1
|
Emond C, DeVito MJ, Birnbaum LS. A physiologically based pharmacokinetic (PBPK) model describing the kinetics of a commercial mixture α-, β-, and γ-hexabromocyclododecane exposure in mice. Arch Toxicol 2025; 99:1043-1058. [PMID: 39847078 DOI: 10.1007/s00204-024-03939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices. The toxicological effects of its exposure in humans are not clearly understood. A recent reassessment pointed out potential thyroid disruption as a primary effect. This current work aims to update a physiologically based pharmacokinetic (PBPK) model for γ-HBCD in C57BL/6 mice and incorporate equations and codes for α-HBCD and β-HBCD isomers and simulate them as a mixture. Physiological parameters were taken from the literature, calculated based on the log Kow or optimized with the dataset. The elimination of HBCDs in urine and feces was optimized to reflect the percent dose excreted, as published in the literature. Compared with data from the literature for α-HBCD, β-HBCD, and γ-HBCD in multiple tissues, the model simulations accurately described the pharmacokinetics of HBCDs in the mouse. The utility of the model was demonstrated by predicting blood concentrations from three studies in adult mice evaluating dopaminergic changes in the brain. Although this PBPK model for the mixture explicitly describes α-HBCD, β-HBCD, and γ-HBCD as individual exposures, but also as a mixture, more experimental data with commercial HBCD mixtures is still needed to improve the model.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Crabtree, QC, Canada.
- School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Montreal, QC, Canada.
| | - Michael J DeVito
- Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- Scientist Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Kramer NE, Siracusa J, Xu H, Barnett LM, Finnerty MC, Guo TL, Wagner JJ, Leach Iii FE, Cummings BS. The brominated flame retardant hexabromocyclododecane causes systemic changes in polyunsaturated fatty acid incorporation in mouse lipids. Toxicol Sci 2025; 203:118-129. [PMID: 39037918 DOI: 10.1093/toxsci/kfae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is a brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date, the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 d for 28 d. Major lipid classes were found to change across brain regions, including membrane glycerolipids such as phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and support a potential role of the microbiome in these alterations.
Collapse
Affiliation(s)
- Naomi E Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Jacob Siracusa
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Hannah Xu
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Lillie M Barnett
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Morgan C Finnerty
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Tai L Guo
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Franklin E Leach Iii
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
- The Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
3
|
Berghuis SA, Bocca G, Bos AF, van Faassen M, Foreman AB, van Vliet-Ostaptchouk JV, Sauer PJJ. Adolescent urinary concentrations of phthalate metabolites and indices of overweight and cardiovascular risk in Dutch adolescents. ENVIRONMENT INTERNATIONAL 2024; 194:109167. [PMID: 39616961 DOI: 10.1016/j.envint.2024.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024]
Abstract
Phthalates have been linked to cardiovascular risk factors. Exposure to chemicals with endocrine disrupting properties during the pubertal period can interfere with normal endocrine processes. This study aims to determine whether adolescent urinary concentrations of phthalate metabolites are associated with indices of overweight and cardiovascular risk in 13-15-year-old children. In this Dutch observational cross-sectional cohort study, 101 adolescents were included (mean age 14.4 ± 0.8 years), 55 were boys. The concentrations of 13 phthalate metabolites were measured in morning urine samples. Levels of cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, fasting insulin, fasting glucose, leptin, and adiponectin were measured. The children's height, weight, waist circumference, hip circumference, and blood pressure were measured. Higher urinary mono-ethyl phthalate concentrations were associated with higher BMI and a larger hip circumference. In girls, higher urinary mono-hydroxy-iso-nonyl phthalate concentrations were associated with higher levels of lipids and obesogenic traits. In boys, higher concentrations of urinary phthalate metabolites were associated with lower LDL-C. The results of this explorative study suggest that higher levels of phthalate metabolites are associated with higher levels of lipids and obesogenic traits in 13-15-year-old girls.
Collapse
Affiliation(s)
- Sietske A Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands; Faculty of Health, Department of Psychology, York University, 4700 Keele St, Toronto, Ontario M3J 1P3, Canada.
| | - Gianni Bocca
- Division of Endocrinology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands.
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands.
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands.
| | - Anne B Foreman
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands.
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands
| | - Pieter J J Sauer
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
4
|
McDermott A, Bernier C, Piché V, Plante I, Patten SA. Exposure to an environmentally representative mixture of polybrominated diphenyl ethers (PBDEs) alters zebrafish neuromuscular development. Neurotoxicology 2024; 105:247-256. [PMID: 39490620 DOI: 10.1016/j.neuro.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a prevalent group of brominated flame retardants (BFRs) added to several products such as electronics, plastics, and textiles to reduce their flammability. They are reported as endocrine disruptors and neurodevelopmental toxicants that can accumulate in human and wildlife tissues, thus making their ability to leach out of products into the environment a great cause for concern. In this study, zebrafish (Danio rerio) embryos and larvae were exposed to a wide concentration range (1.5, 15, 150 and 300 pM) of a PBDE mixture from one to six days post-fertilization (dpf). Hatching rates, mortality and general morphology were assessed during the exposure period. A delay in hatching was observed at the two highest PBDEs concentrations and mortality rate increased at 6 dpf. By 4 dpf, larvae exposed to 150 pM and 300 pM PBDEs developed an upcurved phenotype. Analysis of motor behavior at 6 dpf revealed that PBDE exposure acutely reduced locomotion. To further analyze these motor deficits, we assessed the neural network density and motor neuron and neuromuscular junctions (NMJ) development by immunostaining and imaging. Acetylated α-tubulin staining revealed a significant loss of neurons in a dose-dependent manner. Synaptic vesicle protein 2 (SV2) and ⍺-bungarotoxin (⍺-BTX) staining revealed a similar pattern, with a significant loss of SV2 and nicotinic acetylcholine receptors, thus preventing the colocalization of presynaptic neurons with postsynaptic neurons. Consistent with these results, the presence of cleaved caspase-3 and acridine orange positive cells showed increased cell death in zebrafish larvae exposed to PBDEs. Our results suggest that exposure to PBDEs leads to deficits in the zebrafish neuromuscular system through neuron death, inducing morphological and motor deficiencies throughout their development. They provide valuable insight into the neurotoxic effects of PBDEs, further highlighting the relevance of the zebrafish model in toxicological studies.
Collapse
Affiliation(s)
- Alec McDermott
- INRS - Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Cécilia Bernier
- INRS - Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Vanessa Piché
- INRS - Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Isabelle Plante
- INRS - Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
5
|
Chen L, Chen LJ, Shen HW, Hsu C, Zeng JH, Li JH, Liu JL, Yang JZ, Liu Y, Li XW, Xie XL, Wang Q, Zhao D. Inhibition of HIF-2α expression in cardiomyocytes attenuates PCB126-induced cardiotoxicity associated with decreased apoptosis through the PI3K/Akt and p53 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117185. [PMID: 39423507 DOI: 10.1016/j.ecoenv.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
PCB126, a type of polychlorinated biphenyl (PCB), is a persistent pollutant found in both biotic and abiotic environments and poses significant public health risks due to its potential to cause cardiac damage with prolonged exposure. Hypoxia-inducible factor-2α (HIF-2α) is part of the hypoxia-inducible factor (HIF) transcription complex family. Previous studies have shown that knocking out or inhibiting HIF-2α expression can ameliorate pulmonary hypertension and right ventricular dysfunction. This study aimed to investigate whether cardiac-specific knockout of HIF-2α can alleviate the cardiotoxicity caused by PCB126. In this study, cardiac-specific knockout mice and wild-type mice were orally administered PCB126 or corn oil (50 μg/kg/week) for eight weeks. Our findings indicated that PCB126 induces cardiotoxicity and myocardial injury, as evidenced by elevated cardiac enzyme levels and increased cardiac collagen fibers. RNA sequencing revealed that PCB126-induced cardiotoxicity involves the PI3K/Akt and p53 signaling pathways, which was confirmed by western blot analysis. Notably, cardiac-specific knockout of HIF-2α mitigated the damage caused by PCB126, reducing the expression of cardiac enzymes, inflammatory cytokines, and myocardial collagen fibers. Under normal conditions, conditional knockout (CKO) of the HIF-2α gene in cardiomyocytes did not affect the morphology or function of the mouse heart. However, HIF-2α CKO in the heart reduced the cardiotoxic effects of PCB126 by decreasing apoptosis through the PI3K/Akt and p53 signaling pathways. In conclusion, inhibiting HIF-2α expression in cardiomyocytes attenuated PCB126-induced cardiotoxicity by modulating apoptosis through these signaling pathways.
