1
|
Amor M, Diaz M, Bianco V, Svecla M, Schwarz B, Rainer S, Pirchheim A, Schooltink L, Mukherjee S, Grabner GF, Beretta G, Lamina C, Norata GD, Hackl H, Kratky D. Identification of regulatory networks and crosstalk factors in brown adipose tissue and liver of a cold-exposed cardiometabolic mouse model. Cardiovasc Diabetol 2024; 23:298. [PMID: 39143620 PMCID: PMC11325583 DOI: 10.1186/s12933-024-02397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Malena Diaz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Monika Svecla
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Laszlo Schooltink
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Suravi Mukherjee
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Gernot F Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
2
|
Chen J, Jamaiyar A, Wu W, Hu Y, Zhuang R, Sausen G, Cheng HS, de Oliveira Vaz C, Pérez-Cremades D, Tzani A, McCoy MG, Assa C, Eley S, Randhawa V, Lee K, Plutzky J, Hamburg NM, Sabatine MS, Feinberg MW. Deficiency of lncRNA MERRICAL abrogates macrophage chemotaxis and diabetes-associated atherosclerosis. Cell Rep 2024; 43:113815. [PMID: 38428421 PMCID: PMC11006532 DOI: 10.1016/j.celrep.2024.113815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Diabetes-associated atherosclerosis involves excessive immune cell recruitment and plaque formation. However, the mechanisms remain poorly understood. Transcriptomic analysis of the aortic intima in Ldlr-/- mice on a high-fat, high-sucrose-containing (HFSC) diet identifies a macrophage-enriched nuclear long noncoding RNA (lncRNA), MERRICAL (macrophage-enriched lncRNA regulates inflammation, chemotaxis, and atherosclerosis). MERRICAL expression increases by 249% in intimal lesions during progression. lncRNA-mRNA pair genomic mapping reveals that MERRICAL positively correlates with the chemokines Ccl3 and Ccl4. MERRICAL-deficient macrophages exhibit lower Ccl3 and Ccl4 expression, chemotaxis, and inflammatory responses. Mechanistically, MERRICAL guides the WDR5-MLL1 complex to activate CCL3 and CCL4 transcription via H3K4me3 modification. MERRICAL deficiency in HFSC diet-fed Ldlr-/- mice reduces lesion formation by 74% in the aortic sinus and 86% in the descending aorta by inhibiting leukocyte recruitment into the aortic wall and pro-inflammatory responses. These findings unveil a regulatory mechanism whereby a macrophage-enriched lncRNA potently inhibits chemotactic responses, alleviating lesion progression in diabetes.
Collapse
Affiliation(s)
- Jingshu Chen
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anurag Jamaiyar
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Hu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rulin Zhuang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Grasiele Sausen
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry S Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Camila de Oliveira Vaz
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Pérez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Aspasia Tzani
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael G McCoy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carmel Assa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Eley
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vinay Randhawa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jorge Plutzky
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi M Hamburg
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Marc S Sabatine
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Amor M, Bianco V, Buerger M, Lechleitner M, Vujić N, Dobrijević A, Akhmetshina A, Pirchheim A, Schwarz B, Pessentheiner AR, Baumgartner F, Rampitsch K, Schauer S, Klobučar I, Degoricija V, Pregartner G, Kummer D, Svecla M, Sommer G, Kolb D, Holzapfel GA, Hoefler G, Frank S, Norata GD, Kratky D. Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice. Cardiovasc Diabetol 2023; 22:327. [PMID: 38017481 PMCID: PMC10685620 DOI: 10.1186/s12933-023-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anja Dobrijević
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Ariane R Pessentheiner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iva Klobučar
- Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Medicine, Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
4
|
Arefin A, Gage MC. Metformin, Empagliflozin, and Their Combination Modulate Ex-Vivo Macrophage Inflammatory Gene Expression. Int J Mol Sci 2023; 24:ijms24054785. [PMID: 36902218 PMCID: PMC10003317 DOI: 10.3390/ijms24054785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Type-2 Diabetes Mellitus is a complex, chronic illness characterized by persistent high blood glucose levels. Patients can be prescribed anti-diabetes drugs as single agents or in combination depending on the severity of their condition. Metformin and empagliflozin are two commonly prescribed anti-diabetes drugs which reduce hyperglycemia, however their direct effects on macrophage inflammatory responses alone or in combination are unreported. Here, we show that metformin and empagliflozin elicit proinflammatory responses on mouse bone-marrow-derived macrophages with single agent challenge, which are modulated when added in combination. In silico docking experiments suggested that empagliflozin can interact with both TLR2 and DECTIN1 receptors, and we observed that both empagliflozin and metformin increase expression of Tlr2 and Clec7a. Thus, findings from this study suggest that metformin and empagliflozin as single agents or in combination can directly modulate inflammatory gene expression in macrophages and upregulate the expression of their receptors.
