1
|
Gu Z, Wu Y, Yu F, Sun J, Wang L. Integrating genetic and clinical data to predict lung cancer in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:618. [PMID: 39696223 DOI: 10.1186/s12890-024-03444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is closely linked to lung cancer (LC) development. The aim of this study is to identify the genetic and clinical risk factors for LC risk in COPD, according to which the prediction model for LC in COPD was constructed. METHODS This is a case-control study in which patientis with COPD + LC as the case group, patientis with only COPD as the control group, and patientis with only LC as the second control group. A panel of clinical variables including demographic, environmental and lifestyle factors were collected. A total of 20 single nucleotide polymorphisms (SNPs) were genotyped. The univariate analysis, candidate gene study and multivariate analysis were applied to identify the independent risk factors, as well as the prediction model was constructed. The ROC analysis was used to evaluate the predictive ability of the model. RESULTS A total of 503 patients were finally enrolled in this study, with 188 patients for COPD + LC group, 162 patients for COPD group and 153 patients for LC group. The univariate analysis of clincial data showed compared with the patients with COPD, the patients with COPD + LC tended to have significantly lower BMI, higher smoking pack-years, and higher prevalence of emphysema. The results of the candidate gene study showed the rs1489759 in HHIP and rs56113850 in CYP2A6 demonstrated significant differences between COPD and COPD + LC groups. By using multivariate logistic regression analysis, four variables including BMI, pack-years, emphysema and rs56113850 were identified as independent risk factors for LC in COPD and the prediction model integrating genetic and clinical data was constructed. The AUC of the prediction model for LC in COPD reached 0.712, and the AUC of the model for predicting LC in serious COPD reached up to 0.836. CONCLUSION The rs56113850 (risk allele C) in CYP2A6, decrease in BMI, increase in pack-years and emphysema presence were independent risk factors for LC in COPD. Integrating genetic and clinical data for predicting LC in COPD demonstrated favorable predictive performance.
Collapse
Affiliation(s)
- Zhan Gu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yonghui Wu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengzhi Yu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Wang
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu S, Yao J, Lin L, Lan X, Wu L, He X, Kong N, Li Y, Deng Y, Xie J, Zhu H, Wu X, Li Z, Xiong L, Wang Y, Ren J, Qiu X, Zhao W, Gao Y, Chen Y, Su F, Zhou Y, Rao W, Zhang J, Hou G, Huang L, Li L, Liu X, Nie C, Luo L, Zhao M, Liu Z, Chen F, Lin S, Zhao L, Fu Q, Jiang D, Yin Y, Xu X, Wang J, Yang H, Wang R, Niu J, Wei F, Jin X, Liu S. Genome-wide association study of maternal plasma metabolites during pregnancy. CELL GENOMICS 2024; 4:100657. [PMID: 39389015 PMCID: PMC11602615 DOI: 10.1016/j.xgen.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Metabolites are key indicators of health and therapeutic targets, but their genetic underpinnings during pregnancy-a critical period for human reproduction-are largely unexplored. Using genetic data from non-invasive prenatal testing, we performed a genome-wide association study on 84 metabolites, including 37 amino acids, 24 elements, 13 hormones, and 10 vitamins, involving 34,394 pregnant Chinese women, with sample sizes ranging from 6,394 to 13,392 for specific metabolites. We identified 53 metabolite-gene associations, 23 of which are novel. Significant differences in genetic effects between pregnant and non-pregnant women were observed for 16.7%-100% of these associations, indicating gene-environment interactions. Additionally, 50.94% of genetic associations exhibited pleiotropy among metabolites and between six metabolites and eight pregnancy phenotypes. Mendelian randomization revealed potential causal relationships between seven maternal metabolites and 15 human traits and diseases. These findings provide new insights into the genetic basis of maternal plasma metabolites during pregnancy.
Collapse
Affiliation(s)
| | - Jilong Yao
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | - Liang Lin
- BGI Genomics, Shenzhen 518083, China
| | - Xianmei Lan
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | - Xuelian He
- Genetic and Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Hubei, Wuhan, China
| | | | - Yan Li
- BGI Research, Shenzhen 518083, China
| | - Yuqing Deng
- Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong, China
| | - Jiansheng Xie
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | | | - Xiaoxia Wu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen 518000, Guangdong China
| | - Zilong Li
- BGI Research, Shenzhen 518083, China
| | - Likuan Xiong
- Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, Guangdong, China
| | - Yuan Wang
- BGI Genomics, Shenzhen 518083, China
| | - Jinghui Ren
- Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | | | - Weihua Zhao
- Shenzhen Second People Hospital, Shenzhen 518035, Guangdong, China
| | - Ya Gao
- BGI Research, Shenzhen 518083, China
| | - Yuanqing Chen
- Nanshan Medical Group Headquarters of Shenzhen, Shenzhen 518000, Guangdong, China
| | | | - Yun Zhou
- Luohu People's Hospital of Shenzhen, Shenzhen 518001, Guangdong, China
| | | | - Jing Zhang
- Shenzhen Nanshan Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | | | - Liping Huang
- Shenzhen Baoan District Shajing People's Hospital, Shenzhen 518104, Guangdong, Chinas
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhong Liu
- Shenzhen Longhua District Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Liqiong Luo
- The People's Hospital of Longhua-Shenzhen, Shenzhen 518109, Guangdong, China
| | - Mei Zhao
- BGI Genomics, Shenzhen 518083, China
| | - Zengyou Liu
- Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | | | - Shengmou Lin
- The University of Hong Kong - Shenzhen Hospital, Shenzhen 518038, Guangdong, China
| | | | - Qingmei Fu
- Baoan People's Hospital of Shen Zhen, Shenzhen 518100, Guangdong, China
| | - Dan Jiang
- BGI Genomics, Shenzhen 518083, China
| | - Ye Yin
- BGI, Shenzhen 518083, China
| | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Huanming Yang
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, Shenzhen, China
| | - Rong Wang
- BGI Genomics, Shenzhen 518083, China
| | - Jianmin Niu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China.
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, Guangdong, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China.
| | - Siqi Liu
- BGI Research, Shenzhen 518083, China; BGI Genomics, Shenzhen 518083, China.
| |
Collapse
|
3
|
Langlois AW, Chenoweth MJ, Twesigomwe D, Scantamburlo G, Whirl-Carrillo M, Sangkuhl K, Klein TE, Nofziger C, Tyndale RF, Gaedigk A. PharmVar GeneFocus: CYP2A6. Clin Pharmacol Ther 2024; 116:948-962. [PMID: 39051767 PMCID: PMC11452280 DOI: 10.1002/cpt.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the human CYP2A gene locus containing the highly polymorphic CYP2A6 gene. CYP2A6 plays a role in the metabolism of nicotine and various drugs. Thus, genetic variation can substantially contribute to the function of this enzyme and associated efficacy and safety. This GeneFocus provides an overview of the clinical significance of CYP2A6, including its genetic variation and function. We also highlight and discuss caveats in the identification and characterization of allelic variation of this complex pharmacogene, a prerequisite for accurate genotype determination and prediction of phenotype status.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Departments of Medicine (BMIR) and Genetics, Stanford University, Stanford, California, USA
| | | | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, Missouri, USA and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
4
|
Li Y, Xiao X, Li J, Han Y, Cheng C, Fernandes GF, Slewitzke SE, Rosenberg SM, Zhu M, Byun J, Bossé Y, McKay JD, Albanes D, Lam S, Tardon A, Chen C, Bojesen SE, Landi MT, Johansson M, Risch A, Bickeböller H, Wichmann HE, Christiani DC, Rennert G, Arnold SM, Goodman GE, Field JK, Davies MP, Shete S, Marchand LL, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Sun R, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Cox A, Hong YC, Lazarus P, Schabath MB, Aldrich MC, Schwartz AG, Gorlov I, Purrington KS, Yang P, Liu Y, Bailey-Wilson JE, Pinney SM, Mandal D, Willey JC, Gaba C, Brennan P, Xia J, Shen H, Amos CI. Lung Cancer in Ever- and Never-Smokers: Findings from Multi-Population GWAS Studies. Cancer Epidemiol Biomarkers Prev 2024; 33:389-399. [PMID: 38180474 PMCID: PMC10905670 DOI: 10.1158/1055-9965.epi-23-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer. METHODS We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer. RESULTS Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior. CONCLUSIONS We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
Collapse
Affiliation(s)
- Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Jianrong Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Chao Cheng
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Gail F. Fernandes
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shannon E. Slewitzke
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Canada
| | - James D. McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria T. Landi
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | | | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | | | | | - John K. Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael P.A. Davies
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, California
| | - Rayjean J. Hung
- Luenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Angeline S. Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Ryan Sun
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of South Korea
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann G. Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kristen S. Purrington
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Detroit, Michigan
| | - Ping Yang
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Susan M. Pinney
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - James C. Willey
- College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, Ohio
| | - Paul Brennan
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Canada
| | - Jun Xia
- Creighton University School of Medicine, Omaha, Nebraska
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Du M, Xin J, Zheng R, Yuan Q, Wang Z, Liu H, Liu H, Cai G, Albanes D, Lam S, Tardon A, Chen C, Bojesen SE, Landi MT, Johansson M, Risch A, Bickeböller H, Wichmann HE, Rennert G, Arnold S, Brennan P, Field JK, Shete SS, Marchand LL, Liu G, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Cox A, Hong YC, Yuan JM, Schabath MB, Aldrich MC, Wang M, Shen H, Chen F, Zhang Z, Hung RJ, Amos CI, Wei Q, Lazarus P, Christiani DC. CYP2A6 Activity and Cigarette Consumption Interact in Smoking-Related Lung Cancer Susceptibility. Cancer Res 2024; 84:616-625. [PMID: 38117513 PMCID: PMC11184964 DOI: 10.1158/0008-5472.can-23-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Junyi Xin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Qianyu Yuan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Zhihui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- University of Oviedo, ISPA and CIBERESP, Faculty of Medicine, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University of Munich, Munich, Germany
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sanjay S. Shete
- Department of Epidemiology, Division of Cancer Prevention and Population Science, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Angeline S. Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Melinda C. Aldrich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Rayjean J. Hung
- Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99210, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
6
|
Ding X, Zhang W, Yu W, Li Y, Shao G, Zhang L, Zhao RC, Li X. Recurrent CYP2A6 gene mutation in biphasic hyalinizing psammomatous renal cell carcinoma: Additional support of three cases. Pathol Res Pract 2023; 245:154468. [PMID: 37104959 DOI: 10.1016/j.prp.2023.154468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Biphasic hyalinizing psammomatous renal cell carcinoma (BHP RCC) with NF2 gene mutations is a newly described provisional category of renal cell carcinoma (RCC). Here we described three additional cases of BHP RCC with CYP2A6 gene mutation besides NF2 gene. The carcinomas were predominantly unencapsulated, and two of them had a rounded, nodular interface with the native kidney while one had perirenal adipose tissue invasion. Histopathologically, all neoplasms had a characteristic biphasic appearance of smaller cells clustering around basement membrane material within larger acini, forming pseudorosettes or a glomeruloid pattern. The smaller cells were focally spindle-shaped in two carcinomas. Psammoma bodies were shown in two carcinomas. Cellular necrosis and perineural invasion was identified in one case. Immunohistochemically, Vimentin, EMA, P504s were extensively expressed while RCC and CD10 were only expressed in larger cells. CK7 was positive in one tumor. CYP2A6 gene mutation (CYP2A6 NM_000762.6: exon4:c.A580G:p.K194E) was revealed in three tumors by Whole-genome exome sequencing, which was further confirmed by Sanger sequencing. Only one case harbored a somatic termination mutation in NF2 gene. NF2 promoter methylation was observed in the other two cases. Clinically, one patient died of disease with widespread bone metastases confirmed by biopsy at the ninth month after surgery but the other two patients had no evidence of recurrence or metastases (follow-up period 9-90 months). Our findings validated previously described clinicopathological features and NF2 gene mutation or promoter methylation of BHP RCC. In addition, we reported different IHC pattern of BHP RCC and further revealed the recurrent CYP2A6 genetic alteration.