Collapse
Affiliation(s)
- Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Wu Shen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
| |
Collapse
|
6
|
Kramer NE, Fillmore CE, Slane EG, Barnett LMA, Wagner JJ, Cummings BS. Insights into brominated flame retardant neurotoxicity: mechanisms of hippocampal neural cell death and brain region-specific transcriptomic shifts in mice. Toxicol Sci 2024; 201:282-299. [PMID: 38995820 DOI: 10.1093/toxsci/kfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Brominated flame retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of hexabromocyclododecane (HBCD) exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus-derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (current use), HBCD (phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All 3 BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 μM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed that BFR exposure increased LC3-II conversion and autophagosome/autolysosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared with the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex protein SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of changes in vesicular trafficking.
Collapse
Affiliation(s)
- Naomi E Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Courtney E Fillmore
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Lillie M A Barnett
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
7
|
Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol 2024; 98:3019-3034. [PMID: 38761188 PMCID: PMC11324666 DOI: 10.1007/s00204-024-03787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.
Collapse
Affiliation(s)
- Fabian Wagenaars
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Peter Cenijn
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Zhongli Chen
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Marcel Meima
- Academic Centre for Thyroid Diseases, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Martin Scholze
- Centre for Pollution Research and Policy, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-Life), Vrije Universiteit Amsterdam (VU), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Ricolfi L, Taylor MD, Yang Y, Lagisz M, Nakagawa S. Maternal transfer of per- and polyfluoroalkyl substances (PFAS) in wild birds: A systematic review and meta-analysis. CHEMOSPHERE 2024; 361:142346. [PMID: 38759804 DOI: 10.1016/j.chemosphere.2024.142346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in consumer products. PFAS can accumulate in animal tissues, resulting in biomagnification and adverse effects on wildlife, such as reproductive impairment. In bird species, PFAS are transferred from mothers to eggs along with essential nutrients and may affect embryo development. However, the extent of maternal PFAS transfer across different species and compounds remains poorly understood. Here, we conducted a systematic review and meta-analysis to quantify maternal PFAS transfer in wild birds and investigate potential sources of variation. We tested the moderating effects of compounds' physicochemical properties and biological traits of studied birds. The dataset included 505 measurements of PFAS concentration and 371 effect sizes derived from 13 studies on 16 bird species and 25 compounds. Overall, across all studies and species, we found a 41% higher concentration of PFAS in offspring than in mothers. Specifically, contaminants were concentrated in the yolk, longer and heavier compounds showed preferential transfer, larger clutch size was associated with decreased PFAS transfer and a higher transfer rate was shown in species with piscivorous and opportunistic/diverse diets. A validation assessment showed good robustness of the overall meta-analytic result. Given the crucial role of birds in maintaining ecological balance, this research article has relevant implications for modelling the impacts of PFAS on wildlife, ecosystems, and human health.
Collapse
Affiliation(s)
- Lorenzo Ricolfi
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| | - Matthew D Taylor
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia; Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Nelson Bay, Australia; Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
| | - Yefeng Yang
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
10
|
Balalian AA, Stingone JA, Kahn LG, Herbstman JB, Graeve RI, Stellman SD, Factor-Litvak P. Perinatal exposure to polychlorinated biphenyls (PCBs) and child neurodevelopment: A comprehensive systematic review of outcomes and methodological approaches. ENVIRONMENTAL RESEARCH 2024; 252:118912. [PMID: 38615789 DOI: 10.1016/j.envres.2024.118912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs), extensively used in various products, prompt ongoing concern despite reduced exposure since the 1970s. This systematic review explores prenatal PCB and hydroxylated metabolites (OH-PCBs) exposure's association with child neurodevelopment. Encompassing cognitive, motor development, behavior, attention, ADHD, and ASD risks, it also evaluates diverse methodological approaches in studies. METHODS PubMed, Embase, PsycINFO, and Web of Science databases were searched through August 23, 2023, by predefined search strings. Peer-reviewed studies published in English were included. The inclusion criteria were: (i) PCBs/OH-PCBs measured directly in maternal and cord blood, placenta or breast milk collected in the perinatal period; (ii) outcomes of cognitive development, motor development, attention, behavior, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) among children≤18 years old. Quality assessment followed the National Heart, Lung, and Blood Institute's tool. RESULTS Overall, 87 studies were included in this review. We found evidence for the association between perinatal PCB exposure and adverse cognitive development and attention issues in middle childhood. There appeared to be no or negligible link between perinatal PCB exposure and early childhood motor development or the risk of ADHD/ASD. There was an indication of a sex-specific association with worse cognition and attention scores among boys. Some individual studies suggested a possible association between prenatal exposure to OH-PCBs and neurodevelopmental outcomes. There was significant heterogeneity between the studies in exposure markers, exposure assessment timing, outcome assessment, and statistical analysis. CONCLUSIONS Significant methodological, clinical and statistical heterogeneity existed in the included studies. Adverse effects on cognitive development and attention were observed in middle childhood. Little or no apparent link on both motor development and risk of ADHD/ASD was observed in early childhood. Inconclusive evidence prevailed regarding other neurodevelopmental aspects due to limited studies. Future research could further explore sex-specific associations and evaluate associations at lower exposure levels post-PCB ban in the US. It should also consider OH-PCB metabolites, co-pollutants, mixtures, and their potential interactions.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Question Driven Design and Analysis Group (QD-DAG), New York, NY, USA.
| | - Jeanette A Stingone
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Linda G Kahn
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Richard I Graeve
- Institute for Medical Sociology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Steven D Stellman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Wei A, Ou M, Wang S, Zou Y, Xiang C, Xu F, Sun L. Preparation of a Highly Flame-Retardant Urea-Formaldehyde Resin and Flame Retardance Mechanism. Polymers (Basel) 2024; 16:1761. [PMID: 39000619 PMCID: PMC11243799 DOI: 10.3390/polym16131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Urea-formaldehyde (UF) resin is the most widely used adhesive resin. However, it is necessary to improve its flame-retardant performance to expand its applications. In this study, exploiting electrostatic interactions, anionic phytic acid and cationic chitosan were combined to form a bio-based intumescent flame-retardant, denoted phytic acid-chitosan polyelectrolyte (PCS). The molecular structure of the urea-formaldehyde resin was optimized by crosslinking with melamine and plasticizing with polyvinyl alcohol-124. Thus, by combining PCS with the urea-formaldehyde resin and with ammonium polyphosphate and ammonium chloride as composite curing agents, flame-retardant urea-formaldehyde resins (FRUFs) were prepared. Compared to traditional UF resin, FRUF showed excellent flame retardancy and not only reached the UL-94 V-0 level, but the limit of oxygen index was also as high as 36%. Compared to those of UF, the total heat release and peak heat release rate of FRUF decreased by 86.44% and 81.13%, respectively. The high flame retardancy of FRUF originates from the combination of oxygen and heat isolation by the dense carbon layer, quenching of phosphorus free radicals, and dilution of oxygen by a non-flammable gas. In addition, the mechanical properties of the FRUF remained good, even after modification. The findings of this study provide a reference for the flame-retardant application of FRUF for applications in multiple fields.
Collapse
Affiliation(s)
- An Wei
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Nanning Guidian Electronic Technology Research Institute Co., Ltd., Nanning 530000, China
| | - Meifeng Ou
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shunxiang Wang
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Nanning Guidian Electronic Technology Research Institute Co., Ltd., Nanning 530000, China
| | - Yongjin Zou
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Nanning Guidian Electronic Technology Research Institute Co., Ltd., Nanning 530000, China
| | - Cuili Xiang
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lixian Sun
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
12
|
Ishihara A. Hydroxylated polychlorinated biphenyls may affect the thyroid hormone-induced brain development during metamorphosis of Xenopus laevis by disturbing the expression of matrix metalloproteinases. Mol Biol Rep 2024; 51:624. [PMID: 38710963 DOI: 10.1007/s11033-024-09555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Thyroid hormones are primarily responsible for the brain development in perinatal mammals. However, this process can be inhibited by external factors such as environmental chemicals. Perinatal mammals are viviparous, which makes direct fetal examination difficult. METHODS We used metamorphic amphibians, which exhibit many similarities to perinatal mammals, as an experimental system. Therefore, using metamorphic amphibians, we characterized the gene expression of matrix metalloproteinases, which play an important role in brain development. RESULTS The expression of many matrix metalloproteinases (mmps) was characteristically induced during metamorphosis. We also found that the expression of many mmps was induced by T3 and markedly inhibited by hydroxylated polychlorinated biphenyls (PCBs). CONCLUSION Overall, our findings suggest that hydroxylated PCBs disrupt normal brain development by disturbing the gene expression of mmps.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
13
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Christensen GM, Terrell ML, Pearce BD, Hood RB, Barton H, Pearson M, Marcus M. Exploring autism spectrum disorder (ASD) and attention deficit disorder (ADD/ADHD) in children exposed to polybrominated biphenyl. Environ Epidemiol 2024; 8:e304. [PMID: 38617420 PMCID: PMC11008633 DOI: 10.1097/ee9.0000000000000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Background Although the causes of attention-deficit/hyperactivity disorder (ADHD) and autism have not been identified, exposure to endocrine-disrupting chemicals, such as polybrominated biphenyl (PBB), during fetal development and early life has been suspected to impact neurological development. This study aims to investigate the association between prenatal and early life exposure to PBB and the development of ADHD and autism later in life. Methods Data from the Michigan PBB Registry, a cohort of Michigan residents who had been exposed to PBB in a mass contamination event in 1973, was leveraged for this nested case-control analysis among two distinct samples: (1) Those who self-reported ADHD or autism diagnosis, and (2) mothers who reported their child's ADHD or autism diagnosis. PBB exposure was measured in participants of the PBB Registry, and the mother's PBB level was used in mother-reported analyses. Cases were matched with controls by sex and year of birth. Conditional logistic regression models were used to estimate the association between PBB level and case status. Results PBB levels were higher among those who were exposed in early life compared with those exposed in utero (geometric mean: 0.300 ng/ml vs. 0.016 ng/ml). Among women in this cohort, a higher than expected proportion of self-reported ADHD diagnosis (11.11%), compared with population estimates. PBB was not associated with ADHD or autism in either self-reported or mother-reported analyses. Conclusions This study adds to the sparse literature about prenatal and early life exposure to PBB-153 and ADHD and autism. Future studies should examine potential effect modification by sex.