Collapse
Affiliation(s)
- Adittya Arefin
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK
| | - Matthew C. Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
5
|
Fuller KNZ, McCoin CS, Stierwalt H, Allen J, Gandhi S, Perry CGR, Jambal P, Shankar K, Thyfault JP. Oral combined contraceptives induce liver mitochondrial reactive oxygen species and whole-body metabolic adaptations in female mice. J Physiol 2022; 600:5215-5245. [PMID: 36326014 DOI: 10.1113/jp283733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Compared to age-matched men, pre-menopausal women show greater resilience against cardiovascular disease (CVD), hepatic steatosis, diabetes and obesity - findings that are widely attributed to oestrogen. However, meta-analysis data suggest that current use of oral combined contraceptives (OC) is a risk factor for myocardial infarction, and OC use further compounds with metabolic disease risk factors to increase CVD susceptibility. While mitochondrial function in tissues such as the liver and skeletal muscle is an emerging mechanism by which oestrogen may confer its protection, effects of OC use on mitochondria and metabolism in the context of disease risk remain unexplored. To answer this question, female C57Bl/6J mice were fed a high fat diet and treated with vehicle or OCs for 3, 12 or 20 weeks (n = 6 to 12 per group) at a dose and ratio that mimic the human condition of cycle cessation in the low oestrogen, high progesterone stage. Liver and skeletal muscle mitochondrial function (respiratory capacity, H2 O2 , coupling) was measured along with clinical outcomes of cardiometabolic disease such as obesity, glucose tolerance, hepatic steatosis and aortic atherosclerosis. The main findings indicate that regardless of treatment duration, OCs robustly increase hepatic mitochondrial H2 O2 levels, likely due to diminished antioxidant capacity, but have no impact on muscle mitochondrial H2 O2 . Furthermore, OC-treated mice had lower adiposity and hepatic triglyceride content compared to control mice despite reduced wheel running, spontaneous physical activity and total energy expenditure. Together, these studies describe tissue-specific effects of OC use on mitochondria as well as variable impacts on markers of metabolic disease susceptibility. KEY POINTS: Oestrogen loss in women increases risk for cardiometabolic diseases, a link that has been partially attributed to negative impacts on mitochondria and energy metabolism. To study the effect of oral combined contraceptives (OCs) on hepatic and skeletal muscle mitochondria and whole-body energy metabolism, we used an animal model of OCs which mimics the human condition of cessation of hormonal cycling in the low oestrogen, high progesterone state. OC-treated mice have increased hepatic mitochondrial oxidative stress and decreased physical activity and energy expenditure, despite displaying lower adiposity and liver fat at this time point. These pre-clinical data reveal tissue-specific effects of OCs that likely underlie the clinical findings of increased cardiometabolic disease in women who use OCs compared to non-users, when matched for obesity.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA
| | - Harrison Stierwalt
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
7
|
Gisterå A, Ketelhuth DFJ, Malin SG, Hansson GK. Animal Models of Atherosclerosis-Supportive Notes and Tricks of the Trade. Circ Res 2022; 130:1869-1887. [PMID: 35679358 DOI: 10.1161/circresaha.122.320263] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.
Collapse
Affiliation(s)
- Anton Gisterå
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.).,Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), Odense, Denmark (D.F.J.K)
| | - Stephen G Malin
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| | - Göran K Hansson
- Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.G., D.F.J.K., S.G.M., G.K.H.)
| |
Collapse
|
8
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Chen J, Zhuang R, Cheng HS, Jamaiyar A, Assa C, McCoy M, Rawal S, Pérez-Cremades D, Feinberg MW. Isolation and culture of murine aortic cells and RNA isolation of aortic intima and media: Rapid and optimized approaches for atherosclerosis research. Atherosclerosis 2022; 347:39-46. [PMID: 35306416 PMCID: PMC9007896 DOI: 10.1016/j.atherosclerosis.2022.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Isolation of cellular constituents from the mouse aorta is commonly used for expression or functional analyses in atherosclerosis research. However, current procedures to isolate primary cells are difficult, inefficient, and require separate mice. RNA extraction from aortic intima and media for transcriptomic analysis is also considered difficult with mixed RNA yields. To address these gaps, we provide: 1) a rapid, efficient protocol to isolate and culture diverse cell types concomitantly from the mouse aorta using immunomagnetic cell isolation; and 2) an optimized aortic intimal peeling technique for efficient RNA isolation from the intima and media. METHODS AND RESULTS Aortic cells were obtained using an enzymatic solution and different cell types were isolated by magnetic beads conjugated to antibodies targeting endothelial cells (CD31+), leukocytes (CD45+), and fibroblast cells (CD90.2+), and smooth muscle cells were isolated by negative selection. Our protocol allows the isolation of relatively large numbers of cells (10,000 cells per aorta) in a predictable manner with high purity (>90%) verified by cell-marker gene expression, immunofluorescence, and flow cytometry. These cells are all functionally active when grown in cell culture. We also provide a rapid method to collect aortic intima-enriched RNA from Ldlr-/- mice utilizing an intima peeling approach and assess transcriptomic profiling associated with accelerated lesion formation. CONCLUSIONS This protocol provides an effective means for magnetic bead-based isolation of different cell types from the mouse aortic wall, and the isolated cells can be utilized for functional and mechanistic studies for a range of vascular diseases including atherosclerosis.
