1
|
Read RW, Schlauch KA, Elhanan G, Neveux I, Koning S, Cooper T, Grzymski JJ. A study of impulsivity and adverse childhood experiences in a population health setting. Front Public Health 2024; 12:1447008. [PMID: 39697282 PMCID: PMC11652370 DOI: 10.3389/fpubh.2024.1447008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
As complex mental health traits and life histories are often poorly captured in hospital systems, the utility of using the Barratt Impulsivity Scale (BIS) and Adverse Childhood Experiences (ACEs) for assessing adult disease risks is unknown. Here, we use participants from the Healthy Nevada Project (HNP) to determine if two standard self-assessments could predict the incidence and onset of disease. We conducted a retrospective cohort study involving adult participants who completed the Behavioral and Mental Health Self-Assessment (HDSA) between September 2018 and March 2024. Impulsivity levels were measured using the BIS-15, and retrospective self-reports of ACEs were collected through a standardized questionnaire. In total, 17,482 HNP participants completed the HDSA. Our findings indicate that ACEs were significantly associated with impulsivity. Disease associations with impulsivity and ACEs were evaluated using a phenome-wide association study, identifying 230 significant associations with impulsivity. Among these, 44 were related to mental health diagnoses, including major depressive disorder (MDD). Kaplan-Meier survival estimates characterized the differences in the lifetime predicted probability between high and low impulsivity for major depressive disorder and essential hypertension. This analysis showed that having both high ACEs and high impulsivity confer substantial risk of MDD diagnosis (hazard ratios 2.81, 2.17, respectively). Additionally, lifetime predicted probability of MDD was approximately 40% higher for high ACEs and high impulsivity compared to no ACEs and low impulsivity. Essential hypertension demonstrated similar trends, with an approximate 20% increase in predicted lifetime probability of diagnosis. These results demonstrate that high ACES and elevated impulsivity scores are associated with a range of negative health outcomes and a simple self-assessment of complex traits and life history may significantly impact clinical risk assessments.
Collapse
Affiliation(s)
- Robert W. Read
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Karen A. Schlauch
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Gai Elhanan
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Iva Neveux
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Stephanie Koning
- Department of Health Behavior, Policy, and Administrative Sciences, School of Public Health, University of Nevada, Reno, Reno, NV, United States
| | - Takeesha Cooper
- Renown Health, Reno, NV, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Joseph J. Grzymski
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|
2
|
Socrates AJ, Mullins N, Gur RC, Gur RE, Stahl E, O'Reilly PF, Reichenberg A, Jones H, Zammit S, Velthorst E. Polygenic risk of social isolation behavior and its influence on psychopathology and personality. Mol Psychiatry 2024; 29:3599-3606. [PMID: 38811692 PMCID: PMC11541194 DOI: 10.1038/s41380-024-02617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Social isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a genome-wide associations study (GWAS) was carried out to identify genetic variants that contribute specifically to social isolation behavior (SIB) in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP-based heritability estimate. Using the SIB GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with self-reported friendship scores, comprising items related to friendship quality and quantity, at age 12 and 18 to determine whether genetic predisposition manifests during childhood development. At age 18, friendship scores were associated with the SIB PRS, demonstrating that the genetic factors can predict related social traits in late adolescence. Linkage disequilibrium (LD) score correlation using the SIB GWAS demonstrated genetic correlations with autism spectrum disorder (ASD), schizophrenia, major depressive disorder (MDD), educational attainment, extraversion, and loneliness. However, no evidence of causality was found using a conservative Mendelian randomization approach between SIB and any of the traits in either direction. Genomic Structural Equation Modeling (SEM) revealed a common factor contributing to SIB, neuroticism, loneliness, MDD, and ASD, weakly correlated with a second common factor that contributes to psychiatric and psychotic traits. Our results show that SIB contributes a small heritable component, which is associated genetically with other social traits such as friendship as well as psychiatric disorders.
Collapse
Affiliation(s)
- Adam J Socrates
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA.
