounced upregulation of Th1 and antiviral marker genes. These results reveal that some brown trout immune responses are enhanced or prolonged during PKD/VHS co-infection, relative to single infection.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK.
| | - Nick G H Taylor
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | - Stephen W Feist
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
23
|
Ye HM, Zhao T, Wu LX, Cheng J, Tan XY. Molecular characterization of nine suppressors of cytokine signaling (SOCS) genes from yellow catfish Pelteobagrus fulvidraco and their changes in mRNA expression to dietary carbohydrate levels. FISH & SHELLFISH IMMUNOLOGY 2019; 86:906-912. [PMID: 30580042 DOI: 10.1016/j.fsi.2018.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Suppressors of cytokine signaling (SOCS) are important molecules that mediates the regulation of glucose homeostasis. Here, we cloned and characterized the full-length cDNA sequences of nine genes of the SOCS family (SOCS1, 2, 3, 3b, 5, 5b, 6, 7 and CISH) from yellow catfish P. fulvidraco, explored their mRNA abundance across the tissues and their mRNA changes to dietary carbohydrate levels. Structural analysis indicated that the nine members shared conserved functional domains to the orthologues of the mammalian SOCS members, such as SRC homology 2 and the SOCS domains. Their mRNAs were constitutively expressed in various tissues but changed among the tissues. Their mRNA expression in response to dietary carbohydrate levels were explored in the liver, muscle, intestine, testis and ovary. Dietary carbohydrate addition showed significant effects on the mRNA levels of the nine SOCS members. Moreover, their mRNA expressions in response to dietary carbohydrate levels were also tissue-dependent. These indicated that SOCS members potentially mediated the utilization of dietary carbohydrate in yellow catfish.
Collapse
Affiliation(s)
- Han-Mei Ye
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Xiang Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT. Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish. Front Cell Infect Microbiol 2018; 8:406. [PMID: 30524971 PMCID: PMC6262203 DOI: 10.3389/fcimb.2018.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the innate immune response, we have used Danio rerio (zebrafish) as an infection model. Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the host during P. aeruginosa infection. Following establishment of infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were 6739 genes found to be significantly differentially expressed in zebrafish and 176 genes in PASS1. A range of virulence genes were upregulated in PASS1, including genes encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases, superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the host immune response genes highlighted phagocytosis as a key response mechanism to PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis were upregulated alongside transcriptional regulators governing response to tissue injury, infection, and inflammation. The zebrafish host showed significant downregulation of the ribosomal RNAs and other genes involved in translation, suggesting that protein translation in the host is affected by PASS1 infection.
Collapse
Affiliation(s)
- Sheemal S Kumar
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia I Tandberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anahit Penesyan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Nadia Suarez-Bosche
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Emily Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eline Skadberg
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, The Faculty of Mathematic and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicholas Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hanne Cecilie Winther-Larsen
- Department of Pharmaceutical Biosciences, Centre of Integrative Microbial Evolution, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ian T Paulsen
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
Molecular characterization and expression of suppressor of cytokine signaling (SOCS) 1, 2 and 3 under acute hypoxia and reoxygenation in pufferfish, Takifugu fasciatus. Genes Genomics 2018; 40:1225-1235. [PMID: 30039384 DOI: 10.1007/s13258-018-0719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/08/2018] [Indexed: 01/11/2023]
Abstract
Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge (1.63 ± 0.2 mg/L DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery (7.0 ± 0.3 mg/L of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.
Collapse
|
26
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
27
|
Kotob MH, Kumar G, Saleh M, Gorgoglione B, Abdelzaher M, El-Matbouli M. Differential modulation of host immune genes in the kidney and cranium of the rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae and Myxobolus cerebralis co-infections. Parasit Vectors 2018; 11:326. [PMID: 29848363 PMCID: PMC5977764 DOI: 10.1186/s13071-018-2912-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most of the studies on fish diseases focus on single infections, although in nature co-infections occur more often. The two freshwater myxozoan parasites of salmonids, having high economic and ecologic relevance are Tetracapsuloides bryosalmonae (Malacosporea), the etiological agent of proliferative kidney disease, and Myxobolus cerebralis (Myxosporea), the etiological agent of whirling disease. The present study aims to investigate immune modulation in rainbow trouts (Oncorhynchus mykiss) during single and co-infections by these parasites. METHODS Fish were initially infected with T. bryosalmonae (one group) and M. cerebralis (another group) separately. At 30 days post-exposure (dpe), both the single species infected groups were co-infected, respectively, with the other parasite. Posterior kidney and cartilage cranium samples were collected at 30, 60, 90 and 120 dpe and RT-qPCR was performed on them to assess the transcription of suppressors of cytokine signaling (SOCS) -1 and -3, Janus kinase-1 (JAK-1) and signal transducer and activator of transcription-3 (STAT-3) genes. RESULTS Kidney samples from the T. bryosalmonae-infected group showed upregulation of all immune genes tested between 60-120 dpe. Crania from the single M. cerebralis-infected group and the M. cerebralis and T. bryosalmonae co-infected group exhibited upregulation of SOCS-1 and JAK-1 between 60-120 dpe and SOCS-3 at 120 dpe. However, only in the single M. cerebralis-infected group, was a statistically significant expression of STAT-3 observed at 30 and 60 dpe. CONCLUSIONS The results of this study indicate that both T. bryosalmonae and M. cerebralis induce overexpression of SOCS-1 and SOCS-3 genes and modulate the host immune response during the development of parasite to cause immunosuppression.