Collapse
Affiliation(s)
- Grace M. Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Metrecia L. Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Brad D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Robert B. Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Hillary Barton
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Melanie Pearson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Zhong C, Rando J, Patti MA, Braun JM, Chen A, Xu Y, Lanphear BP, Yolton K, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Lyall K. Gestational thyroid hormones and autism-related traits in the EARLI and HOME studies. Autism Res 2024; 17:716-727. [PMID: 38436527 DOI: 10.1002/aur.3115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Thyroid hormones are essential for neurodevelopment. Few studies have considered associations with quantitatively measured autism spectrum disorder (ASD)-related traits, which may help elucidate associations for a broader population. Participants were drawn from two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI), enrolling pregnant women who already had a child with ASD, and the Health Outcomes and Measures of the Environment (HOME) Study, following pregnant women from the greater Cincinnati, OH area. Gestational thyroid-stimulating hormone (TSH) and free thyroxine (FT4) were measured in mid-pregnancy 16 (±3) weeks gestation serum samples. ASD-related traits were measured using the Social Responsiveness Scale (SRS) at ages 3-8 years. The association was examined using quantile regression, adjusting for maternal and sociodemographic factors. 278 participants (132 from EARLI, 146 from HOME) were included. TSH distributions were similar across cohorts, while FT4 levels were higher in EARLI compared to HOME. In pooled analyses, particularly for those in the highest SRS quantile (95th percentile), higher FT4 levels were associated with increasing SRS scores (β = 5.21, 95% CI = 0.93, 9.48), and higher TSH levels were associated with decreasing SRS scores (β = -6.94, 95% CI = -11.04, -2.83). The association between TSH and SRS remained significant in HOME for the 95% percentile of SRS scores (β = -6.48, 95% CI = -12.16, -0.80), but not EARLI. Results for FT4 were attenuated when examined in the individual cohorts. Our results add to evidence that gestational thyroid hormones may be associated with ASD-related outcomes by suggesting that relationships may differ across the distribution of ASD-related traits and by familial likelihood of ASD.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Marisa A Patti
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph M Braun
- School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, California, USA
| | - M Daniele Fallin
- Emory Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
- College of Health and Human Development, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
17
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
18
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Bloch S, Lévêque L, Hertz-Picciotto I, Puschner B, Fritsche E, Klose J, I Kramer N, Bouchard MF, Chandrasekera PC, Verner MA. Using in vitro data to derive acceptable exposure levels: A case study on PBDE developmental neurotoxicity. ENVIRONMENT INTERNATIONAL 2024; 183:108411. [PMID: 38217900 DOI: 10.1016/j.envint.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Current acceptable chemical exposure levels (e.g., tolerable daily intake) are mainly based on animal experiments, which are costly, time-consuming, considered non-ethical by many, and may poorly predict adverse outcomes in humans. OBJECTIVE To evaluate a method using human in vitro data and biological modeling to calculate an acceptable exposure level through a case study on 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) developmental neurotoxicity (DNT). METHODS We reviewed the literature on in vitro assays studying BDE-47-induced DNT. Using the most sensitive endpoint, we derived a point of departure using a mass-balance in vitro disposition model and benchmark dose modeling for a 5% response (BMC05) in cells. We subsequently used a pharmacokinetic model of gestation and lactation to estimate administered equivalent doses leading to four different metrics of child brain concentration (i.e., average prenatal, average postnatal, average overall, and maximum concentration) equal to the point of departure. The administered equivalent doses were translated into tolerable daily intakes using uncertainty factors. Finally, we calculated biomonitoring equivalents for maternal serum and compared them to published epidemiological studies of DNT. RESULTS We calculated a BMC05 of 164 μg/kg of cells for BDE-47 induced alteration of differentiation in neural progenitor cells. We estimated administered equivalent doses of 0.925-3.767 μg/kg/day in mothers, and tolerable daily intakes of 0.009-0.038 μg/kg/day (composite uncertainty factor: 100). The lowest derived biomonitoring equivalent was 19.75 ng/g lipids, which was consistent with reported median (0.9-23 ng/g lipids) and geometric mean (7.02-26.9 ng/g lipids) maternal serum concentrations from epidemiological studies. CONCLUSION This case study supports using in vitro data and biological modeling as a viable alternative to animal testing to derive acceptable exposure levels.
Collapse
Affiliation(s)
- Sherri Bloch
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Laura Lévêque
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | | | - Birgit Puschner
- Michigan State University Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, USA; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ellen Fritsche
- IUF-Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany; DNTOX GmbH, Düsseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jördis Klose
- IUF-Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Maryse F Bouchard
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Institut national de la recherche scientifique, Université du Québec, Quebec City, QC, Canada
| | | | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada; Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Zhang Y, Li W, Zhu J, Qian X, Pei W, Gu Z, Wu Q, Zhang Z, Li L. Pentachlorophenol exposure induced neurotoxicity by disrupting citrulline metabolism in larvae and adult zebrafish. Toxicol Appl Pharmacol 2023; 478:116708. [PMID: 37778480 DOI: 10.1016/j.taap.2023.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 μg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.
Collapse
Affiliation(s)
- Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Wenzheng Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xin Qian
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhenyang Gu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
21
|
Holuka C, Morel C, Roth S, Lamartinière Y, Mériaux SB, Paoli J, Guébels P, Duca RC, Godderis L, van Nieuwenhuyse A, Kremarik-Bouillaud P, Cariou R, Emond C, Schroeder H, Turner JD, Grova N. The epigenetic hallmark of early-life α-hexabromocyclododecane exposure: From cerebellar 6-mA levels to locomotor performance in adulthood. ENVIRONMENT INTERNATIONAL 2023; 178:108103. [PMID: 37494814 DOI: 10.1016/j.envint.2023.108103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Faculty of Science, University of Luxembourg, L-4365 Belval, Luxembourg.
| | - Chloé Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sarah Roth
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Yordenca Lamartinière
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Justine Paoli
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | - Pauline Guébels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Radu C Duca
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Lode Godderis
- Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium.
| | - An van Nieuwenhuyse
- Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg; Centre for Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Pascaline Kremarik-Bouillaud
- UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | | | - Claude Emond
- PKSH Inc., Crabtree, Quebec, Canada; School of Public Health, DSEST, University of Montreal, Montreal, Quebec, Canada.
| | - Henri Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg.