Collapse
Affiliation(s)
- Xiaoyan Ding
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Wei Zhang
- Department of Pathology, No. 971 Hospital of The People's Liberation Army Navy, Minjiang Road Number 22, Qingdao, China
| | - Wenjuan Yu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Guanglong Shao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Jiangsu Road Number 16, Qingdao, China
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China
| | - Xiaoxia Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Ningxia Road Number 308, Qingdao, China.
| |
Collapse
|
7
|
Mo C, Wang J, Ye Z, Ke H, Liu S, Hatch K, Gao S, Magidson J, Chen C, Mitchell BD, Kochunov P, Hong LE, Ma T, Chen S. Evaluating the causal effect of tobacco smoking on white matter brain aging: a two-sample Mendelian randomization analysis in UK Biobank. Addiction 2023; 118:739-749. [PMID: 36401354 PMCID: PMC10443605 DOI: 10.1111/add.16088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Tobacco smoking is a risk factor for impaired brain function, but its causal effect on white matter brain aging remains unclear. This study aimed to measure the causal effect of tobacco smoking on white matter brain aging. DESIGN Mendelian randomization (MR) analysis using two non-overlapping data sets (with and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and control group consisted of current smokers and never smokers, respectively. Our main method was generalized weighted linear regression with other methods also included as sensitivity analysis. SETTING United Kingdom. PARTICIPANTS The study cohort included 23 624 subjects [10 665 males and 12 959 females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. MEASUREMENTS Genetic variants were selected as instrumental variables under the MR analysis assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) not associated with confounders. The exposure smoking status (current versus never smokers) was measured by questionnaires at the initial visit (2006-10). The other exposure, cigarettes per day (CPD), measured the average number of cigarettes smoked per day for current tobacco users over the life-time. The outcome was the 'brain age gap' (BAG), the difference between predicted brain age and chronological age, computed by training machine learning model on a non-overlapping set of never smokers. FINDINGS The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking is 0.21 (in years, 95% CI = 6.5 × 10-3 , 0.41; P-value = 0.04), and the effect of CPD is 0.16 year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10-3 ; GSCAN: 95% CI = 0.02, 0.31; P-value = 0.03). The sensitivity analyses showed consistent results. CONCLUSIONS There appears to be a significant causal effect of smoking on the brain age gap, which suggests that smoking prevention can be an effective intervention for accelerated brain aging and the age-related decline in cognitive function.
Collapse
Affiliation(s)
- Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jingtao Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongjie Ke
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Kathryn Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Magidson
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Siegel SD, Tindle HA, Bergen AW, Tyndale RF, Schnoll R. The Use of Biomarkers to Guide Precision Treatment for Tobacco Use. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37089247 PMCID: PMC10121195 DOI: 10.1016/j.addicn.2023.100076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This review summarizes the evidence to date on the development of biomarkers for personalizing the pharmacological treatment of combustible tobacco use. First, the latest evidence on FDA-approved medications is considered, demonstrating that, while these medications offer real benefits, they do not contribute to smoking cessation in approximately two-thirds of cases. Second, the case for using biomarkers to guide tobacco treatment is made based on the potential to increase medication effectiveness and uptake and reduce side effects. Next, the FDA framework of biomarker development is presented along with the state of science on biomarkers for tobacco treatment, including a review of the nicotine metabolite ratio, electroencephalographic event-related potentials, and other biomarkers utilized for risk feedback. We conclude with a discussion of the challenges and opportunities for the translation of biomarkers to guide tobacco treatment and propose priorities for future research.
Collapse
|
9
|
Chiarella P, Capone P, Sisto R. Contribution of Genetic Polymorphisms in Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:912. [PMID: 36673670 PMCID: PMC9858723 DOI: 10.3390/ijerph20020912] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Human health is influenced by various factors; these include genetic inheritance, behavioral lifestyle, socioeconomic and environmental conditions, and public access to care and therapies in case of illness, with the support of the national health system. All these factors represent the starting point for the prevention and promotion of a healthy lifestyle. However, it is not yet clear to what extent these factors may actually affect the health of an entire population. The exposures to environmental and occupational factors are several, most of which might be poorly known, contributing to influencing individual health. Personal habits, including diet, smoking, alcohol, and drug consumption, together with unhealthy behaviors, may inevitably lead people to the development of chronic diseases, contributing to increasing aging and decreasing life expectancy. In this article, we highlight the role of susceptibility biomarkers, i.e., the genetic polymorphisms of individuals of different ethnicities, with particular attention to the risk factors in the response to specific exposures of Europeans. Moreover, we discuss the role of precision medicine which is representing a new way of treating and preventing diseases, taking into account the genetic variability of the individual with each own clinical history and lifestyle.
Collapse
|
10
|
Baurley JW, Bergen AW, Ervin CM, Park SSL, Murphy SE, McMahan CS. Predicting nicotine metabolism across ancestries using genotypes. BMC Genomics 2022; 23:663. [PMID: 36131240 PMCID: PMC9490935 DOI: 10.1186/s12864-022-08884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is a need to match characteristics of tobacco users with cessation treatments and risks of tobacco attributable diseases such as lung cancer. The rate in which the body metabolizes nicotine has proven an important predictor of these outcomes. Nicotine metabolism is primarily catalyzed by the enzyme cytochrone P450 (CYP2A6) and CYP2A6 activity can be measured as the ratio of two nicotine metabolites: trans-3'-hydroxycotinine to cotinine (NMR). Measurements of these metabolites are only possible in current tobacco users and vary by biofluid source, timing of collection, and protocols; unfortunately, this has limited their use in clinical practice. The NMR depends highly on genetic variation near CYP2A6 on chromosome 19 as well as ancestry, environmental, and other genetic factors. Thus, we aimed to develop prediction models of nicotine metabolism using genotypes and basic individual characteristics (age, gender, height, and weight). RESULTS We identified four multiethnic studies with nicotine metabolites and DNA samples. We constructed a 263 marker panel from filtering genome-wide association scans of the NMR in each study. We then applied seven machine learning techniques to train models of nicotine metabolism on the largest and most ancestrally diverse dataset (N=2239). The models were then validated using the other three studies (total N=1415). Using cross-validation, we found the correlations between the observed and predicted NMR ranged from 0.69 to 0.97 depending on the model. When predictions were averaged in an ensemble model, the correlation was 0.81. The ensemble model generalizes well in the validation studies across ancestries, despite differences in the measurements of NMR between studies, with correlations of: 0.52 for African ancestry, 0.61 for Asian ancestry, and 0.46 for European ancestry. The most influential predictors of NMR identified in more than two models were rs56113850, rs11878604, and 21 other genetic variants near CYP2A6 as well as age and ancestry. CONCLUSIONS We have developed an ensemble of seven models for predicting the NMR across ancestries from genotypes and age, gender and BMI. These models were validated using three datasets and associate with nicotine dosages. The knowledge of how an individual metabolizes nicotine could be used to help select the optimal path to reducing or quitting tobacco use, as well as, evaluating risks of tobacco use.
Collapse
Affiliation(s)
| | - Andrew W. Bergen
- BioRealm LLC, 340 S Lemon Ave, Suite 1931, 91789 Walnut, CA USA
- Oregon Research Institute, 3800 Sports Way, 97477 Springfield, OR USA
| | | | | | - Sharon E. Murphy
- University of Minnesota, 2231 6th St SE, 55455 Minneapolis, MN USA
| | | |
Collapse
|
11
|
Liu H, Li G, Sturgis EM, Shete S, Dahlstrom KR, Du M, Amos CI, Christiani DC, Lazarus P, Wei Q. Genetic variants in CYP2B6 and HSD17B12 associated with risk of squamous cell carcinoma of the head and neck. Int J Cancer 2022; 151:553-564. [PMID: 35404482 PMCID: PMC9203942 DOI: 10.1002/ijc.34023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAH) and tobacco-specific nitrosamines (TSNA) metabolism-related genes play an important role in the development of cancers. We assessed the associations of genetic variants in genes involved in the metabolism of PAHs and TSNA with risk of squamous cell carcinoma of the head and neck (SCCHN) in European populations using two published genome-wide association study datasets. In the single-locus analysis, we identified two SNPs (rs145533669 and rs35246205) in CYP2B6 to be associated with risk of SCCHN (P = 1.57 × 10-4 and .004, respectively), two SNPs (EPHX1 rs117522494 and CYP2B6 rs145533669) to be associated with risk of oropharyngeal cancer (P = .001 and .004, respectively), and one SNP (rs4359199 in HSD17B12) to be associated with risk of oral cancer (P = .006). A significant interaction effect was found between rs4359199 and drinking status on risks of SCCHN and oropharyngeal cancer (P < .05). eQTL and sQTL analyzes revealed that two SNPs (CYP2B6 rs35246205 and HSD17B12 rs4359199) were correlated with alternative splicing or mRNA expression levels of the corresponding genes in liver cells (P < .05 for both). In silico functional annotation suggested that these two SNPs may regulate mRNA expression by affecting the binding of transcription factors. Results from phenome-wide association studies presented significant associations between these genes and risks of other cancers, smoking behavior and alcohol dependence (P < .05). Thus, our study provided some insight into the underlying genetic mechanism of head and neck cancer, which warrants future functional validation.
Collapse
Affiliation(s)
- Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University Medical School, Durham, NC, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erich M. Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristina R. Dahlstrom
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Christopher I. Amos
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, 77030, TX, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99210, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Population Health Sciences, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
12
|
Gabriel AAG, Atkins JR, Penha RCC, Smith-Byrne K, Gaborieau V, Voegele C, Abedi-Ardekani B, Milojevic M, Olaso R, Meyer V, Boland A, Deleuze JF, Zaridze D, Mukeriya A, Swiatkowska B, Janout V, Schejbalová M, Mates D, Stojšić J, Ognjanovic M, Witte JS, Rashkin SR, Kachuri L, Hung RJ, Kar S, Brennan P, Sertier AS, Ferrari A, Viari A, Johansson M, Amos CI, Foll M, McKay JD. Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden. J Natl Cancer Inst 2022; 114:1159-1166. [PMID: 35511172 PMCID: PMC9360465 DOI: 10.1093/jnci/djac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. METHODS To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. RESULTS The GWAx-GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. CONCLUSIONS This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development.
Collapse
Affiliation(s)
- Aurélie A G Gabriel
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Joshua R Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Ricardo C C Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, England
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Catherine Voegele
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Maja Milojevic
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Robert Olaso
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Vincent Meyer
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Anne Boland
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean François Deleuze
- Université Paris-Saclay, The French Alternative Energies and Atomic Energy Commission (CEA), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Vladimir Janout
- Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | | | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Jelena Stojšić
- Department of Thoracic Pathology, Service of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Miodrag Ognjanovic
- International Organisation for Cancer Prevention and Research, Belgrade, Serbia
| | | | - John S Witte
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Sara R Rashkin
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Anne-Sophie Sertier
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
| | - Anthony Ferrari
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
| | - Alain Viari
- Fondation Synergie Lyon Cancer, Plateforme de bioinformatique Gilles Thomas, Lyon, France
- Inria Centre de Recherche Grenoble Rhone-Alpes, Grenoble, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, USA
| | - Matthieu Foll
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - James D McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| |
Collapse
|
13
|
Langlois AW, El-Boraie A, Fukunaga K, Mushiroda T, Kubo M, Lerman C, Knight J, Scherer SE, Chenoweth MJ, Tyndale RF. Accuracy and applications of sequencing and genotyping approaches for CYP2A6 and homologous genes. Pharmacogenet Genomics 2022; 32:159-172. [PMID: 35190513 PMCID: PMC9081136 DOI: 10.1097/fpc.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We evaluated multiple genotyping/sequencing approaches in a homologous region of chromosome 19, and investigated associations of two common 3'-UTR CYP2A6 variants with activity in vivo. METHODS Individuals (n = 1704) of European and African ancestry were phenotyped for the nicotine metabolite ratio (NMR), an index of CYP2A6 activity, and genotyped/sequenced using deep amplicon exon sequencing, SNP array, genotype imputation and targeted capture sequencing. Amplicon exon sequencing was the gold standard to which other methods were compared within-individual for CYP2A6, CYP2A7, CYP2A13, and CYP2B6 exons to identify highly discordant positions. Linear regression models evaluated the association of CYP2A6*1B and rs8192733 genotypes (coded additively) with logNMR. RESULTS All approaches were ≤2.6% discordant with the gold standard; discordant calls were concentrated at few positions. Fifteen positions were discordant in >10% of individuals, with 12 appearing in regions of high identity between homologous genes (e.g. CYP2A6 and CYP2A7). For six, allele frequencies in our study and online databases were discrepant, suggesting errors in online sources. In the European-ancestry group (n = 935), CYP2A6*1B and rs8192733 were associated with logNMR (P < 0.001). A combined model found main effects of both variants on increasing logNMR. Similar trends were found in those of African ancestry (n = 506). CONCLUSION Multiple genotyping/sequencing approaches used in this chromosome 19 region contain genotyping/sequencing errors, as do online databases. Gene-specific primers and SNP array probes must consider gene homology; short-read sequencing of related genes in a single reaction should be avoided. Using improved sequencing approaches, we characterized two gain-of-function 3'-UTR variants, including the relatively understudied rs8192733.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN; 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Cancer Center, Los Angeles, CA, 90089, United States
| | - Jo Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Steven E. Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada. Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
14
|
Association between early gestation passive smoke exposure and neonatal size among self-reported non-smoking women by race/ethnicity: A cohort study. PLoS One 2021; 16:e0256676. [PMID: 34793459 PMCID: PMC8601432 DOI: 10.1371/journal.pone.0256676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding implications of passive smoke exposure during pregnancy is an important public health issue under the Developmental Origins of Health and Disease paradigm. In a prospective cohort of low-risk non-smoking pregnant women (NICHD Fetal Growth Studies—Singletons, 2009–2013, N = 2055), the association between first trimester passive smoke exposure and neonatal size was assessed by race/ethnicity. Plasma biomarker concentrations (cotinine, nicotine) assessed passive smoke exposure. Neonatal anthropometric measures included weight, 8 non-skeletal, and 2 skeletal measures. Linear regression evaluated associations between continuous biomarker concentrations and neonatal anthropometric measures by race/ethnicity. Cotinine concentrations were low and the percent above limit of quantification varied by maternal race/ethnicity (10% Whites; 14% Asians; 15% Hispanics; 49% Blacks). The association between cotinine concentration and infant weight differed by race/ethnicity (Pinteraction = 0.034); compared to women of the same race/ethnicity, per 1 log-unit increase in cotinine, weight increased 48g (95%CI -44, 139) in White and 51g (95%CI -81, 183) in Hispanic women, but decreased -90g (95%CI -490, 309) in Asian and -93g (95%CI -151, -35) in Black women. Consistent racial/ethnic differences and patterns were found for associations between biomarker concentrations and multiple non-skeletal measures for White and Black women (Pinteraction<0.1). Among Black women, an inverse association between cotinine concentration and head circumference was observed (−0.20g; 95%CI −0.38, −0.02). Associations between plasma cotinine concentration and neonatal size differed by maternal race/ethnicity, with increasing concentrations associated with decreasing infant size among Black women, who had the greatest biomarker concentrations. Public health campaigns should advocate for reducing pregnancy exposure, particularly for vulnerable populations.