Collapse
Affiliation(s)
- Mohamed H. Kotob
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Bartolomeo Gorgoglione
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- Department of Biological Sciences, Wright State University, Dayton, OH 45435 USA
| | - Mahmoud Abdelzaher
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
28
|
Zahran E, Risha E, Awadin W, Palić D. Acute exposure to chlorpyrifos induces reversible changes in health parameters of Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:47-59. [PMID: 29433082 DOI: 10.1016/j.aquatox.2018.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) is one of the most common insecticides found in freshwater ecosystems, and has been detected in agricultural and fishery products worldwide. This study focused on comprehensive panel of hematological, immunotoxic and pathology changes in Nile tilapia (Oreochromis niloticus) during and after exposure to CPF at 15 μg/L (0.043 μM) (1/10 LC50, group CPF1), or 75 μg/L (0.21 μM) (1/2 LC50, group CPF2) for 14 days, followed by 2 weeks recovery. Different endpoints were used to determine effects of CPF on fish health: hematological parameters; antioxidant levels in liver and gills; innate immune parameters; expression levels of pro-inflammatory cytokine genes at mRNA level in anterior kidney and spleen; and histopathological assessment of gills, liver, and kidney tissues. RBCs were significantly decreased in CPF1 group compared to other groups only at day 3. Blood packed cell volume (PCV) and mean corpuscular volume (MCV) showed significant increase at day 3 and 14 of CPF exposure. TLC (Total Leukocytic Counts), neutrophil counts were significantly increased in CPF exposed groups at days 3, 7, 14 compared to the control. While, lymphocytes counts were significantly increased at CPF1 group compared to other groups at day 14. Antioxidant enzyme activity in liver and gills showed significant increase of Malondialdehyde (MDA) and glutathione (GSH), and significant decrease in (catalase/CAT/, glutathione S-transferase/GST/, and superoxide dismutase/SOD/); in CPF exposed groups. Serum bactericidal and lysozyme activity was nominally and significantly decreased, respectively, and whole blood respiratory burst was significantly increased in CPF2 group. The cytokine expression levels showed complex changes in expression patterns. In kidney, cytokine interleukin-8 (IL-8) was significantly upregulated at day 1 in both exposed group. Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNFα) were significantly upregulated at day 1 in CPF1 group, and then IL-8 and TNFα downregulated at day 3 in same group. At day 7, only TNFα was up and downregulated in CPF1 and CPF2, respectively compared to control. All gene expression levels in spleen were upregulated on day 7 of exposure in the high exposed group. Histopathology showed dose-dependent changes in CPF treated groups, indicating gill, liver, and posterior kidney changes associated with oxidative stress damages. Following recovery period, all measured parameters showed varying degrees in their reversibility to the control level. These findings provide important insights about the acute toxic effects of CPF on fish and show potential to be used as biomarkers in further toxicological evaluation studies.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Engy Risha
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
29
|
Philip AM, Jørgensen EH, Maule AG, Vijayan MM. Extended fasting does not affect the liver innate immune response in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:67-74. [PMID: 29056546 DOI: 10.1016/j.dci.2017.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Activation of immune response pathway is energy demanding. We tested the hypothesis that negative energy balance will curtail the liver's capacity to evoke an immune response in rainbow trout (Oncorhynchus mykiss). Fish were either fed or fasted for 118 d and challenged with lipopolysaccharide (LPS) to determine the liver capacity to elicit an immune response. Fasting led to negative specific growth rate, reduced tissue metabolite levels, and higher transcript abundance of SOCS-2. LPS treatment increased the liver transcript abundances of IL-1β and IL-8 and serum amyloid protein A, while SOCS-2 was reduced. LPS lowered plasma cortisol level only in the fasted fish, but did not affect liver glucocorticoid or mineralocorticoid receptor protein expressions. Extended fasting did not suppress the liver capacity to evoke an immune response. Upregulation of liver SOCS-2 may be playing a key role in the energy repartitioning, thereby facilitating immune response activation despite extended fasting in trout.