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine and the Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, 3400 Spruce, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine and the Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, 3400 Spruce, Philadelphia, PA, 19104, USA
| | - Eli Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Regeneron Genetics Centre, Tarrytown, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
| | - Hannah Jones
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2PR, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
| | - Stanley Zammit
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, BS8 2PR, UK
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Eva Velthorst
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, 10029, USA
- Department of Research, Mental Health Organization "GGZ Noord-Holland-Noord,", Heerhugowaard, The Netherlands
| |
Collapse
|
3
|
Ortin-Peralta A, Schiffman A, Malik J, Polanco-Roman L, Hennefield L, Luking K. Negative and positive urgency as pathways in the intergenerational transmission of suicide risk in childhood. Front Psychiatry 2024; 15:1417991. [PMID: 39376969 PMCID: PMC11456838 DOI: 10.3389/fpsyt.2024.1417991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Parental suicide attempts and suicide death increase suicide risk in their offspring. High levels of impulsivity have been observed in families at high risk for suicide. Impulsivity, a highly heritable trait that is especially elevated in childhood, is frequently measured with the UPPS-P Impulsive Behavior Scale, which includes negative urgency, positive urgency, sensation seeking, premeditation, and perseverance. Our study examined the association between the UPPS-P facets and suicide ideation (without suicide attempts) and suicide attempts at baseline and first-time endorsement within the next two years in childhood. We also examined how the UPPS-P facets mediated the association between parental suicide attempts and suicide death and offspring first-time suicide ideation and attempts at follow-up. Methods The sample was 9,194 children (48.4% female; 9-10 years old) from the Adolescent Brain Cognitive Development (ABCD) study, assessed yearly three times. At Time 1 (T1), caregivers reported on suicide attempts and suicide deaths (combined) of the biological parents. Caregivers and children reported on suicide ideation and attempts in the KSADS-PL DSM-5 at each time point, T1 and follow-up (T2 and/or T3). The Short UPPS-P Scale (child-report) assessed the impulsivity facets at T1, which were computed as latent variables. Results At T1, 6.7% of children had a parent who had attempted or died by suicide. Most UPPS-P facets were associated with suicide ideation and attempts at T1 and T2/T3. In adjusted models, parental suicide attempts and suicide death were associated with offspring negative and positive urgency. In mediation models, parental suicide attempts and suicide death had an indirect effect on offspring first-time suicide ideation at T2/T3 through negative urgency (OR = 1.04; 95% CI, 1.01-1.08) and positive urgency (OR = 1.03, 95% CI, 1.01-1.05). Similar results were found for first-time suicide attempts at T2/T3. Discussion Our findings support an impulsive pathway in the familial transmission of suicide risk. For all youth, interventions that target multiple UPPS-P facets may help prevent or reduce suicide risk. For offspring whose parents have attempted or died by suicide, clinicians should pay particular attention to children who impulsively act on extreme emotions, as they may be at higher suicide risk.
Collapse
Affiliation(s)
- Ana Ortin-Peralta
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amara Schiffman
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
| | - Jill Malik
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States
| | - Lillian Polanco-Roman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychology, The New School, New York, NY, United States
| | - Laura Hennefield
- Department of Psychiatry, Washinton University School of Medicine in St. Louis, St. Louis, MI, United States
| | - Katherine Luking
- Department of Psychology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
4
|
Gustavson DE, Morrison CL, Mallard TT, Jennings MV, Fontanillas P, Elson SL, Palmer AA, Friedman NP, Sanchez-Roige S. Executive Function and Impulsivity Predict Distinct Genetic Variance in Internalizing Problems, Externalizing Problems, Thought Disorders, and Compulsive Disorders: A Genomic Structural Equation Modeling Study. Clin Psychol Sci 2024; 12:865-881. [PMID: 39323941 PMCID: PMC11423426 DOI: 10.1177/21677026231207845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Individual differences in self-control predict many health and life outcomes. Building on twin literature, we used genomic structural equation modeling to test the hypothesis that genetic influences on executive function and impulsivity predict independent variance in mental health and other outcomes. The impulsivity factor (comprising urgency, lack of premeditation, and other facets) was only modestly genetically correlated with low executive function (rg =.13). Controlling for impulsivity, low executive function was genetically associated with increased internalizing (βg =.15), externalizing (βg =.13), thought disorders (βg =.38), compulsive disorders (βg =.22), and chronotype (βg =.11). Controlling for executive function, impulsivity was positively genetically associated with internalizing (βg =.36), externalizing (βg =.55), body mass index (βg =.26), and insomnia (βg =.35), and negatively genetically associated with compulsive disorders (βg = -.17). Executive function and impulsivity were both genetically correlated with general cognitive ability and educational attainment. This work suggests that executive function and impulsivity are genetically separable and show independent associations with mental health.
