1
|
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxid Redox Signal 2024. [PMID: 39495600 DOI: 10.1089/ars.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Significance: Glucose-induced lipid metabolism is essential for preserving functional β-cells, and its disruption is linked to type 2 diabetes (T2D) development. Lipids are an integral part of the cells playing an indispensable role as structural components, energy storage molecules, and signals. Recent Advances: Glucose presence significantly impacts lipid metabolism in β-cells, where fatty acids are primarily synthesized de novo and/or are transported from the bloodstream. This process is regulated by the glycerolipid/free fatty acid cycle, which includes lipogenic and lipolytic reactions producing metabolic coupling factors crucial for insulin secretion. Disrupted lipid metabolism involving oxidative stress and inflammation is a hallmark of T2D. Critical Issues: Lipid metabolism in β-cells is complex involving multiple simultaneous processes. Exact compartmentalization and quantification of lipid metabolism and its intermediates, especially in response to glucose or chronic hyperglycemia, are essential. Current research often uses non-physiological conditions, which may not accurately reflect in vivo situations. Future Directions: Identifying and quantifying individual steps and their signaling, including redox, within the complex fatty acid and lipid metabolic pathways as well as the metabolites formed during acute versus chronic glucose stimulation, will uncover the detailed mechanisms of glucose-stimulated insulin secretion. This knowledge is crucial for understanding T2D pathogenesis and identifying pharmacological targets to prevent this disease. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Stokičová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
3
|
Xu G, Song J. The Association Between the Triglyceride to High-Density Lipoprotein Cholesterol Ratio and the Incidence of Type 2 Diabetes Mellitus in the Japanese Population. Metab Syndr Relat Disord 2024; 22:471-478. [PMID: 38593410 DOI: 10.1089/met.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Abstract Aims: To explore whether the triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) was independently associated with the risk of incident type 2 diabetes mellitus (T2DM) in a large Japanese cohort. Methods: A secondary analysis was performed using open-access data from a retrospective cohort study. A total of 12,716 eligible participants who had standard medical examinations at the Murakami Memorial Hospital were included in this study. New-onset T2DM was the main outcome during follow-up. The risk of T2DM based on the TG/HDL-C ratio was evaluated using Cox regression analysis and Kaplan-Meier analysis. Subgroup analysis was performed to understand further the significance of the TG/HDL-C ratio in particular populations. To assess the potential of the TG/HDL-C ratio for predicting T2DM, a receiver operating characteristic (ROC) analysis was performed. Results: One hundred fifty new-onset T2DM cases were observed during a median follow-up of 5.39 years. The incidence of T2DM increased with a rise in the TG/HDL-C ratio based on the Kaplan-Meier curves (P < 0.0001). After controlling for potential confounding variables, the TG/HDL-C ratio was positively related to incidence of T2DM (hazard ratio = 1.08, 95% confidence interval: 1.01-1.15, P = 0.0239). In subgroup analysis, those with a body mass index of ≥18.5 and <24 kg/m2 showed a significantly positive relationship. The area under the ROC curve for the TG/HDL-C ratio as a T2DM predictor was 0.684. The optimal TG/HDL-C ratio cutoff value for T2DM was 1.609, with a sensitivity of 54.7% and a specificity of 73.6%. Conclusion: The authors' results showed a significant relationship between the TG/HDL-C ratio and the incidence of T2DM in the Japanese population.
Collapse
Affiliation(s)
- Guojuan Xu
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Song
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
6
|
Shimodaira M, Minemura Y, Nakayama T. Elevated triglyceride/high-density lipoprotein-cholesterol ratio as a risk factor for progression to prediabetes: a 5-year retrospective cohort study in Japan. J Diabetes Metab Disord 2024; 23:655-664. [PMID: 38932848 PMCID: PMC11196436 DOI: 10.1007/s40200-023-01329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 06/28/2024]
Abstract
Purpose The triglyceride-to-high-density lipoprotein-cholesterol (TG/HDL-C) ratio is considered an alternative marker for insulin resistance. This longitudinal retrospective study investigated the relationship between TG/HDL-C ratio and the risk of progression to prediabetes. Methods We investigated 24,604 Japanese participants (14,609 men and 9,995 women) who underwent annual medical health checkups in 2017 (baseline) and 2022. All participants had no diabetes and prediabetes at baseline. No lipid-lowering medications were taken during the follow-up period. Participants were divided into four groups according to the quartiles of TG/HDL-C ratio at baseline. Multivariable-adjusted Cox regression analysis was conducted to examine hazard ratios (HRs) of progression to prediabetes. Receiver operating characteristic curves were used to determine the optimal cutoff value of TG/HDL-C ratio for prediction of prediabetes. Results Compared with the lowest TG/HDL-C ratio quartile (Q1) group, the adjusted HRs (95% confidence intervals (CI)) of progression to prediabetes in the Q2, Q3, and Q4 groups, respectively, were 1.17 (0.92-1.47), 1.26 (1.01-1.56), and 1.77 (1.41-2.23) for men and 1.07 (0.60-1.11), 1.19 (1.08-1.29), and 1.58 (1.18-2.31) for women. For every 1 unit increase in TG/HDL-C ratio, the adjusted HRs (95% CI) for progression to prediabetes was 1.09 (1.04-1.13) in men and 1.10 (1.04-1.15) in women. The optimal TG/HDL-C ratio cutoffs were 1.71 and 0.97 in men and women, respectively, but the area under the curve was > 0.70 in both sexes. Conclusion High TG/HDL-C ratio is a risk factor for progression to prediabetes in Japanese men and women, but it had low discriminative ability in predicting prediabetes risk. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01329-8.
Collapse
Affiliation(s)
- Masanori Shimodaira
- Department of Internal Medicine, Takara Clinic, 2511 Kanae-nagokuma, Iida-shi, Nagano, 395-0804 Japan
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ooyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610 Japan
| | - Yu Minemura
- Department of Internal Medicine, Takara Clinic, 2511 Kanae-nagokuma, Iida-shi, Nagano, 395-0804 Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ooyaguchi-kamimachi, Itabashi-ku, Tokyo, 173-8610 Japan
| |
Collapse
|
7
|
Yan Z, Xu Y, Li K, Liu L. Association between high-density lipoprotein cholesterol and type 2 diabetes mellitus: dual evidence from NHANES database and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1272314. [PMID: 38455653 PMCID: PMC10917910 DOI: 10.3389/fendo.2024.1272314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Low levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis. Materials and methods Data from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers. Results In the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P < 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers. Conclusion This study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Keke Li
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Mohsin S, Elabadlah H, Alotaiba MK, AlAmry S, Almehairbi SJ, Harara MMK, Almuhsin AMH, Tariq S, Howarth FC, Adeghate EA. High-Density Lipoprotein Is Located Alongside Insulin in the Islets of Langerhans of Normal and Rodent Models of Diabetes. Nutrients 2024; 16:313. [PMID: 38276551 PMCID: PMC10818677 DOI: 10.3390/nu16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)). The extent by which HDL co-localizes with insulin or glucagon in the islets of the pancreas was also investigated. Pancreatic tissues of Wistar non-diabetic, diabetic Wistar, GK, ZL, and ZDF rats were processed for immunohistochemistry. Pancreatic samples of GK rats fed with either a low-fat or a high-fat diet were prepared for transmission immune-electron microscopy (TIEM) to establish the cytoplasmic localization of HDL in islet cells. HDL was detected in the core and periphery of pancreatic islets of Wistar non-diabetic and diabetic, GK, ZL, and ZDF rats. The average total of islet cells immune positive for HDL was markedly (<0.05) reduced in GK and ZDF rats in comparison to Wistar controls. The number of islet cells containing HDL was also remarkably (p < 0.05) reduced in Wistar diabetic rats and GK models fed on high-fat food. The co-localization study using immunofluorescence and TIEM techniques showed that HDL is detected alongside insulin within the secretory granules of β-cells. HDL did not co-localize with glucagon. This observation implies that HDL may contribute to the metabolism of insulin.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Haba Elabadlah
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Cambridge Medical and Rehabilitation Center, Al Ain P.O. Box 222297, United Arab Emirates
| | - Mariam K. Alotaiba
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Suhail AlAmry
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Shamma J. Almehairbi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Maha M. K. Harara
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Aisha M. H. Almuhsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
9
|
Yuge H, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, Fukui M. Triglycerides/HDL cholesterol ratio and type 2 diabetes incidence: Panasonic Cohort Study 10. Cardiovasc Diabetol 2023; 22:308. [PMID: 37940952 PMCID: PMC10634002 DOI: 10.1186/s12933-023-02046-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Previous studies have investigated the association between the ratio of triglycerides (TG) to high-density lipoprotein cholesterol (HDL-C) and the incidence of diabetes in adults and discovered that a high TG/HDL-C ratio was linked to an elevated risk of new-onset diabetes. However, the comparison of predicting diabetes development among lipid profiles including the TG/HDL-C ratio, and the ratio of TG/HDL-C cut-off value has received limited attention. We examined the relationship between diabetes onset and the TG/HDL-C ratio in addition to the applicable cut-off value for predicting diabetes onset. METHODS This study included 120,613 participants from the health examination database at Panasonic Corporation from 2008 to 2017. Cox regression analysis employing multivariable models was used to investigate the association between lipid profiles, particularly the ratio of TG/HDL-C and the development of type 2 diabetes (T2D). The multivariable model was adjusted for age, sex, BMI, systolic blood pressure, plasma glucose levels after fasting, smoking status, and exercise habits. Areas under time-dependent receiver operating characteristic (ROC) curves (AUCs) were employed to assess the prediction performance and cut-off values of each indicator. A fasting plasma glucose level of 126 mg/dL, a self-reported history of diabetes, or usage of antidiabetic medicines were used to identify T2D. RESULTS During the course of the study, 6,080 people developed T2D. The median follow-up duration was 6.0 (3-10) years. Multivariable analysis revealed that the ratio of TG/HDL-C (per unit, HR; 1.03 [95% CI 1.02-1.03]) was substantially linked to the risk of incident T2D. AUC and cut-off points for the ratio of TG/HDL-C for T2D development after 10 years were 0.679 and 2.1, respectively. Furthermore, the AUC of the ratio of TG/HDL-C was considerably larger compared to that of LDL-C, HDL-C, and TG alone (all P < 0.001). We discovered an interaction effect between sex, BMI, and lipid profiles in subgroup analysis. Females and participants having a BMI of < 25 kg/m2 showed a higher correlation between lipid profile levels and T2D onset. CONCLUSIONS The ratio of TG/HDL-C was found to be a stronger predictor of T2D development within 10 years than LDL-C, HDL-C, or TG, indicating that it may be useful in future medical treatment support.