Collapse
Affiliation(s)
- Anju M Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromso, N-9037, Norway
| | - Alec G Maule
- USGS-BRD, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA 98605, USA
| | | |
Collapse
|
30
|
Sequeida A, Maisey K, Imarai M. Interleukin 4/13 receptors: An overview of genes, expression and functional role in teleost fish. Cytokine Growth Factor Rev 2017; 38:66-72. [PMID: 28988781 DOI: 10.1016/j.cytogfr.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
In superior vertebrates, Interleukin 4 (IL-4) and Interleukin 13 (IL-13) play key and diverse roles to support immune responses acting on cell surface receptors. When stimulated, receptors activate intracellular signalling cascades switching cell phenotypes according to stimuli. In teleost fish, Interleukin 4/13 (IL-4/13) is the ancestral family cytokine related to both IL-4 and IL-13. Every private and common receptor subunit for IL-4/13 have in fish at least two paralogues and, as in mammals, soluble forms are also part of the receptor system. Reports for findings of fish IL-4/13 receptors have covered comparative analysis, transcriptomic profiles and to a lesser extent, functional analysis regarding ligand-receptor interactions and their biological effects. This review addresses available information from fish IL-4/13 receptors and discusses overall implications on teleost immunity, summarized gene induction strategies and pathogen-induced gene modulation, which may be useful tools to enhance immune response. Additionally, we present novel coding sequences for Atlantic salmon (Salmo salar) common gamma chain receptor (γC), Interleukin 13 receptor alpha 1A chain (IL-13Rα1A) and Interleukin 13 receptor alpha 1B chain (IL-13Rα1B).
Collapse
Affiliation(s)
- A Sequeida
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - K Maisey
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile; Laboratory of Comparative Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile,Av. Bernardo O'Higgins, 3363 Santiago, Chile
| | - M Imarai
- Laboratory of Immunology, Center for Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363 Santiago, Chile.
| |
Collapse
|
31
|
Hwang JY, Kwon MG, Seo JS, Do JW, Park MA, Jung SH, Ahn SJ. Differentially expressed genes after viral haemorrhagic septicaemia virus infection in olive flounder (Paralichthys olivaceus). Vet Microbiol 2016; 193:72-82. [PMID: 27599933 DOI: 10.1016/j.vetmic.2016.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
A strain of viral haemorrhagic septicaemia virus (VHSV) was isolated from cultured olive flounder (Paralichthys olivaceus) during epizootics in South Korean. This strain showed high mortality to olive flounder in in vivo challenge experiment. The complete genomic RNA sequences were determined and phylogenetic analysis of the amino acid sequences of glycoprotein revealed that this isolate was grouped into genotype IVa of genus Novirhabdovirus. Expression profile of genes in olive flounder was analyzed at day 1 and day3 after infection with this VHSV isolate by using cDNA microarray containing olive flounder 13K cDNA clones. Microarray analysis revealed 785 up-regulated genes and 641 down-regulated genes by at least two-fold in virus-infected fish compared to healthy control groups. Among 785 up-regulated genes, we identified seven immune response-associated genes, including the interferon (IFN)-induced 56-kDa protein (IFI56), suppressor of cytokine signaling 1 (SOCS1), interleukin 8 (IL-8), cluster of differentiation 83 (CD83), α-globin (HBA), VHSV-induced protein-6 (VHSV6), and cluster of differentiation antigen 9 (CD9). Our results confirm previous reports that even virulent strain of VHSV induces expression of genes involved in protective immunity against VHSV.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Jung Wan Do
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Myoung-Ae Park
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Sung-Hee Jung
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea
| | - Sang Jung Ahn
- Pathology Division, National Institute of Fisheries Science (NIFS), 216 GijangHaean-Ro, Gijang-up, Gijang-Gun, Busan 46083, Republic of Korea.