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-Sur-Alzette, Luxembourg; Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS), University of Lorraine, B.P. 184, 54511 Nancy, France.
| |
Collapse
|
22
|
Park S, Cowell W, Margolis AE, Sjodin A, Jones R, Rauh V, Wang S, Herbstman JB. Prenatal exposure to polybrominated diphenyl ethers and inattention/hyperactivity symptoms in mid to late adolescents. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1061234. [PMID: 38455925 PMCID: PMC10910905 DOI: 10.3389/fepid.2023.1061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/17/2023] [Indexed: 03/09/2024]
Abstract
Introduction Prenatal exposure to polybrominated diphenyl ethers (PBDEs) has been associated with increased symptoms of attention deficit/hyperactivity disorder (ADHD) in early to middle childhood, as well as early adolescence. However, data are limited for the long-lasting impact of exposure on outcomes assessed across the entire adolescent period and the sex-specificity of such associations. Methods We investigated the association between continuous natural-log-transformed cord plasma PBDE concentrations and ADHD rating scale 4th edition (ADHD-RS-IV) score from mid adolescence (approximately 11 years old) to late adolescence (approximately 17 years old). The study sample includes a subset (n = 219) of the African American and Dominican children enrolled in the Columbia Center for Children's Environmental Health Mothers and Newborns birth cohort. We used generalized estimating equations to account for the repeated measure of ADHD-RS scores. We examined interactions between exposure to PBDE and sex using cross-product terms and sex-stratified models. In addition, we used linear regression using an age-stratified sample as a sensitivity analysis. Results and Discussion Associations between prenatal exposure and parents' reports of ADHD symptoms varied by sex (p-interaction <0.20), with positive relationships observed among girls but not boys from sex-stratified models. Our finding suggests prenatal exposure to PBDE may affect ADHD symptoms assessed during middle to late adolescence and the sex-specificity of such impact. Our results can be confirmed by future studies with larger and more diverse samples.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Whitney Cowell
- Departments of Pediatrics and Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Virginia Rauh
- Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
23
|
Grossklaus R, Liesenkötter KP, Doubek K, Völzke H, Gaertner R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023; 15:2249. [PMID: 37242131 PMCID: PMC10223865 DOI: 10.3390/nu15102249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review critically discusses the publications of the last 30 years on the impact of mild to moderate iodine deficiency and the additional impact of endocrine disrupters during pregnancy on embryonal/fetal brain development. An asymptomatic mild to moderate iodine deficiency and/or isolated maternal hypothyroxinemia might affect the development of the embryonal/fetal brain. There is sufficient evidence underlining the importance of an adequate iodine supply for all women of childbearing age in order to prevent negative mental and social consequences for their children. An additional threat to the thyroid hormone system is the ubiquitous exposure to endocrine disrupters, which might exacerbate the effects of iodine deficiency in pregnant women on the neurocognitive development of their offspring. Ensuring adequate iodine intake is therefore essential not only for healthy fetal and neonatal development in general, but it might also extenuate the effects of endocrine disruptors. Individual iodine supplementation of women of childbearing age living in areas with mild to moderate iodine deficiency is mandatory as long as worldwide universal salt iodization does not guarantee an adequate iodine supply. There is an urgent need for detailed strategies to identify and reduce exposure to endocrine disrupters according to the "precautional principle".
Collapse
Affiliation(s)
- Rolf Grossklaus
- Department of Food Safety, Federal Institute for Risk Assessment, D-10589 Berlin, Germany;
| | | | - Klaus Doubek
- Professional Association of Gynecologists, D-80337 Munich, Germany
| | - Henry Völzke
- Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Roland Gaertner
- Medical Clinic IV, University of Munich, D-80336 Munich, Germany
| |
Collapse
|
24
|
Naha A, Antony S, Nath S, Sharma D, Mishra A, Biju DT, Madhavan A, Binod P, Varjani S, Sindhu R. A hypothetical model of multi-layered cost-effective wastewater treatment plant integrating microbial fuel cell and nanofiltration technology: A comprehensive review on wastewater treatment and sustainable remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121274. [PMID: 36804140 DOI: 10.1016/j.envpol.2023.121274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.
Collapse
Affiliation(s)
- Aniket Naha
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla-689 101, Kerala, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla-689 101, Kerala, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar-788004, India
| | - Dhrubjyoti Sharma
- Biological Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar, 382 355 India
| | - Anamika Mishra
- Department of Biotechnology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Devika T Biju
- Department of Biomedical Science, University of Salford, England, M5 4WT, United Kingdom
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam-690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691 505, Kerala, India.
| |
Collapse
|
25
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
26
|
Foreman AB, van Vliet-Ostaptchouk JV, van Faassen M, Kema IP, Wolffenbuttel BH, Sauer PJJ, Bos AF, Berghuis SA. Urinary concentrations of bisphenols and parabens and their association with attention, hyperactivity and impulsivity at adolescence. Neurotoxicology 2023; 95:66-74. [PMID: 36649891 DOI: 10.1016/j.neuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neurobehavioural disorder diagnoses have been increasing over the last decades, leading to heightened interest in the aetiological factors involved. Endocrine disrupting chemicals, such as parabens and bisphenols, have been suggested as one of those factors. It is unknown whether exposure during adolescence may affect neurobehavioural development. OBJECTIVE To determine whether urinary concentrations of parabens and bisphenols are associated with attention and concentration in adolescents, in general and sex-specific. METHODS We invited 188 adolescents (13-15 years old) for the follow-up birth cohort-study. Concentrations of five parabens and three bisphenols (BPA; BPF; BPS) were measured in morning urine after overnight fasting, using a validated LC-MS/MS method. Attention and concentration were assessed at the clinic with subtests of the Test of Everyday Attention in Children and the Dutch Attention Deficit Hyperactivity Disorder questionnaire (AVL), the latter being filled in by parents. Linear regression analyses were performed, adjusting for urine creatinine concentrations and potential confounding factors. RESULTS 101 (54%) adolescents participated (46 girls; 55 boys). Urinary paraben concentrations were higher in girls than in boys. Methylparaben was positively associated with attention in girls (p ≤ .05; B= -2.836; 95%CI= -5.175;-.497), ethylparaben negatively with hyperactivity (p ≤ .05; B= -1.864; 95%CI= -3.587;-.141). Butylparaben was associated with more optimal scores on parent reported attention. Propylparaben was negatively associated with scores on sustained auditory attention in girls (p ≤ .10; B=.444; 95%CI= -.009;.896). Bisphenol concentrations were not associated with scores on attention and concentration after adjusting for confounders. CONCLUSION In 13-15-year-old Dutch adolescents, urinary concentrations of methylparaben and ethylparaben were associated with better attention and less hyperactivity, whereas a trend toward significance was found between higher urinary propylparaben concentrations and poorer attention. Bisphenol concentrations were not associated with attention and concentration after adjusting for confounders.
Collapse
Affiliation(s)
- Anne B Foreman
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Bruce Hr Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands.
| | - Pieter J J Sauer
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Arend F Bos
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Sietske A Berghuis
- Division of Neonatology, Department of Paediatrics, Beatrix Children's hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
27
|
Sun Y, Zhou S, Zhu B, Li F, Fu K, Guo Y, Men J, Han J, Zhang W, Yang L, Zhou B. Multi- and Transgenerational Developmental Impairments Are Induced by Decabromodiphenyl Ethane (DBDPE) in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2887-2897. [PMID: 36779393 DOI: 10.1021/acs.est.3c00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Li
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyu Fu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
28
|
An Analysis of the Structural Relationship between Thyroid Hormone-Signaling Disruption and Polybrominated Diphenyl Ethers: Potential Implications for Male Infertility. Int J Mol Sci 2023; 24:ijms24043296. [PMID: 36834711 PMCID: PMC9964322 DOI: 10.3390/ijms24043296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a common class of anthropogenic organobromine chemicals with fire-retardant properties and are extensively used in consumer products, such as electrical and electronic equipment, furniture, textiles, and foams. Due to their extensive use, PBDEs have wide eco-chemical dissemination and tend to bioaccumulate in wildlife and humans with many potential adverse health effects in humans, such as neurodevelopmental deficits, cancer, thyroid hormone disruption, dysfunction of reproductive system, and infertility. Many PBDEs have been listed as chemicals of international concern under the Stockholm Convention on Persistent Organic Pollutants. In this study, the aim was to investigate the structural interactions of PBDEs against thyroid hormone receptor (TRα) with potential implications in reproductive function. Structural binding of four PBDEs, i.e., BDE-28, BDE-100, BDE-153 and BDE-154 was investigated against the ligand binding pocket of TRα using Schrodinger's induced fit docking, followed by molecular interaction analysis and the binding energy estimation. The results indicated the stable and tight binding of all four PDBE ligands and similarity in the binding interaction pattern to that of TRα native ligand, triiodothyronine (T3). The estimated binding energy value for BDE-153 was the highest among four PBDEs and was more than that of T3. This was followed by BDE-154, which is approximately the same as that of TRα native ligand, T3. Furthermore, the value estimated for BDE-28 was the lowest; however, the binding energy value for BDE-100 was more than BDE-28 and close to that of TRα native ligand, T3. In conclusion, the results of our study suggested the thyroid signaling disruption potential of indicated ligands according to their binding energy order, which can possibly lead to disruption of reproductive function and infertility.