Collapse
Affiliation(s)
- Hiroki Yuge
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-Cho, Moriguchi, 570-8540, Japan.
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kazushiro Kurogi
- Department of Health Care Center, Panasonic Health Insurance Organization, 5-55 Sotojima-Cho, Moriguchi, 570-8540, Japan
| | - Hiroaki Murata
- Department of Orthopedic Surgery, Matsushita Memorial Hospital, 5-55 Sotojima-Cho, Moriguchi, 570-8540, Japan
| | - Masato Ito
- Department of Health Care Center, Panasonic Health Insurance Organization, 5-55 Sotojima-Cho, Moriguchi, 570-8540, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
10
|
Bissonnette S, Lamantia V, Ouimet B, Cyr Y, Devaux M, Rabasa-Lhoret R, Chrétien M, Saleh M, Faraj M. Native low-density lipoproteins are priming signals of the NLRP3 inflammasome/interleukin-1β pathway in human adipose tissue and macrophages. Sci Rep 2023; 13:18848. [PMID: 37914804 PMCID: PMC10620147 DOI: 10.1038/s41598-023-45870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Elevated plasma numbers of atherogenic apoB-lipoproteins (apoB), mostly as low-density lipoproteins (LDL), predict diabetes risk by unclear mechanisms. Upregulation of the NLRP3 inflammasome/interleukin-1 beta (IL-1β) system in white adipose tissue (WAT) is implicated in type 2 diabetes (T2D); however, metabolic signals that stimulate it remain unexplored. We hypothesized that (1) subjects with high-apoB have higher WAT IL-1β-secretion than subjects with low-apoB, (2) WAT IL-1β-secretion is associated with T2D risk factors, and (3) LDL prime and/or activate the WAT NLRP3 inflammasome. Forty non-diabetic subjects were assessed for T2D risk factors related to systemic and WAT glucose and fat metabolism. Regulation of the NLRP3 inflammasome was explored using LDL without/with the inflammasome's priming and activation controls (LPS and ATP). LDL induced IL1B-expression and IL-1β-secretion in the presence of ATP in WAT and macrophages. Subjects with high-apoB had higher WAT IL-1β-secretion independently of covariates. The direction of association of LDL-induced WAT IL-1β-secretion to T2D risk factors was consistently pathological in high-apoB subjects only. Adjustment for IL-1β-secretion eliminated the association of plasma apoB with T2D risk factors. In conclusion, subjects with high-apoB have higher WAT IL-1β-secretion that may explain their risk for T2D and may be related to LDL-induced priming of the NLRP3 inflammasome.ClinicalTrials.gov (NCT04496154): Omega-3 to Reduce Diabetes Risk in Subjects With High Number of Particles That Carry "Bad Cholesterol" in the Blood-Full Text View-ClinicalTrials.gov.
Collapse
Affiliation(s)
- Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Benjamin Ouimet
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Marie Devaux
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Remi Rabasa-Lhoret
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Michel Chrétien
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Maya Saleh
- Faculty of Medicine, McGill University, Montréal, QC, Canada
- University of Bordeaux, Bordeaux, France
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Institut de Recherches Cliniques de Montréal (IRCM), Office 1770.2, 110, Avenue Des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada.
- Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
11
|
Mehta N, Dangas K, Ditmarsch M, Rensen PCN, Dicklin MR, Kastelein JJP. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol Res 2023; 197:106972. [PMID: 37898443 DOI: 10.1016/j.phrs.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.
Collapse
Affiliation(s)
- Nehal Mehta
- Mobius Scientific, Inc., JLABS @ Washington, DC, Washington, DC, USA
| | | | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
13
|
Lu F, Li E, Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023; 9:e19371. [PMID: 37809924 PMCID: PMC10558357 DOI: 10.1016/j.heliyon.2023.e19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent modulator of cholesterol metabolism and plays a crucial role in the normal functioning of pancreatic islets and the progression of diabetes. Islet autocrine PCSK9 deficiency can lead to the enrichment of low-density lipoprotein (LDL) receptor (LDLR) and excessive LDL cholesterol (LDL-C) uptake, subsequently impairing the insulin secretion in β-cells. Circulatory PCSK9 levels are primarily attributed to hepatocyte secretion. Notably, anti-PCSK9 strategies proposed for individuals with hypercholesterolemia chiefly target liver-derived PCSK9; however, these anti-PCSK9 strategies have been associated with the risk of new-onset diabetes mellitus (NODM). In the current review, we highlight a new direction in PCSK9 inhibition therapy strategies: screening candidates for anti-PCSK9 from the drugs used in type 2 diabetes mellitus (T2DM) treatment. We explored the association between circulating, local pancreatic PCSK9 and T2DM, as well as the relationship between PCSK9 monoclonal antibodies and NODM. We discussed the emergence of artificial and natural drugs in recent years, exhibiting dual benefits of antidiabetic activity and PCSK9 reduction, confirming that the diverse effects of these drugs may potentially impact the progression of diabetes and associated disorders, thereby introducing novel avenues and methodologies to enhance disease prognosis.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, China
- School of Basic Medical Sciences, Zhengzhou University, 450001, China
| |
Collapse
|
14
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
15
|
You Y, Hu H, Cao C, Han Y, Tang J, Zhao W. Association between the triglyceride to high-density lipoprotein cholesterol ratio and the risk of gestational diabetes mellitus: a second analysis based on data from a prospective cohort study. Front Endocrinol (Lausanne) 2023; 14:1153072. [PMID: 37576966 PMCID: PMC10415043 DOI: 10.3389/fendo.2023.1153072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
Background Although there is strong evidence linking triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to insulin resistance and diabetes mellitus, its clinical importance in pregnant women has not been well determined. This study sought to determine the connection between the TG/HDL-C ratio in the first trimester and the eventual onset of gestational diabetes mellitus (GDM). Methods We performed a secondary analysis of open-access data from a prospective cohort study. This present study included 590 singleton pregnant women at 10-14 weeks who visited the outpatient clinics for prenatal checks and were recorded at Incheon Seoul Women's Hospital and Seoul Metropolitan Government Seoul National University Boramae Medical Center in Korea. A binary logistic regression model, a series of sensitivity analyses, and subgroup analysis were used to examine the relationship between TG/HDL-C ratio and incident GDM. A receiver operating characteristic (ROC) analysis was also conducted to assess the ability of the TG/HDL-C ratio to predict GDM. Results The mean age of the included individuals was 32.06 ± 3.80 years old. The mean TG/HDL-C ratio was 1.96 ± 1.09. The incidence rate of GDM was 6.27%. After adjustment for potentially confounding variables, TG/HDL-C ratio was positively associated with incident GDM (OR=1.77, 95%CI: 1.32-2.38, P=0.0001). Sensitivity analyses and subgroup analysis demonstrated the validity of the relationship between the TG/HDL-C ratio and GDM. The TG/HDL-C ratio was a good predictor of GDM, with an area under the ROC curve of 0.7863 (95% CI: 0.7090-0.8637). The optimal TG/HDL-C ratio cut-off value for detecting GDM was 2.2684, with a sensitivity of 72.97% and specificity of 75.05%. Conclusion Our results demonstrate that the elevated TG/HDL-C ratio is related to incident GDM. The TG/HDL-C ratio at 10-14 weeks could help identify pregnant women at risk for GDM and may make it possible for them to receive early and effective treatment to improve their prognosis.
Collapse
Affiliation(s)
- Yun You
- Department of Obstetrics, Shantou University Medical College, Shantou, Guangdong, China
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, Guangdong, China
| | - Yong Han
- Department of Emergency, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tang
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Weihua Zhao
- Department of Obstetrics, Shantou University Medical College, Shantou, Guangdong, China
- Department of Obstetrics, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Jiang H, Si M, Tian T, Shi H, Huang N, Chi H, Yang R, Long X, Qiao J. Adiposity and lipid metabolism indicators mediate the adverse effect of glucose metabolism indicators on oogenesis and embryogenesis in PCOS women undergoing IVF/ICSI cycles. Eur J Med Res 2023; 28:216. [PMID: 37400924 DOI: 10.1186/s40001-023-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) women have high incidences of dyslipidemia, obesity, impaired glucose tolerance (IGT), diabetes, and insulin resistance (IR) and are fragile to female infertility. Obesity and dyslipidemia may be the intermediate biological mechanism for the associations between glucose metabolism dysfunction and abnormal oogenesis and embryogenesis. METHODS This retrospective cohort study was performed at a university-affiliated reproductive center. A total of 917 PCOS women aged between 20 and 45 undergoing their first IVF/ICSI embryo transfer cycles from January 2018 to December 2020 were involved. Associations between glucose metabolism indicators, adiposity and lipid metabolism indicators, and IVF/ICSI outcomes were explored using multivariable generalized linear models. Mediation analyses were further performed to examine the potential mediation role of adiposity and lipid metabolism indicators. RESULTS Significant dose-dependent relationships were found between glucose metabolism indicators and IVF/ICSI early reproductive outcomes and between glucose metabolism indicators and adiposity and lipid metabolism indicators (all P < 0.05). Also, we found significant dose-dependent relationships between adiposity and lipid metabolism indicators and IVF/ICSI early reproductive outcomes (all P < 0.05). The mediation analysis indicated that elevated FPG, 2hPG, FPI, 2hPI, HbA1c, and HOMA2-IR were significantly associated with decreased retrieved oocyte count, MII oocyte count, normally fertilized zygote count, normally cleaved embryo count, high-quality embryo count, or blastocyst formation count after controlling for adiposity and lipid metabolism indicators. Serum TG mediated 6.0-31.0% of the associations; serum TC mediated 6.1-10.8% of the associations; serum HDL-C mediated 9.4-43.6% of the associations; serum LDL-C mediated 4.2-18.2% of the associations; and BMI mediated 26.7-97.7% of the associations. CONCLUSIONS Adiposity and lipid metabolism indicators (i.e., serum TG, serum TC, serum HDL-C, serum LDL-C, and BMI) are significant mediators of the effect of glucose metabolism indicators on IVF/ICSI early reproductive outcomes in PCOS women, indicating the importance of preconception glucose and lipid management and the dynamic equilibrium of glucose and lipid metabolism in PCOS women.