| |
Collapse
|
32
|
Gorgoglione B, Kotob MH, Unfer G, El-Matbouli M. First Proliferative Kidney Disease outbreak in Austria, linking to the aetiology of Black Trout Syndrome threatening autochthonous trout populations. DISEASES OF AQUATIC ORGANISMS 2016; 119:117-128. [PMID: 27137070 DOI: 10.3354/dao02993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proliferative Kidney Disease (PKD) was diagnosed in juvenile autochthonous brown trout Salmo trutta for the first time in Austria during summer 2014. Cytology showed Tetracapsuloides bryosalmonae sporoblasts, and histology revealed sporogonic (coelozoic) and extrasporogonic (histozoic) stages. Analysis of malacosporean ribosomal small subunit revealed that this strain is closely related to European isolates, although its source is unknown. Infection and high pathogenicity were reproduced upon a pre-restocking test with specific pathogen free (SPF) juvenile trout, resulting in 100% mortality between 28 and 46 d post exposure (dpe), with high ectoparasitosis. Fish showed grade 2 of the Kidney Swelling Index and grade 3 of the PKD histological assessment. T. bryosalmonae enzootic waters were demonstrated in further locations along the River Kamp, with infected bryozoans retrieved up to 6 km upstream of the farm with the PKD outbreak. Fredericella sultana colonies collected from these locations were cultivated in laboratory conditions. Released malacospores successfully induced PKD, and contextually Black Trout Syndrome (BTS), in SPF brown trout. In the absence of co-infections mortality occurred between 59 and 98 dpe, with kidneys enlarged up to 6.74% of total body weight (normal 1.23%). This study confirms the first isolation of a pathogenic myxozoan from an Austrian river tributary of the Danube, where its 2-host life cycle is fully occurring. Its immunosuppressant action could link PKD as a key factor in the multifactorial aetiology of BTS. This T. bryosalmonae isolation provides an impetus to undertake further multi-disciplinary research, aiming to assess the impact of PKD and BTS spreading to central European regions.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Gorgoglione B, Zahran E, Taylor NGH, Feist SW, Zou J, Secombes CJ. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen. Mol Immunol 2016; 71:64-77. [PMID: 26866873 DOI: 10.1016/j.molimm.2016.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Eman Zahran
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Nick G H Taylor
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Stephen W Feist
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
34
|
Dhawan R, Gupta K, Kajla M, Kumar S, Gakhar SK, Kakani P, Choudhury TP, Gupta L. Molecular characterization of SOCS gene and its expression analysis on Plasmodium berghei infection in Anopheles culicifacies. Acta Trop 2015; 152:170-175. [PMID: 26407822 DOI: 10.1016/j.actatropica.2015.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/06/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023]
Abstract
Anopheles culicifacies mosquitoes are able to transmit both falciparum and vivax malaria in India. More than 65% of malaria cases reported annually spread through this vector. Despite the fact that it poses major vectorial burden in India, the molecular basis of its immune role against Plasmodium development has not been explored intensively. Here, we characterized An. culicifacies SOCS (suppressor of cytokine signaling) gene, a regulator of STAT pathway and its expression analysis upon Plasmodium infection. Our analysis has demonstrated that An. culicifacies SOCS gene shares strikingly high level of sequence similarity in SH2 domain and SOCS box region with other mosquito species. However, its N-terminal identity is limited to Anophelines mosquito only, suggesting its genus specific role. SOCS mRNA is expressed in all developmental stages of mosquito and its expression is higher in male than female adults. SOCS mRNA is significantly induced after Plasmodium infection in midgut tissue indicating its involvement in the immune defense responses. This is the first evidence of involvement of SOCS as an immune gene in Indian malaria vector An. culicifacies.