Collapse
|
15
|
Bergen AW, McMahan CS, McGee S, Ervin CM, Tindle HA, Le Marchand L, Murphy SE, Stram DO, Patel YM, Park SL, Baurley JW. Multiethnic Prediction of Nicotine Biomarkers and Association With Nicotine Dependence. Nicotine Tob Res 2021; 23:2162-2169. [PMID: 34313775 PMCID: PMC8757310 DOI: 10.1093/ntr/ntab124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The nicotine metabolite ratio and nicotine equivalents are measures of metabolism rate and intake. Genome-wide prediction of these nicotine biomarkers in multiethnic samples will enable tobacco-related biomarker, behavioral, and exposure research in studies without measured biomarkers. AIMS AND METHODS We screened genetic variants genome-wide using marginal scans and applied statistical learning algorithms on top-ranked genetic variants, age, ethnicity and sex, and, in additional modeling, cigarettes per day (CPD), (in additional modeling) to build prediction models for the urinary nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equivalents (TNE) in 2239 current cigarette smokers in five ethnic groups. We predicted these nicotine biomarkers using model ensembles and evaluated external validity using dependence measures in 1864 treatment-seeking smokers in two ethnic groups. RESULTS The genomic regions with the most selected and included variants for measured biomarkers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 (TNE, without and with CPD). We observed ensemble correlations between measured and predicted biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68) and 0.65 (0.72) in the training sample. We observed inconsistency in penalized regression models of TNE (with CPD) with fewer variants at chr15q25.1 selected and included. In treatment-seeking smokers, predicted uNMR (without CPD) was significantly associated with CPD and predicted TNE (without CPD) with CPD, time-to-first-cigarette, and Fagerström total score. CONCLUSIONS Nicotine metabolites, genome-wide data, and statistical learning approaches developed novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. Predicted biomarker associations helped define genetically influenced components of nicotine dependence. IMPLICATIONS We demonstrate development of robust models and multiethnic prediction of the uNMR and TNE using statistical and machine learning approaches. Variants included in trained models for nicotine biomarkers include top-ranked variants in multiethnic genome-wide studies of smoking behavior, nicotine metabolites, and related disease. Association of the two predicted nicotine biomarkers with Fagerström Test for Nicotine Dependence items supports models of nicotine biomarkers as predictors of physical dependence and nicotine exposure. Predicted nicotine biomarkers may facilitate tobacco-related disease and treatment research in samples with genomic data and limited nicotine metabolite or tobacco exposure data.
Collapse
Affiliation(s)
- Andrew W Bergen
- Oregon Research Institute, Eugene, OR, USA
- BioRealm, LLC, Walnut, CA, USA
| | - Christopher S McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Hilary A Tindle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Health Administration-Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Loïc Le Marchand
- Cancer Epidemiology and University of Hawaii Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sharon E Murphy
- Biochemistry, Molecular Biology, and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Daniel O Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yesha M Patel
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sungshim L Park
- Cancer Epidemiology and University of Hawaii Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | | |
Collapse
|
16
|
Yadav VK, Katiyar T, Ruwali M, Yadav S, Singh S, Hadi R, Bhatt MLB, Parmar D. Polymorphism in cytochrome P4502A6 reduces the risk to head and neck cancer and modifies the treatment outcome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:502-511. [PMID: 34655463 DOI: 10.1002/em.22466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The present case-control study consisting of 1300 cases of head and neck squamous cell carcinoma (HNSCC) and the equal number of controls aimed to investigate the association of functionally important polymorphisms in cytochrome P4502A6 (CYP2A6*1B, CYP2A6*4C, CYP2A6*9-rs28399433) with HNSCC and the treatment response in cases receiving a combination of chemotherapy/radiotherapy (CT/RT). A significant decrease in risk to HNSCC was observed in the cases with deletion (CYP2A6*4B and CYP2A6*4C) or reduced activity genotypes (CYP2A6*9) of CYP2A6. This risk to HNSCC was further reduced significantly in tobacco users among the cases when compared to nontobacco users among the cases. The risk was also reduced to a slightly greater extent in alcohol users among the cases when compared to nonalcohol users among the cases. In contrast with decreased risk to HNSCC, almost half of the cases with variant genotypes of CYP2A6 (CYP2A6*1A/*4C+*1B/*4C+*4C/*4C and *9/*9) did not respond to the treatment. Likewise, the survival rate in cases receiving the treatment, after 55 months of follow-up was significantly lower in cases with deletion (6.3%) or reduced activity (11.9%) allele than in the cases with common alleles (41%). The present study has shown that CYP2A6 polymorphism significantly reduces the risk to HNSCC. Our data further suggested that CYP2A6 polymorphism may worsen the treatment outcome in the cases receiving CT/RT.
Collapse
Affiliation(s)
- Vinay Kumar Yadav
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tridiv Katiyar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Munindra Ruwali
- Faculty of Science, Engineering And Technology, Amity University, Gurgaon, India
| | - Sanjay Yadav
- All India Institute of Medical Sciences, Raebareli, India
| | - Sudhir Singh
- Department of Radiotherapy, King George's Medical University, Lucknow, India
| | - Rahat Hadi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | | | - Devendra Parmar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Chenoweth MJ, Cox LS, Nollen NL, Ahluwalia JS, Benowitz NL, Lerman C, Knight J, Tyndale RF. Analyses of nicotine metabolism biomarker genetics stratified by sex in African and European Americans. Sci Rep 2021; 11:19572. [PMID: 34599228 PMCID: PMC8486765 DOI: 10.1038/s41598-021-98883-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/08/2021] [Indexed: 12/01/2022] Open
Abstract
Nicotine is inactivated by the polymorphic CYP2A6 enzyme to cotinine and then to 3'hydroxycotinine. The Nicotine Metabolite Ratio (NMR; 3'hydroxycotinine/cotinine) is a heritable nicotine metabolism biomarker, varies with sex and ancestry, and influences smoking cessation and disease risk. We conducted sex-stratified genome-wide association studies of the NMR in European American (EA) and African American (AA) smokers (NCT01314001, NCT00666978). In EA females (n = 389) and males (n = 541), one significant (P < 5e-8) chromosome 19 locus was found (top variant: rs56113850, CYP2A6 (intronic), for C vs. T: females: beta = 0.67, P = 7.5e-22, 21.8% variation explained; males: beta = 0.75, P = 1.2e-37, 26.1% variation explained). In AA females (n = 503) and males (n = 352), the top variant was found on chromosome 19 but differed by sex (females: rs11878604, CYP2A6 (~ 16 kb 3'), for C vs. T: beta = - 0.71, P = 6.6e-26, 16.2% variation explained; males: rs3865454, CYP2A6 (~ 7 kb 3'), for G vs. T: beta = 0.64, P = 1.9e-19, 18.9% variation explained). In AA females, a significant region was found on chromosome 12 (top variant: rs12425845: P = 5.0e-9, TMEM132C (~ 1 Mb 5'), 6.1% variation explained) which was not significant in AA males. In AA males, significant regions were found on chromosomes 6 (top variant: rs9379805: P = 4.8e-9, SLC17A2 (~ 8 kb 5'), 8.0% variation explained) and 16 (top variant: rs77368288: P = 3.5e-8, ZNF469 (~ 92 kb 5'), 7.1% variation explained) which were not significant in AA females. Further investigation of these associations outside of chromosome 19 is required, as they did not replicate. Understanding how sex and ancestry influence nicotine metabolism genetics may improve personalized approaches for smoking cessation and risk prediction for tobacco-related diseases.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nikki L Nollen
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University, Providence, Rhode Island, USA
| | - Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Caryn Lerman
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jo Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, UK
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building Room 4326, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
18
|
Lin M, Caberto C, Wan P, Li Y, Lum-Jones A, Tiirikainen M, Pooler L, Nakamura B, Sheng X, Porcel J, Lim U, Setiawan VW, Le Marchand L, Wilkens LR, Haiman CA, Cheng I, Chiang CWK. Population-specific reference panels are crucial for genetic analyses: an example of the CREBRF locus in Native Hawaiians. Hum Mol Genet 2021; 29:2275-2284. [PMID: 32491157 DOI: 10.1093/hmg/ddaa083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
Statistical imputation applied to genome-wide array data is the most cost-effective approach to complete the catalog of genetic variation in a study population. However, imputed genotypes in underrepresented populations incur greater inaccuracies due to ascertainment bias and a lack of representation among reference individuals, further contributing to the obstacles to study these populations. Here we examined the consequences due to the lack of representation by genotyping in a large number of self-reported Native Hawaiians (N = 3693) a functionally important, Polynesian-specific variant in the CREBRF gene, rs373863828. We found the derived allele was significantly associated with several adiposity traits with large effects (e.g. ~ 1.28 kg/m2 per allele in body mass index as the most significant; P = 7.5 × 10-5), consistent with the original findings in Samoans. Due to the current absence of Polynesian representation in publicly accessible reference sequences, rs373863828 or its proxies could not be tested through imputation using these existing resources. Moreover, the association signals at the entire CREBRF locus could not be captured by alternative approaches, such as admixture mapping. In contrast, highly accurate imputation can be achieved even if a small number (<200) of internally constructed Polynesian reference individuals were available; this would increase sample size and improve the statistical evidence of associations. Taken together, our results suggest the alarming possibility that lack of representation in reference panels could inhibit discovery of functionally important loci such as CREBRF. Yet, they could be easily detected and prioritized with improved representation of diverse populations in sequencing studies.