Collapse
Affiliation(s)
- Jingshu Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rulin Zhuang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Henry S Cheng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carmel Assa
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael McCoy
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shruti Rawal
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Pérez-Cremades
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, 46010, Spain
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Zhang J, Rojas S, Singh S, Musich PR, Gutierrez M, Yao Z, Thewke D, Jiang Y. Wnt2 Contributes to the Development of Atherosclerosis. Front Cardiovasc Med 2021; 8:751720. [PMID: 34901211 PMCID: PMC8652052 DOI: 10.3389/fcvm.2021.751720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis, is a chronic inflammatory disease, characterized by the narrowing of the arteries resulting from the formation of intimal plaques in the wall of arteries. Yet the molecular mechanisms responsible for maintaining the development and progression of atherosclerotic lesions have not been fully defined. In this study, we show that TGF-β activates the endothelial-to-mesenchymal transition (EndMT) in cultured human aortic endothelial cells (HAECs) and this transition is dependent on the key executor of the Wnt signaling pathway in vitro. This study presents the first evidence describing the mechanistic details of the TGF-β-induced EndMT signaling pathway in HAECs by documenting the cellular transition to the mesenchymal phenotype including the expression of mesenchymal markers α-SMA and PDGFRα, and the loss of endothelial markers including VE-cadherin and CD31. Furthermore, a short hairpin RNA (shRNA) screening revealed that Wnt2 signaling is required for TGF-β-mediated EndMT of HAECs. Also, we found that LDLR−/− mice fed on a high-fat western-type diet (21% fat, 0.2% cholesterol) expressed high levels of Wnt2 protein in atherosclerotic lesions, confirming that this signaling pathway is involved in atherosclerosis in vivo. These findings suggest that Wnt2 may contribute to atherosclerotic plaque development and this study will render Wnt2 as a potential target for therapeutic intervention aiming at controlling atherosclerosis.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Samuel Rojas
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Gutierrez
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Zhiqiang Yao
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
11
|
Ghoshal S, Banerjee S, Zhang J, Niehoff ML, Farr SA, Butler AA. Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides 2021; 146:170678. [PMID: 34695512 PMCID: PMC8649943 DOI: 10.1016/j.peptides.2021.170678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Obesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months. Male chow-fed wild type (WT) mice were used as controls. Diet-induced obesity and LDLR-deficiency caused severe dyslipidemia, irrespective of sex. The AdrTG prevented reduced adropin protein levels in LDLRKO cortex. In males, metabolic dysregulation and AdrTG genotype significantly and bi-directionally affected performance in the novel object recognition (NOR) test, a declarative hippocampal memory task (discrimination index mean ± SE for WT, 0.02 ± 0.088; LDLRKO, -0.115 ± 0.077; AdrTG;LDLRKO, 0.265 ± 0.078; genotype effect, p = 0.009; LDLRKO vs. AdrTG;LDLRKO, P < 0.05). A 2-way ANOVA (fixed variables: sex, AdrTG genotype) indicated a highly significant effect of AdrTG (P = 0.003). The impact of the diet-genotype interaction on the male mouse brain was investigated using RNA-seq. Gene-ontology analysis of transcripts showing fold-changes of>1.3 or <-1.3 (P < 0.05) indicated metabolic dysregulation affected gene networks involved in intercellular/neuronal signaling, immune processes, angiogenesis, and extracellular matrix organization. The AdrTG selectively attenuated the impact of metabolic dysregulation on intercellular/neuronal signaling pathways. Intercellular/neuronal signaling pathways were also the predominant processes overrepresented when directly comparing AdrTG;LDLRKO with LDRKO. In summary, adropin overexpression improves cognitive function in severe metabolic dysregulation through pathways related to cell-cell communication and neuronal processes, and independently of preventing inflammatory responses.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Biological Science and Geology, QCC-CUNY, Bayside, NY, USA
| | - Subhashis Banerjee
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Saint Louis University School of Medicine and Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Andrew A Butler
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
White Button Mushroom Extracts Modulate Hepatic Fibrosis Progression, Inflammation, and Oxidative Stress In Vitro and in LDLR-/- Mice. Foods 2021; 10:foods10081788. [PMID: 34441565 PMCID: PMC8392037 DOI: 10.3390/foods10081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Liver fibrosis can be caused by non-alcoholic steatohepatitis (NASH), among other conditions. We performed a study to analyze the effects of a nontoxic, water-soluble extract of the edible mushroom Agaricus bisporus (AB) as a potential inhibitor of fibrosis progression in vitro using human hepatic stellate cell (LX2) cultures and in vivo in LDLR-/- mice. Treatment of LX2 cells with the AB extract reduced the levels of fibrotic and oxidative-related markers and increased the levels of GATA4 expression. In LDLR-/- mice with high-fat diet (HFD)-induced liver fibrosis and inflammation, the progression of fibrosis, oxidative stress, inflammation, and apoptosis were prevented by AB extract treatment. Moreover, in the mouse model, AB extract could exert an antiatherogenic effect. These data suggest that AB mushroom extract seems to exert protective effects by alleviating inflammation and oxidative stress during the progression of liver fibrosis, possibly due to a decrease in Toll-like receptor 4 (TLR4) expression and a reduction in Nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we observed a potential atheroprotective effect in our mouse model.
Collapse
|
13
|
Kohlmorgen C, Gerfer S, Feldmann K, Twarock S, Hartwig S, Lehr S, Klier M, Krüger I, Helten C, Keul P, Kahl S, Polzin A, Elvers M, Flögel U, Kelm M, Levkau B, Roden M, Fischer JW, Grandoch M. Dapagliflozin reduces thrombin generation and platelet activation: implications for cardiovascular risk reduction in type 2 diabetes mellitus. Diabetologia 2021; 64:1834-1849. [PMID: 34131781 PMCID: PMC8245397 DOI: 10.1007/s00125-021-05498-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS People with diabetes have an increased cardiovascular risk with an accelerated development of atherosclerosis and an elevated mortality rate after myocardial infarction. Therefore, cardioprotective effects of glucose-lowering therapies are of major importance for the pharmacotherapy of individuals with type 2 diabetes. For sodium-glucose cotransporter 2 inhibitors (SGLT2is), in addition to a reduction in blood glucose, beneficial effects on atherosclerosis, obesity, renal function and blood pressure have been observed. Recent results showed a reduced risk of worsening heart failure and cardiovascular deaths under dapagliflozin treatment irrespective of the diabetic state. However, the underlying mechanisms are yet unknown. Platelets are known drivers of atherosclerosis and atherothrombosis and disturbed platelet activation has also been suggested to occur in type 2 diabetes. Therefore, the present study investigates the impact of the SGLT2i dapagliflozin on the interplay between platelets and inflammation in atherogenesis. METHODS Male, 8-week-old LDL-receptor-deficient (Ldlr-/-) mice received a high-fat, high-sucrose diabetogenic diet supplemented