Collapse
Affiliation(s)
- Huahua Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Manfei Si
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Huifeng Shi
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Centre for Healthcare Quality Management in Obstetrics, Beijing, China
| | - Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiaoyu Long
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
17
|
Ichikawa T, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, Fukui M. Estimated small dense low-density lipoprotein-cholesterol and incident type 2 diabetes in Japanese people: Population-based Panasonic cohort study 13. Diabetes Res Clin Pract 2023; 199:110665. [PMID: 37031889 DOI: 10.1016/j.diabres.2023.110665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
AIMS This study aimed to investigate the association between estimated small dense low-density lipoprotein (sd-LDL) and incident type 2 diabetes. METHODS We analyzed the data from a health checkup under a program conducted by Panasonic Corporation between 2008 and 2018. A total of 120,613 participants were included, of whom 6,080 developed type 2 diabetes. Estimated large buoyant (lb)-LDL cholesterol and sd-LDL cholesterol was calculated by the formula using triglyceride and LDL cholesterol. Cox proportional hazard model and time-dependent receiver operating characteristic (ROC) analysis were used to evaluate the association between the lipid profiles and incident type 2 diabetes. RESULTS Multivariate analysis showed that LDL cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, estimated large buoyant (lb)-LDL cholesterol, and estimated sd-LDL were associated with incident type 2 diabetes. Moreover, the area under the ROC curve and optimal cut-off values for estimated sd-LDL cholesterol for incident type 2 diabetes at 10 years were 0.676 and 35.9 mg/dL, respectively. The area under the curve of estimated sd-LDL cholesterol was higher than that of HDL cholesterol, LDL cholesterol, or estimated lb-LDL cholesterol. CONCLUSION The estimated sd-LDL cholesterol was an important predictor of future incidence of diabetes within 10 years.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi 570-8540, Japan.
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazushiro Kurogi
- Department of Health Care Center, Panasonic Health Insurance Organization, 5-55 Sotojima-cho, Moriguchi 570-8540, Japan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Matsushita Memorial Hospital, 5-55 Sotojima-cho, Moriguchi 570-8540, Japan
| | - Masato Ito
- Department of Health Care Center, Panasonic Health Insurance Organization, 5-55 Sotojima-cho, Moriguchi 570-8540, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
18
|
He L, Zheng W, Li Z, Kong W, Zeng T. Association of four lipid-derived indicators with the risk of developing type 2 diabetes: a Chinese population-based cohort study. Lipids Health Dis 2023; 22:24. [PMID: 36788551 PMCID: PMC9930254 DOI: 10.1186/s12944-023-01790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Studies have reported that lipid-derived indicators are associated with type 2 diabetes (T2D) in various populations; however, it is unclear which lipid-derived indicators could effectively predict T2D risk. Therefore, this study aimed to explore the association between four lipid-derived indicators and T2D risk. METHODS This was a post-hoc analysis from a large cohort that included data from 114,700 Chinese individuals aged 20 years and older from 11 cities and 32 sites. The association between four lipid-derived indicators and T2D risk was determined using Kaplan-Meier (KM) survival curves, Cox regression, and restricted cubic spline analyses. This study used receiver operating characteristic (ROC) curves for assessing the ability of four lipid-derived indicators to accurately predict the development of T2D during follow-up. RESULTS This study included a total of 114,700 participants, with a mean age of 44.15. These individuals were followed up for 3.1 years, of which 2668 participants developed T2D. ROC curve analysis showed that TyG was the most robust predictor of 3-year [aera under the ROC (AUC) = 0.77, 95% CI: 0.768, 0.772] and 5-year T2D risk (AUC = 0.763, 95% CI: 0.760, 0.765). In addition, sensitivity analysis showed an association between TyG and an increased incidence of T2D. CONCLUSIONS The results suggest that TyG was a superior for predicting the risk of developing T2D in the general Chinese population.
Collapse
Affiliation(s)
- Linfeng He
- grid.33199.310000 0004 0368 7223Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenbin Zheng
- grid.33199.310000 0004 0368 7223Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Zeyu Li
- grid.33199.310000 0004 0368 7223Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wen Kong
- grid.33199.310000 0004 0368 7223Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. PCSK9 inhibition and cholesterol homeostasis in insulin producing β-cells. Lipids Health Dis 2022; 21:138. [PMID: 36527064 PMCID: PMC9756761 DOI: 10.1186/s12944-022-01751-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a central role in the pathology of atherosclerotic cardiovascular disease. For decades, the gold standard for LDL-C lowering have been statins, although these drugs carry a moderate risk for the development of new-onset diabetes. The inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged in the last years as potential alternatives to statins due to their high efficiency and safety without indications for a diabetes risk so far. Both approaches finally eliminate LDL-C from bloodstream by upregulation of LDL receptor surface expression. Due to their low antioxidant capacity, insulin producing pancreatic β-cells are sensitive to increased lipid oxidation and related generation of reactive oxygen species. Thus, PCSK9 inhibition has been argued to promote diabetes like statins. Potentially, the remaining patients at risk will be identified in the future. Otherwise, there is increasing evidence that loss of circulating PCSK9 does not worsen glycaemia since it is compensated by local PCSK9 expression in β-cells and other islet cells. This review explores the situation in β-cells. We evaluated the relevant biology of PCSK9 and the effects of its functional loss in rodent knockout models, carriers of LDL-lowering gene variants and PCSK9 inhibitor-treated patients.
Collapse
Affiliation(s)
- Günter Päth
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| | - Nikolaos Perakakis
- grid.4488.00000 0001 2111 7257Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany ,grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Christos S. Mantzoros
- grid.38142.3c000000041936754XDivision of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Section of Endocrinology, VA Boston Healthcare System, MA Jamaica Plain, USA
| | - Jochen Seufert
- grid.5963.9Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany, Hugstetter Str. 55, Freiburg, Germany
| |
Collapse
|
20
|
Yu EYW, Ren Z, Mehrkanoon S, Stehouwer CDA, van Greevenbroek MMJ, Eussen SJPM, Zeegers MP, Wesselius A. Plasma metabolomic profiling of dietary patterns associated with glucose metabolism status: The Maastricht Study. BMC Med 2022; 20:450. [PMID: 36414942 PMCID: PMC9682653 DOI: 10.1186/s12916-022-02653-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Glucose metabolism has been reported to be affected by dietary patterns, while the underlying mechanisms involved remain unclear. This study aimed to investigate the potential mediation role of circulating metabolites in relation to dietary patterns for prediabetes and type 2 diabetes. METHODS Data was derived from The Maastricht Study that comprised of 3441 participants (mean age of 60 years) with 28% type 2 diabetes patients by design. Dietary patterns were assessed using a validated food frequency questionnaire (FFQ), and the glucose metabolism status (GMS) was defined according to WHO guidelines. Both cross-sectional and prospective analyses were performed for the circulating metabolome to investigate their associations and mediations with responses to dietary patterns and GMS. RESULTS Among 226 eligible metabolite measures obtained from targeted metabolomics, 14 were identified to be associated and mediated with three dietary patterns (i.e. Mediterranean Diet (MED), Dietary Approaches to Stop Hypertension Diet (DASH), and Dutch Healthy Diet (DHD)) and overall GMS. Of these, the mediation effects of 5 metabolite measures were consistent for all three dietary patterns and GMS. Based on a 7-year follow-up, a decreased risk for apolipoprotein A1 (APOA1) and docosahexaenoic acid (DHA) (RR 0.60, 95% CI 0.55, 0.65; RR 0.89, 95% CI 0.83, 0.97, respectively) but an increased risk for ratio of ω-6 to ω-3 fatty acids (RR 1.29, 95% CI 1.05, 1.43) of type 2 diabetes were observed from prediabetes, while APOA1 showed a decreased risk of type 2 diabetes from normal glucose metabolism (NGM; RR 0.82, 95% CI 0.75, 0.89). CONCLUSIONS In summary, this study suggests that adherence to a healthy dietary pattern (i.e. MED, DASH, or DHD) could affect the GMS through circulating metabolites, which provides novel insights into understanding the biological mechanisms of diet on glucose metabolism and leads to facilitating prevention strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, 210009, China. .,Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.
| | - Zhewen Ren
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands
| | - Siamak Mehrkanoon
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, 6229HX, The Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, 6229HX, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.,School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.564), Maastricht, 6229ER, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands. .,School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.564), Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
21
|
Nezhadebrahimi A, Sepehri H, Jahanshahi M, Marjani M, Marjani A. The effect of simvastatin on gene expression of low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase 1 mRNA in rat hepatic tissues. Arch Physiol Biochem 2022; 128:1383-1390. [PMID: 32643419 DOI: 10.1080/13813455.2020.1772829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study aimed to assess the effect of simvastatin on gene expression of LDLR, SREBPs, and SCD1 in rat hepatic tissues fed with high-fat diets (HFD) and its association with some biochemical parameters. Thirty-two male Wister albino rats were divided into four equal groups (three test and one control groups). The biochemical parameters were determined by using spectrophotometer techniques and the Elisa method. Low-density lipoprotein receptor, sterol regulatory element-binding proteins, stearoyl-CoA desaturase1, Beta-actin were analysed by real-time quantitative polymerase chain reaction (RT-PCR) method. At the end of study, the livers of the rats were separated and changes of hepatic tissue were determined. LDLR, SREBP2, and SCD1 expression increased significantly when compared G1 versus G4 and G2 versus G4. The expression of LDLR, SREBP2, and SCD1 also increased significantly when compared G2 versus G3, G1versus G3 and G1 versus G3 and G2 versus G3. The serum level of cholesterol, triglyceride, glucose, LDL, and HDL increased significantly when compared G1 versus G3. LDL showed significantly decreased when compared G1 versus G2. Cholesterol, glucose and HDL and triglyceride levels were increased significantly when compared G1 versus G4 and G2. Treatment of rats with HFD and simvastatin 20 mg/kg, triglyceride and LDL were almost the same as a control group and LDLR expression increased 98% in liver tissue. Gene expressions may be up-regulated in liver tissue and they showed different effects on biochemical parameters.