Collapse
|
29
|
Jin M, Zhou Z, Zhang L, Chen Y, Liu L, Shen H. Effects of Excessive Iodine on the BDNF-TrkB Signaling Pathway and Related Genes in Offspring of EAT Rats. Biol Trace Elem Res 2023; 201:776-785. [PMID: 35322353 DOI: 10.1007/s12011-022-03187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 01/21/2023]
Abstract
Excess iodine can cause autoimmune thyroiditis (AIT) in women, but it is unclear whether this has any implications for neurodevelopmental mechanisms in offspring. We studied the effects of experimental autoimmune thyroiditis (EAT) rats with different amounts of iodine intake on offspring brain development via the brain-derived neurotrophic factor (BDNF)-tropomycin receptor kinase B (TrkB) signaling pathway, because BDNF plays an important role in neurodevelopment. Rats in three thyroglobulin (Tg) immunized groups with varying iodine intakes (Tg (100 µg/L iodine), Tg + High-iodine I group (Tg + HI, 20 mg/L iodine), and Tg + High-iodine II group (Tg + HII, 200 mg/L iodine)) were injected with 800 µg Tg once every 2 weeks for 3 times. Rats in the control group (NI, 100 µg/L iodine) were immunized with saline. Arsenic-cerium catalytic spectrophotometry was used to measure urine iodine levels. The lymphocytic infiltration in the thyroids was observed by histopathological studies. Thyroid autoantibodies levels were measured using radioimmunoassay. The norepinephrine (NE) contents were measured by an enzyme-linked immunosorbent assay. The levels of the BDNF-TrkB signaling pathway and related genes were measured by quantitative real-time PCR and Western blot. Urinary iodine levels increased as iodine intake increased. Lymphocytes were significantly aggravated in Tg-immunized rats. Serum thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) levels were clearly elevated in Tg-immunized rats. Tg-immune groups had significantly lower NE levels. The BDNF-TrkB signaling pathway and related gene mRNA and protein levels were found to be significantly lower in Tg-immune groups with higher iodine levels. Maternal AIT may reduce the levels of certain neurodevelopmental mechanisms in the offspring, such as the BDNF-TrkB signaling pathway and related factors, while excessive iodine consumption by the mother may exacerbate this effect.
Collapse
Affiliation(s)
- Meihui Jin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Zheng Zhou
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Li Zhang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province, 150081, People's Republic of China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Morel C, Schroeder H, Emond C, Turner JD, Lichtfouse E, Grova N. Brominated flame retardants, a cornelian dilemma. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:9-14. [PMID: 35095379 PMCID: PMC8783781 DOI: 10.1007/s10311-022-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Chloé Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Henri Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR Inserm 1256 nGERE, Nutrition-Génétique et Exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS, University of Lorraine, B.P. 184, 54511 Vandoeuvre-lès-Nancy, France
| | - Claude Emond
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- PKSH Inc, Mascouche, QC Canada
- School of Public Health, DSEST, University of Montreal, Montreal, QC Canada
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-Sur-Alzette, Grand Duchy of Luxembourg
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, 13100 Aix en Provence, France
| | - Nathalie Grova
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, 54506 Vandoeuvre-lès-Nancy, France
- UMR Inserm 1256 nGERE, Nutrition-Génétique et Exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS, University of Lorraine, B.P. 184, 54511 Vandoeuvre-lès-Nancy, France
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-Sur-Alzette, Grand Duchy of Luxembourg
| |
Collapse
|
31
|
Witchey SK, Doyle MG, Fredenburg JD, St Armour G, Horman B, Odenkirk MT, Aylor DL, Baker ES, Patisaul HB. Impacts of Gestational FireMaster 550 Exposure on the Neonatal Cortex Are Sex Specific and Largely Attributable to the Organophosphate Esters. Neuroendocrinology 2022; 113:1262-1282. [PMID: 36075192 PMCID: PMC9992460 DOI: 10.1159/000526959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Michael G Doyle
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Jacob D Fredenburg
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Melanie T Odenkirk
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - David L Aylor
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Heather B Patisaul
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| |
Collapse
|
32
|
Melymuk L, Blumenthal J, Sáňka O, Shu-Yin A, Singla V, Šebková K, Pullen Fedinick K, Diamond ML. Persistent Problem: Global Challenges to Managing PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9029-9040. [PMID: 35647669 PMCID: PMC9228072 DOI: 10.1021/acs.est.2c01204] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Polychlorinated biphenyls (PCBs), "famous" as persistent organic pollutants (POPs), have been managed nationally since the 1970s and globally under the Stockholm Convention on POPs since 2004, requiring environmentally sound management (ESM) of PCBs by 2028. At most, 30% of countries are on track to achieve ESM by 2028. Globally over 10 million tonnes of PCB-containing materials remain, mostly in countries lacking the ability to manage PCB waste. Canada (Ontario) and Czechia, both parties to the Stockholm Convention, are close to achieving the 2028 goal, having reduced their stocks of pure PCBs by 99% in the past 10 years. In contrast, the USA, not a party to the Stockholm Convention, continues to have a substantial but poorly inventoried stock of PCBs and only ∼3% decrease in mass of PCBs since 2006. PCB management, which depends on Stockholm Convention support and national compliance, portends major challenges for POP management. The failure to manage global PCB stocks >30 years after the end of production highlights the urgent need to prioritize reducing production and use of newer, more widely distributed POPs such as chlorinated paraffins and per- and polyfluorinated alkyl substances, as these management challenges are unlikely to be resolved in the coming decades.
Collapse
Affiliation(s)
- Lisa Melymuk
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Jonathan Blumenthal
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Ondřej Sáňka
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
| | - Adriana Shu-Yin
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Veena Singla
- Healthy
People & Thriving Communities Program, Natural Resources Defense Council, San Francisco, California 94104, United States
| | - Kateřina Šebková
- Faculty
of Science, Masaryk University, Kotlarska 2, Brno 611 37, Czech Republic
| | - Kristi Pullen Fedinick
- Science
Office, Natural Resources Defense Council, Washington, D.C. 20005, United States
| | - Miriam L. Diamond
- Department
of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
- School
of the Environment, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
33
|
Wang C, Fang C, Wang C, Jin C, Qian M, Jin Y. Maternal Sodium p-Perfluorous Nonenoxybenzene Sulfonate Exposure Disturbed Lipid Metabolism and Induced an Imbalance in Tyrosine Metabolism in the F1 Generation of Mice. Chem Res Toxicol 2022; 35:651-662. [PMID: 35377151 DOI: 10.1021/acs.chemrestox.1c00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The toxicity of perfluorinated compounds (PFCs) to mammals has recently received increasing attention. However, the effects of maternal sodium p-perfluorous nonenoxybenzene sulfonate (OBS) exposure during pregnancy and lactation on the liver function of dams (F0) and offspring (F1) mice are still unknown. The results demonstrated that maternal OBS treatment could not only induce lipid metabolism dysfunction but also disrupt amino acid metabolism in the liver of F0 and F1 generations. OBS had marked accumulation in the liver, and the serum and liver triglyceride (TG) levels increased in the F0 and F1 generations after maternal OBS exposure. Moreover, maternal OBS exposure changed the transcriptional levels of genes related to lipid metabolism (fatty acid (FA) synthesis, TG synthesis, and transport) and induced changes in the amino acid level in dams and 20-day-old mice offspring (F1-20 d). Additionally, the regulation of lipid metabolism by OBS was mainly dependent on the activation of peroxisome proliferator-activated receptor γ (PPARγ) and cluster of differentiation 36 (CD36). Interestingly, OBS could also disturb tyrosine (TYR) metabolism by increasing the TYR level and downregulating fumarate acetoacetate hydrolase (FAH). Together, these results indicated that the liver can be perceived as the major target tissue of OBS, which strongly affected metabolic function and ultimately led to an imbalance in the metabolism of lipids and TYR. In summary, maternal OBS exposure during pregnancy and lactation has toxic effects on the hepatic metabolism of dams and offspring, indicating that the toxic effects could obviously cross generations of mice, and we should pay more attention to understanding the health risk to both dams and offspring.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Chanlin Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China.,Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Interdisciplinary Research Academy, Zhejiang Shuren University, 8, Shuren Street, Gongshu District, Hangzhou 310015, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou 310014, China
| |
Collapse
|
34
|
Sprowles JL, Monaikul S, Aguiar A, Gardiner J, Monaikul N, Kostyniak P, Schantz SL. Associations of concurrent PCB and PBDE serum concentrations with executive functioning in adolescents. Neurotoxicol Teratol 2022; 92:107092. [DOI: 10.1016/j.ntt.2022.107092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
35
|
Zhang X, Sun Y, Gao Y, Liu Z, Ding J, Zhang C, Liu W, Zhang H, Zhuang S. Thyroid Dysfunction of Zebrafish ( Danio rerio) after Early-Life Exposure and Discontinued Exposure to Tetrabromobiphenyl (BB-80) and OH-BB-80. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2519-2528. [PMID: 35075897 DOI: 10.1021/acs.est.1c07767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3,3',5,5'-Tetrabromobiphenyl (BB-80) was once used as additive flame retardants. Whether its early exposure and discontinued exposure alter thyroid function remains unknown. We investigate adverse effects after early-life exposure and discontinued exposure to BB-80 and hydroxylated BB-80 (OH-BB-80) on thyroid hormone (TH) levels, thyroid tissue, and transcriptome profiles in zebrafish larvae. BB-80 at 10 μg/L induces pathological changes of thyroid with reduced thyroid follicles in larvae (P < 0.05), whereas OH-BB-80 significantly increases T4 and T3 contents (1.8 and 2.5 times of the control, P < 0.05) at 14 days postfertilization (dpf) without morphological thyroid alterations. BB-80 and OH-BB-80 cause transcriptome aberrations with key differentially expressed genes involved in the disruption of TH synthesis and signal transduction (BB-80 at 14 dpf) or TH pathway activation (OH-BB-80 at 21 dpf). After 7 days of discontinued exposure, thyroglobulin (tg) and thyroid peroxidase (tpo) genes are downregulated (P < 0.05) by 52 and 48% for BB-80 and by 49 and 39% for OH-BB-80, respectively; however, the whole-body TH levels fail to fully recover, and the locomotor activity is impaired more by BB-80. Our results indicate significant adverse impacts of BB-80 and OH-BB-80 on TH homeostasis and thyroid function of zebrafish.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiquan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Jiafeng Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston, Clear Lake, Texas 77058, United States