without (control) or with dapagliflozin (5 mg/kg body weight per day) for two time periods: 8 and 25 weeks. In a first translational approach, eight healthy volunteers received 10 mg dapagliflozin/day for 4 weeks. RESULTS Dapagliflozin treatment ameliorated atherosclerotic lesion development, reduced circulating platelet-leucocyte aggregates (glycoprotein [GP]Ib+CD45+: 29.40 ± 5.94 vs 17.00 ± 5.69 cells, p < 0.01; GPIb+lymphocyte antigen 6 complex, locus G+ (Ly6G): 8.00 ± 2.45 vs 4.33 ± 1.75 cells, p < 0.05) and decreased aortic macrophage infiltration (1.31 ± 0.62 vs 0.70 ± 0.58 ×103 cells/aorta, p < 0.01). Deeper analysis revealed that dapagliflozin decreased activated CD62P-positive platelets in Ldlr-/- mice fed a diabetogenic diet (3.78 ± 1.20% vs 2.83 ± 1.06%, p < 0.01) without affecting bleeding time (85.29 ± 37.27 vs 89.25 ± 16.26 s, p = 0.78). While blood glucose was only moderately affected, dapagliflozin further reduced endogenous thrombin generation (581.4 ± 194.6 nmol/l × min) × 10-9 thrombin vs 254.1 ± 106.4 (nmol/l × min) × 10-9 thrombin), thereby decreasing one of the most important platelet activators. We observed a direct inhibitory effect of dapagliflozin on isolated platelets. In addition, dapagliflozin increased HDL-cholesterol levels. Importantly, higher HDL-cholesterol levels (1.70 ± 0.58 vs 3.15 ± 1.67 mmol/l, p < 0.01) likely contribute to dapagliflozin-mediated inhibition of platelet activation and thrombin generation. Accordingly, in line with the results in mice, treatment with dapagliflozin lowered CD62P-positive platelet counts in humans after stimulation by collagen-related peptide (CRP; 88.13 ± 5.37% of platelets vs 77.59 ± 10.70%, p < 0.05) or thrombin receptor activator peptide-6 (TRAP-6; 44.23 ± 15.54% vs 28.96 ± 11.41%, p < 0.01) without affecting haemostasis. CONCLUSIONS/INTERPRETATION We demonstrate that dapagliflozin-mediated atheroprotection in mice is driven by elevated HDL-cholesterol and ameliorated thrombin-platelet-mediated inflammation without interfering with haemostasis. This glucose-independent mechanism likely contributes to dapagliflozin's beneficial cardiovascular risk profile.
Collapse
Affiliation(s)
- Christina Kohlmorgen
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephen Gerfer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Cardiothoracic Surgery, Heart Center, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kathrin Feldmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Meike Klier
- Division of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Irena Krüger
- Division of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Carolin Helten
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Keul
- Institute for Molecular Medicine III and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Kahl
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Amin Polzin
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Margitta Elvers
- Division of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Bjørnholm KD, Skovsted GF, Mitgaard-Thomsen A, Rakipovski G, Tveden-Nyborg P, Lykkesfeldt J, Povlsen GK. Liraglutide treatment improves endothelial function in the Ldlr-/- mouse model of atherosclerosis and affects genes involved in vascular remodelling and inflammation. Basic Clin Pharmacol Toxicol 2021; 128:103-114. [PMID: 32896073 DOI: 10.1111/bcpt.13486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Recent clinical intervention studies have shown that the GLP1 analogue liraglutide lowers cardiovascular risk, but the underlying mechanism has not yet been fully elucidated. This study investigated the effects of liraglutide on endothelial function in the Ldlr-/- mouse model. Mice (n = 12/group) were fed Western diet (WD) or chow for 12 weeks followed by 4 weeks of treatment with liraglutide (1 mg/kg/day) or vehicle subcutaneously. Weight loss, blood lipid content, plaque burden, vasomotor function of the aorta and gene expression pattern in aorta and brachiocephalic artery were monitored. Liraglutide treatment significantly induced weight loss (P < .0001), decreased blood triglycerides (P < .0001) and total cholesterol (P < .0001) in WD-fed mice but did not decrease plaque burden. Liraglutide also improved endothelium-mediated dilation of the distal thoracis aorta (P = .0067), but it did not affect phenylephrine or sodium nitroprusside responses. Fluidigm analyses of 96 genes showed significantly altered expression of seven genes related to inflammation, vascular smooth muscle cells and extracellular matrix composition in liraglutide-treated animals. We conclude that treatment with liraglutide decreased endothelial dysfunction and that this could be linked to decreased inflammation or regulation of vascular remodelling.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/physiopathology
- Inflammation/prevention & control
- Liraglutide/pharmacology
- Male
- Mice, Knockout
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Katrine Dahl Bjørnholm
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Gry Freja Skovsted
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | | - Günaj Rakipovski
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
16
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2020; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
17
|
Khoukaz HB, Ji Y, Braet DJ, Vadali M, Abdelhamid AA, Emal CD, Lawrence DA, Fay WP. Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2020; 40:1479-1490. [PMID: 32268785 PMCID: PMC7255962 DOI: 10.1161/atvbaha.119.313775] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Enhanced expression of PAI-1 (plasminogen activator inhibitor-1) has been implicated in atherosclerosis formation in humans with obesity and metabolic syndrome. However, little is known about the effects of pharmacological targeting of PAI-1 on atherogenesis. This study examined the effects of pharmacological PAI-1 inhibition on atherosclerosis formation in a murine model of obesity and metabolic syndrome. Approach and Results: LDL receptor-deficient (ldlr-/-) mice were fed a Western diet high in cholesterol, fat, and sucrose to induce obesity, metabolic dysfunction, and atherosclerosis. Western diet triggered significant upregulation of PAI-1 expression compared with normal diet controls. Addition of a pharmacological PAI-1 inhibitor (either PAI-039 or MDI-2268) to Western diet significantly inhibited obesity and atherosclerosis formation for up to 24 weeks without attenuating food consumption. Pharmacological PAI-1 inhibition significantly decreased macrophage accumulation and cell senescence in atherosclerotic plaques. Recombinant PAI-1 stimulated smooth muscle cell senescence, whereas a PAI-1 mutant defective in LRP1 (LDL receptor-related protein 1) binding did not. The prosenescent effect of PAI-1 was blocked by PAI-039 and R2629, a specific anti-LRP1 antibody. PAI-039 significantly decreased visceral adipose tissue inflammation, hyperglycemia, and hepatic triglyceride content without altering plasma lipid profiles. CONCLUSIONS Pharmacological targeting of PAI-1 inhibits atherosclerosis in mice with obesity and metabolic syndrome, while inhibiting macrophage accumulation and cell senescence in atherosclerotic plaques, as well as obesity-associated metabolic dysfunction. PAI-1 induces senescence of smooth muscle cells in an LRP1-dependent manner. These results help to define the role of PAI-1 in atherosclerosis formation and suggest a new plasma-lipid-independent strategy for inhibiting atherogenesis.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Yan Ji
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Drew J Braet
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Manisha Vadali
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Ahmed A Abdelhamid
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti (C.D.E.)