Collapse
Affiliation(s)
- Meng Lin
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian Caberto
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuqing Li
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94518, USA
| | - Annette Lum-Jones
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Maarit Tiirikainen
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brooke Nakamura
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jacqueline Porcel
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Unhee Lim
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Veronica Wendy Setiawan
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawai'i Cancer Center, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94518, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Quantitative Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Hertz DL, Douglas JA, Kidwell KM, Gersch CL, Desta Z, Storniolo AM, Stearns V, Skaar TC, Hayes DF, Henry NL, Rae JM. Genome-wide association study of letrozole plasma concentrations identifies non-exonic variants that may affect CYP2A6 metabolic activity. Pharmacogenet Genomics 2021; 31:116-123. [PMID: 34096894 PMCID: PMC8185249 DOI: 10.1097/fpc.0000000000000429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Letrozole is a nonsteroidal aromatase inhibitor used to treat hormone-receptor-positive breast cancer. Variability in letrozole efficacy and toxicity may be partially attributable to variable systemic drug exposure, which may be influenced by germline variants in the enzymes responsible for letrozole metabolism, including cytochrome P450 2A6 (CYP2A6). The objective of this genome-wide association study (GWAS) was to identify polymorphisms associated with steady-state letrozole concentrations. METHODS The Exemestane and Letrozole Pharmacogenetics (ELPh) Study randomized postmenopausal patients with hormone-receptor-positive nonmetastatic breast cancer to letrozole or exemestane treatment. Germline DNA was collected pretreatment and blood samples were collected after 1 or 3 months of treatment to measure steady-state letrozole (and exemestane) plasma concentrations via HPLC/MS. Genome-wide genotyping was conducted on the Infinium Global Screening Array (>650 000 variants) followed by imputation. The association of each germline variant with age- and BMI-adjusted letrozole concentrations was tested in self-reported white patients via linear regression assuming an additive genetic model. RESULTS There were 228 patients who met the study-specific inclusion criteria and had both DNA and letrozole concentration data for this GWAS. The association for one genotyped polymorphism (rs7937) with letrozole concentration surpassed genome-wide significance (P = 5.26 × 10-10), explaining 13% of the variability in untransformed steady-state letrozole concentrations. Imputation around rs7937 and in silico analyses identified rs56113850, a variant in the CYP2A6 intron that may affect CYP2A6 expression and activity. rs7937 was associated with age- and BMI-adjusted letrozole levels even after adjusting for genotype-predicted CYP2A6 metabolic phenotype (P = 3.86 × 10-10). CONCLUSION Our GWAS findings confirm that steady-state letrozole plasma concentrations are partially determined by germline polymorphisms that affect CYP2A6 activity, including variants near rs7937 such as the intronic rs56113850 variant. Further research is needed to confirm whether rs56113850 directly affects CYP2A6 activity and to integrate nonexonic variants into CYP2A6 phenotypic activity prediction systems.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Julie A Douglas
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
- Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, New York
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ana-Maria Storniolo
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Todd C Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel F Hayes
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - N Lynn Henry
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni RE. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 2021; 22:194. [PMID: 34187551 PMCID: PMC8243879 DOI: 10.1186/s13059-021-02398-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
Collapse
Affiliation(s)
- Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeesun Jung
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pei-Lun Kuo
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Matthijs D van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05446, USA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jacob K Kresovich
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, 55404, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Polidoro
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - David J Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Donna Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, UK
| | | | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Luigi Ferrucci
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Rd. South, Edinburgh, EH4 2XU, UK
| | - Marguerite Irvin
- Dept of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
21
|
Buchwald J, Chenoweth MJ, Palviainen T, Zhu G, Benner C, Gordon S, Korhonen T, Ripatti S, Madden PAF, Lehtimäki T, Raitakari OT, Salomaa V, Rose RJ, George TP, Lerman C, Pirinen M, Martin NG, Kaprio J, Loukola A, Tyndale RF. Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent. Mol Psychiatry 2021; 26:2212-2223. [PMID: 32157176 PMCID: PMC7483250 DOI: 10.1038/s41380-020-0702-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Smoking behaviors, including amount smoked, smoking cessation, and tobacco-related diseases, are altered by the rate of nicotine clearance. Nicotine clearance can be estimated using the nicotine metabolite ratio (NMR) (ratio of 3'hydroxycotinine/cotinine), but only in current smokers. Advancing the genomics of this highly heritable biomarker of CYP2A6, the main metabolic enzyme for nicotine, will also enable investigation of never and former smokers. We performed the largest genome-wide association study (GWAS) to date of the NMR in European ancestry current smokers (n = 5185), found 1255 genome-wide significant variants, and replicated the chromosome 19 locus. Fine-mapping of chromosome 19 revealed 13 putatively causal variants, with nine of these being highly putatively causal and mapping to CYP2A6, MAP3K10, ADCK4, and CYP2B6. We also identified a putatively causal variant on chromosome 4 mapping to TMPRSS11E and demonstrated an association between TMPRSS11E variation and a UGT2B17 activity phenotype. Together the 14 putatively causal SNPs explained ~38% of NMR variation, a substantial increase from the ~20 to 30% previously explained. Our additional GWASs of nicotine intake biomarkers showed that cotinine and smoking intensity (cotinine/cigarettes per day (CPD)) shared chromosome 19 and chromosome 4 loci with the NMR, and that cotinine and a more accurate biomarker, cotinine + 3'hydroxycotinine, shared a chromosome 15 locus near CHRNA5 with CPD and Pack-Years (i.e., cumulative exposure). Understanding the genetic factors influencing smoking-related traits facilitates epidemiological studies of smoking and disease, as well as assists in optimizing smoking cessation support, which in turn will reduce the enormous personal and societal costs associated with smoking.
Collapse
Affiliation(s)
- Jadwiga Buchwald
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghan J. Chenoweth
- Campbell Family Mental Health Research Institute, CAMH, and Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Pamela A. F. Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, United States
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Richard J. Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Tony P. George
- Division of Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada and Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Caryn Lerman
- USC Norris Comprehensive Cancer Center at Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland,Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, CAMH, and Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada,Division of Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada and Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Zhang X, Wang Y, Zhao S, Qin Q, Zhang M, Jiang Y, Zhu H, Li H. Low expression of developing brain homeobox 2 (Dbx2) may serve as a biomarker to predict poor prognosis in endometrial cancer. Am J Transl Res 2021; 13:4738-4748. [PMID: 34150054 PMCID: PMC8205784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE For investigating Dbx2's expression in endometrial cancer (EC) and its effect on prognosis of patients with EC. METHODS A comparison was performed in the Cancer Genome Atlas (TCGA) database in terms of the expression profiling of EC and the survival data. To obtain differential expression genes (DEGs), Volcano plot and Venn analysis were adopted. DEGs function was performed by carrying out the GO annotation analysis (GO) and gene set enrichment analysis (GSEA). In clinical EC samples, PCR was applied to the verification of Dbx2's expression. RESULTS Dbx2 was a downregulated expression in tumor tissues. Dbx2 can have a poor prognosis role in EC by regulating the apoptotic signaling pathway and the immune pathway. Lower expression of Dbx2 was related to lymph node metastasis and FIGO stage. CONCLUSION Dbx2 is downregulated in endometrial cancer, which serves as a biomarker to predict poor prognosis.
Collapse
Affiliation(s)
- Xinlu Zhang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Yaping Wang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Shujun Zhao
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
- Zhengzhou Key Laboratory of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Qiaohong Qin
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
- Zhengzhou Key Laboratory of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Min Zhang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Yi Jiang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Hai Zhu
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| | - Hongyu Li
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
- Zhengzhou Key Laboratory of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, P. R. China
| |
Collapse
|
23
|
Murphy SE. Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 2021; 296:100722. [PMID: 33932402 PMCID: PMC8167289 DOI: 10.1016/j.jbc.2021.100722] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotine is the key addictive constituent of tobacco. It is not a carcinogen, but it drives smoking and the continued exposure to the many carcinogens present in tobacco. The investigation into nicotine biotransformation has been ongoing for more than 60 years. The dominant pathway of nicotine metabolism in humans is the formation of cotinine, which occurs in two steps. The first step is cytochrome P450 (P450, CYP) 2A6–catalyzed 5′-oxidation to an iminium ion, and the second step is oxidation of the iminium ion to cotinine. The half-life of nicotine is longer in individuals with low P450 2A6 activity, and smokers with low activity often decrease either the intensity of their smoking or the number of cigarettes they use compared with those with “normal” activity. The effect of P450 2A6 activity on smoking may influence one's tobacco-related disease risk. This review provides an overview of nicotine metabolism and a summary of the use of nicotine metabolite biomarkers to define smoking dose. Some more recent findings, for example, the identification of uridine 5′-diphosphoglucuronosyltransferase 2B10 as the catalyst of nicotine N-glucuronidation, are discussed. We also describe epidemiology studies that establish the contribution of nicotine metabolism and CYP2A6 genotype to lung cancer risk, particularly with respect to specific racial/ethnic groups, such as those with Japanese, African, or European ancestry. We conclude that a model of nicotine metabolism and smoking dose could be combined with other lung cancer risk variables to more accurately identify former smokers at the highest risk of lung cancer and to intervene accordingly.
Collapse
Affiliation(s)
- Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
24
|
Perez-Paramo YX, Lazarus P. Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism. Expert Opin Drug Metab Toxicol 2021; 17:333-349. [PMID: 33322962 PMCID: PMC8049967 DOI: 10.1080/17425255.2021.1863948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful.Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy.Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
25
|
Ellingjord-Dale M, Papadimitriou N, Katsoulis M, Yee C, Dimou N, Gill D, Aune D, Ong JS, MacGregor S, Elsworth B, Lewis SJ, Martin RM, Riboli E, Tsilidis KK. Coffee consumption and risk of breast cancer: A Mendelian randomization study. PLoS One 2021; 16:e0236904. [PMID: 33465101 PMCID: PMC7815134 DOI: 10.1371/journal.pone.0236904] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Observational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer. METHODS We conducted a two-sample Mendelian randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations. RESULTS One cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR = 0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07). CONCLUSIONS The results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak association.
Collapse
Affiliation(s)
- Merete Ellingjord-Dale
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Michail Katsoulis
- Institute of Health Informatics Research, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Chew Yee
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jue-Sheng Ong
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Sarah J. Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
26
|
Carroll DM, Hernandez C, Braaten G, Meier E, Jacobson P, Begnaud A, McGonagle E, Frizzell LB, K Hatsukami D. Recommendations to researchers for aiding in increasing American Indian representation in genetic research and personalized medicine. Per Med 2020; 18:67-74. [PMID: 33332195 PMCID: PMC8242981 DOI: 10.2217/pme-2020-0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing American Indian/Alaska Native (AI/AN) representation in genetic research is critical to ensuring that personalized medicine discoveries do not widen AI/AN health disparities by only benefiting well-represented populations. One reason for the under-representation of AIs/ANs in research is warranted research distrust due to abuse of some AI/AN communities in research. An approach to easing the tension between protecting AI/AN communities and increasing the representation of AI/AN persons in genetic research is community-based participatory research. This approach was used in a collaboration between a tribe and academic researchers in efforts to increase AI/AN participation in genetic research. From the lessons learned, the authors propose recommendations to researchers that may aid in conducting collaborative and respectful research with AI/AN tribes/communities and ultimately assist in increasing representation of AIs/ANs in personalized medicine discoveries.
Collapse
Affiliation(s)
- Dana M Carroll
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota.,Masonic Cancer Center, University of Minnesota
| | | | | | - Ellen Meier
- Department of Psychology, University of Wisconsin Stevens Point
| | | | | | | | | | | |
Collapse
|
27
|
El-Boraie A, Chenoweth MJ, Pouget JG, Benowitz NL, Fukunaga K, Mushiroda T, Kubo M, Nollen NL, Sanderson Cox L, Lerman C, Knight J, Tyndale RF. Transferability of Ancestry-Specific and Cross-Ancestry CYP2A6 Activity Genetic Risk Scores in African and European Populations. Clin Pharmacol Ther 2020; 110:975-985. [PMID: 33300144 DOI: 10.1002/cpt.2135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
The Nicotine Metabolite Ratio (NMR; 3-hydroxycotinine/cotinine), a highly heritable index of nicotine metabolic inactivation by the CYP2A6 enzyme, is associated with numerous smoking behaviors and diseases, as well as unique cessation outcomes. However, the NMR cannot be measured in nonsmokers, former smokers, or intermittent smokers, for example, in evaluating tobacco-related disease risk. Traditional pharmacogenetic groupings based on CYP2A6 * alleles capture a modest portion of NMR variation. We previously created a CYP2A6 weighted genetic risk score (wGRS) for European (EUR)-ancestry populations by incorporating independent signals from genome-wide association studies to capture a larger proportion of NMR variation. However, CYP2A6 genetic architecture is unique to ancestral populations. In this study, we developed and replicated an African-ancestry (AFR) wGRS, which captured 30-35% of the variation in NMR. We demonstrated model robustness against known environmental sources of NMR variation. Furthermore, despite the vast diversity within AFR populations, we showed that the AFR wGRS was consistent between different US geographical regions and unaltered by fine AFR population substructure. The AFR and EUR wGRSs can distinguish slow from normal metabolizers in their respective populations, and were able to reflect unique smoking cessation pharmacotherapy outcomes previously observed for the NMR. Additionally, we evaluated the utility of a cross-ancestry wGRS, and the capacity of EUR, AFR, and cross-ancestry wGRSs to predict the NMR within stratified or admixed AFR-EUR populations. Overall, our findings establish the clinical benefit of applying ancestry-specific wGRSs, demonstrating superiority of the AFR wGRS in AFRs.
Collapse
Affiliation(s)
- Ahmed El-Boraie
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada
| | - Meghan J Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Neal L Benowitz
- Clinical Pharmacology Research Program, Division of Cardiology, Department of Medicine and Center for Tobacco Control Research and Education, University of California San Francisco, San Francisco, California, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | | | - Michiaki Kubo
- Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Nicole L Nollen
- Department of Population Health, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Lisa Sanderson Cox
- Department of Population Health, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Caryn Lerman
- Department of Psychiatry and USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Peterson LA, Balbo S, Fujioka N, Hatsukami DK, Hecht SS, Murphy SE, Stepanov I, Tretyakova NY, Turesky RJ, Villalta PW. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiol Biomarkers Prev 2020; 29:1904-1919. [PMID: 32051197 PMCID: PMC7423750 DOI: 10.1158/1055-9965.epi-19-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
Many human cancers are caused by environmental and lifestyle factors. Biomarkers of exposure and risk developed by our team have provided critical data on internal exposure to toxic and genotoxic chemicals and their connection to cancer in humans. This review highlights our research using biomarkers to identify key factors influencing cancer risk as well as their application to assess the effectiveness of exposure intervention and chemoprevention protocols. The use of these biomarkers to understand individual susceptibility to the harmful effects of tobacco products is a powerful example of the value of this type of research and has provided key data confirming the link between tobacco smoke exposure and cancer risk. Furthermore, this information has led to policy changes that have reduced tobacco use and consequently, the tobacco-related cancer burden. Recent technological advances in mass spectrometry led to the ability to detect DNA damage in human tissues as well as the development of adductomic approaches. These new methods allowed for the detection of DNA adducts in tissues from patients with cancer, providing key evidence that exposure to carcinogens leads to DNA damage in the target tissue. These advances will provide valuable insights into the etiologic causes of cancer that are not tobacco-related.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalia Y Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
29
|
Bray MJ, Chen LS, Fox L, Hancock DB, Culverhouse RC, Hartz SM, Johnson EO, Liu M, McKay JD, Saccone NL, Hokanson JE, Vrieze SI, Tyndale RF, Baker TB, Bierut LJ. Dissecting the genetic overlap of smoking behaviors, lung cancer, and chronic obstructive pulmonary disease: A focus on nicotinic receptors and nicotine metabolizing enzyme. Genet Epidemiol 2020; 44:748-758. [PMID: 32803792 PMCID: PMC7793026 DOI: 10.1002/gepi.22331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Smoking is a major contributor to lung cancer and chronic obstructive pulmonary disease (COPD). Two of the strongest genetic associations of smoking-related phenotypes are the chromosomal regions 15q25.1, encompassing the nicotinic acetylcholine receptor subunit genes CHRNA5-CHRNA3-CHRNB4, and 19q13.2, encompassing the nicotine metabolizing gene CYP2A6. In this study, we examined genetic relations between cigarettes smoked per day, smoking cessation, lung cancer, and COPD. Data consisted of genome-wide association study summary results. Genetic correlations were estimated using linkage disequilibrium score regression software. For each pair of outcomes, z-score-z-score (ZZ) plots were generated. Overall, heavier smoking and decreased smoking cessation showed positive genetic associations with increased lung cancer and COPD risk. The chromosomal region 19q13.2, however, showed a different correlational pattern. For example, the effect allele-C of the sentinel SNP (rs56113850) within CYP2A6 was associated with an increased risk of heavier smoking (z-score = 19.2; p = 1.10 × 10-81 ), lung cancer (z-score = 8.91; p = 5.02 × 10-19 ), and COPD (z-score = 4.04; p = 5.40 × 10-5 ). Surprisingly, this allele-C (rs56113850) was associated with increased smoking cessation (z-score = -8.17; p = 2.52 × 10-26 ). This inverse relationship highlights the need for additional investigation to determine how CYP2A6 variation could increase smoking cessation while also increasing the risk of lung cancer and COPD likely through increased cigarettes smoked per day.