Collapse
|
35
|
Gorgoglione B, Carpio Y, Secombes CJ, Taylor NGH, Lugo JM, Estrada MP. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs. FISH & SHELLFISH IMMUNOLOGY 2015; 47:923-932. [PMID: 26481517 DOI: 10.1016/j.fsi.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, Weymouth, England, UK
| | - Yamila Carpio
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | | | - Juana María Lugo
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|
36
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
37
|
Philip AM, Vijayan MM. Stress-Immune-Growth Interactions: Cortisol Modulates Suppressors of Cytokine Signaling and JAK/STAT Pathway in Rainbow Trout Liver. PLoS One 2015; 10:e0129299. [PMID: 26083490 PMCID: PMC4470514 DOI: 10.1371/journal.pone.0129299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Chronic stress is a major factor in the poor growth and immune performance of salmonids in aquaculture. However, the molecular mechanisms linking stress effects to growth and immune dysfunction is poorly understood. The suppressors of cytokine signaling (SOCS), a family of genes involved in the inhibition of JAK/STAT pathway, negatively regulates growth hormone and cytokine signaling, but their role in fish is unclear. Here we tested the hypothesis that cortisol modulation of SOCS gene expression is a key molecular mechanism leading to growth and immune suppression in response to stress in fish. Exposure of rainbow trout (Oncorhynchus mykiss) liver slices to cortisol, mimicking stress level, upregulated SOCS-1 and SOCS-2 mRNA abundance and this response was abolished by the glucocorticoid receptor antagonist mifepristone. Bioinformatics analysis confirmed the presence of putative glucocorticoid response elements in rainbow trout SOCS-1 and SOCS-2 promoters. Prior cortisol treatment suppressed acute growth hormone (GH)-stimulated IGF-1 mRNA abundance in trout liver and this involved a reduction in STAT5 phosphorylation and lower total JAK2 protein expression. Prior cortisol treatment also suppressed lipopolysaccharide (LPS)-induced IL-6 but not IL-8 transcript levels; the former but not the latter cytokine expression is via JAK/STAT phosphorylation. LPS treatment reduced GH signaling, but this was associated with the downregulation of GH receptors and not due to the upregulation of SOCS transcript levels by this endotoxin. Collectively, our results suggest that upregulation of SOCS-1 and SOCS-2 transcript levels by cortisol, and the associated reduction in JAK/STAT signaling pathway, may be a novel mechanism leading to growth reduction and immune suppression during stress in trout.
Collapse
Affiliation(s)
- Anju M. Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
38
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
39
|
Zou J, Gorgoglione B, Taylor NGH, Summathed T, Lee PT, Panigrahi A, Genet C, Chen YM, Chen TY, Ul Hassan M, Mughal SM, Boudinot P, Secombes CJ. Salmonids have an extraordinary complex type I IFN system: characterization of the IFN locus in rainbow trout oncorhynchus mykiss reveals two novel IFN subgroups. THE JOURNAL OF IMMUNOLOGY 2014; 193:2273-86. [PMID: 25080482 DOI: 10.4049/jimmunol.1301796] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fish type I IFNs are classified into two groups with two (group I) or four (group II) cysteines in the mature peptide and can be further divided into four subgroups, termed IFN-a, -b, -c, and -d. Salmonids possess all four subgroups, whereas other teleost species have one or more but not all groups. In this study, we have discovered two further subgroups (IFN-e and -f) in rainbow trout Oncorhynchus mykiss and analyzed the expression of all six subgroups in rainbow trout and brown trout Salmo trutta. In rainbow trout RTG-2 and RTS-11 cells, polyinosinic-polycytidylic acid stimulation resulted in early activation of IFN-d, whereas the IFN-e subgroup containing the highest number of members showed weak induction. In contrast with the cell lines, remarkable induction of IFN-a, -b, and -c was detected in primary head kidney leukocytes after polyinosinic-polycytidylic acid treatment, whereas a moderate increase of IFNs was observed after stimulation with resiquimod. Infection of brown trout with hemorrhagic septicemia virus resulted in early induction of IFN-d, -e, and -f and a marked increase of IFN-b and IFN-c expression in kidney and spleen. IFN transcripts were found to be strongly correlated with the viral burden and with marker genes of the IFN antiviral cascade. The results demonstrate that the IFN system of salmonids is far more complex than previously realized, and in-depth research is required to fully understand its regulation and function.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
| | - Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT48 UB, United Kingdom
| | - Nicholas G H Taylor
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT48 UB, United Kingdom
| | - Thitiya Summathed
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Po-Tsang Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Akshaya Panigrahi
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Carine Genet
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313, Unité de Génétique Animale et Biologie Intégrative, Jouy-en-Josas Cedex 78352, France
| | - Young-Mao Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Tzong-Yueh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Mahmood Ul Hassan
- Zoology Department, Government College University, Lahore 54000, Pakistan
| | - Sharif M Mughal
- Faculty of Fisheries and Wild Life, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; and
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas Cedex 78352, France
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
| |
Collapse
|
40
|
Four CISH paralogues are present in rainbow trout Oncorhynchus mykiss: differential expression and modulation during immune responses and development. Mol Immunol 2014; 62:186-98. [PMID: 25014904 DOI: 10.1016/j.molimm.2014.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/20/2023]