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - William P Fay
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
- Department of Medical Pharmacology & Physiology (W.P.F.), University of Missouri School of Medicine
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (W.P.F.)
| |
Collapse
|
18
|
Perazza LR, Mitchell PL, Jensen BAH, Daniel N, Boyer M, Varin TV, Bouchareb R, Nachbar RT, Bouchard M, Blais M, Gagné A, Joubert P, Sweeney G, Roy D, Arsenault BJ, Mathieu P, Marette A. Dietary sucrose induces metabolic inflammation and atherosclerotic cardiovascular diseases more than dietary fat in LDLr -/-ApoB 100/100 mice. Atherosclerosis 2020; 304:9-21. [PMID: 32563005 DOI: 10.1016/j.atherosclerosis.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Poor dietary habits contribute to the obesity pandemic and related cardiovascular diseases but the respective impact of high saturated fat versus added sugar consumption remains debated. Herein, we aimed to disentangle the individual role of dietary fat versus sugar in cardiometabolic disease progression. METHODS We fed pro-atherogenic LDLr-/-ApoB100/100 mice either a low-fat/high-sucrose (LFHS) or a high-fat/low-sucrose (HFLS) diet for 24 weeks. Weekly body weight gain was registered. 16S rRNA gene-based gut microbial analysis was performed to investigate gut microbial modulations. Intraperitoneal insulin (ipITT) and oral glucose tolerance test (oGTT) were conducted to assess glucose homeostasis and insulin sensitivity. Cytokines were assessed in fasted plasma, epididymal white adipose tissue and liver lysates. Heart function was evaluated by echocardiography. Aortic atheroma lesions were quantified according to the en face technique. RESULTS HFLS feeding increased obesity, insulin resistance and dyslipidemia compared to LFHS feeding. Conversely, high sucrose consumption decreased gut microbial diversity while augmenting inflammation and the adaptative immune defense against metabolic endotoxemia and reduced macrophage cholesterol efflux capacity. This led to more severe cardiovascular complications as revealed by remarkably high level of atherosclerotic lesions and the early development of cardiac dysfunction in LFHS vs HFLS fed mice. CONCLUSIONS We uncoupled obesity-associated insulin resistance from cardiovascular diseases and provided novel evidence that dietary sucrose, not fat, is the main driver of metabolic inflammation accelerating severe atherosclerosis in hyperlipidemic mice.
Collapse
Affiliation(s)
- Laís R Perazza
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Benjamin A H Jensen
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Human Genomics and Metagenomics in Metabolism, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Noëmie Daniel
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marjorie Boyer
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Rihab Bouchareb
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Renato T Nachbar
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Michaël Bouchard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food, Canada, Sherbrooke, Québec, Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food, Canada, Sherbrooke, Québec, Canada
| | - Andréanne Gagné
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Denis Roy
- Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Benoit J Arsenault
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Patrick Mathieu
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; Institute of Nutraceuticals and Functional Foods, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
19
|
Lou X, Ma X, Wang D, Li X, Sun B, Zhang T, Qin M, Ren L. Systematic analysis of long non-coding RNA and mRNA expression changes in ApoE-deficient mice during atherosclerosis. Mol Cell Biochem 2019; 462:61-73. [PMID: 31446617 PMCID: PMC6834762 DOI: 10.1007/s11010-019-03610-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Atherosclerosis plays an important role in the pathology of coronary heart disease, cerebrovascular disease, and systemic vascular disease. Long non-coding RNAs (lncRNAs) are involved in most biological processes and are deregulated in many human diseases. However, the expression alteration and precise role of lncRNAs during atherosclerosis are unknown. We report here the systematic profiling of lncRNAs and mRNAs in an ApoE-deficient (ApoE-/-) mouse model of atherosclerosis. Clariom D solutions for the mouse Affymetrix Gene Chip were employed to analyze the RNAs from control and ApoE-/- mice. The functions of the differentially expressed mRNAs and lncRNAs and the relationships of their expression with atherosclerosis were analyzed by gene ontology, co-expression network, pathway enrichment, and lncRNA target pathway network analyses. Quantitative real-time PCR (QRT-PCR) was used to determine the expression of mRNAs and lncRNAs. A total of 2212 differentially expressed lncRNAs were identified in ApoE-/- mice, including 1186 up-regulated and 1026 down-regulated lncRNAs (|FC| ≥ 1.1, p < 0.05). A total of 1190 differentially expressed mRNAs were found in the ApoE-/- mice with 384 up-regulated and 806 down-regulated (|FC| ≥ 1.1, p < 0.05). Bioinformatics analyses demonstrated extensive co-expression of lncRNAs and mRNAs and concomitant deregulation of multiple signaling pathways associated with the initiation and progression of atherosclerosis. The identified differentially expressed mRNAs and lncRNAs as well as the related signaling pathways may provide systematic information for understanding the pathogenesis and identifying biomarkers for the diagnosis, treatment, and prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyan Ma
- Department of Cardiology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
20
|
Grunewald ZI, Jurrissen TJ, Woodford ML, Ramirez-Perez FI, Park LK, Pettit-Mee R, Ghiarone T, Brown SM, Morales-Quinones M, Ball JR, Staveley-O'Carroll KF, Aroor AR, Fadel PJ, Paradis P, Schiffrin EL, Bender SB, Martinez-Lemus LA, Padilla J. Chronic Elevation of Endothelin-1 Alone May Not Be Sufficient to Impair Endothelium-Dependent Relaxation. Hypertension 2019; 74:1409-1419. [PMID: 31630572 DOI: 10.1161/hypertensionaha.119.13676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thomas J Jurrissen
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P.), University of Missouri, Columbia
| | - Lauren K Park
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Ryan Pettit-Mee
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Thaysa Ghiarone
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - Scott M Brown
- Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| | - James R Ball
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia
| | | | - Annayya R Aroor
- Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington (P.J.F.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research (P.P., E.L.S.), McGill University, Montreal, Québec, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montreal, Québec, Canada
| | - Shawn B Bender
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Biomedical Sciences (S.M.B., S.B.B.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans Hospital (S.M.B., A.R.A., S.B.B.), University of Missouri, Columbia
| | - Luis A Martinez-Lemus
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., T.J.J., M.L.W., L.K.P., R.P.-M., J.R.B., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., T.J.J., M.L.W., F.I.R.-P., L.K.P., R.P.-M., T.G., M.M.-Q., S.B.B., L.A.M.-L., J.P.), University of Missouri, Columbia
| |
Collapse
|
21
|
Jurrissen TJ, Grunewald ZI, Woodford ML, Winn NC, Ball JR, Smith TN, Wheeler AA, Rawlings AL, Staveley-O'Carroll KF, Ji Y, Fay WP, Paradis P, Schiffrin EL, Vieira-Potter VJ, Fadel PJ, Martinez-Lemus LA, Padilla J. Overproduction of endothelin-1 impairs glucose tolerance but does not promote visceral adipose tissue inflammation or limit metabolic adaptations to exercise. Am J Physiol Endocrinol Metab 2019; 317:E548-E558. [PMID: 31310581 PMCID: PMC6766607 DOI: 10.1152/ajpendo.00178.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.