Collapse
Affiliation(s)
- Michael J Bray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics & Epidemiology Division, RTI International, Research Triangle Park, North Carolina
| | - Robert C Culverhouse
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics & Epidemiology Division, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - James D McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Nancy L Saccone
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott I Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Timothy B Baker
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Dator R, Villalta PW, Thomson N, Jensen J, Hatsukami DK, Stepanov I, Warth B, Balbo S. Metabolomics Profiles of Smokers from Two Ethnic Groups with Differing Lung Cancer Risk. Chem Res Toxicol 2020; 33:2087-2098. [PMID: 32293874 PMCID: PMC7434657 DOI: 10.1021/acs.chemrestox.0c00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
African
American (AA) smokers are at a higher risk of developing
lung cancer compared to whites. The variations in the metabolism of
nicotine and tobacco-derived carcinogens in these groups were reported
previously with the levels of nicotine metabolites and carcinogen-derived
metabolites measured using targeted approaches. While useful, these
targeted strategies are not able to detect global metabolic changes
for use in predicting the detrimental effects of tobacco use and ultimately
lung cancer susceptibility among smokers. To address this limitation,
we have performed global untargeted metabolomics profiling in urine
of AA and white smokers to characterize the pattern of metabolites,
identify differentially regulated pathways, and correlate these profiles
with the observed variations in lung cancer risk between these two
populations. Urine samples from AA (n = 30) and white
(n = 30) smokers were used for metabolomics analysis
acquired in both positive and negative electrospray ionization modes.
LC-MS data were uploaded onto the cloud-based XCMS online (http://xcmsonline.scripps.edu) platform for retention time correction, alignment, feature detection,
annotation, statistical analysis, data visualization, and automated
systems biology pathway analysis. The latter identified global differences
in the metabolic pathways in the two groups including the metabolism
of carbohydrates, amino acids, nucleotides, fatty acids, and nicotine.
Significant differences in the nicotine degradation pathway (cotinine
glucuronidation) in the two groups were observed and confirmed using
a targeted LC-MS/MS approach. These results are consistent with previous
studies demonstrating AA smokers with lower glucuronidation capacity
compared to whites. Furthermore, the d-glucuronate degradation
pathway was found to be significantly different between the two populations,
with lower amounts of the putative metabolites detected in AA compared
to whites. We hypothesize that the differential regulation of the d-glucuronate degradation pathway is a consequence of the variations
in the glucuronidation capacity observed in the two groups. Other
pathways including the metabolism of amino acids, nucleic acids, and
fatty acids were also identified, however, the biological relevance
and implications of these differences across ethnic groups need further
investigation. Overall, the applied metabolomics approach revealed
global differences in the metabolic networks and endogenous metabolites
in AA and whites, which could be used and validated as a new potential
panel of biomarkers that could be used to predict lung cancer susceptibility
among smokers in population-based studies.
Collapse
Affiliation(s)
- Romel Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicole Thomson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstraβe 38, 1090 Vienna, Austria.,Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Dai J, Li Z, Amos CI, Hung RJ, Tardon A, Andrew AS, Chen C, Christiani DC, Albanes D, van der Heijden EHFM, Duell EJ, Rennert G, Mckay JD, Yuan JM, Field JK, Manjer J, Grankvist K, Le Marchand L, Teare MD, Schabath MB, Aldrich MC, Tsao MS, Lazarus P, Lam S, Bojesen SE, Arnold S, Wu X, Haugen A, Janout V, Johansson M, Brhane Y, Fernandez-Somoano A, Kiemeney LA, Davies MPA, Zienolddiny S, Hu Z, Shen H. Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci. Carcinogenesis 2020; 40:432-440. [PMID: 30590402 DOI: 10.1093/carcin/bgy187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 02/03/2023] Open
Abstract
DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
Collapse
Affiliation(s)
- Juncheng Dai
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center of Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Adonina Tardon
- Faculty of Medicine, IUOPA, University of Oviedo and CIBERESP, Oviedo, Spain
| | - Angeline S Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine, Hanover, NH, USA
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, Israel
| | - James D Mckay
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, The William Duncan Building, Liverpool, UK
| | - Jonas Manjer
- Unit for Breast Surgery, Department of Surgery, Lund University, Malmö, Sweden.,Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Loic Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - M Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Arnold
- Division of Medical Oncology Markey Cancer Center, Lexington, KY, USA
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aage Haugen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Vladimir Janout
- Department of Epidemiology and Public Health, Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | | | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Lambertus A Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, The William Duncan Building, Liverpool, UK
| | - Shanbeh Zienolddiny
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center of Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, International Joint Research Center, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center of Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
El‐Boraie A, Taghavi T, Chenoweth MJ, Fukunaga K, Mushiroda T, Kubo M, Lerman C, Nollen NL, Benowitz NL, Tyndale RF. Evaluation of a weighted genetic risk score for the prediction of biomarkers of CYP2A6 activity. Addict Biol 2020; 25:e12741. [PMID: 30815984 DOI: 10.1111/adb.12741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/01/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022]
Abstract
The nicotine metabolite ratio (NMR; 3-hydroxycotinine/cotinine) is an index of CYP2A6 activity. CYP2A6 is responsible for nicotine's metabolic inactivation and variation in the NMR/CYP2A6 is associated with several smoking behaviors. Our aim was to integrate established alleles and novel genome-wide association studies (GWAS) signals to create a weighted genetic risk score (wGRS) for the CYP2A6 gene for European-ancestry populations. The wGRS was compared with a previous CYP2A6 gene scoring approach designed for an alternative phenotype (C2/N2; cotinine-d2/(nicotine-d2 + cotinine-d2)). CYP2A6 genotypes and the NMR were assessed in European-ancestry participants. The wGRS training set included N = 933 smokers recruited to the Pharmacogenetics of Nicotine Addiction and Treatment clinical trial [NCT01314001]. The replication cohort included N = 196 smokers recruited to the Quit 2 Live clinical trial [NCT01836276]. Comparisons between the two CYP2A6 phenotypes and with fractional clearance were made in a laboratory-based pharmacokinetic study (N = 92 participants). In both the training and replication sets, the wGRS, which included seven CYP2A6 variants, explained 33.8% (P < 0.001) of the variance in NMR, providing improved predictive power to the NMR phenotype when compared with other CYP2A6 gene scoring approaches. NMR and C2/N2 were strongly correlated to nicotine clearance (ρ = 0.70 and ρ = 0.79, respectively; P < 0.001), and to one another (ρ = 0.82; P < 0.001); however reduced function genotypes occurred in slow NMR but throughout C2/N2. The wGRS was able to predict smoking quantity and nicotine intake, to discriminate between NMR slow and normal metabolizers (AUC = 0.79; P < 0.001), and to replicate previous NMR-stratified cessation outcomes showing unique treatment outcomes between metabolizer groups.
Collapse
Affiliation(s)
- Ahmed El‐Boraie
- Department of Pharmacology and ToxicologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Taraneh Taghavi
- Department of Pharmacology and ToxicologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Meghan J. Chenoweth
- Department of Pharmacology and ToxicologyUniversity of Toronto Toronto M5S 1A8 Canada
| | - Koya Fukunaga
- Center for Integrative Medical SciencesRIKEN Yokohama Kanagawa 230‐0045 Japan
| | - Taisei Mushiroda
- Center for Integrative Medical SciencesRIKEN Yokohama Kanagawa 230‐0045 Japan
| | - Michiaki Kubo
- Center for Integrative Medical SciencesRIKEN Yokohama Kanagawa 230‐0045 Japan
| | - Caryn Lerman
- Department of Psychiatry and Abramson Cancer CenterUniversity of Pennsylvania Philadelphia 19104 Pennsylvania
| | - Nicole L. Nollen
- Department of Preventive Medicine and Public HealthUniversity of Kansas Kansas City 66160 Kansas
| | - Neal L. Benowitz
- Departments of Medicine and Biopharmaceutical Sciences, Division of Clinical Pharmacology and Experimental Therapeutics, Medical Services and Center for Tobacco Control Research and EducationUniversity of California San Francisco 94110 California
| | - Rachel F. Tyndale
- Department of Pharmacology and ToxicologyUniversity of Toronto Toronto M5S 1A8 Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Division of Brain and Therapeutics, Department of PsychiatryUniversity of Toronto Toronto M6J 1H4 Canada
| |
Collapse
|
33
|
Peterson LA, Ignatovich IV, Grill AE, Beauchamp A, Ho YY, DiLernia AS, Zhang L. Individual Differences in the Response of Human β-Lymphoblastoid Cells to the Cytotoxic, Mutagenic, and DNA-Damaging Effects of a DNA Methylating Agent, N-Methylnitrosourethane. Chem Res Toxicol 2019; 32:2214-2226. [PMID: 31589032 DOI: 10.1021/acs.chemrestox.9b00266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic activation of many carcinogens leads to formation of reactive intermediates that form DNA adducts. These adducts are cytotoxic when they interfere with cell division. They can also cause mutations by miscoding during DNA replication. Therefore, an individual's risk of developing cancer will depend on the balance between these processes as well as their ability to repair the DNA damage. Our hypothesis is that variations of genes participating in DNA damage repair and response pathways play significant roles in an individual's risk of developing tobacco-related cancers. To test this hypothesis, 61 human B-lymphocyte cell lines from the International HapMap project were phenotyped for their sensitivity to the cytotoxic and genotoxic properties of a model methylating agent, N-nitroso-N-methylurethane (NMUr). Cell viability was measured using a luciferase-based assay. Repair of the mutagenic and toxic DNA adduct, O6-methylguanine (O6-mG), was monitored by LC-MS/MS analysis. Genotoxic potential of NMUr was assessed employing a flow-cytometry based in vitro mutagenesis assay in the phosphatidylinositol-glycan biosynthesis class-A (PIG-A) gene. A wide distribution of responses to NMUr was observed with no correlation to gender or ethnicity. While the rate of O6-mG repair partially influenced the toxicity of NMUr, it did not appear to be the major factor affecting individual susceptibility to the mutagenic effects of NMUr. Genome-wide analysis identified several novel single nucleotide polymorphisms to be explored in future functional validation studies for a number of the toxicological end points.
Collapse
|
34
|
Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Kubo M, Okada Y, Kamatani Y. GWAS of smoking behaviour in 165,436 Japanese people reveals seven new loci and shared genetic architecture. Nat Hum Behav 2019; 3:471-477. [PMID: 31089300 DOI: 10.1038/s41562-019-0557-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/12/2019] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is a risk factor for a wide range of human diseases1. To investigate the genetic components associated with smoking behaviours in the Japanese population, we conducted a genome-wide association study of four smoking-related traits using up to 165,436 individuals. In total, we identified seven new loci, including three loci associated with the number of cigarettes per day (EPHX2-CLU, RET and CUX2-ALDH2), three loci associated with smoking initiation (DLC1, CXCL12-TMEM72-AS1 and GALR1-SALL3) and LINC01793-MIR4432HG, associated with the age of smoking initiation. Of these, three loci (LINC01793-MIR4432HG, CXCL12-TMEM72-AS1 and GALR1-SALL3) were found by conducting an additional sex-stratified genome-wide association study. This additional analysis showed heterogeneity of effects between sexes. The cross-sex linkage disequilibrium score regression2,3 analysis also indicated that the genetic component of smoking initiation was significantly different between the sexes. Cross-trait linkage disequilibrium score regression analysis and trait-relevant tissue analysis showed that the number of cigarettes per day has a specific genetic background distinct from those of the other three smoking behaviours. We also report 11 diseases that share genetic basis with smoking behaviours. Although the current study should be carefully considered owing to the lack of replication samples, our findings characterized the genetic architecture of smoking behaviours. Further studies in East Asian populations are warranted to confirm our findings.