Abstract
Suppressor of cytokine signalling (SOCS) family members are crucial in the control and attenuation of cytokine induced responses via activation of the JAK/STAT, TLR and NF-kB signalling pathways. SOCS proteins orchestrate the termination of many types of immune responses and are often the targets of microbial pathogens exploiting SOCS mechanisms to evade the host's immune response. Through whole and lineage specific genome duplication events, the teleost cytokine/SOCS network is complex. Not only are the orthologues of all mammalian SOCS members present, namely cytokine inducible Src homology 2 (SH2)-containing protein (CISH) and SOCS-1 to -7, but multiple gene copies exist that may potentially become functionally divergent. In this paper we focus on the CISH genes in rainbow trout (Oncorhynchus mykiss), and have cloned two further paralogues, CISHa2 and CISHb2, additional to the known CISHa1 and CISHb1 genes. We present for the first time a comparative expression analysis of these four paralogues, to establish whether subfunctionalisation is apparent. In vivo examination of gene expression revealed a higher constitutive expression level of CISHa paralogues compared to CISHb expression in adult trout tissues. All CISHs were relatively highly abundant in immune tissues but CISHa2 and CISHb2 had highest expression in the heart and muscle. An inverse picture of CISH abundance during trout ontogeny was seen, and further hints at differential roles of the four genes in immune regulation and development. Stimulation of head kidney (HK) leukocytes with trout recombinant interleukin (rIL)-15 and rIL-21 had a major effect on CISHa2 and to a lesser extent CISHa1 expression. In HK macrophages rIL-1β, phytohemagglutinin, and phorbol 12-myristate 13-acetate also had a strong impact on CISHa2 expression. Yersinia ruckeri infection caused a temporally and spatially differential onset of CISH expression that may be viewed in the context of pathogen evasion strategies. These data, against the backdrop of fish specific whole genome duplication events and functional divergence, provide the first evidence for differential roles of the four trout CISH genes in immune control and development.
Collapse
|
41
|
Skjesol A, Liebe T, Iliev DB, Thomassen EIS, Tollersrud LG, Sobhkhez M, Lindenskov Joensen L, Secombes CJ, Jørgensen JB. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:177-189. [PMID: 24582990 DOI: 10.1016/j.dci.2014.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Suppressor of cytokine signaling (SOCS) proteins are crucially involved in the control of inflammatory responses through their impact on various signaling pathways including the JAK/STAT pathway. Although all SOCS protein family members are identified in teleost fish, their functional properties in non-mammalian vertebrates have not been extensively studied. To gain further insight into SOCS functions in bony fish, we have identified and characterized the Atlantic salmon (Salmo salar) SOCS1, SOCS2 and CISH genes. These genes exhibited sequence conservation with their mammalian counterparts and they were ubiquitously expressed. SOCS1 in mammalian species has been recognized as a key negative regulator of interferon (IFN) signaling and recent data for the two model fish Tetraodon (Tetraodon nigroviridis) and zebrafish (Danio rerio) suggest that these functions are conserved from teleost to mammals. In agreement with this we here demonstrate a strong negative regulatory activity of salmon SOCS1 on type I and type II IFN signaling, while SOCS2a and b and CISH only moderately affected IFN responses. SOCS1 also inhibited IFNγ-induced nuclear localization of STAT1 and a direct interaction between SOCS1 and STAT1 and between SOCS1 and the Tyk2 kinase was found. Using SOCS1 mutants lacking either the KIR domain or the ESS, SH2 and SOCS box domains showed that all domains affected the ability of SOCS1 to inhibit IFN-mediated signaling. These results are the first to demonstrate that SOCS1 is a potent inhibitor of IFN-mediated JAK-STAT signaling in teleost fish.
Collapse
Affiliation(s)
- Astrid Skjesol
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Theresa Liebe
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Center for Molecular Biomedicine (CMB), Dept. of Biochemistry, University of Jena, D-07745 Jena, Germany
| | - Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ernst I S Thomassen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Linn Greiner Tollersrud
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
42
|
Philip AM, Jørgensen EH, Maule AG, Vijayan MM. Tissue-specific molecular immune response to lipopolysaccharide challenge in emaciated anadromous Arctic charr. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:133-140. [PMID: 24594135 DOI: 10.1016/j.dci.2014.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Anadromous Arctic charr (Salvelinus alpinus) undergo voluntary winter fasting for months in the Arctic. We tested the hypothesis that extended fasting will compromise the ability of this species to evoke an immune response. Charr were either fed or fasted for 85 days and challenged with lipopolysaccharide (LPS), and the molecular immune response in the liver and spleen assessed at 8 and 96 h post-injection. LPS increased IL-1β, IL-8, and serum amyloid protein A (SAA) mRNA levels in both groups, but the liver IL-1β and IL-8, and spleen IL-8 responses were reduced in the fasted group. Fasting upregulated SOCS-1 and SOCS-2 mRNA abundance, while LPS stimulated SOCS-3 mRNA abundance and this response was higher in the fasted liver. Collectively, extended fasting and emaciation does not curtail the capacity of charr to evoke an immune response, whereas upregulation of SOCS may be a key adaptation to conserve energy by restricting the inflammatory response.