Collapse
Affiliation(s)
- Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
| | | | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Horwitz TB, Zorina-Lichtenwalter K, Gustavson DE, Grotzinger AD, Stallings MC. Partitioning the Genomic Components of Behavioral Disinhibition and Substance Use (Disorder) Using Genomic Structural Equation Modeling. Behav Genet 2024; 54:386-397. [PMID: 38981971 DOI: 10.1007/s10519-024-10188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/02/2024] [Indexed: 07/11/2024]
Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use (SUB), substance use disorder (SUD), and other (non-SUB/SUD) "behavioral disinhibition" (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture within and across SUB, SUD, and BD. We created single-factor measurement models-each describing SUB, SUD, or BD traits-based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring externalizing variables. We then assessed the partitioning of genetic covariance among the three facets using correlated factors models and Cholesky decomposition. Even when the residuals for indicators relating to the same substance were correlated across the SUB and SUD factors, the two factors yielded a large correlation (rg = 0.803). BD correlated strongly with the SUD (rg = 0.774) and SUB (rg = 0.778) factors. In our initial decompositions, 33% of total BD variance remained after partialing out SUD and SUB. The majority of covariance between BD and SUB and between BD and SUD was shared across all factors, and, within these models, only a small fraction of the total variation in BD operated via an independent pathway with SUD or SUB outside of the other factor. When only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their correlation increased to rg = 0.861; in corresponding decompositions, BD-specific variance decreased to 27%. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/molecular correlates.
Collapse
Affiliation(s)
- Tanya B Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA.
| | | | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th St., Boulder, CO, 80303, USA
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
6
|
Deng WQ, Belisario K, Munafò MR, MacKillop J. Longitudinal characterization of impulsivity phenotypes boosts signal for genomic correlates and heritability. Mol Psychiatry 2024:10.1038/s41380-024-02704-4. [PMID: 39181994 DOI: 10.1038/s41380-024-02704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Genomic correlates of impulsivity have been identified in several genome-wide association studies (GWAS) using cross-sectional designs, but no studies have investigated the molecular genetic correlates of impulsivity phenotypes using longitudinally constructed traits. In 3860 unrelated European participants in the Avon Longitudinal Study of Parents and Children (ALSPAC), we constructed longitudinal phenotypes for delay discounting and impulsive personality traits (as measured by the UPPS-P impulsive behavior scales) via assessment at ages 24, 26, and 28. We conducted GWASs of impulsivity using both cross-sectional and longitudinal phenotypes, estimated heritability and their phenotypic and genetic correlations, and evaluated their association with recently-developed polygenic risk scores (PRSs) for the impulsivity indicators themselves and also related psychiatric conditions. Latent growth curve modeling revealed a stable intercept over time for all impulsivity phenotypes. High genetic correlation of cross-sectional measures over time suggested a stable genetic component for delay discounting (rg = 0.53-0.99) and sensation seeking (rg = 0.99). Heritability estimates of the stable longitudinal phenotypes substantively improved as compared to their cross-sectional counterparts, revealing a significant SNP-heritability for delay discounting (0.22; p = 0.03) and sensation seeking (0.35; p = 0.0007). Consistent with previous reports, GWAS and gene-based analyses revealed associations between specific longitudinal impulsivity indicators and CADM2 and NCAM1 genes. The PRSs for the impulsivity indicators and disorders related to self-regulation were also significantly associated with longitudinal impulsivity traits. Finally, we validated the associations between longitudinal impulsivity phenotypes and their PRSs in an independent 13-wave longitudinal study (n = 1019) and the benefit of longitudinal phenotypes in simulation studies. In this first longitudinal genetic study of impulsivity traits, the results revealed stable genomic correlates of delay discounting and sensation seeking over time and further validated the utility of recently-developed PRSs, both in relation to the observed traits and in connecting them to psychiatric disorders. More generally, these findings support using latent intercepts as novel longitudinal phenotypes to boost signal for heritability and genomic correlates of mechanisms contributing to psychiatric disease liability.