Collapse
Affiliation(s)
- Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
35
|
Abstract
After more than 10 years of accumulated efforts, genome-wide association studies (GWAS) have led to many findings, most of which have been deposited into the GWAS Catalog. Between GWAS's inception and March 2017, the GWAS Catalog has collected 2429 studies, 1818 phenotypes, and 28,462 associated SNPs. We reclassified the psychology-related phenotypes into 217 reclassified phenotypes, which accounted for 514 studies and 7052 SNPs. In total, 1223 of the SNPs reached genome-wide significance. Of these, 147 were replicated for the same psychological trait in different studies. Another 305 SNPs were replicated within one original study. The SNPs rs2075650 and rs4420638 were linked to the most replications within a single reclassified phenotype or very similar reclassified phenotypes; both were associated with Alzheimer's disease (AD). Schizophrenia was associated with 74 within-phenotype SNPs reported in independents studies. Alzheimer's disease and schizophrenia were both linked to some physical phenotypes, including cholesterol and body mass index, through common GWAS signals. Alzheimer's disease also shared risk SNPs with age-related phenotypes such as age-related macular degeneration and longevity. Smoking-related SNPs were linked to lung cancer and respiratory function. Alcohol-related SNPs were associated with cardiovascular and digestive system phenotypes and disorders. Two separate studies also identified a shared risk SNP for bipolar disorder and educational attainment. This review revealed a list of reproducible SNPs worthy of future functional investigation. Additionally, by identifying SNPs associated with multiple phenotypes, we illustrated the importance of studying the relationships among phenotypes to resolve the nature of their causal links. The insights within this review will hopefully pave the way for future evidence-based genetic studies.
Collapse
|
36
|
Ryan BM. Lung cancer health disparities. Carcinogenesis 2019; 39:741-751. [PMID: 29547922 DOI: 10.1093/carcin/bgy047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Compared with all other racial and ethnic groups in the United States, African Americans are disproportionally affected by lung cancer, both in terms of incidence and survival. It is likely that smoking, as the main etiological factor associated with lung cancer, contributes to these disparities, but the precise mechanism is still unclear. This paper seeks to explore the history of lung cancer disparities and review to the literature regarding the various factors that contribute to them.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, Baldursson G, Belliveau R, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Churchhouse C, Dumont A, Eriksson N, Gandal M, Goldstein JI, Grasby KL, Grove J, Gudmundsson OO, Hansen CS, Hauberg ME, Hollegaard MV, Howrigan DP, Huang H, Maller JB, Martin AR, Martin NG, Moran J, Pallesen J, Palmer DS, Pedersen CB, Pedersen MG, Poterba T, Poulsen JB, Ripke S, Robinson EB, Satterstrom FK, Stefansson H, Stevens C, Turley P, Walters GB, Won H, Wright MJ, Andreassen OA, Asherson P, Burton CL, Boomsma DI, Cormand B, Dalsgaard S, Franke B, Gelernter J, Geschwind D, Hakonarson H, Haavik J, Kranzler HR, Kuntsi J, Langley K, Lesch KP, Middeldorp C, Reif A, Rohde LA, Roussos P, Schachar R, Sklar P, Sonuga-Barke EJS, Sullivan PF, Thapar A, Tung JY, Waldman ID, Medland SE, Stefansson K, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Daly MJ, Faraone SV, Børglum AD, Neale BM. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 2019; 51:63-75. [PMID: 30478444 DOI: 10.1101/145581] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2018] [Indexed: 05/27/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.
Collapse
Affiliation(s)
- Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joanna Martin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas D Als
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Gísli Baldursson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - Rich Belliveau
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire Churchhouse
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Dumont
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Gandal
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jacqueline I Goldstein
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Olafur O Gudmundsson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Christine S Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Mads Engel Hauberg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Mads V Hollegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian B Maller
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics plc, Oxford, UK
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carsten Bøcker Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Timothy Poterba
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesper Buchhave Poulsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Christine Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick Turley
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hyejung Won
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Ole A Andreassen
- NORMENT KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christie L Burton
- Psychiatry, Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Dorret I Boomsma
- Department of Biological Psychology, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Barbara Franke
- Departments of Human Genetics (855) and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joel Gelernter
- Department of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children´s Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | - Henry R Kranzler
- Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Veterans Integrated Service Network (VISN4) Mental Illness Research, Education, and Clinical Center (MIRECC), Crescenz VA Medical Center, Philadephia, PA, USA
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kate Langley
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- Department of Neuroscience, School for Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Christel Middeldorp
- Department of Biological Psychology, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Child Health Research Centre, University of Queensland, Brisbane, Australia
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Luis Augusto Rohde
- Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ADHD Outpatient Clinic, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, USA
| | - Russell Schachar
- Psychiatry, Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Stephen V Faraone
- Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark.
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
38
|
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, Baldursson G, Belliveau R, Bybjerg-Grauholm J, Bækvad-Hansen M, Cerrato F, Chambert K, Churchhouse C, Dumont A, Eriksson N, Gandal M, Goldstein JI, Grasby KL, Grove J, Gudmundsson OO, Hansen CS, Hauberg ME, Hollegaard MV, Howrigan DP, Huang H, Maller JB, Martin AR, Martin NG, Moran J, Pallesen J, Palmer DS, Pedersen CB, Pedersen MG, Poterba T, Poulsen JB, Ripke S, Robinson EB, Satterstrom FK, Stefansson H, Stevens C, Turley P, Walters GB, Won H, Wright MJ, Andreassen OA, Asherson P, Burton CL, Boomsma DI, Cormand B, Dalsgaard S, Franke B, Gelernter J, Geschwind D, Hakonarson H, Haavik J, Kranzler HR, Kuntsi J, Langley K, Lesch KP, Middeldorp C, Reif A, Rohde LA, Roussos P, Schachar R, Sklar P, Sonuga-Barke EJS, Sullivan PF, Thapar A, Tung JY, Waldman ID, Medland SE, Stefansson K, Nordentoft M, Hougaard DM, Werge T, Mors O, Mortensen PB, Daly MJ, Faraone SV, Børglum AD, Neale BM. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 2019; 51:63-75. [PMID: 30478444 PMCID: PMC6481311 DOI: 10.1038/s41588-018-0269-7] [Citation(s) in RCA: 1291] [Impact Index Per Article: 215.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable childhood behavioral disorder affecting 5% of children and 2.5% of adults. Common genetic variants contribute substantially to ADHD susceptibility, but no variants have been robustly associated with ADHD. We report a genome-wide association meta-analysis of 20,183 individuals diagnosed with ADHD and 35,191 controls that identifies variants surpassing genome-wide significance in 12 independent loci, finding important new information about the underlying biology of ADHD. Associations are enriched in evolutionarily constrained genomic regions and loss-of-function intolerant genes and around brain-expressed regulatory marks. Analyses of three replication studies: a cohort of individuals diagnosed with ADHD, a self-reported ADHD sample and a meta-analysis of quantitative measures of ADHD symptoms in the population, support these findings while highlighting study-specific differences on genetic overlap with educational attainment. Strong concordance with GWAS of quantitative population measures of ADHD symptoms supports that clinical diagnosis of ADHD is an extreme expression of continuous heritable traits.
Collapse
Affiliation(s)
- Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joanna Martin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Thomas D Als
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Agerbo
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Gísli Baldursson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
| | - Rich Belliveau
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire Churchhouse
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Dumont
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Gandal
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jacqueline I Goldstein
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Olafur O Gudmundsson
- Department of Child and Adolescent Psychiatry, National University Hospital, Reykjavik, Iceland
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Christine S Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Mads Engel Hauberg
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Mads V Hollegaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Daniel P Howrigan
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian B Maller
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genomics plc, Oxford, UK
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonatan Pallesen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Duncan S Palmer
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carsten Bøcker Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Timothy Poterba
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesper Buchhave Poulsen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA
| | - F Kyle Satterstrom
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Christine Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick Turley
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Bragi Walters
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hyejung Won
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | | | | | - Ole A Andreassen
- NORMENT KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christie L Burton
- Psychiatry, Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Dorret I Boomsma
- Department of Biological Psychology, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- EMGO Institute for Health and Care Research, Amsterdam, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Barbara Franke
- Departments of Human Genetics (855) and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joel Gelernter
- Department of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children´s Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | - Henry R Kranzler
- Department of Psychiatry, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Veterans Integrated Service Network (VISN4) Mental Illness Research, Education, and Clinical Center (MIRECC), Crescenz VA Medical Center, Philadephia, PA, USA
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kate Langley
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- Department of Neuroscience, School for Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Christel Middeldorp
- Department of Biological Psychology, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- Child Health Research Centre, University of Queensland, Brisbane, Australia
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Luis Augusto Rohde
- Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- ADHD Outpatient Clinic, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, USA
| | - Russell Schachar
- Psychiatry, Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Anita Thapar
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Stephen V Faraone
- Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark.
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Murphy SE, Park SL, Balbo S, Haiman CA, Hatsukami DK, Patel Y, Peterson LA, Stepanov I, Stram DO, Tretyakova N, Hecht SS, Le Marchand L. Tobacco biomarkers and genetic/epigenetic analysis to investigate ethnic/racial differences in lung cancer risk among smokers. NPJ Precis Oncol 2018; 2:17. [PMID: 30155522 PMCID: PMC6105591 DOI: 10.1038/s41698-018-0057-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The Multiethnic Cohort Study has demonstrated that African Americans and Native Hawaiians have a higher risk for lung cancer due to cigarette smoking than Whites while Latinos and Japanese Americans have a lower risk. These findings are consistent with other epidemiologic studies in the literature. In this review, we summarize tobacco carcinogen and toxicant biomarker studies and genetic analyses which partially explain these differences. As determined by measurement of total nicotine equivalents in urine, which account for about 85% of the nicotine dose, African Americans take up greater amounts of nicotine than Whites per cigarette while Japanese Americans take up less. There are corresponding differences in the uptake of tobacco smoke carcinogens such as tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, 1,3-butadiene, and other toxic volatiles. The lower nicotine uptake of Japanese Americans is clearly linked to the preponderance of low activity forms of the primary nicotine metabolizing enzyme CYP2A6 in this ethnic group, leading to more unchanged nicotine in the body and thus lower smoking intensity. But the relatively high risk of Native Hawaiians and the low risk of Latino smokers for lung cancer are not explained by these factors. The possible role of epigenetics in modifying lung cancer risk among smokers is also discussed here. The results of these published studies may lead to a better understanding of susceptibility factors for lung cancer in cigarette smokers thus potentially identifying biomarkers that can detect those individuals at highest risk so that preventive approaches can be initiated at an early stage of the lung cancer development process.
Collapse
Affiliation(s)
- Sharon E. Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Sungshim Lani Park
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Christopher A. Haiman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Yesha Patel
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel O. Stram
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Natalia Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Loïc Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI 96813 USA
| |
Collapse
|
40
|
Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, Bacanu SA, Bækvad-Hansen M, Beekman AFT, Bigdeli TB, Binder EB, Blackwood DRH, Bryois J, Buttenschøn HN, Bybjerg-Grauholm J, Cai N, Castelao E, Christensen JH, Clarke TK, Coleman JIR, Colodro-Conde L, Couvy-Duchesne B, Craddock N, Crawford GE, Crowley CA, Dashti HS, Davies G, Deary IJ, Degenhardt F, Derks EM, Direk N, Dolan CV, Dunn EC, Eley TC, Eriksson N, Escott-Price V, Kiadeh FHF, Finucane HK, Forstner AJ, Frank J, Gaspar HA, Gill M, Giusti-Rodríguez P, Goes FS, Gordon SD, Grove J, Hall LS, Hannon E, Hansen CS, Hansen TF, Herms S, Hickie IB, Hoffmann P, Homuth G, Horn C, Hottenga JJ, Hougaard DM, Hu M, Hyde CL, Ising M, Jansen R, Jin F, Jorgenson E, Knowles JA, Kohane IS, Kraft J, Kretzschmar WW, Krogh J, Kutalik Z, Lane JM, Li Y, Li Y, Lind PA, Liu X, Lu L, MacIntyre DJ, MacKinnon DF, Maier RM, Maier W, Marchini J, Mbarek H, McGrath P, McGuffin P, Medland SE, Mehta D, Middeldorp CM, Mihailov E, Milaneschi Y, Milani L, Mill J, Mondimore FM, Montgomery GW, Mostafavi S, Mullins N, Nauck M, Ng B, Nivard MG, Nyholt DR, O'Reilly PF, Oskarsson H, Owen MJ, Painter JN, Pedersen CB, Pedersen MG, Peterson RE, Pettersson E, Peyrot WJ, Pistis G, Posthuma D, Purcell SM, Quiroz JA, Qvist P, Rice JP, Riley BP, Rivera M, Saeed Mirza S, Saxena R, Schoevers R, Schulte EC, Shen L, Shi J, Shyn SI, Sigurdsson E, Sinnamon GBC, Smit JH, Smith DJ, Stefansson H, Steinberg S, Stockmeier CA, Streit F, Strohmaier J, Tansey KE, Teismann H, Teumer A, Thompson W, Thomson PA, Thorgeirsson TE, Tian C, Traylor M, Treutlein J, Trubetskoy V, Uitterlinden AG, Umbricht D, Van der Auwera S, van Hemert AM, Viktorin A, Visscher PM, Wang Y, Webb BT, Weinsheimer SM, Wellmann J, Willemsen G, Witt SH, Wu Y, Xi HS, Yang J, Zhang F, Arolt V, Baune BT, Berger K, Boomsma DI, Cichon S, Dannlowski U, de Geus ECJ, DePaulo JR, Domenici E, Domschke K, Esko T, Grabe HJ, Hamilton SP, Hayward C, Heath AC, Hinds DA, Kendler KS, Kloiber S, Lewis G, Li QS, Lucae S, Madden PFA, Magnusson PK, Martin NG, McIntosh AM, Metspalu A, Mors O, Mortensen PB, Müller-Myhsok B, Nordentoft M, Nöthen MM, O'Donovan MC, Paciga SA, Pedersen NL, Penninx BWJH, Perlis RH, Porteous DJ, Potash JB, Preisig M, Rietschel M, Schaefer C, Schulze TG, Smoller JW, Stefansson K, Tiemeier H, Uher R, Völzke H, Weissman MM, Werge T, Winslow AR, Lewis CM, Levinson DF, Breen G, Børglum AD, Sullivan PF. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 2018; 50:668-681. [PMID: 29700475 PMCID: PMC5934326 DOI: 10.1038/s41588-018-0090-3] [Citation(s) in RCA: 1846] [Impact Index Per Article: 263.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.