Collapse
Affiliation(s)
- Abbas Nezhadebrahimi
- Department of Biochemistry and Biophysics, Student Research Center, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Sepehri
- Department of Physiology, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Marjani
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran
| |
Collapse
|
22
|
Ali MK, Kadir MM, Gujral UP, Fatima SS, Iqbal R, Sun YV, Narayan KMV, Ahmad S. Obesity-associated metabolites in relation to type 2 diabetes risk: A prospective nested case-control study of the CARRS cohort. Diabetes Obes Metab 2022; 24:2008-2016. [PMID: 35676808 PMCID: PMC9543742 DOI: 10.1111/dom.14788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
AIMS To determine whether obesity-associated metabolites are associated with type 2 diabetes (T2DM) risk among South Asians. MATERIALS AND METHODS Serum-based nuclear magnetic resonance imaging metabolomics data were generated from two South Asian population-based prospective cohorts from Karachi, Pakistan: CARRS1 (N = 4017) and CARRS2 (N = 4802). Participants in both cohorts were followed up for 5 years and incident T2DM was ascertained. A nested case-control study approach was developed to select participants from CARRS1 (Ncases = 197 and Ncontrols = 195) and CARRS2 (Ncases = 194 and Ncontrols = 200), respectively. First, we investigated the association of 224 metabolites with general obesity based on body mass index and with central obesity based on waist-hip ratio, and then the top obesity-associated metabolites were studied in relation to incident T2DM. RESULTS In a combined sample of the CARRS1 and CARRS2 cohorts, out of 224 metabolites, 12 were associated with general obesity and, of these, one was associated with incident T2DM. Fifteen out of 224 metabolites were associated with central obesity and, of these, 10 were associated with incident T2DM. The higher level of total cholesterol in high-density lipoprotein (HDL) was associated with reduced T2DM risk (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.53, 0.86; P = 1.2 × 10-3 ), while higher cholesterol esters in large very-low-density lipoprotein (VLDL) particles were associated with increased T2DM risk (OR 1.90, 95% CI 1.40, 2.58; P = 3.5 × 10-5 ). CONCLUSION Total cholesterol in HDL and cholesterol esters in large VLDL particles may be an important biomarker in the identification of early development of obesity-associated T2DM risk among South Asian adults.
Collapse
Affiliation(s)
- Mohammed K. Ali
- Hubert Department of Global HealthRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
- Department of Family and Preventive MedicineSchool of Medicine, Emory UniversityAtlantaGeorgiaUSA
| | - M. Masood Kadir
- Department of Community Health SciencesAga Khan UniversityKarachiPakistan
| | - Unjali P. Gujral
- Hubert Department of Global HealthRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
| | - Syeda Sadia Fatima
- Department of Biological and Biomedical SciencesAga Khan UniversityKarachiPakistan
| | - Romaina Iqbal
- Department of Community Health SciencesAga Khan UniversityKarachiPakistan
| | - Yan V. Sun
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
| | - K. M. Venkat Narayan
- Hubert Department of Global HealthRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
- Department of EpidemiologyRollins School of Public Health, Emory UniversityAtlantaGeorgiaUSA
| | - Shafqat Ahmad
- Department of Medical SciencesMolecular Epidemiology and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
- Preventive Medicine DivisionHarvard Medical School, Brigham and Women's HospitalBostonMassachusettsUSA
| |
Collapse
|
23
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Kibirige D, Sekitoleko I, Balungi P, Lumu W, Nyirenda MJ. Apparent Insulin Deficiency in an Adult African Population With New-Onset Type 2 Diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:944483. [PMID: 36992725 PMCID: PMC10012075 DOI: 10.3389/fcdhc.2022.944483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022]
Abstract
Identifying patients with new-onset type 2 diabetes who have insulin deficiency can aid in timely insulin replacement therapy. In this study, we measured fasting C-peptide concentration to assess endogenous insulin secretion and determine the prevalence and characteristics of patients with insulin deficiency in adult Ugandan patients with confirmed type 2 diabetes at presentation. Methods Adult patients with new-onset diabetes were recruited from seven tertiary hospitals in Uganda. Participants who were positive for the three islet autoantibodies were excluded. Fasting C-peptide concentrations were measured in 494 adult patients, and insulin deficiency was defined as a fasting C-peptide concentration <0.76 ng/ml. The socio-demographic, clinical, and metabolic characteristics of participants with and without insulin deficiency were compared. Multivariate analysis was performed to identify independent predictors of insulin deficiency. Results The median (IQR) age, glycated haemoglobin (HbA1c), and fasting C-peptide of the participants was 48 (39-58) years,10.4 (7.7-12.5) % or 90 (61-113) mmol/mol, and 1.4 (0.8-2.1) ng/ml, respectively. Insulin deficiency was present in 108 (21.9%) participants. Participants with confirmed insulin deficiency were more likely to be male (53.7% vs 40.4%, p=0.01), and had a lower body mass index or BMI [p<0.001], were less likely to be hypertensive [p=0.03], had reduced levels of triglycerides, uric acid, and leptin concentrations [p<0.001]), but higher HbA1c concentration (p=0.004). On multivariate analysis, BMI (AOR 0.89, 95% CI 0.85-0.94, p<0.001), non-HDLC (AOR 0.77, 95% CI 0.61-0.97, p=0.026), and HbA1c concentrations (AOR 1.08, 95% CI 1.00-1.17, p=0.049) were independent predictors of insulin deficiency. Conclusion Insulin deficiency was prevalent in this population, occurring in about 1 in every 5 patients. Participants with insulin deficiency were more likely to have high HbA1c and fewer markers of adiposity and metabolic syndrome. These features should increase suspicion of insulin deficiency and guide targeted testing and insulin replacement therapy.
Collapse
Affiliation(s)
- Davis Kibirige
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Diseases Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Isaac Sekitoleko
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Priscilla Balungi
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Clinical Diagnostics Laboratory Services, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - William Lumu
- Department of Medicine, Mengo Hospital, Kampala, Uganda
| | - Moffat J. Nyirenda
- Non-Communicable Diseases Program, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Diseases Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
25
|
Yang T, Liu Y, Li L, Zheng Y, Wang Y, Su J, Yang R, Luo M, Yu C. Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and Type 2 diabetes in patients with coronary heart disease: a RCSCD-TCM study in China. Cardiovasc Diabetol 2022; 21:93. [PMID: 35659300 PMCID: PMC9166647 DOI: 10.1186/s12933-022-01531-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is often accompanied by undiagnosed dyslipidemia. Research on the association of unconventional lipid markers with prediabetes (pre-DM) and T2DM simultaneously is limited in coronary heart disease (CHD) patients. Methods This study included 28,476 patients diagnosed with CHD. Their lipid levels, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were measured, and non-traditional lipid parameters were calculated. The patients were divided into three groups based on the diabetic status including normoglycemic (NG), pre-DM, and T2DM. Multiple logistic regression was used to compare the association of TG/HDL-C and other non-traditional lipid parameters with pre-DM and T2DM. The tertiles of TG/HDL-C included T1 (TG/HDL-C < 1.10), T2 (1.10 ≤ TG/HDL-C ≤ 1.89) and T3 (TG/HDL-C > 1.89). Low and high TG/HDL-C was defined with sex-specific cutoff points. Results Multiple logistic regression results showed that the non-traditional lipid parameters, including non-HDL-C, LDL-C/HDL-C, TC/HDL-C, non-HDL-C/HDL-C and TG/HDL-C, were all correlated with the risk of pre-DM and T2DM. Meanwhile TG/HDL-C showed the strongest correlation (odds ratio [OR]: 1.19; 95% confidence interval [CI] 1.16–1.23), (OR: 1.36; 95% CI 1.33–1.39). When dividing TG/HDL-C into tertiles, using T1 as a reference, T3 was observed to have the highest association with both pre-DM and T2DM (OR: 1.60; 95% CI 1.48–1.74), (OR: 2.79; 95% CI 2.60–3.00). High TG/HDL-C was significantly associated with pre-DM and T2DM (OR: 1.69; 95% CI 1.52–1.88), (OR: 2.85; 95% CI 2.60–3.12). The association of TG/HDL-C with T2DM and pre-DM existed across different sex, age, smoking, and drinking statuses. Conclusion Elevated non-traditional lipid parameters were significantly associated with pre-DM and T2DM in CHD patients, especially TG/HDL-C. High TG/HDL-C was the risk factor with a strong correlation with the risk of pre-DM and T2DM.
Collapse
|
26
|
Association of LDL:HDL ratio with prediabetes risk: a longitudinal observational study based on Chinese adults. Lipids Health Dis 2022; 21:44. [PMID: 35570291 PMCID: PMC9107720 DOI: 10.1186/s12944-022-01655-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Low-density lipoprotein:high-density lipoprotein cholesterol ratio (LDL:HDL ratio) has a good performance in identifying diabetes mellitus (DM) and insulin resistance. However, it is not yet clear whether the LDL:HDL ratio is associated with a high-risk state of prediabetes. Methods This cohort study retrospectively analyzed the data of 100,309 Chinese adults with normoglycemia at baseline. The outcome event of interest was new-onset prediabetes. Using multivariate Cox regression and smoothing splines to assess the association of LDL:HDL ratio with prediabetes. Results During an average observation period of 37.4 months, 12,352 (12.31%) subjects were newly diagnosed with prediabetes. After adequate adjustment for important risk factors, the LDL:HDL ratio was positively correlated with the prediabetes risk, and the sensitivity analysis further suggested the robustness of the results. Additionally, in stratified analysis, we discovered significant interactions between LDL:HDL ratio and family history of DM, sex, body mass index and age (all P-interaction < 0.05); among them, the LDL:HDL ratio-related prediabetes risk decreased with the growth of body mass index and age, and increased significantly in women and people with a family history of DM. Conclusions The increased LDL:HDL ratio in the Chinese population indicates an increased risk of developing prediabetes, especially in women, those with a family history of DM, younger adults, and non-obese individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01655-5.