Collapse
Affiliation(s)
- Anju M Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Alec G Maule
- USGS-BRD, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA 98605, USA
| | | |
Collapse
|
43
|
Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect Immun 2014; 82:2180-94. [PMID: 24614659 DOI: 10.1128/iai.00077-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells.
Collapse
|
44
|
Nie L, Xiong R, Zhang YS, Zhu LY, Shao JZ, Xiang LX. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:23-29. [PMID: 24183820 DOI: 10.1016/j.dci.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS-1) protein is a critical regulator in the immune systems of humans and mammals, which functions classically as an inhibitor of the IFN signaling pathways. However, data on functional characterisation of SOCS-1 in ancient vertebrates are limited. In this study, we report the function of teleost SOCS-1s in IFN signaling in fish models (zebrafish and Tetraodon) and human cells. Structurally, teleost SOCS-1s share conserved functional domains with their mammalian counterparts. Functionally, teleost SOCS-1s could be significantly induced upon stimulation with IFN stimulants and zebrafish IFNφ1. Overexpression of teleost SOCS-1s could dramatically suppress IFNφ1-induced Mx, Viperin and PKZ activation in zebrafish, and IFN-induced ISG15 activation in HeLa cells. Furthermore, a SOCS-1 variant that lacks the KIR domain was also characterised. This study demonstrates the conserved negative regulatory role of teleost SOCS-1s in IFN signaling pathways, providing perspective into the functional conservation of SOCS-1 proteins during evolution.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ran Xiong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ying-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
45
|
Xu YH, Jian-Li, Ma XP, Lu Y, Chen P, Luo SW, Jia ZG, Liu Y, Guo Y. Gene expression profiling of human kidneys undergoing laparoscopic donor nephrectomy. JSLS 2014; 18. [PMID: 24680151 PMCID: PMC3939323 DOI: 10.4293/108680813x13693422519154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The objective was to compare gene expression profiles of 6 kidneys from open donor nephrectomy with 6 kidneys removed after laparoscopic donor nephrectomy and several hours of carbon dioxide pneumoperitoneum with DNA microarrays and identify small-molecule drugs. METHODS The gene expression profile GSE3297 was downloaded from the Gene Expression Omnibus database, and the differentially expressed genes were identified by a bioinformatics approach. First, Osprey software was used to construct a differentially expressed gene associated network. Then, DAVID (Database for Annotation, Visualization, and Integrated Discovery) and FuncAssociate were used to perform functional analyses. Finally, the Connectivity Map was used to screen for small-molecule drugs. RESULTS A total of 285 differentially expressed genes were identified, including 148 down-regulated genes and 137 up-regulated genes. In addition, the differentially expressed genes in the most significant Gene Ontology term were CASP6, KRAS, SOCS1, ESR1, TSHB, COL1A1, and MMP14. Furthermore, several differentially expressed genes, including STAT1, STAT6, SOS2, and SOCS1, participated in the most remarkable Janus kinase-signal transducer and activator of transcription signaling pathway. Finally, luteolin--with the highest score (0.887)--was identified as the small-molecule drug. CONCLUSIONS Our data show an altered renal transcriptome induced by several hours of carbon dioxide pneumoperitoneum and laparoscopic surgery characterized by up-regulation of genes associated with acute inflammation, apoptosis, and immune injury, which could potentially result in renal injury and an enhanced immune response in the recipient after transplant.
Collapse
Affiliation(s)
- Ya-hong Xu
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Jian-Li
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Xiao-ping Ma
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Yi Lu
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Ping Chen
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Shun-wen Luo
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Zhi-gang Jia
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Yang Liu
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| | - Yu Guo
- Department of Urology, 452nd Hospital of Chinese People's Liberation Army, Chengdu, China
| |
Collapse
|
46
|
Influence of the cholinergic system on the immune response of teleost fishes: potential model in biomedical research. Clin Dev Immunol 2013; 2013:536534. [PMID: 24324508 PMCID: PMC3845846 DOI: 10.1155/2013/536534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 02/01/2023]
Abstract
Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.