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | - Shulin Zhuang
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, National Demonstration Center for Experimental Environment and Resources Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Hartley K, MacDougall MC, Terrizzi B, Xu Y, Cecil KM, Chen A, Braun JM, Lanphear BP, Newman NC, Vuong AM, Sjödin A, Yolton K. Gestational exposure to polybrominated diphenyl ethers and social skills and problem behaviors in adolescents: The HOME study. ENVIRONMENT INTERNATIONAL 2022; 159:107036. [PMID: 34896668 PMCID: PMC8748392 DOI: 10.1016/j.envint.2021.107036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants used as flame retardants. Gestational PBDE exposure has been associated with a variety of behavior problems in children, but little is known about its impact into adolescence, particularly on social skills, which are important for achieving social competence, establishing identity, and forming lasting relationships. OBJECTIVE We investigated associations between gestational exposure to PBDEs and social skills and problem behaviors in early adolescence in a longitudinal pregnancy and birth cohort in Cincinnati, Ohio (recruited 2003-2006). METHODS We measured maternal serum concentrations of five PBDE congeners during gestation. At age 12, we measured social skills and problem behaviors scores for 243 adolescents using self- and caregiver-report on the Social Skills Improvement System (SSiS). We used multivariable linear regression models to estimate associations between maternal PBDE concentrations and SSiS scores, controlling for potential covariates. We report associations for the five congeners and a summary exposure variable (∑5BDE: the sum of BDE- 28, 47, 99, 100, and 153, n = 197). RESULTS We found sex-specific associations of ∑5BDE concentrations with adolescent-reported Problem Behaviors (∑5BDE × sex pint = 0.02) and caregiver-reported Social Skills (∑5BDE × sex pint = 0.02). In sex-stratified models, log10 transformed data revealed increased maternal ∑5BDE concentration among males was associated with decreased caregiver-reported Social Skills composite score (β = -10.2, 95% CI: -19.5, -1.0), increased adolescent-reported Problem Behaviors composite score (β = 12.1, 95% CI: 5.4, 18.8), and increased caregiver-reported Problem Behaviors composite score (β = 6.2, 95% CI: 0.7, 11.7). Further analysis on SSiS subscales revealed similar patterns in significant associations among males. There were no statistically significant associations in stratified models among females despite higher ∑5BDE exposure (Female GM=40.15 ng/g lipid, GSE=1.10; Male GM=35.30 ng/g lipid, GSE=1.09). DISCUSSION We found gestational PBDE exposure in males was associated with poorer behavioral outcomes, extending previous findings among this cohort into early adolescence.
Collapse
Affiliation(s)
- Kim Hartley
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Melinda C MacDougall
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Brandon Terrizzi
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA
| | - Yingying Xu
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Kim M Cecil
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| | - Aimin Chen
- University of Pennsylvania, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Joseph M Braun
- Brown University, Department of Epidemiology, Providence, RI, USA.
| | - Bruce P Lanphear
- Simon Fraser University, Faculty of Health Sciences, Burnaby, British Columbia, Canada.
| | - Nicholas C Newman
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Ann M Vuong
- University of Nevada, Las Vegas School of Public Health, Las Vegas, NV, USA.
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Mail Stop F-20, 4770 Buford Highway NE, Atlanta, GA, USA.
| | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Kozlova EV, Valdez MC, Denys ME, Bishay AE, Krum JM, Rabbani KM, Carrillo V, Gonzalez GM, Lampel G, Tran JD, Vazquez BM, Anchondo LM, Uddin SA, Huffman NM, Monarrez E, Olomi DS, Chinthirla BD, Hartman RE, Kodavanti PRS, Chompre G, Phillips AL, Stapleton HM, Henkelmann B, Schramm KW, Curras-Collazo MC. Persistent autism-relevant behavioral phenotype and social neuropeptide alterations in female mice offspring induced by maternal transfer of PBDE congeners in the commercial mixture DE-71. Arch Toxicol 2022; 96:335-365. [PMID: 34687351 PMCID: PMC8536480 DOI: 10.1007/s00204-021-03163-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous persistent organic pollutants (POPs) that are known neuroendocrine disrupting chemicals with adverse neurodevelopmental effects. PBDEs may act as risk factors for autism spectrum disorders (ASD), characterized by abnormal psychosocial functioning, although direct evidence is currently lacking. Using a translational exposure model, we tested the hypothesis that maternal transfer of a commercial mixture of PBDEs, DE-71, produces ASD-relevant behavioral and neurochemical deficits in female offspring. C57Bl6/N mouse dams (F0) were exposed to DE-71 via oral administration of 0 (VEH/CON), 0.1 (L-DE-71) or 0.4 (H-DE-71) mg/kg bw/d from 3 wk prior to gestation through end of lactation. Mass spectrometry analysis indicated in utero and lactational transfer of PBDEs (in ppb) to F1 female offspring brain tissue at postnatal day (PND) 15 which was reduced by PND 110. Neurobehavioral testing of social novelty preference (SNP) and social recognition memory (SRM) revealed that adult L-DE-71 F1 offspring display deficient short- and long-term SRM, in the absence of reduced sociability, and increased repetitive behavior. These effects were concomitant with reduced olfactory discrimination of social odors. Additionally, L-DE-71 exposure also altered short-term novel object recognition memory but not anxiety or depressive-like behavior. Moreover, F1 L-DE-71 displayed downregulated mRNA transcripts for oxytocin (Oxt) in the bed nucleus of the stria terminalis (BNST) and supraoptic nucleus, and vasopressin (Avp) in the BNST and upregulated Avp1ar in BNST, and Oxtr in the paraventricular nucleus. Our work demonstrates that developmental PBDE exposure produces ASD-relevant neurochemical, olfactory processing and behavioral phenotypes that may result from early neurodevelopmental reprogramming within central social and memory networks.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
| | - Matthew C Valdez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, 92521, USA
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Julia M Krum
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kayhon M Rabbani
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Valeria Carrillo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gwendolyn M Gonzalez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Gregory Lampel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Brigitte M Vazquez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Laura M Anchondo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Syed A Uddin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Nicole M Huffman
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Eduardo Monarrez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Duraan S Olomi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Bhuvaneswari D Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Gladys Chompre
- Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, 00717-9997, USA
| | - Allison L Phillips
- Duke University, Nicholas School of the Environment, Durham, NC, 27710, USA
| | | | - Bernhard Henkelmann
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum Munchen, Molecular EXposomics (MEX), German National Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
- Department Für Biowissenschaftliche Grundlagen, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung Und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| | | |
Collapse
|
38
|
Dvorakova D, Pulkrabova J, Gramblicka T, Polachova A, Buresova M, López ME, Castaño A, Nübler S, Haji-Abbas-Zarrabi K, Klausner N, Göen T, Mol H, Koch HM, Vaccher V, Antignac JP, Haug LS, Vorkamp K, Hajslova J. Interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) for flame retardant analysis in biological matrices: Results from the HBM4EU project. ENVIRONMENTAL RESEARCH 2021; 202:111705. [PMID: 34297934 DOI: 10.1016/j.envres.2021.111705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The European Human Biomonitoring Initiative (HBM4EU) is coordinating and advancing human biomonitoring (HBM). For this purpose, a network of laboratories delivering reliable analytical data on human exposure is fundamental. The analytical comparability and accuracy of laboratories analysing flame retardants (FRs) in serum and urine were investigated by a quality assurance/quality control (QA/QC) scheme comprising interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs). This paper presents the evaluation process and discusses the results of four ICI/EQUAS rounds performed from 2018 to 2020 for the determination of ten halogenated flame retardants (HFRs) represented by three congeners of polybrominated diphenyl ethers (BDE-47, BDE-153 and BDE-209), two isomers of hexabromocyclododecane (α-HBCD and γ-HBCD), two dechloranes (anti-DP and syn-DP), tetrabromobisphenol A (TBBPA), decabromodiphenylethane (DBDPE), and 2,4,6-tribromophenol (2,4,6-TBP) in serum, and four metabolites of organophosphorus flame retardants (OPFRs) in urine, at two concentration levels. The number of satisfactory results reported by laboratories increased during the four rounds. In the case of HFRs, the scope of the participating laboratories varied substantially (from two to ten) and in most cases did not cover the entire target spectrum of chemicals. The highest participation rate was reached for BDE-47 and BDE-153. The majority of participants achieved more than 70% satisfactory results for these two compounds over all rounds. For other HFRs, the percentage of successful laboratories varied from 44 to 100%. The evaluation of TBBPA, DBDPE, and 2,4,6-TBP was not possible because the number of participating laboratories was too small. Only seven laboratories participated in the ICI/EQUAS scheme for OPFR metabolites and five of them were successful for at least two biomarkers. Nevertheless, the evaluation of laboratory performance using Z-scores in the first three rounds required an alternative approach compared to HFRs because of the small number of participants and the high variability of experts' results. The obtained results within the ICI/EQUAS programme showed a significant core network of comparable European laboratories for HBM of BDE-47, BDE-153, BDE-209, α-HBCD, γ-HBCD, anti-DP, and syn-DP. On the other hand, the data revealed a critically low analytical capacity in Europe for HBM of TBBPA, DBDPE, and 2,4,6-TBP as well as for the OPFR biomarkers.