Collapse
|
27
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
28
|
Marouf BH, Iqbal Z, Mohamad JB, Bashir B, Schofield J, Syed A, Kilpatrick ES, Stefanutti C, Soran H. Efficacy and Safety of PCSK9 Monoclonal Antibodies in Patients With Diabetes. Clin Ther 2022; 44:331-348. [PMID: 35246337 DOI: 10.1016/j.clinthera.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are novel drugs that have proven efficacy in improving cardiovascular outcomes. Roles for the PCSK9 molecule in metabolic pathways beyond LDL receptor processing and cholesterol homeostasis are well established. PCSK9 genetic variants associated with lower LDL-C levels correlate with a higher incidence of type 2 diabetes (T2DM), calling into question the appropriateness of these drugs in patients with T2DM and those at high risk of developing diabetes, and whether cardiovascular benefit seen with PCSK9 inhibitors might be offset by resultant dysglycemia. The purpose of this review was to examine the role of PCSK9 protein in glucose homeostasis, the impact of PCSK9 inhibition in relation to glucose homeostasis, and whether some of the cardiovascular benefit seen with PCSK9 inhibitors and statins might be offset by resultant dysglycemia. METHODS Comprehensive literature searches of electronic databases of PubMed, EMBASE, and OVID were conducted by using the search terms hyperlipidaemia, PCSK9, diabetes, and glucose as well as other relevant papers of interest collected by the authors. The retrieved papers were reviewed and shortlisted most relevant ones. FINDINGS Genetically determined lower circulating LDL-C and PCSK9 concentrations may have an incremental effect in increasing T2DM incidence, but any perceived harm is outweighed by the reduced risk of atherosclerotic cardiovascular disease achieved through lower lifetime exposure to LDL-C. PCSK9 monoclonal antibodies are effective and safe in patients with T2DM and those at high risk of developing it. The number-needed-to-treat to prevent one atherosclerotic cardiovascular disease event in the FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) study in the subgroup with diabetes is significantly lower than for those without. Therefore, T2DM or being at high risk to develop it should not be a reason to avoid these agents. The safety of PCSK9 inhibition in relation to glucose homeostasis may depend on the method of inhibition and whether it occurs in circulation or the cells. Data from experimental studies and randomized controlled trials suggest no detrimental effect of PCSK9 monoclonal antibodies on glucose homeostasis. More data and large randomized controlled studies are needed to assess the impact of other methods of PCSK9 inhibition on glucose homeostasis. IMPLICATIONS PCSK9monoclonal antibodies markedly reduce LDL-C and consistently reduce cardiovascular mortality in patients with and without diabetes. Current evidence does not suggest an adverse effect of PCSK9 monoclonal antibodies on glycemic parameters.
Collapse
Affiliation(s)
- Bushra Hassan Marouf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Federal Region of Kurdistan, Iraq
| | - Zohaib Iqbal
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jamal Basheer Mohamad
- Department of Internal Medicine, College of Medicine, University of Duhok, Duhok, Federal Region of Kurdistan, Iraq
| | - Bilal Bashir
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jonathan Schofield
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Akheel Syed
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation and University Teaching Trust, Salford, United Kingdom
| | - Eric S Kilpatrick
- Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester, and Hull York Medical School, Hull, United Kingdom
| | - Claudia Stefanutti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Handrean Soran
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
29
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
30
|
Liu H, Liu J, Liu J, Xin S, Lyu Z, Fu X. Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio, a Simple but Effective Indicator in Predicting Type 2 Diabetes Mellitus in Older Adults. Front Endocrinol (Lausanne) 2022; 13:828581. [PMID: 35282431 PMCID: PMC8907657 DOI: 10.3389/fendo.2022.828581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A simple and readily available biomarker can provide an effective approach for the surveillance of type 2 diabetes mellitus (T2DM) in the elderly. In this research, we aim to evaluate the role of triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as an indicator for new-onset T2DM in an elderly Chinese population aged over 75 years. METHODS This longitudinal retrospective cohort study was conducted using a free database from a health check screening project in China. Participants with baseline TG and HDL measurements were enrolled, and the data of T2DM development were collected. The cumulative incident T2DM rates in different quintile groups of TG/HDL-C ratio (Q1 to Q5) were calculated and plotted. The independent effect of baseline TG/HDL-C ratio on T2DM risk during the follow-up period was tested by the Cox proportional hazard model. Subgroup analysis was also conducted to clarify the role of TG/HDL-C ratio in specific populations. RESULTS A total of 231 individuals developed T2DM among 2,571 subjects aged over 75 years during follow-up. Regardless of adjustment for potential confounding variables, elevated TG/HDL-C ratio independently indicated a higher risk of incident T2DM [hazard ratio (HR) = 1.29; 95% confidence interval (CI), 1.14-1.47; P < 0.01. As compared with the lowest quintile (Q1), elevated TG/HDL-C ratio quintiles (Q2 to Q5) were associated with larger HR estimates of incident T2DM [HR (95% CI), 1.35 (0.85-2.17), 1.31 (0.83-2.06), 1.85 (1.20-2.85), and 2.10 (1.38-3.20), respectively]. In addition, a non-linear correlation was found between TG/HDL-C ratio and the risk of T2DM, and the slope of the curve decreased after the cutoff point of 2.54. Subgroup analysis revealed a stronger positive correlation among male individuals and those with body mass index <24 kg/m2. CONCLUSIONS Increased TG/HDL-C ratio indicates a greater risk of new-onset T2DM regardless of confounding variables. TG/HDL-C ratio is a simple but effective indicator in predicting T2DM in older adults. More future investigations are warranted to further promote the clinical application of TG/HDL-C ratio.
Collapse
Affiliation(s)
- Hongzhou Liu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, First Hospital of Handan City, Handan, China
| | - Jing Liu
- Clinics of Cadre, Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jixiang Liu
- Department of Cerebral Surgery, First Hospital of Handan City, Handan, China
| | - Shuanli Xin
- Department of Cardiology, First Hospital of Handan City, Handan, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaomin Fu, ; Zhaohui Lyu,
| | - Xiaomin Fu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaomin Fu, ; Zhaohui Lyu,
| |
Collapse
|
31
|
Carugo S, Sirtori CR, Corsini A, Tokgozoglu L, Ruscica M. PCSK9 Inhibition and Risk of Diabetes: Should We Worry? Curr Atheroscler Rep 2022; 24:995-1004. [PMID: 36383291 PMCID: PMC9750910 DOI: 10.1007/s11883-022-01074-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW Since the clinical benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors occurs in a setting of reducing low-density lipoprotein-cholesterol (LDL-C) to unprecedentedly low levels, it becomes of interest to investigate possible adverse effects pertaining to the risk of new-onset diabetes (NOD). RECENT FINDINGS While safety results reported in either meta-analyses or cardiovascular outcome trials FOURIER (with evolocumab) and ODYSSEY (with alirocumab) did not rise the incidence of NOD, Mendelian randomization analyses were almost concordant in showing an increased risk of NOD. This evidence was in line with post-marketing safety reports highlighting that evolocumab and alirocumab were primarily related to mild hyperglycaemia rather than diabetes, with most of the hyperglycaemic events occurring during the first 6 months of treatment. Considering the different nature of genetic studies and of randomized controlled trials, with careful monitoring of patients, particularly in the earlier phases of treatment, and the identification of those more susceptible to develop NOD, treatment with PCSK9 inhibitors should be of minimal concern.
Collapse
Affiliation(s)
- Stefano Carugo
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,Fondazione Ospedale Maggiore IRCCS Policlinico Di Milano, Milan, Italy
| | - Cesare R. Sirtori
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Corsini
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Lale Tokgozoglu
- grid.14442.370000 0001 2342 7339Hacettepe University, Ankara, Turkey
| | - Massimiliano Ruscica
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
32
|
Kobayashi G, Okada H, Hamaguchi M, Kurogi K, Murata H, Ito M, Fukui M. Dyslipidemia and 10-year diabetes incidence in Japanese people: Population-based Panasonic cohort study 9. Front Endocrinol (Lausanne) 2022; 13:957728. [PMID: 35992095 PMCID: PMC9388748 DOI: 10.3389/fendo.2022.957728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023] Open
Abstract
Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and LDL/HDL ratio have been associated with new-onset diabetes; however, their cut-off levels have not been determined. We clarified the association between dyslipidemia and the incidence of diabetes. People who underwent a health checkup under a program conducted by Panasonic Corporation from 2008 to 2018 were included. In total, 87,570 participants were included, of whom 5,110 developed type 2 diabetes. Cox regression analyses and time-dependent receiver operating characteristic (ROC) curves were used to evaluate the association between LDL cholesterol, HDL cholesterol, or LDL/HDL ratio and incident diabetes and to identify the cut-off values for incident diabetes. Multivariate analysis showed that LDL cholesterol, HDL cholesterol, and LDL/HDL ratio were significantly associated with the risk of incident type 2 diabetes. Further, the area under the ROC curve and optimized cut-off values for LDL cholesterol, HDL cholesterol, and LDL/HDL ratio for incident type 2 diabetes at 10 years were 0.613 and 124 mg/dl, 0.640 and 54 mg/dl, and 0.662 and 2.4 mg/dl, respectively. The LDL/HDL ratio with a cut-off value of 2.4 was a better predictor of incident diabetes within 10 years than LDL and HDL cholesterol.