Collapse
Affiliation(s)
- Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Stephan Ripke
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maciej Trzaskowski
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Enda M Byrne
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Abdel Abdellaoui
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Esben Agerbo
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Tracy M Air
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Till M F Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Bækvad-Hansen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Aartjan F T Beekman
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Tim B Bigdeli
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavior Genetics, Richmond, VA, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henriette N Buttenschøn
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Na Cai
- Statistical Genomics and Systems Genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Human Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Enrique Castelao
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Jane Hvarregaard Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Jonathan I R Coleman
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Lucía Colodro-Conde
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Baptiste Couvy-Duchesne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Nick Craddock
- Psychological Medicine, Cardiff University, Cardiff, UK
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Cheynna A Crowley
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hassan S Dashti
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Eske M Derks
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nese Direk
- Psychiatry, Dokuz Eylul University School of Medicine, Izmir, Turkey
- Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erin C Dunn
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Thalia C Eley
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | | | | | - Hilary K Finucane
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Héléna A Gaspar
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Michael Gill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | | | - Fernando S Goes
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Scott D Gordon
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lynsey S Hall
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Christine Søholm Hansen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas F Hansen
- Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, Denmark
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Carsten Horn
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - David M Hougaard
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ming Hu
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Craig L Hyde
- Statistics, Pfizer Global Research and Development, Groton, CT, USA
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rick Jansen
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Fulai Jin
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - James A Knowles
- Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Isaac S Kohane
- Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | | | - Jesper Krogh
- Department of Endocrinology at Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne, Lausanne, Switzerland
| | - Jacqueline M Lane
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yihan Li
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yun Li
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Penelope A Lind
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Donald J MacIntyre
- Mental Health, NHS 24, Glasgow, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dean F MacKinnon
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Robert M Maier
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Hamdi Mbarek
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick McGrath
- Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Peter McGuffin
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sarah E Medland
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Divya Mehta
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christel M Middeldorp
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | | | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Francis M Mondimore
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sara Mostafavi
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niamh Mullins
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, University Medicine, University Medicine Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernard Ng
- Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel G Nivard
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dale R Nyholt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul F O'Reilly
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jodie N Painter
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Carsten Bøcker Pedersen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Erik Pettersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wouter J Peyrot
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Giorgio Pistis
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Danielle Posthuma
- Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Shaun M Purcell
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - John P Rice
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Brien P Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Margarita Rivera
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, Spain
| | | | - Richa Saxena
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Schoevers
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva C Schulte
- Department of Psychiatry and Psychotherapy, Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
| | - Ling Shen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stanley I Shyn
- Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, USA
| | - Engilbert Sigurdsson
- Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, Iceland
| | - Grant B C Sinnamon
- School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Johannes H Smit
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | | | | | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Henning Teismann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wesley Thompson
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pippa A Thomson
- Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Chao Tian
- Research, 23andMe, Inc., Mountain View, CA, USA
| | - Matthew Traylor
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | | | - Daniel Umbricht
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Albert M van Hemert
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Wang
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bradley T Webb
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shantel Marie Weinsheimer
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yang Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Hualin S Xi
- Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Jian Yang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Munster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Munster, Germany
| | - E C J de Geus
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Institute, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - J Raymond DePaulo
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Enrico Domenici
- Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tõnu Esko
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Steven P Hamilton
- Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Kenneth S Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefan Kloiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA
| | | | - Pamela F A Madden
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ole Mors
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - Preben Bo Mortensen
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Merete Nordentoft
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sara A Paciga
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David J Porteous
- Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Martin Preisig
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thomas G Schulze
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
- Human Genetics Branch, NIMH Division of Intramural Research Programs, Bethesda, MD, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henning Tiemeier
- Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
- Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Rudolf Uher
- Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Myrna M Weissman
- Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Thomas Werge
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ashley R Winslow
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Cambridge, MA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cathryn M Lewis
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Douglas F Levinson
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gerome Breen
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR BRC for Mental Health, King's College London, London, UK
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Saccone NL, Baurley JW, Bergen AW, David SP, Elliott HR, Foreman MG, Kaprio J, Piasecki TM, Relton CL, Zawertailo L, Bierut LJ, Tyndale RF, Chen LS. The Value of Biosamples in Smoking Cessation Trials: A Review of Genetic, Metabolomic, and Epigenetic Findings. Nicotine Tob Res 2018; 20:403-413. [PMID: 28472521 PMCID: PMC5896536 DOI: 10.1093/ntr/ntx096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/01/2017] [Indexed: 02/03/2023]
Abstract
Introduction Human genetic research has succeeded in definitively identifying multiple genetic variants associated with risk for nicotine dependence and heavy smoking. To build on these advances, and to aid in reducing the prevalence of smoking and its consequent health harms, the next frontier is to identify genetic predictors of successful smoking cessation and also of the efficacy of smoking cessation treatments ("pharmacogenomics"). More broadly, additional biomarkers that can be quantified from biosamples also promise to aid "Precision Medicine" and the personalization of treatment, both pharmacological and behavioral. Aims and Methods To motivate ongoing and future efforts, here we review several compelling genetic and biomarker findings related to smoking cessation and treatment. Results These Key results involve genetic variants in the nicotinic receptor subunit gene CHRNA5, variants in the nicotine metabolism gene CYP2A6, and the nicotine metabolite ratio. We also summarize reports of epigenetic changes related to smoking behavior. Conclusions The results to date demonstrate the value and utility of data generated from biosamples in clinical treatment trial settings. This article cross-references a companion paper in this issue that provides practical guidance on how to incorporate biosample collection into a planned clinical trial and discusses avenues for harmonizing data and fostering consortium-based, collaborative research on the pharmacogenomics of smoking cessation. Implications Evidence is emerging that certain genotypes and biomarkers are associated with smoking cessation success and efficacy of smoking cessation treatments. We review key findings that open potential avenues for personalizing smoking cessation treatment according to an individual's genetic or metabolic profile. These results provide important incentive for smoking cessation researchers to collect biosamples and perform genotyping in research studies and clinical trials.
Collapse
Affiliation(s)
- Nancy L Saccone
- Department of Genetics and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | | | | | - Sean P David
- Department of Medicine, Stanford University, Stanford, CA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Marilyn G Foreman
- Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, GA
| | - Jaakko Kaprio
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas M Piasecki
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Laurie Zawertailo
- Nicotine Dependence Service, Centre for Addiction and Mental Health, and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Laura J Bierut
- Siteman Cancer Center, Institute of Public Health, and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Li-Shiun Chen
- Siteman Cancer Center, Institute of Public Health, and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
42
|
Chenoweth MJ, Ware JJ, Zhu AZ, Cole CB, Sanderson Cox L, Nollen N, Ahluwalia JS, Benowitz NL, Schnoll RA, Hawk LW, Cinciripini PM, George TP, Lerman C, Knight J, Tyndale RF. Genome-wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences. Addiction 2018; 113:509-523. [PMID: 28921760 PMCID: PMC5807179 DOI: 10.1111/add.14032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/03/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The activity of CYP2A6, the major nicotine-inactivating enzyme, is measurable in smokers using the nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine). Due to its role in nicotine clearance, the NMR is associated with smoking behaviours and response to pharmacotherapies. The NMR is highly heritable (~80%), and on average lower in African Americans (AA) versus whites. We previously identified several reduce and loss-of-function CYP2A6 variants common in individuals of African descent. Our current aim was to identify novel genetic influences on the NMR in AA smokers using genome-wide approaches. DESIGN Genome-wide association study (GWAS). SETTING Multiple sites within Canada and the United States. PARTICIPANTS AA smokers from two clinical trials: Pharmacogenetics of Nicotine Addiction Treatment (PNAT)-2 (NCT01314001; n = 504) and Kick-it-at-Swope (KIS)-3 (NCT00666978; n = 450). MEASUREMENTS Genome-wide SNP genotyping, the NMR (phenotype) and population substructure and NMR covariates. FINDINGS Meta-analysis revealed three independent chromosome 19 signals (rs12459249, rs111645190 and rs185430475) associated with the NMR. The top overall hit, rs12459249 (P = 1.47e-39; beta = 0.59 per C (versus T) allele, SE = 0.045), located ~9.5 kb 3' of CYP2A6, remained genome-wide significant after controlling for the common (~10% in AA) non-functional CYP2A6*17 allele. In contrast, rs111645190 and rs185430475 were not genome-wide significant when controlling for CYP2A6*17. In total, 96 signals associated with the NMR were identified; many were not found in prior NMR GWASs in individuals of European descent. The top hits were also associated with the NMR in a third cohort of AA (KIS2; n = 480). None of the hits were in UGT or OCT2 genes. CONCLUSIONS Three independent chromosome 19 signals account for ~20% of the variability in the nicotine metabolite ratio in African American smokers. The hits identified may contribute to inter-ethnic variability in nicotine metabolism, smoking behaviours and tobacco-related disease risk.
Collapse
Affiliation(s)
- Meghan J. Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Jennifer J. Ware
- MRC Integrative Epidemiology Unit (IEU) and School of Social and Community Medicine at the University of Bristol, Bristol, BS8 2BN, United Kingdom
| | - Andy Z.X. Zhu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Christopher B. Cole
- Data Science Institute and Lancaster University Medical School, Lancaster, LA1 4YW, United Kingdom
| | - Lisa Sanderson Cox
- Department of Preventive Medicine and Public Health, University of Kansas School of Medicine, Kansas City, Kansas, 66160, USA
| | - Nikki Nollen
- Department of Preventive Medicine and Public Health, University of Kansas School of Medicine, Kansas City, Kansas, 66160, USA
| | - Jasjit S. Ahluwalia
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island 02912, USA
| | - Neal L. Benowitz
- Departments of Medicine and Bioengineering and Therapeutic Sciences, Division of Clinical Pharmacology and Experimental Therapeutics, University of California, San Francisco, San Francisco, California, 94110, USA
| | - Robert A. Schnoll
- Department of Psychiatry, Perelman School of Medicine, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6376, USA
| | - Larry W. Hawk
- Department of Psychology, University at Buffalo, SUNY, Buffalo, New York, 14260-4110, USA
| | - Paul M. Cinciripini
- Department of Behavioral Science, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Tony P. George
- Division of Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada and Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6376, USA
| | - Joanne Knight
- Data Science Institute and Lancaster University Medical School, Lancaster, LA1 4YW, United Kingdom
| | - Rachel F. Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada,Corresponding author (RFT)
| | | |
Collapse
|
43
|
Baurley JW, McMahan CS, Ervin CM, Pardamean B, Bergen AW. Biosignature Discovery for Substance Use Disorders Using Statistical Learning. Trends Mol Med 2018; 24:221-235. [PMID: 29409736 PMCID: PMC5836808 DOI: 10.1016/j.molmed.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
Abstract
There are limited biomarkers for substance use disorders (SUDs). Traditional statistical approaches are identifying simple biomarkers in large samples, but clinical use cases are still being established. High-throughput clinical, imaging, and 'omic' technologies are generating data from SUD studies and may lead to more sophisticated and clinically useful models. However, analytic strategies suited for high-dimensional data are not regularly used. We review strategies for identifying biomarkers and biosignatures from high-dimensional data types. Focusing on penalized regression and Bayesian approaches, we address how to leverage evidence from existing studies and knowledge bases, using nicotine metabolism as an example. We posit that big data and machine learning approaches will considerably advance SUD biomarker discovery. However, translation to clinical practice, will require integrated scientific efforts.