Collapse
Affiliation(s)
- Darina Dvorakova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic.
| | - Jana Pulkrabova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Andrea Polachova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Martina Buresova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin Haji-Abbas-Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Nadine Klausner
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Wageningen, Netherlands
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vincent Vaccher
- Oniris, INRAE, UMR 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jana Hajslova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
39
|
Emond C, DeVito MJ, Birnbaum LS. A PBPK model describing the pharmacokinetics of γ-HBCD exposure in mice. Toxicol Appl Pharmacol 2021; 428:115678. [PMID: 34390738 PMCID: PMC8674938 DOI: 10.1016/j.taap.2021.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
The brominated flame retardant, hexabromocyclododecane (HBCD), is added-but not bound-to consumer products and is eventually found in the environment and human tissues. Commercial-grade HBCD mixtures contain three major stereoisomers, alpha (α), beta (β), and gamma (γ), that are typically at a ratio of 12%:6%:82%, respectively. Although HBCD is widely used, the toxicological effects from its exposure in humans are not clearly understood. Using a physiologically based pharmacokinetic (PBPK) model could help improve our understanding of the toxicity of HBCD. The aim of this work was to develop a PBPK model, consisting of five permeability limited compartments (i.e., brain, liver, adipose tissue, blood, and rest of the body), to evaluate the pharmacokinetics of γ-HBCD in C57BL/6 mice. Physiological parameters related to body size, organ weights, and blood flow were taken from the literature. All partition coefficients were calculated based on the log Kow. The elimination in urine and feces was optimized to reflect the percent dose eliminated, as published in the literature. Compared with data from the literature for brain, liver, blood, and adipose tissue, the model simulations accurately described the mouse data set within 1.5-fold of the data points. Also, two examples showing the utility of the PBPK model supplement the information regarding the internal dose that caused the health effects observed during these studies. Although this version of the PBPK model expressly describes γ-HBCD, more efforts are needed to clarify and improve the model to discriminate between the α, β, and γ stereoisomers.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Newark, DE, USA; School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Quebec, Canada.
| | - Michael J DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | | |
Collapse
|
40
|
Álvarez-Silvares E, Rubio-Cid P, González-Gómez X, Domínguez-Vigo P, Fernández-Cruz T, Seoane-Pillado T, Martínez-Carballo E. Determination of organic pollutants in meconium and its relationship with fetal growth. Case control study in Northwestern Spain. J Perinat Med 2021; 49:884-896. [PMID: 33856139 DOI: 10.1515/jpm-2020-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 03/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Antenatal exposure to organic pollutants is a leading public health problem. Meconium is a unique matrix to perform prenatal studies because it enables us to retrospectively evaluate fetal exposure accumulated during the second and third trimester. The aim of the present study was to evaluate associations between organic pollutant levels in meconium and birth weight in NW Spain. METHODS In this study, we quantify the concentrations of 50 organic pollutants together with the total values of the most important chemical groups in meconium using gas chromatography coupled to tandem mass spectrometry. RESULTS Organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers were detected with the highest levels in meconium from small for gestational age newborns. It was estimated that several congeners were statistically significant (p<0.05). However, organophosphorus pesticides attained higher concentrations in newborns with an appropriate weight. CONCLUSIONS The occurrence of transplacental transfer can be confirmed. Prenatal exposure to organic pollutants was associated with a decrease in birth weight and, therefore, organic pollutants could have an impact on fetal growth. Nevertheless, these results need validation in larger sample sized studies.
Collapse
Affiliation(s)
- Esther Álvarez-Silvares
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Paula Rubio-Cid
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Xiana González-Gómez
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| | - Paula Domínguez-Vigo
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Tania Fernández-Cruz
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| | | | - Elena Martínez-Carballo
- Analytical and Food Chemistry Department, Nutrition and Bromatology Group, Agri-Food Research and Transfer Cluster (CITACA), Campus da Auga, Faculty of Sciences of the University of Vigo, Ourense, Spain
| |
Collapse
|
41
|
Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, Guxens M, Evandt J, Andrusaityte S, Burgaleta M, Casas M, Chatzi L, de Castro M, Donaire-González D, Gražulevičienė R, Hernandez-Ferrer C, Heude B, Mceachan R, Mon-Williams M, Nieuwenhuijsen M, Robinson O, Sakhi AK, Sebastian-Galles N, Slama R, Sunyer J, Tamayo-Uria I, Thomsen C, Urquiza J, Vafeiadi M, Wright J, Basagaña X, Vrijheid M. Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117404. [PMID: 34077897 PMCID: PMC8287594 DOI: 10.1016/j.envpol.2021.117404] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/04/2023]
Abstract
Epidemiological studies mostly focus on single environmental exposures. This study aims to systematically assess associations between a wide range of prenatal and childhood environmental exposures and cognition. The study sample included data of 1298 mother-child pairs, children were 6-11 years-old, from six European birth cohorts. We measured 87 exposures during pregnancy and 122 cross-sectionally during childhood, including air pollution, built environment, meteorology, natural spaces, traffic, noise, chemicals and life styles. The measured cognitive domains were fluid intelligence (Raven's Coloured Progressive Matrices test, CPM), attention (Attention Network Test, ANT) and working memory (N-Back task). We used two statistical approaches to assess associations between exposure and child cognition: the exposome-wide association study (ExWAS) considering each exposure independently, and the deletion-substitution-addition algorithm (DSA) considering all exposures simultaneously to build a final multiexposure model. Based on this multiexposure model that included the exposure variables selected by ExWAS and DSA models, child organic food intake was associated with higher fluid intelligence (CPM) scores (beta = 1.18; 95% CI = 0.50, 1.87) and higher working memory (N-Back) scores (0.23; 0.05, 0.41), and child fast food intake (-1.25; -2.10, -0.40), house crowding (-0.39; -0.62, -0.16), and child environmental tobacco smoke (ETS) (-0.89; -1.42, -0.35), were all associated with lower CPM scores. Indoor PM2.5 exposure was associated with lower N-Back scores (-0.09; -0.16, -0.02). Additional associations in the unexpected direction were found: Higher prenatal mercury levels, maternal alcohol consumption and child higher perfluorooctane sulfonic acid (PFOS) levels were associated with better cognitive performance; and higher green exposure during pregnancy with lower cognitive performance. This first comprehensive and systematic study of many prenatal and childhood environmental risk factors suggests that unfavourable child nutrition, family crowdedness and child indoor air pollution and ETS exposures adversely and cross-sectionally associate with cognitive function. Unexpected associations were also observed and maybe due to confounding and reverse causality.