Collapse
Affiliation(s)
- Genki Kobayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, Japan
- *Correspondence: Hiroshi Okada,
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kazushiro Kurogi
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Masato Ito
- Department of Health Care Center, Panasonic Health Insurance Organization, Moriguchi, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
33
|
Abbasi F, Lamendola C, Harris CS, Harris V, Tsai MS, Tripathi P, Abbas F, Reaven G, Reaven P, Snyder MP, Kim SH, Knowles JW. Statins Are Associated With Increased Insulin Resistance and Secretion. Arterioscler Thromb Vasc Biol 2021; 41:2786-2797. [PMID: 34433298 PMCID: PMC8551023 DOI: 10.1161/atvbaha.121.316159] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Objective Statin treatment reduces the risk of atherosclerotic cardiovascular disease but is associated with a modest increased risk of type 2 diabetes, especially in those with insulin resistance or prediabetes. Our objective was to determine the physiological mechanism for the increased type 2 diabetes risk. Approach and Results We conducted an open-label clinical trial of atorvastatin 40 mg daily in adults without known atherosclerotic cardiovascular disease or type 2 diabetes at baseline. The co-primary outcomes were changes at 10 weeks versus baseline in insulin resistance as assessed by steady-state plasma glucose during the insulin suppression test and insulin secretion as assessed by insulin secretion rate area under the curve (ISRAUC) during the graded-glucose infusion test. Secondary outcomes included glucose and insulin, both fasting and during oral glucose tolerance test. Of 75 participants who enrolled, 71 completed the study (median age 61 years, 37% women, 65% non-Hispanic White, median body mass index, 27.8 kg/m2). Atorvastatin reduced LDL (low-density lipoprotein)-cholesterol (median decrease 53%, P<0.001) but did not change body weight. Compared with baseline, atorvastatin increased insulin resistance (steady-state plasma glucose) by a median of 8% (P=0.01) and insulin secretion (ISRAUC) by a median of 9% (P<0.001). There were small increases in oral glucose tolerance test glucoseAUC (median increase, 0.05%; P=0.03) and fasting insulin (median increase, 7%; P=0.01). Conclusions In individuals without type 2 diabetes, high-intensity atorvastatin for 10 weeks increases insulin resistance and insulin secretion. Over time, the risk of new-onset diabetes with statin use may increase in individuals who become more insulin resistant but are unable to maintain compensatory increases in insulin secretion.
Collapse
Affiliation(s)
- Fahim Abbasi
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| | - Cindy Lamendola
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Chelsea S. Harris
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Vander Harris
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Ming-Shian Tsai
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| | - Pragya Tripathi
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Fakhar Abbas
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Gerald Reaven
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Peter Reaven
- University of Arizona and Phoenix VA Health Care System, Phoenix, Arizona, USA
| | - Michael P. Snyder
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| | - Sun H. Kim
- Department of Medicine, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
- Stanford Prevention Research Center, Stanford University, Stanford, California, USA
| |
Collapse
|
34
|
Sánchez-Archidona AR, Cruciani-Guglielmacci C, Roujeau C, Wigger L, Lallement J, Denom J, Barovic M, Kassis N, Mehl F, Weitz J, Distler M, Klose C, Simons K, Ibberson M, Solimena M, Magnan C, Thorens B. Plasma triacylglycerols are biomarkers of β-cell function in mice and humans. Mol Metab 2021; 54:101355. [PMID: 34634522 PMCID: PMC8602044 DOI: 10.1016/j.molmet.2021.101355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic β-cell deregulations or defects in the function of insulin target tissues. Methods We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. Results We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the β-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. Conclusion TAGs emerge as biomarkers of a liver-to-β-cell axis that links hepatic β-oxidation to β-cell functional mass and insulin secretion. Plasma triacylglycerols correlated with genes controlling β-cell mass and function. Plasma triacylglycerols correlated with genes controlling liver β-oxidation. In humans, triacylglycerols also correlated with key regulators of insulin secretion. Mouse and human data identified PITPNC1 as a candidate regulator of insulin secretion. Triacylglycerols are biomarkers of the liver-to-β-cell axis and β-cell function.
Collapse
Affiliation(s)
- Ana Rodríguez Sánchez-Archidona
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Clara Roujeau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Marko Barovic
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Jurgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | | | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
35
|
Cai Z, Chen Z, Fang W, Li W, Huang Z, Wang X, Chen G, Wu W, Chen Z, Wu S, Chen Y. Triglyceride to high-density lipoprotein cholesterol ratio variability and incident diabetes: A 7-year prospective study in a Chinese population. J Diabetes Investig 2021; 12:1864-1871. [PMID: 33650324 PMCID: PMC8504899 DOI: 10.1111/jdi.13536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS/INTRODUCTION The correlation between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio variability and incident diabetes has not been fully elucidated. We aimed to characterize the relationship between TG/HDL-C ratio variability and new-onset diabetes in Chinese adults. MATERIALS AND METHODS A total of 45,911 patients with three TG and HDL measurements between 2006 and 2011 were enrolled. Average real variability (ARV) were used to evaluate variability, and participants were grouped according to tertiles of TG/HDL-ARV. RESULTS There were 3,724 cases of incident diabetes mellitus during the observation period (6.24 ± 1.2 years). The 7-year cumulative incidences of diabetes mellitus in tertiles 1, 2 and 3 were 6.13%, 8.09% and 11.77%, respectively. New-onset diabetes increased with the tertiles of TG/HDL-ARV. This association was further confirmed after adjustment for mean TG/HDL-C ratio, TG/HDL-C ratio change slope, fasting plasma glucose variability (ARV) and other traditional risk factors for diabetes, the hazard ratio value for incident diabetes was 1.38 (1.25-1.50) for the highest tertile, and risk of diabetes increases by 4% with a one standard deviation increase in TG/HDL-C ratio variability. Restricted cubic splines showed a dose-response relationship between TG/HDL-C ratio variability and incident diabetes. Similar results were obtained in various subgroup and sensitivity analyses. CONCLUSIONS High TG/HDL-C variability was associated with a higher risk of diabetes in Chinese adults, independent of the direction of TG/HDL-C variability.
Collapse
Affiliation(s)
- Zefeng Cai
- Shantou University Medical CollegeShantouChina
| | - Zekai Chen
- Shantou University Medical CollegeShantouChina
| | - Wei Fang
- Shantou University Medical CollegeShantouChina
| | - Weijian Li
- Shantou University Medical CollegeShantouChina
| | - Zegui Huang
- Shantou University Medical CollegeShantouChina
| | | | | | - Weiqiang Wu
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhichao Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Shouling Wu
- Department of CardiologyKailuan General HospitalNorth China University of Science and TechnologyTangshanChina
| | - Youren Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
36
|
Peyot ML, Roubtsova A, Lussier R, Chamberland A, Essalmani R, Murthy Madiraju SR, Seidah NG, Prentki M, Prat A. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158968. [PMID: 33992809 DOI: 10.1016/j.bbalip.2021.158968] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in β-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and β-cell function. We generated the first β-cell-specific KO of PCSK9 (βKO). PCSK9 mRNA and protein expression were reduced by 48% and 78% in βKO islets, respectively, indicating that β-cells constitute a major site of PCSK9 expression. In islets, loss of β-cell PCSK9 resulted in unchanged LDLR protein levels, but reduced LDLR mRNA, indicating that cholesterol internalization is enhanced and that β-cell PCSK9 promotes LDLR degradation. In contrast, whole body PCSK9 KO mice exhibited 2-fold higher LDLR protein levels in islets and a stable expression of cholesterogenic genes. Whole body KO and βKO mice presented normal glucose tolerance, insulin release in response to glucose load and insulin sensitivity. Ex vivo glucose-stimulated insulin secretion in presence or absence of fatty acids was similar in WT and KO islets. Like KO mice, individuals carrying loss-of-function PCSK9 variants may be protected from cholesterol-induced toxicity due to reduced circulating cholesterol levels. Using both whole body KO or βKO models, our data demonstrate that PCSK9 deletion in mouse does not have any toxic effect on β-cell function and glucose homeostasis.
Collapse
Affiliation(s)
- Marie-Line Peyot
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Roxane Lussier
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Ann Chamberland
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - S R Murthy Madiraju
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada
| | - Marc Prentki
- Department of Nutrition, Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM), Montreal, Canada.
| |
Collapse
|
37
|
Triglyceride-rich lipoprotein and LDL particle subfractions and their association with incident type 2 diabetes: the PREVEND study. Cardiovasc Diabetol 2021; 20:156. [PMID: 34321006 PMCID: PMC8320057 DOI: 10.1186/s12933-021-01348-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Triglyceride-rich lipoproteins particles (TRLP) and low density lipoprotein particles (LDLP) vary in size. Their association with β-cell function is not well described. We determined associations of TRLP and LDLP subfractions with β-cell function, estimated as HOMA-β, and evaluated their associations with incident T2D in the general population. Methods We included 4818 subjects of the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study without T2D at baseline. TRLP and LDLP subfraction concentrations and their average sizes were measured using the LP4 algorithm of the Vantera nuclear magnetic resonance platform. HOMA-IR was used as measure of insulin resistance. HOMA-β was used as a proxy of β-cell function. Results In subjects without T2D at baseline, very large TRLP, and LDL size were inversely associated with HOMA-β, whereas large TRLP were positively associated with HOMA-β when taking account of HOMA-IR. During a median follow-up of 7.3 years, 263 participants developed T2D. In multivariable-adjusted Cox regression models, higher concentrations of total, very large, large, and very small TRLP (reflecting remnants lipoproteins) and greater TRL size were associated with an increased T2D risk after adjustment for relevant covariates, including age, sex, BMI, HDL-C, HOMA-β, and HOMA-IR. On the contrary, higher concentrations of large LDLP and greater LDL size were associated with a lower risk of developing T2D. Conclusions Specific TRL and LDL particle characteristics are associated with β-cell function taking account of HOMA-IR. Moreover, TRL and LDL particle characteristics are differently associated with incident T2D, even when taking account of HOMA-β and HOMA-IR. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01348-w.
Collapse
|
38
|
Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population. J Pers Med 2021; 11:jpm11070648. [PMID: 34357115 PMCID: PMC8307008 DOI: 10.3390/jpm11070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Although many cross-section studies have assessed the determinants of glycated hemoglobin (HbA1c), there have been limited studies designed to evaluate the temporal correlates of HbA1c in non-diabetic patients. This study aimed to identify the major determinants of longitudinal change of HbA1c in non-diabetic patients. This study included subjects from the 104,451 participants enrolled between 2012 and 2018 in the Taiwan Biobank. We only included participants with complete data at baseline and follow-up (n = 27,209). Patients with diabetes at baseline or follow-up (n = 3983) were excluded. Finally, 23,226 participants without diabetes at baseline and follow-up were selected in this study. △Parameters was defined as the difference between the measurement baseline and follow-up. Multivariable linear regression analysis was used to identify the major determinants of HbA1c longitudinal change (△HbA1c). During a mean 3.8 year follow-up, after multivariable analysis, new-onset hypertension (coefficient β: 0.014, p < 0.001), high △heart rate (coefficient β: 0.020, p = 0.002), high △BMI (coefficient β: 0.171, p = 0.028), high △fasting glucose (coefficient β: 0.107, p < 0.001), low △creatinine (coefficient β: −0.042, p < 0.001), high △total cholesterol (coefficient β: 0.040, p < 0.001), high △hemoglobin (coefficient β: 0.062, p < 0.001), high △GPT (coefficient β: 0.041, p = 0.001), and low △albumin (coefficient β: −0.070, p < 0.001) were significantly associated with high △HbA1c. In non-diabetic population, strategies to decrease the development of new-onset hypertension, resting heart rate, body mass index, fasting glucose, total cholesterol, and GPT and increase serum albumin level might be helpful in slowing the longitudinal change of HbA1c. In addition, increased hemoglobin and decreased serum creatinine over time also had an impact on the HbA1c elevation over time in non-diabetic population.