Collapse
Affiliation(s)
- Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Thomas N Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | | | | | - Yan Ji
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
22
|
Decreased M1 macrophage polarization in dabigatran-treated Ldlr-deficient mice: Implications for atherosclerosis and adipose tissue inflammation. Atherosclerosis 2019; 287:81-88. [DOI: 10.1016/j.atherosclerosis.2019.06.897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
|
23
|
Zhou PL, Li M, Han XW, Bi YH, Zhang WG, Wu ZY, Wu G. Perilipin 5 deficiency promotes atherosclerosis progression through accelerating inflammation, apoptosis, and oxidative stress. J Cell Biochem 2019; 120:19107-19123. [PMID: 31297870 DOI: 10.1002/jcb.29238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/09/2017] [Indexed: 01/11/2023]
Abstract
Excessive plasma triglyceride (TG) and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism and is involved in the regulation of oxidative stress. Although inflammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE-/- ) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE-/- mice. ApoE/Plin5 double knockout (ApoE-/- Plin5-/- ) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated TG, total cholesterol, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol contents. ApoE-/- Plin5-/- exhibited a higher number of inflammatory monocytes and neutrophils, as well as overexpression of cytokines and chemokines linked with an inflammatory response. Consistently, the IκBα/nuclear factor kappa B pathway was strongly activated in ApoE-/- Plin5-/- . Notably, apoptosis was dramatically induced by ApoE-/- Plin5-/- , as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2. In addition, ApoE-/- Plin5-/- contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinases pathways. In vitro, oxidized low-density lipoprotein (ox-LDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress, and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions.
Collapse
Affiliation(s)
- Peng-Li Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Hua Bi
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-Guang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng-Yang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Ji Y, Chung YM, Park S, Jeong D, Kim B, Holzapfel WH. Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model. PeerJ 2019; 7:e6651. [PMID: 30923658 PMCID: PMC6431538 DOI: 10.7717/peerj.6651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overweight and abdominal obesity, in addition to medical conditions such as high blood pressure, high blood sugar and triglyceride levels, are typical risk factors associated with metabolic syndrome. Yet, considering the complexity of factors and underlying mechanisms leading to these inflammatory conditions, a deeper understanding of this area is still lacking. Some probiotics have a reputation of a relatively-long history of safe use, and an increasing number of studies are confirming benefits including anti-obesity effects when administered in adequate amounts. Recent reports demonstrate that probiotic functions may widely differ with reference to either intra-species or inter-species related data. Such differences do not necessarily reflect or explain strain-specific functions of a probiotic, and thus require further assessment at the intra-species level. Various anti-obesity clinical trials with probiotics have shown discrepant results and require additional consolidated studies in order to clarify the correct dose of application for reliable and constant efficacy over a long period. METHODS Three different strains of Lactobacillus sakei were administered in a high-fat diet induced obese murine model using three different doses, 1 × 1010, 1 × 109 and 1 × 108 CFUs, respectively, per day. Changes in body and organ weight were monitored, and serum chemistry analysis was performed for monitoring obesity associated biomarkers. RESULTS Only one strain of L. sakei (CJLS03) induced a dose-dependent anti-obesity effect, while no correlation with either dose or body or adipose tissue weight loss could be detected for the other two L. sakei strains (L338 and L446). The body weight reduction primarily correlated with adipose tissue and obesity-associated serum biomarkers such as triglycerides and aspartate transaminase. DISCUSSION This study shows intraspecies diversity of L. sakei and suggests that anti-obesity effects of probiotics may vary in a strain- and dose-specific manner.