Collapse
|
47
|
Pooley NJ, Tacchi L, Secombes CJ, Martin SAM. Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:747. [PMID: 24180744 PMCID: PMC3819742 DOI: 10.1186/1471-2164-14-747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fish health and muscle growth is critical for continued expansion of the aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle, potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim of this study was to investigate the effects of immune stimulation on fish muscle gene expression. RESULTS Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In addition there were highly significant changes in the expression of genes related to regulation of the cell cycle, growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that were differentially expressed, which may demonstrate cross talk between the growth and immune systems. CONCLUSION We show rIL-1β modulates the expression of not only immune related genes, but also that of genes involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β demonstrates cross talk between these pathways providing potential avenues for further research. This study highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and extends our understanding of energy allocation in ectothermic animals.
Collapse
Affiliation(s)
- Nicholas J Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Current address: Centre for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Samuel AM Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
48
|
Gorgoglione B, Wang T, Secombes CJ, Holland JW. Immune gene expression profiling of Proliferative Kidney Disease in rainbow trout Oncorhynchus mykiss reveals a dominance of anti-inflammatory, antibody and T helper cell-like activities. Vet Res 2013; 44:55. [PMID: 23865616 PMCID: PMC3733943 DOI: 10.1186/1297-9716-44-55] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023] Open
Abstract
The myxozoan Tetracapsuloides bryosalmonae is the causative agent of Proliferative Kidney Disease (PKD) targeting primarily the kidney of infected fish where it causes a chronic lymphoid immunopathology. Although known to be associated with suppression of some cellular aspects of innate immunity and a prominent lymphocytic hyperplasia, there remains a considerable knowledge gap in our understanding of the underlying immune mechanisms driving PKD pathogenesis. To provide further insights, the expression profiles of a panel of innate / inflammatory and adaptive immune molecules were examined in rainbow trout Oncorhynchus mykiss following a natural exposure to the parasite. Relative to controls, fish with early to advanced stages of kidney pathology exhibited up-regulation of the inflammatory cytokines interleukin (IL)-6 and IL-11, although remaining refractory towards genes indicative of macrophage activity. Antimicrobial peptides (AMPs) and anti-inflammatory markers, including cathelicidin (CATH) and IL-10 were markedly up-regulated during clinical disease. Up-regulation of adaptive immune molecules, including cell markers and antibody genes reflect the lymphocytic dominance of this disease and the likely importance of lymphocyte subsets in PKD pathogenesis. Up-regulation of T helper (TH) cell-like response genes and transcription factors implies that T. bryosalmonae may elicit a complex interplay between TH cell subsets. This work, for the first time in the study of fish-myxozoan interactions, suggests that PKD pathogenesis is shaped by an anti-inflammatory phenotype, a profound B cell / antibody response and dysregulated TH cell-like activities. A better understanding of the functional roles of fish immune cells and molecules in PKD pathogenesis may facilitate future development of control measures against this disease.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
49
|
Wang L, Bammler TK, Beyer RP, Gallagher EP. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7466-74. [PMID: 23745839 PMCID: PMC4750873 DOI: 10.1021/es400615q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g., let-7, miR-7a, miR-128, and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g., miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system and identify novel miRNA biomarkers of metal exposures.
Collapse
Affiliation(s)
| | | | | | - Evan P. Gallagher
- To whom correspondence should be addressed: Department of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105 – 6099, United States, Telephone: 1-206-616-4739, Fax: 1-206-685-4696,
| |
Collapse
|
50
|
Delgado-Ortega M, Marc D, Dupont J, Trapp S, Berri M, Meurens F. SOCS proteins in infectious diseases of mammals. Vet Immunol Immunopathol 2012; 151:1-19. [PMID: 23219158 PMCID: PMC7112700 DOI: 10.1016/j.vetimm.2012.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 12/17/2022]
Abstract
As for most biological processes, the immune response to microbial infections has to be tightly controlled to remain beneficial for the host. Inflammation is one of the major consequences of the host's immune response. For its orchestration, this process requires a fine-tuned interplay between interleukins, endothelial cells and various types of recruited immune cells. Suppressors of cytokine signalling (SOCS) proteins are crucially involved in the complex control of the inflammatory response through their actions on various signalling pathways including the JAK/STAT and NF-κB pathways. Due to their cytokine regulatory functions, they are frequent targets for exploitation by infectious agents trying to escape the host's immune response. This review article aims to summarize our current knowledge regarding SOCS family members in the different mammalian species studied so far, and to display their complex molecular interactions with microbial pathogens.
Collapse
Affiliation(s)
- Mario Delgado-Ortega
- Institut National de la Recherche Agronomique (INRA), UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|