Collapse
|
39
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
40
|
Dannecker C, Wagner R, Peter A, Hummel J, Vosseler A, Häring HU, Fritsche A, Birkenfeld AL, Stefan N, Heni M. Low-Density Lipoprotein Cholesterol Is Associated With Insulin Secretion. J Clin Endocrinol Metab 2021; 106:1576-1584. [PMID: 33693827 PMCID: PMC8118579 DOI: 10.1210/clinem/dgab147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Pharmacological lowering of low-density lipoprotein (LDL) cholesterol potently reduces cardiovascular risk while concurrently increasing type 2 diabetes risk. OBJECTIVE The aim of this study was to investigate the relationship between LDL cholesterol concentrations and insulin secretion and glucagon levels. METHODS A total of 3039 individuals without cholesterol-lowering therapy, but with increased risk for diabetes, underwent routine blood tests and a 5-point oral glucose tolerance test (OGTT). Glucagon concentrations, insulin secretion, and insulin clearance indices were derived from the OGTT. RESULTS There was no association between LDL cholesterol and fasting glucagon (P = .7, β = -.01) or post-glucose load glucagon levels (P = .7, β = -.07), but we detected significant positive associations of LDL cholesterol and C-peptide-based indices of insulin secretion (area under the curve [AUC]C-Peptide(0-30min)/AUCGlucose(0-30min): P < .001, β = .06; AUCC-Peptide(0-120min) /AUCGlucose(0-120min): P < .001, β = -.08). In contrast, we found a negative association of insulin-based insulin secretion indices with LDL concentrations (insulinogenic index: P = .01, β = -.04; disposition index: P < .001, β = -.06). LDL cholesterol levels, however, were positively associated with insulin clearance assessed from C-peptide and insulin concentrations, both in the fasting state and post-glucose load (P < .001, β = .09 and P < .001, β = .06, respectively). CONCLUSION As C-peptide based indices reflect insulin secretion independent of hepatic clearance, our results indicate lower insulin secretion in case of lesser LDL cholesterol. This could explain deteriorating glycemic control in response to cholesterol-lowering drugs.
Collapse
Affiliation(s)
- Corinna Dannecker
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Julia Hummel
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Andreas Vosseler
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Duan MJ, Dekker LH, Carrero JJ, Navis G. Blood lipids-related dietary patterns derived from reduced rank regression are associated with incident type 2 diabetes. Clin Nutr 2021; 40:4712-4719. [PMID: 34237698 DOI: 10.1016/j.clnu.2021.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/12/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Blood lipids play a critical role in the pathogenesis of type 2 diabetes, and they are closely related to dietary factors. However, the associations between blood lipids-related dietary patterns and risk of type 2 diabetes are controversial and not fully clear. In this study, we aimed to derive dietary patterns that explained variation in blood lipids and to investigate their associations with incident type 2 diabetes. METHODS The analysis was based on 39,000 women and 25,777 men participating in the Lifelines cohort study (aged 18-65 years, mean 43.2 years for women and 43.5 years for men). Dietary intake was measured using a 110-item semi-quantitative food frequency questionnaire. Reduced rank regression was used to derive dietary patterns with blood lipids (HDL-cholesterol, LDL-cholesterol, triglycerides, total cholesterol, and total cholesterol:HDL-cholesterol ratio) as response variables for women and men separately. The first dietary pattern identified for each sex was selected because they explained the largest variance in blood lipids. The associations between the identified dietary patterns and incident type 2 diabetes were subsequently investigated using multivariate logistic regression models. All analyses were performed separately for women and men. RESULTS During an average follow-up of 43 months, 479 new cases (incidence 0.74%) of type 2 diabetes were identified. Using reduced rank regression, we identified two sex-specific blood lipids-associated dietary patterns characterized by high intake of sugary beverages, added sugar, and low intake of vegetables, fruits, tea, and nuts/seeds. These two sex-specific dietary patterns were similar in food groups but differed in factor loadings. High dietary pattern scores were associated with increased risk of type 2 diabetes after adjustment for age, total energy intake, body mass index, waist-hip ratio, and blood pressure (ORs for the fifth quintile [Q5] using the first quintile [Q1] as reference, 1.87 [95% CI 1.23, 2.83] for women [P-trend < 0.001], and 1.72 [95% CI 1.11, 2.66] for men [P-trend = 0.018]). The associations were attenuated but remained significant after further adjustment for lifestyle and socio-economic factors. CONCLUSIONS Dietary patterns associated with adverse blood lipids are associated with incidence of type 2 diabetes. The present study provides new insights in optimizing blood lipids for the prevention of type 2 diabetes through dietary approaches.
Collapse
Affiliation(s)
- Ming-Jie Duan
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Louise H Dekker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aletta Jacobs School of Public Health, Groningen, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
42
|
Ramin-Mangata S, Thedrez A, Nativel B, Diotel N, Blanchard V, Wargny M, Aguesse A, Billon-Crossouard S, Vindis C, Le May C, Hulin P, Armanet M, Gmyr V, Pattou F, Croyal M, Meilhac O, Nobécourt E, Cariou B, Lambert G. Effects of proprotein convertase subtilisin kexin type 9 modulation in human pancreatic beta cells function. Atherosclerosis 2021; 326:47-55. [PMID: 33933263 DOI: 10.1016/j.atherosclerosis.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) is an endogenous inhibitor of the LDL receptor (LDLR). Mendelian randomization studies suggest that PCSK9 deficiency increases diabetes risk, but the underlying mechanisms remain unknown. The aim of our study was to investigate whether PCSK9 or its inhibition may modulate beta cell function. METHODS We assessed PCSK9 and insulin colocalization in human pancreatic sections by epifluorescent and confocal microscopy. We also investigated the expression and the function of PCSK9 in the human EndoC-βH1 beta cell line, by ELISA and flow cytometry, respectively. PCSK9 was inhibited with Alirocumab or siRNA. LDLR expression and LDL uptake were assessed by flow cytometry. RESULTS PCSK9 was expressed and secreted from beta cells isolated from human pancreas as well as from EndoC-βH1 cells. PCSK9 secretion was enhanced by statin treatment. Recombinant PCSK9 decreased LDLR abundance at the surface of these cells, an effect abrogated by Alirocumab. Alirocumab as well as PCSK9 silencing increased LDLR expression at the surface of EndoC-βH1 cells. Neither exogenous PCSK9, nor Alirocumab, nor PCSK9 silencing significantly altered glucose-stimulated insulin secretion (GSIS) from these cells. High-low density lipoproteins (LDL) concentrations decreased GSIS, but the addition of PCSK9 or its inhibition did not modulate this phenomenon. CONCLUSIONS While PCSK9 regulates LDLR abundance in beta cells, inhibition of exogenous or endogenous PCSK9 does not appear to significantly impact insulin secretion. This is reassuring for the safety of PCSK9 inhibitors in terms of beta cell function.
Collapse
Affiliation(s)
| | - Aurélie Thedrez
- Université de Nantes, CRNH Ouest, Inra UMR 1280 PhAN, Nantes, France; L'institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Brice Nativel
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France
| | - Nicolas Diotel
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France
| | - Valentin Blanchard
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France
| | - Matthieu Wargny
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France; CHU Nantes, INSERM, CIC 1413, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, Nantes, F-44093, France
| | - Audrey Aguesse
- Université de Nantes, CRNH Ouest, Inra UMR 1280 PhAN, Nantes, France
| | | | | | - Cédric Le May
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Philippe Hulin
- Université de Nantes, CHU de Nantes, Inserm UMS 016, Cnrs UMS 3556, Structure Fédérative de Recherche François Bonamy, Micropicell Facility, Nantes, France
| | - Mathieu Armanet
- Cell Therapy Unit, Hôpital Saint Louis, AP-HP, Université Paris Diderot, Paris, France
| | - Valery Gmyr
- European Genomic Institute for Diabetes, Inserm UMR 1190 Translational Research for Diabetes, University of Lille 2, Lille, France
| | - François Pattou
- European Genomic Institute for Diabetes, Inserm UMR 1190 Translational Research for Diabetes, University of Lille 2, Lille, France; Lille University Hospital, Lille, France
| | - Mikaël Croyal
- Université de Nantes, CRNH Ouest, Inra UMR 1280 PhAN, Nantes, France
| | - Olivier Meilhac
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France
| | - Estelle Nobécourt
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France; CHU de La Réunion, Service d'Endocrinologie Nutrition, Saint-Pierre, France
| | - Bertrand Cariou
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Gilles Lambert
- Université de La Réunion, Inserm UMR 1188 DéTROI, Sainte Clotilde, France.
| |
Collapse
|
43
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. High Density Lipoproteins and Diabetes. Cells 2021; 10:cells10040850. [PMID: 33918571 PMCID: PMC8069617 DOI: 10.3390/cells10040850] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have established that a high plasma high density lipoprotein cholesterol (HDL-C) level is associated with reduced cardiovascular risk. However, recent randomised clinical trials of interventions that increase HDL-C levels have failed to establish a causal basis for this relationship. This has led to a shift in HDL research efforts towards developing strategies that improve the cardioprotective functions of HDLs, rather than simply increasing HDL-C levels. These efforts are also leading to the discovery of novel HDL functions that are unrelated to cardiovascular disease. One of the most recently identified functions of HDLs is their potent antidiabetic properties. The antidiabetic functions of HDLs, and recent key advances in this area are the subject of this review. Given that all forms of diabetes are increasing at an alarming rate globally, there is a clear unmet need to identify and develop new approaches that will complement existing therapies and reduce disease progression as well as reverse established disease. Exploration of a potential role for HDLs and their constituent lipids and apolipoproteins in this area is clearly warranted. This review highlights focus areas that have yet to be investigated and potential strategies for exploiting the antidiabetic functions of HDLs.