Collapse
Affiliation(s)
- Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Young Mee Chung
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Dahye Jeong
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Bongjoon Kim
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| |
Collapse
|
25
|
Lavrador MSF, Afonso MS, Cintra DE, Koike M, Nunes VS, Demasi M, Lin CJ, Beda LMM, Gioielli LA, Bombo RDPA, Machado RM, Catanozi S, Nakandakare ER, Lottenberg AM. Interesterified Fats Induce Deleterious Effects on Adipose Tissue and Liver in LDLr-KO Mice. Nutrients 2019; 11:nu11020466. [PMID: 30813339 PMCID: PMC6412707 DOI: 10.3390/nu11020466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Interesterified fats are being widely used by the food industry in an attempt to replace trans fatty acids. The effect of interesterified fats containing palmitic or stearic acids on lipid metabolism and inflammatory signaling pathways in adipose and hepatic tissues was evaluated. Male LDLr-KO mice were fed a high-fat diet containing polyunsaturated (PUFA), palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR), or stearic interesterified (STEAR INTER) fats for 16 weeks. The expression of genes and protein levels involved in lipid metabolism and inflammatory processes in liver and white adipose tissue was determined by quantitative RT-PCR and by Western blot, respectively. The infiltration of inflammatory cells in hepatic and adipose tissues was determined by eosin and hematoxylin, while liver collagen content was determined by Sirius Red staining. Both interesterified fats increased liver collagen content and JNK phosphorylation. Additionally, the STEAR INTER group developed nonalcoholic steatohepatitis (NASH) associated with higher neutrophil infiltration. PALM INTER induced adipose tissue expansion and enlargement of adipocytes. Furthermore, PALM INTER triggered increased IKK phosphorylation and TNFα protein content, conditions associated with the upstream activation of the NFkB signaling pathway. STEAR INTER induced NASH, while PALM INTER triggered hepatic fibrosis and adipocyte hypertrophy with inflammatory response in LDLr-KO mice.
Collapse
Affiliation(s)
- Maria Silvia Ferrari Lavrador
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Milessa Silva Afonso
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics-School of Applied Science, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil.
| | - Marcia Koike
- Emergency Care Research Unit Laboratory (LIM51), Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Valeria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Marina Demasi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Chin Jia Lin
- Laboratory of Molecular Biology (LIM22), Department of Pathology, Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Lis Mie Masuzawa Beda
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Luiz Antonio Gioielli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences of the University of São Paulo, São Paulo 05508-000, Brazil.
| | - Renata de Paula Assis Bombo
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Roberta Marcondes Machado
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Ana Maria Lottenberg
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, BR 05521-200, Brazil.
| |
Collapse
|
26
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
27
|
Sangüesa G, Baena M, Hutter N, Montañés JC, Sánchez RM, Roglans N, Laguna JC, Alegret M. The Addition of Liquid Fructose to a Western-Type Diet in LDL-R -/- Mice Induces Liver Inflammation and Fibrogenesis Markers without Disrupting Insulin Receptor Signalling after an Insulin Challenge. Nutrients 2017; 9:nu9030278. [PMID: 28294959 PMCID: PMC5372941 DOI: 10.3390/nu9030278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 01/17/2023] Open
Abstract
A high consumption of fat and simple sugars, especially fructose, has been related to the development of insulin resistance, but the mechanisms involved in the effects of these nutrients are not fully understood. This study investigates the effects of a Western-type diet and liquid fructose supplementation, alone and combined, on insulin signalling and inflammation in low-density lipoprotein (LDL) receptor-deficient mice (LDL-R−/−). LDL-R−/− mice were fed chow or Western diet ±15% fructose solution for 12 weeks. Plasma glucose and insulin, and the expression of genes related to inflammation in the liver and visceral white adipose tissue (vWAT), were analysed. V-akt murine thymoma viral oncogene homolog-2 (Akt) activation was measured in the liver of the mice after a single injection of saline or insulin. None of the dietary interventions caused inflammation in vWAT, whereas the Western diet induced hepatic inflammation, which was further enhanced by liquid fructose, leading also to a significant increase in fibrogenesis markers. However, there was no change in plasma glucose or insulin, or insulin-induced Akt phosphorylation. In conclusion, hepatic inflammation and fibrogenesis markers induced by a Western diet supplemented with liquid fructose in LDL-R−/− mice are not associated with a significant impairment of hepatic insulin signalling.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Miguel Baena
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Natalia Hutter
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - José Carlos Montañés
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Rosa María Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
28
|
Grün NG, Strohmeier K, Moreno-Viedma V, Le Bras M, Landlinger C, Zeyda K, Wanko B, Leitner L, Staffler G, Zeyda M, Stulnig TM. Peptide-based vaccination against OPN integrin binding sites does not improve cardio-metabolic disease in mice. Immunol Lett 2016; 179:85-94. [PMID: 27639826 DOI: 10.1016/j.imlet.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022]
Abstract
Obesity causes insulin resistance via a chronic low-grade inflammation. This inflammation is characterized by elevated pro-inflammatory markers and macrophage accumulation in the adipose tissue (AT). AT inflammation is a key factor causing insulin resistance and thus type 2 diabetes, both linked to atherosclerotic cardiovascular disease. Osteopontin (OPN), a well-known inflammatory cytokine, is involved in obesity-linked complications including AT inflammation, insulin resistance, atherosclerosis and CVD. During inflammation, OPN is proteolytically cleaved by matrix metalloproteinases or thrombin leading to increased OPN activity. Therefore, OPN provides a new interesting target for immunological prevention and treatment of obesity-associated diseases. The aim of our study was to evaluate peptide-based vaccines against integrin binding sites of OPN and to examine whether these active immunotherapies are functional in reducing metabolic tissue inflammation, insulin resistance, and atherosclerosis in a cardio-metabolic (Ldlr-/- mice) and a diet-induced obesity model (WT mice). However, atherosclerosis, insulin resistance and AT inflammation were not diminished after treatment with OPN-derived peptides in murine models. Lack of efficacy was based on a failure to induce antibodies capable to bind epitopes in the context of functional OPN protein. In conclusion, our data point to unexpected challenges in the immunotherapeutic targeting of adhesive motives, such as RGD containing sequences, on endogenous proteins.