Collapse
Affiliation(s)
- Jordi Julvez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Reus (Tarragona), Catalonia, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Mónica López-Vicente
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, the Netherlands
| | - Charline Warembourg
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Lea Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Monica Guxens
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, PO Box 2060, 3000 CB, Rotterdam, the Netherlands
| | - Jorunn Evandt
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Miguel Burgaleta
- Center for Brain and Cognition, Department of Technology, Universitat Pompeu Fabra, Roc Boronat 138, 08018, Barcelona, Catalonia, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Leda Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Montserrat de Castro
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - David Donaire-González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | | - Carles Hernandez-Ferrer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Rosie Mceachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Mon-Williams
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, UK
| | - Amrit K Sakhi
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nuria Sebastian-Galles
- Center for Brain and Cognition, Department of Technology, Universitat Pompeu Fabra, Roc Boronat 138, 08018, Barcelona, Catalonia, Spain
| | - Remy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jordi Sunyer
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ibon Tamayo-Uria
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Division of Immunology and Immunotherapy, Cima Universidad de Navarra and "Instituto de Investigación Sanitaria de Navarra (IdISNA)", Pamplona, Spain
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Catalonia, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Salazar P, Villaseca P, Cisternas P, Inestrosa NC. Neurodevelopmental impact of the offspring by thyroid hormone system-disrupting environmental chemicals during pregnancy. ENVIRONMENTAL RESEARCH 2021; 200:111345. [PMID: 34087190 DOI: 10.1016/j.envres.2021.111345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Everyday use chemicals have been demonstrated to be endocrine disruptors. Since normal thyroid function during pregnancy is transcendental for the neurodevelopment of the offspring, knowledge of endocrine disrupting chemicals (EDC) is of main importance. The aim of our study is to recognize and describe EDC actions in pregnant women and focus on neurodevelopmental processes that can lead to neurotransmitter imbalance and cognitive impairment, and the possible clinical outcomes in the newborn and child. We searched PubMed databases for animal studies and clinical trials evaluating chemicals recognized as thyroid disruptors -perchlorate, phthalates, bisphenol A-, as well as chemicals with potential thyroid disruption activity -parabens, pesticides and persistent organic pollutants, on thyroid hormones (THs) levels and their bioavailability during pregnancy, and the outcome in newborns, infants and children. We also exhibit evidence from worldwide cohort studies to this regard. The publications reviewed show: 1) known endocrine disruptors have an association with hormonal thyroid levels, where an effect of increase or decrease in TH concentrations has been reported depending on the chemical exposed 2) associations between TH, EDCs and neurocognitive disorders have been addressed, such as ADHD, though no conclusive impact on potential related disorders as autism has been established, 3) perchlorate has demonstrated effects on thyroid levels on iodine uptake. In conclusion, detrimental risks and long-term consequences after in-utero exposure to EDCs are being reported in several cohort studies and further research must be conducted to establish a well-known cause-effect association.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
43
|
Myhre O, Zimmer KE, Hudecova AM, Hansen KEA, Khezri A, Berntsen HF, Berg V, Lyche JL, Mandal S, Duale N, Ropstad E. Maternal exposure to a human based mixture of persistent organic pollutants (POPs) affect gene expression related to brain function in mice offspring hippocampus. CHEMOSPHERE 2021; 276:130123. [PMID: 33714876 DOI: 10.1016/j.chemosphere.2021.130123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.
Collapse
Affiliation(s)
- Oddvar Myhre
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Alexandra M Hudecova
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Kristine E A Hansen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Abdolrahman Khezri
- Department of Preclinical Sciences and Pathology, Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway; National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033, Oslo, Norway.
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | - Jan L Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| | | | - Nur Duale
- Section of Molecular Toxicology, Norwegian Institute of Public Health, P. O. Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003, 1433 Ås, Norway.
| |
Collapse
|
44
|
Krentzel AA, Kimble LC, Dorris DM, Horman BM, Meitzen J, Patisaul HB. FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Horm Behav 2021; 134:105019. [PMID: 34182292 PMCID: PMC8403633 DOI: 10.1016/j.yhbeh.2021.105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 μg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laney C Kimble
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
45
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
46
|
Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biol Toxicol 2021; 38:781-807. [PMID: 33969458 PMCID: PMC9525352 DOI: 10.1007/s10565-021-09603-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Due to their neurodevelopmental toxicity, flame retardants (FRs) like polybrominated diphenyl ethers are banned from the market and replaced by alternative FRs, like organophosphorus FRs, that have mostly unknown toxicological profiles. To study their neurodevelopmental toxicity, we evaluated the hazard of several FRs including phased-out polybrominated FRs and organophosphorus FRs: 2,2′,4,4′-tetrabromodiphenylether (BDE-47), 2,2′,4,4′,5-pentabromodiphenylether (BDE-99), tetrabromobisphenol A, triphenyl phosphate, tris(2-butoxyethyl) phosphate and its metabolite bis-(2-butoxyethyl) phosphate, isodecyl diphenyl phosphate, triphenyl isopropylated phosphate, tricresyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tert-butylphenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tris(1-chloroisopropyl) phosphate, and tris(2-chloroethyl) phosphate. Therefore, we used a human cell–based developmental neurotoxicity (DNT) in vitro battery covering a large variety of neurodevelopmental endpoints. Potency according to the respective most sensitive benchmark concentration (BMC) across the battery ranked from <1 μM (5 FRs), 1<10 μM (7 FRs) to the >10 μM range (3 FRs). Evaluation of the data with the ToxPi tool revealed a distinct ranking (a) than with the BMC and (b) compared to the ToxCast data, suggesting that DNT hazard of these FRs is not well predicted by ToxCast assays. Extrapolating the DNT in vitro battery BMCs to human FR exposure via breast milk suggests low risk for individual compounds. However, it raises a potential concern for real-life mixture exposure, especially when different compounds converge through diverse modes-of-action on common endpoints, like oligodendrocyte differentiation in this study. This case study using FRs suggests that human cell–based DNT in vitro battery is a promising approach for neurodevelopmental hazard assessment and compound prioritization in risk assessment.
Collapse
|
47
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
48
|
Environmental contamination and public health effects of electronic waste: an overview. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2021; 19:1209-1227. [PMID: 34150306 DOI: 10.1007/s40201-021-00654-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
Purpose In recent years, electronic waste has become the fastest growing waste stream globally with potential deleterious environmental and public health effects from its hazardous constituents. This review aims at providing an up-to-date information on the environmental and public health effects of e- wastes, and also identify research gaps that could form basis of further innovative studies on this important subject. Methods We carried out literature survey using several search engines. All available literature which reported directly on environmental contamination of air, soil, and water by e-wastes, and their effects on exposed plants, animals, and humans were used in other to generate an updated information. Results High production volume coupled with indiscriminate disposal and informal recycling has made electronic waste (e-waste) to become a global public and environmental health issue. E-waste is made up of different hazardous substances such as heavy metals and persistent organic pollutants with the capacity to contaminate the environment if processed or recycled inappropriately. Humans and animals become exposed to e-waste constituents via ingestion, inhalation, and dermal contact. Several health effects have been linked to e-wastes. The most susceptible were children, pregnant women, and workers in primitive recycling sites. Generation of e-waste is predicted to increase drastically in the next decade with the potential complex interactive effects of its constituents. Conclusion This review is an up-to-date assessment of studies and reports on e-waste environmental contamination and public health effects. The review has shown that e-waste contains constituents that caused adverse environmental effects and toxicity to the biota. However, there is an enormous data gap between exposure quantification and possible health effects. More studies are needed to elucidate and provide holistic information on environmental and public health dangers posed by e-waste constituents.
Collapse
|
49
|
Banerjee H, Sivaperuman Kalairaj M, Chang TH, Fu F, Chen PY, Ren H. Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel-Montmorillonite-Based Translucent Matrix. Soft Robot 2021; 9:98-118. [PMID: 33764799 DOI: 10.1089/soro.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flame-retardant coatings are crucial for intelligent systems operating in high-temperature (300-800°C) scenarios, which typically involve multi-joint discrete or continuous kinematic systems. These multi-segment motion generation systems call for conformable yet resilient skin for dexterous work, including firefighting, packaging inflammable substances, encapsulating energy storage devices, and preventing from burning. In fire scenes, a flame-retardant soft robot shall protect integrated electronic components safely and work for navigation and surveillance effectively. Here, we establish fire-resistant robotic mechanisms with montmorillonite (MMT)-biocompatible hydrogel skin, offering effective flame retardancy (∼78°C surface temperature after 3 min in fire) and high post-fire stretchability (∼360% uniaxial tensile strain). Fatigue test results in the MMT-hydrogel polymer matrix to portray a change in post-fire energy consumption of ∼21% (between the first cycle and the 200th cycle), further indicating robustness. MMT-hydrogel synthetic skin medium is then applied to everyday household items and electronics, offering appealing protections in fire scenes (≤10% capacitance loss after 3 min and ≤14% diode light-intensity loss after 1 min in fire). We deploy shape memory alloy (SMA) actuated inchworm-, starfish-, and snail-like locomotion (average velocity ∼12 mm·min-1) for translating inside fire applications. With the stretchable and flame-retardant translucent barriers, the MMT-hydrogel skinned soft robots demonstrate stable compression/relaxation cycles (25 cycles) within flames (4 min 10 s) while protecting the electronic components inside in fire scene. We solve the agility vs. endurance conundrum in this article with SMA actuation independently via Joule heating without a cross-talk from the surrounding high-temperature arena.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | | | - Ting-Hsiang Chang
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Fanfan Fu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hongliang Ren
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.,Department of Electronic Engineering, Faculty of Engineering, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|