Collapse
Affiliation(s)
| | | | | | - Kerry-Anne Rye
- Correspondence: ; Tel.: +61-2-9385-1219; Fax: +61-2-9385-1389
| |
Collapse
|
44
|
Brulhart-Meynet MC, Thomas A, Sidibé J, Visentin F, Dusaulcy R, Schwitzgebel V, Pataky Z, Philippe J, Vuilleumier N, James RW, Gosmain Y, Frias MA. Sphingosine-1-phosphate as a key player of insulin secretion induced by high-density lipoprotein treatment. Physiol Rep 2021; 9:e14786. [PMID: 33769715 PMCID: PMC7995544 DOI: 10.14814/phy2.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/05/2022] Open
Abstract
Beta cell failure is one of the most important features of type 2 diabetes mellitus (T2DM). High‐density lipoprotein (HDL) has been proposed to improve β‐cell function. However, the mechanisms involved in this process are still poorly understood. The aim of this study was to investigate the contribution of sphingosine‐1‐phosphate (S1P) in the impact of HDL treatment on insulin secretion by pancreatic β‐cells and to determine its mechanisms. Primary cultures of β‐cells isolated from rat were treated with or without HDL in the presence or absence of S1P pathway inhibitors and insulin secretion response was analyzed. The S1P content of HDL (HDL‐S1P) isolated from T2DM patients was analyzed and correlated to the HDL‐induced insulin secretion. The expression of genes involved in the biosynthesis of the insulin was also evaluated. HDL as well as S1P treatment enhanced glucose‐stimulated insulin secretion (GSIS). In HDL isolated from T2DM patients, while HDL‐S1P was strongly correlated to its pro‐secretory capacity (r = 0.633, p = 0.005), HDL‐cholesterol and apolipoprotein AI levels were not. HDL‐induced GSIS was blocked by the S1P1/3 antagonist but not by the S1P2 antagonist, and was also accompanied by increased intracellular S1P in β‐cells. We also observed that HDL improved GSIS without significant changes in expression levels of insulin biosynthesis genes. Our present study highlights the importance HDL‐S1P in GSIS in T2DM patients and demonstrates that HDL induces insulin secretion by a process involving both intra‐ and extra‐cellular sources of S1P independently of an effect on insulin biosynthesis genes.
Collapse
Affiliation(s)
- Marie-Claude Brulhart-Meynet
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Jonathan Sidibé
- Unit of Toxicology, University Centre of Legal Medicine, Lausanne-Geneva, Switzerland
| | - Florian Visentin
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Rodolphe Dusaulcy
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Valérie Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Zoltan Pataky
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Jacques Philippe
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Richard W James
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Yvan Gosmain
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Miguel A Frias
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
45
|
Protection against Glucolipotoxicity by High Density Lipoprotein in Human PANC-1 Hybrid 1.1B4 Pancreatic Beta Cells: The Role of microRNA. BIOLOGY 2021; 10:biology10030218. [PMID: 33805674 PMCID: PMC8000094 DOI: 10.3390/biology10030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
High-density lipoproteins provide protection against the damaging effects of glucolipotoxicity in beta cells, a factor which sustains insulin secretion and staves off onset of type 2 diabetes mellitus. This study examines epigenetic changes in small non-coding microRNA sequences induced by high density lipoproteins in a human hybrid beta cell model, and tests the impact of delivery of a single sequence in protecting against glucolipotoxicity. Human PANC-1.1B4 cells were used to establish Bmax and Kd for [3H]cholesterol efflux to high density lipoprotein, and minimum concentrations required to protect cell viability and reduce apoptosis to 30mM glucose and 0.25 mM palmitic acid. Microchip array identified the microRNA signature associated with high density lipoprotein treatment, and one sequence, hsa-miR-21-5p, modulated via delivery of a mimic and inhibitor. The results confirm that low concentrations of high-density lipoprotein can protect against glucolipotoxicity, and report the global microRNA profile associated with this lipoprotein; delivery of miR-21-5p mimic altered gene targets, similar to high density lipoprotein, but could not provide sufficient protection against glucolipotoxicity. We conclude that the complex profile of microRNA changes due to HDL treatment may be difficult to replicate using a single microRNA, findings which may inform current drug strategies focused on this approach.
Collapse
|
46
|
Wigger D, Schumacher F, Schneider-Schaulies S, Kleuser B. Sphingosine 1-phosphate metabolism and insulin signaling. Cell Signal 2021; 82:109959. [PMID: 33631318 DOI: 10.1016/j.cellsig.2021.109959] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.
Collapse
Affiliation(s)
- Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
47
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
48
|
Mancuso E, Mannino GC, Fuoco A, Leo A, Citraro R, Averta C, Spiga R, Russo E, De Sarro G, Andreozzi F, Sesti G. HDL (High-Density Lipoprotein) and ApoA-1 (Apolipoprotein A-1) Potentially Modulate Pancreatic α-Cell Glucagon Secretion. Arterioscler Thromb Vasc Biol 2020; 40:2941-2952. [PMID: 33086869 DOI: 10.1161/atvbaha.120.314640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Subjects with low levels of HDL (high-density lipoprotein) and ApoA-1 (apolipoprotein A-1) have increased risk to develop type 2 diabetes. HDL levels are an independent predictor of β-cell function and positively modulate it. Type 2 diabetes is characterized by defects in both β and α-cell function, but the effect of HDL and ApoA1 on α-cell function is unknown. Approach and Results: We observed a significant negative correlation (r=-0.422, P<0.0001) between HDL levels and fasting glucagon in a cohort of 132 Italian subjects. In a multivariable regression analysis including potential confounders such as age, sex, BMI, triglycerides, total cholesterol, fasting and 2-hour postload glucose, and fasting insulin, the association between HDL and fasting glucagon remained statistically significant (β=-0.318, P=0.006). CD1 mice treated with HDL or ApoA-1 for 3 consecutive days showed a 32% (P<0.001) and 23% (P<0.05) reduction, respectively, in glucagon levels following insulin-induced hypoglycemia, compared with controls. Treatment of pancreatic αTC1 clone 6 cells with HDL or ApoA-1 for 24 hours resulted in a significant reduction of glucagon expression (P<0.04) and secretion (P<0.01) after an hypoglycemic stimulus and increased Akt (RAC-alpha serine/threonine-protein kinase) and FoxO1 (forkhead/winged helix box gene, group O-1) phosphorylation. Pretreatment with Akt inhibitor VIII, PI3K (phosphatidylinositol 3-kinase) inhibitor LY294002, and HDL receptor SCARB-1 (scavenger receptor class B type 1) inhibitor BLT-1 (block lipid transport-1) restored αTC1 cell response to low glucose levels. CONCLUSIONS These results support the notion that HDL and ApoA-1 modulate glucagon expression and secretion by binding their cognate receptor SCARB-1, and activating the PI3K/Akt/FoxO1 signaling cascade in an in vitro α-cell model. Overall, these results raise the hypothesis that HDL and ApoA-1 may have a role in modulating glucagon secretion.
Collapse
Affiliation(s)
- Elettra Mancuso
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Anastasia Fuoco
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Antonio Leo
- Department of Science of Health (A.L., R.C., E.R., G.D.S.), University Magna Graecia of Catanzaro, Italy
| | - Rita Citraro
- Department of Science of Health (A.L., R.C., E.R., G.D.S.), University Magna Graecia of Catanzaro, Italy
| | - Carolina Averta
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Rosangela Spiga
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Emilio Russo
- Department of Science of Health (A.L., R.C., E.R., G.D.S.), University Magna Graecia of Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Science of Health (A.L., R.C., E.R., G.D.S.), University Magna Graecia of Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences (E.M., G.C.M., A.F., C.A., R.S., F.A.), University Magna Graecia of Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Italy (G.S.)
| |
Collapse
|
49
|
Pei L, Xiao H, Lai F, Li Z, Li Z, Yue S, Chen H, Li Y, Cao X. Early postpartum dyslipidemia and its potential predictors during pregnancy in women with a history of gestational diabetes mellitus. Lipids Health Dis 2020; 19:220. [PMID: 33036614 PMCID: PMC7547505 DOI: 10.1186/s12944-020-01398-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/01/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND This study aimed to analyze the incidence of early postpartum dyslipidemia and its potential predictors in women with a history of gestational diabetes mellitus (GDM). METHODS This was a retrospective study. Five hundred eighty-nine women diagnosed with GDM were enrolled and followed up at 6-12 weeks after delivery. A 75 g oral glucose tolerance test (OGTT) and lipid levels were performed during mid-trimester and the early postpartum period. Participants were divided into the normal lipid group and dyslipidemia group according to postpartum lipid levels. Demographic and metabolic parameters were analyzed. Multiple logistic regression was performed to analyze the potential predictors for early postpartum dyslipidemia. A receiver operating characteristic curve (ROC) was calculated to determine the cut-off values. RESULTS A total of 38.5% of the 589 women developed dyslipidemia in early postpartum and 60% of them had normal glucose metabolism. Delivery age, systolic blood pressure (SBP), glycated hemoglobin (HbA1c) and low-density lipoprotein cholesterol (LDL-C) were independent predictors of early postpartum dyslipidemia in women with a history of GDM. The cut-offs of maternal age, SBP, HbA1c values, and LDL-C levels were 35 years, 123 mmHg, 5.1%, and 3.56 mmol/L, respectively. LDL-C achieved a balanced mix of high sensitivity (63.9%) and specificity (69.2%), with the highest area under the receiver operating characteristic curve (AUC) (0.696). When LDL-C was combined with age, SBP, and HbA1c, the AUC reached to 0.733. CONCLUSIONS A lipid metabolism evaluation should be recommended in women with a history of GDM after delivery, particularly those with a maternal age > 35 years, SBP > 123 mmHg before labor, HbA1c value > 5.1%, or LDL-C levels > 3.56 mmol/L in the second trimester of pregnancy.
Collapse
Affiliation(s)
- Ling Pei
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Huangmeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Fenghua Lai
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Zeting Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Zhuyu Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shufan Yue
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Haitian Chen
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Xiaopei Cao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
50
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|