Collapse
Affiliation(s)
- Nicole G Grün
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karin Strohmeier
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Veronica Moreno-Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | - Karina Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; FH Campus Wien, University of Applied Sciences, Department Health, Section Biomedical Science, Vienna, Austria
| | - Bettina Wanko
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Moreno-Viedma V, Amor M, Sarabi A, Bilban M, Staffler G, Zeyda M, Stulnig TM. Common dysregulated pathways in obese adipose tissue and atherosclerosis. Cardiovasc Diabetol 2016; 15:120. [PMID: 27561966 PMCID: PMC5000404 DOI: 10.1186/s12933-016-0441-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background The metabolic syndrome is becoming increasingly prevalent in the general population that is at simultaneous risk for both type 2 diabetes and cardiovascular disease. The critical pathogenic mechanisms underlying these diseases are obesity-driven insulin resistance and atherosclerosis, respectively. To obtain a better understanding of molecular mechanisms involved in pathogenesis of the metabolic syndrome as a basis for future treatment strategies, studies considering both inherent risks, namely metabolic and cardiovascular, are needed. Hence, the aim of this study was to identify pathways commonly dysregulated in obese adipose tissue and atherosclerotic plaques. Methods We carried out a gene set enrichment analysis utilizing data from two microarray experiments with obese white adipose tissue and atherosclerotic aortae as well as respective controls using a combined insulin resistance-atherosclerosis mouse model. Results We identified 22 dysregulated pathways common to both tissues with p values below 0.05, and selected inflammatory response and oxidative phosphorylation pathways from the Hallmark gene set to conduct a deeper evaluation at the single gene level. This analysis provided evidence of a vast overlap in gene expression alterations in obese adipose tissue and atherosclerosis with Il7r, C3ar1, Tlr1, Rgs1 and Semad4d being the highest ranked genes for the inflammatory response pathway and Maob, Bckdha, Aldh6a1, Echs1 and Cox8a for the oxidative phosphorylation pathway. Conclusions In conclusion, this study provides extensive evidence for common pathogenic pathways underlying obesity-driven insulin resistance and atherogenesis which could provide a basis for the development of novel strategies to simultaneously prevent type 2 diabetes and cardiovascular disease in patients with metabolic syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0441-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Moreno-Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Amor
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - A Sarabi
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - M Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | | | - M Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - T M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Amor M, Moreno Viedma V, Sarabi A, Grün NG, Itariu B, Leitner L, Steiner I, Bilban M, Kodama K, Butte AJ, Staffler G, Zeyda M, Stulnig TM. Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease. Mol Med 2016; 22:487-496. [PMID: 27385318 DOI: 10.2119/molmed.2016.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. This included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (MMP12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- M Amor
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - V Moreno Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Sarabi
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - N G Grün
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - B Itariu
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - L Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - I Steiner
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Austria
| | - M Bilban
- Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | - K Kodama
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | - A J Butte
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | | | - M Zeyda
- Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna
| | - T M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Priyadharsini RP. Animal models to evaluate anti-atherosclerotic drugs. Fundam Clin Pharmacol 2015; 29:329-40. [PMID: 26095240 DOI: 10.1111/fcp.12130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 06/17/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is a multifactorial condition characterized by endothelial injury, fatty streak deposition, and stiffening of the blood vessels. The pathogenesis is complex and mediated by adhesion molecules, inflammatory cells, and smooth muscle cells. Statins have been the major drugs in treating hypercholesterolemia for the past two decades despite little efficacy. There is an urgent need for new drugs that can replace statins or combined with statins. The preclinical studies evaluating atherosclerosis require an ideal animal model which resembles the disease condition, but there is no single animal model which mimics the disease. The animal models used are rabbits, rats, mice, hamsters, mini pigs, etc. Each animal model has its own advantages and disadvantages. The method of induction of atherosclerosis includes diet, chemical induction, mechanically induced injuries, and genetically manipulated animal models. This review mainly focuses on the various animal models, method of induction, the advantages, disadvantages, and the current perspectives with regard to preclinical studies on atherosclerosis.
Collapse
|
32
|
González-Peña D, Dudzik D, Colina-Coca C, de Ancos B, García A, Barbas C, Sánchez-Moreno C. Multiplatform metabolomic fingerprinting as a tool for understanding hypercholesterolemia in Wistar rats. Eur J Nutr 2015; 55:997-1010. [DOI: 10.1007/s00394-015-0914-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
|
33
|
Alasvand M, Rashidi B, Haghjooy Javanmard S, Khazaei M. Effect of blockade of neuropeptide Y receptor on aortic intima-media thickness and adipose tissue characteristics in normal and obese mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:443-8. [PMID: 26124929 PMCID: PMC4475651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Atherosclerosis is an important risk factor for coronary heart disease. Neuropeptide Y (NPY) and its receptors, located in peripheral tissue such as white adipose tissue, have been linked to obesity and fat storage. The role of NPY in atherosclerosis has not yet been fully studied, so this study was conducted to further investigate the effect of BIIE 0246, an NPY receptor antagonist, on aortic intima-media thickness and size and number of adipocyte cells in normal and obese mice. MATERIALS AND METHODS Tests were performed on 24 male C57BL/6 mice. The animals were divided into four groups as follows: control (normal), obese (high-fat diet), normal+NPY receptor antagonist (1 μM, 100 µl/Kg BIIE0246 intraperitoneally) and obese+NPY receptor antagonist (n=6 each). After 14 days, the animals were sacrificed and epididymal adipose tissue and thoracic aorta were removed. Evaluations were made for adipocyte cell number and size and for aortic intima-media thickness. RESULTS The group on a high-fat diet showed a significantly decreased number of adipocyte cells and increased cell size (P<0.05). BIIE0246 application changed the cell number of adipocyte in normal mice (P=0.05); however, it did not change adipocyte cell size and aortic intima-media thickness in obese and normal mice (P>0.05). CONCLUSION NPY receptor antagonist had no effect on adipocyte cell size and aortic intima-media thickness; however, it decreased cell number in the normal group indicating likely involvement in the progression of obesity.
Collapse
Affiliation(s)
- Masoud Alasvand
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomy, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Majid Khazaei
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,*Corresponding author: Majid Khazaei. Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Tel: +98-51-38009227;
| |
Collapse
|