Collapse
Affiliation(s)
- James W Baurley
- BioRealm, Culver City, CA, USA; Bina Nusantara University, Jakarta, Indonesia.
| | | | | | - Bens Pardamean
- BioRealm, Culver City, CA, USA; Bina Nusantara University, Jakarta, Indonesia
| | - Andrew W Bergen
- BioRealm, Culver City, CA, USA; Oregon Research Institute, Eugene, OR, USA
| |
Collapse
|
44
|
Tanner JA, Zhu AZ, Claw KG, Prasad B, Korchina V, Hu J, Doddapaneni H, Muzny DM, Schuetz EG, Lerman C, Thummel KE, Scherer SE, Tyndale RF. Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet Genomics 2018; 28:7-16. [PMID: 29232328 PMCID: PMC5729933 DOI: 10.1097/fpc.0000000000000317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Smoking patterns and cessation rates vary widely across smokers and can be influenced by variation in rates of nicotine metabolism [i.e. cytochrome P450 2A6 (CYP2A6), enzyme activity]. There is high heritability of CYP2A6-mediated nicotine metabolism (60-80%) owing to known and unidentified genetic variation in the CYP2A6 gene. We aimed to identify and characterize additional genetic variants at the CYP2A6 gene locus. METHODS A new CYP2A6-specific sequencing method was used to investigate genetic variation in CYP2A6. Novel variants were characterized in a White human liver bank that has been extensively phenotyped for CYP2A6. Linkage and haplotype structure for the novel single nucleotide polymorphisms (SNPs) were assessed. The association between novel five-SNP diplotypes and nicotine metabolism rate was investigated. RESULTS Seven high-frequency (minor allele frequencies ≥6%) noncoding SNPs were identified as important contributors to CYP2A6 phenotypes in a White human liver bank (rs57837628, rs7260629, rs7259706, rs150298687 (also denoted rs4803381), rs56113850, rs28399453, and rs8192733), accounting for two times more variation in in-vitro CYP2A6 activity relative to the four established functional CYP2A6 variants that are frequently tested in Whites (CYP2A6*2, *4, *9, and *12). Two pairs of novel SNPs were in high linkage disequilibrium, allowing us to establish five-SNP diplotypes that were associated with CYP2A6 enzyme activity (rate of nicotine metabolism) in-vitro in the liver bank and in-vivo among smokers. CONCLUSION The novel five-SNP diplotype may be useful to incorporate into CYP2A6 genotype models for personalized prediction of nicotine metabolism rate, cessation success, and response to pharmacotherapies.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH)
- Department of Pharmacology and Toxicology
| | - Andy Z Zhu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH)
- Department of Pharmacology and Toxicology
| | - Katrina G Claw
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Viktoriya Korchina
- Department of Molecular and Human Genetics, The Baylor College of Medicine Human Genome Sequencing Center, Houston, Texas, USA
| | - Jianhong Hu
- Department of Molecular and Human Genetics, The Baylor College of Medicine Human Genome Sequencing Center, Houston, Texas, USA
| | - HarshaVardhan Doddapaneni
- Department of Molecular and Human Genetics, The Baylor College of Medicine Human Genome Sequencing Center, Houston, Texas, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics, The Baylor College of Medicine Human Genome Sequencing Center, Houston, Texas, USA
| | - Erin G Schuetz
- Pharmaceutical Sciences Department, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Steven E Scherer
- Department of Molecular and Human Genetics, The Baylor College of Medicine Human Genome Sequencing Center, Houston, Texas, USA
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH)
- Department of Pharmacology and Toxicology
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Tanner JA, Tyndale RF. Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med 2017; 7:jpm7040018. [PMID: 29194389 PMCID: PMC5748630 DOI: 10.3390/jpm7040018] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
46
|
Park SL, Murphy SE, Wilkens LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: The multiethnic cohort study. PLoS One 2017; 12:e0178435. [PMID: 28542511 PMCID: PMC5444837 DOI: 10.1371/journal.pone.0178435] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
While smoking is the primary cause of lung cancer, only 11-24% of smokers develop the malignancy over their lifetime. The primary addictive agent in tobacco smoke is nicotine and variation in nicotine metabolism may influence the smoking levels of an individual. Therefore, inter-individual variation in lung cancer risk among smokers may be due in part to differences in the activity of enzymes involved in nicotine metabolism. In most smokers, cytochrome P450 2A6 (CYP2A6)-catalyzed C-oxidation accounts for >75% of nicotine metabolism, and the activity of this enzyme has been shown to correlate with the amount of nicotine and carcinogens drawn from cigarettes. We prospectively evaluated the association of urinary biomarkers of nicotine uptake (total nicotine equivalents [TNE]) and CYP2A6 activity (ratio of urinary total trans-3'-hydroxycotinine to cotinine) with lung cancer risk among 2,309 Multiethnic Cohort Study participants who were current smokers at time of urine collection; 92 cases were diagnosed during a mean follow-up of 9.5 years. We found that higher CYP2A6 activity and TNE was associated with increased lung cancer risk after adjusting for age, sex, race/ethnicity, body mass index, smoking duration, and urinary creatinine (p's = 0.002). The association for CYP2A6 activity remained even after adjusting for self-reported cigarettes per day (CPD) (Hazard Ratio [HR] per unit increase in log-CYP2A6 activity = 1.52; p = 0.005) and after adjusting for TNE (HR = 1.46; p = 0.01). In contrast, the association between TNE and lung cancer risk was of borderline statistical significance when adjusted for CPD (HR = 1.53; p = 0.06) and not statistically significant when further adjusted for CYP2A6 activity (HR = 1.30; p = 0.22). These findings suggest that CYP2A6 activity provides information on lung cancer risk that is not captured by smoking history or a (short-term) biomarker of dose. CYP2A6 activity should be further studied as a risk biomarker for smoking-related lung cancer.
Collapse
Affiliation(s)
- Sungshim L. Park
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sharon E. Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephen S. Hecht
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| |
Collapse
|
47
|
Phenome-wide association study for CYP2A6 alleles: rs113288603 is associated with hearing loss symptoms in elderly smokers. Sci Rep 2017; 7:1034. [PMID: 28432340 PMCID: PMC5430682 DOI: 10.1038/s41598-017-01098-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023] Open
Abstract
To identify novel phenotypic associations related to Cytochrome P450 Family 2 Subfamily A Member 6 (CYP2A6), we investigated the human phenome in a total of 11,271 individuals. Initially, we conducted a phenome-wide association study in 3,401 nicotine-exposed elderly subjects considering 358 phenotypic traits. We identified a significant association between CYP2A6 rs113288603 and hearing loss symptoms (p = 5.75 × 10−5). No association was observed in a sample of 3,245 nicotine-unexposed individuals from the same discovery cohort, consistent with the conclusion that the finding is related to CYP2A6 involvement in nicotine metabolism. Consistent results were obtained (p < 0.1) in an independent sample of 2,077 nicotine-exposed elderly subjects, and similarly, no significance was observed in the nicotine-unexposed sample (n = 2,548) of the replication cohort. Additional supporting evidence for this association was provided by gene expression data: rs113288603 is associated with increased CYP2A6 expression in cerebellar hemispheres (p = 7.8 × 10−4). There is a well-known correlation between smoking and age-related hearing loss. Cigarette smoking is associated with structural changes in the brain and CYP2A6 mediates these changes. In this context, the regulatory role of rs113288603 in cerebellum appears to be consistent with the known involvement of this brain region in auditory function.
Collapse
|
48
|
Yuan JM, Nelson HH, Carmella SG, Wang R, Kuriger-Laber J, Jin A, Adams-Haduch J, Hecht SS, Koh WP, Murphy SE. CYP2A6 genetic polymorphisms and biomarkers of tobacco smoke constituents in relation to risk of lung cancer in the Singapore Chinese Health Study. Carcinogenesis 2017; 38:411-418. [PMID: 28182203 PMCID: PMC6248819 DOI: 10.1093/carcin/bgx012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Cytochrome P450 2A6 (CYP2A6) catalyzes the metabolism of nicotine and the tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Genetic variation in CYP2A6 may affect smoking behavior and contribute to lung cancer risk. A nested case-control study of 197 lung cancer cases and 197 matched controls was conducted within a prospective cohort of 63 257 Chinese men and women in Singapore. Quantified were five genetic variants of CYP2A6 (*1A, *4, *7, *9 and *12) and urinary metabolites of nicotine [total nicotine, total cotinine, total trans-3'-hydroxycotinine (3HC)] and NNK (total NNAL, free NNAL, NNAL-glucuronide, NNAL-N-glucuronide, and NNAL-O-glucuronide). Higher urinary metabolites of nicotine and NNK were significantly associated with a 2- to 3-fold increased risk of lung cancer after adjustment for smoking intensity and duration. Lower CYP2A6-determined nicotine metabolizer status was significantly associated with a lower ratio of total 3HC over total cotinine, lower total nicotine equivalent and reduced risk of developing lung cancer (all Ptrend < 0.001). Compared with normal metabolizers, odds ratios (95% confidence intervals) of developing lung cancer for intermediate, slow and poor metabolizers determined by CYP2A6 genotypes were 0.85 (0.41-1.77), 0.55 (0.28-1.08) and 0.32 (0.15-0.70), respectively, after adjustment for smoking intensity and duration and urinary total nicotine equivalents. Thus the reduced risk of lung cancer in smokers with lower CYP2A6 activity may be explained by lower consumption of cigarettes, less intense smoking and reduced CYP2A6-catalyzed activation of the tobacco-specific lung carcinogen NNK.
Collapse
Affiliation(s)
- Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Aizhen Jin
- National Registry of Diseases Office, Health Promotion Board, Singapore, Singapore
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore and
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and BioPhysics, University of Minnesota, MN, USA
| |
Collapse
|
49
|
Hosono H, Kumondai M, Maekawa M, Yamaguchi H, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional Characterization of 34 CYP2A6 Allelic Variants by Assessment of Nicotine C-Oxidation and Coumarin 7-Hydroxylation Activities. Drug Metab Dispos 2017; 45:279-285. [PMID: 27974382 DOI: 10.1124/dmd.116.073494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022] Open
Abstract
CYP2A6, a member of the cytochrome P450 (P450) family, is one of the enzymes responsible for the metabolism of therapeutic drugs and such tobacco components as nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and N-nitrosodiethylamine. Genetic polymorphisms in CYP2A6 are associated with individual variation in smoking behavior, drug toxicities, and the risk of developing several cancers. In this study, we conducted an in vitro analysis of 34 allelic variants of CYP2A6 using nicotine and coumarin as representative CYP2A6 substrates. These variant CYP2A6 proteins were heterologously expressed in 293FT cells, and their enzymatic activities were assessed on the basis of nicotine C-oxidation and coumarin 7-hydroxylation activities. Among the 34 CYP2A6 variants, CYP2A6.2, CYP2A6.5, CYP2A6.6, CYP2A6.10, CYP2A6.26, CYP2A6.36, and CYP2A6.37 exhibited no enzymatic activity, whereas 14 other variants exhibited markedly reduced activity toward both nicotine and coumarin. These comprehensive in vitro findings may provide useful insight into individual differences in smoking behavior, drug efficacy, and cancer susceptibility.
Collapse
Affiliation(s)
- Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masamitsu Maekawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Hiroaki Yamaguchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Nariyasu Mano
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akifumi Oda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| |
Collapse
|
50
|
Yamazaki H. Differences in Toxicological and Pharmacological Responses Mediated by Polymorphic Cytochromes P450 and Related Drug-Metabolizing Enzymes. Chem Res Toxicol 2016; 30:53-60. [PMID: 27750412 DOI: 10.1021/acs.chemrestox.6b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Research over the past 30 years has elucidated the roles of polymorphic human liver cytochrome P450 (P450) enzymes associated with toxicological and/or pharmacological actions. Thalidomide exerts its various pharmacological and toxic actions in primates through multiple mechanisms, including nonspecific modification of many protein networks after bioactivation by autoinduced human P450 enzymes. To overcome species differences between rodents, currently, nonhuman primates and/or mouse models with transplanted human hepatocytes are used. Interindividual variability of P450-dependent drug clearances in cynomolgus monkeys and common marmosets is partly accounted for by polymorphic P450 variants and/or aging, just as it is in humans with increased prevalence of polypharmacy. Genotyping of P450 genes in nonhuman primates would be beneficial before and/or after drug metabolism and toxicity testing and evaluation as well in humans. Genome-wide association studies in humans have been rapidly advanced; however, unique whole-gene deletion of P450 2A6 was subsequently developed to cover nicotine-related lung cancer risk study. Regarding polypharmacy, toxicological research should generally be aimed at identifying the risk of adverse drug events following specific potential drug exposures by examining single or multiple metabolic pathways involving single or multiple drug-metabolizing enzymes. Current and next-generation research of drug metabolism and disposition resulting in drug toxicity would be addressed under advanced knowledge of polymorphic and age-related intra- and/or interspecies differences of drug-metabolizing enzymes. In the near future, humanized animal models combining transplanted hepatocytes and a humanized immune system may be available to study human immune reactions caused by human-type drug metabolites. Such sophisticated models should provide preclinical predictions of human drug metabolism and potential toxicity.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|