Collapse
Affiliation(s)
- Wei Q Deng
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Kyla Belisario
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Thorpe HHA, Fontanillas P, Meredith JJ, Jennings MV, Cupertino RB, Pakala S, Elson SL, Khokhar JY, Davis LK, Johnson EC, Palmer AA, Sanchez-Roige S. Genome-wide association studies of lifetime and frequency cannabis use in 131,895 individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308946. [PMID: 38947071 PMCID: PMC11213095 DOI: 10.1101/2024.06.14.24308946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further increasing cannabis consumption. We performed genome-wide association studies (GWASs) of lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 (rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 (rs4856591, p=8.10E-09; r2 =0.76 with rs11922956). Both traits were heritable and genetically correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide association study of lifetime cannabis use PGS in a hospital cohort replicated associations with substance use and mood disorders, and uncovered associations with celiac and infectious diseases. This work demonstrates the value of GWASs of CUD transition risk factors.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Shreya Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Miller AP, Bogdan R, Agrawal A, Hatoum AS. Generalized genetic liability to substance use disorders. J Clin Invest 2024; 134:e172881. [PMID: 38828723 PMCID: PMC11142744 DOI: 10.1172/jci172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.
Collapse
Affiliation(s)
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Alexander S. Hatoum
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Jean FAM, Moulin F, Schwartz AN, Castel L, Montagni I, Macalli M, Notredame CE, Côté SM, Galéra C. Association between ADHD symptoms and illicit stimulants use following 1 year among French university students of the i-Share cohort. Soc Psychiatry Psychiatr Epidemiol 2024; 59:887-897. [PMID: 37268785 DOI: 10.1007/s00127-023-02499-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Although attention deficit hyperactivity disorder (ADHD) has been associated with illicit stimulants use, less is known about their prospective association in university students. We aimed to examine the association between ADHD symptoms at inclusion and illicit stimulants use following 1 year among university students. METHODS The i-Share cohort recruited French students from February 2013 to July 2020. The study included 4270 participants. The Adult ADHD Self-Report Scale (ASRS) was used to evaluate ADHD symptoms at inclusion. Illicit stimulants use was assessed at inclusion and 1 year after inclusion. Multivariable logistic regressions were conducted to assess the association between ADHD symptoms at inclusion and illicit stimulants use following 1 year. RESULTS High levels of ADHD symptoms at inclusion were associated with a greater probability of illicit stimulants use following 1 year (adjusted OR: 2.42 (1.51-3.8)). The adjusted odds ratio was 2.7 (1.08-7.84) among participants who had used illicit stimulant at least once (continuation) and 2.25 (1.04-4.37) among participants who had never used illicit stimulants at inclusion (initiation). CONCLUSION High levels of ADHD symptoms are a feature that may promote both initiation and continuation of illicit stimulants use among university students. Our findings suggest that university students with high levels of ADHD symptoms may benefit from screening to help identify those at risk of illicit stimulants use.
Collapse
Affiliation(s)
- François A M Jean
- Department of Psychiatry, Dr Jean Eric Techer Hospital, Calais, France
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
| | - Flore Moulin
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
| | - Ashlyn N Schwartz
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
- Department of Public Health, University of Tennessee, Knoxville, USA
| | - Laura Castel
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
| | - Ilaria Montagni
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
| | - Mélissa Macalli
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
| | - Charles-Edouard Notredame
- University of Lille, Lille, France
- PSY Lab, Lille Neuroscience & Cognition Centre, INSERM U1172, National Institute of Health and Medical Research (Institut National de la Santé et de la Recherche Médicale-INSERM), Lille, France
- Teaching Hospital of Lille (Centre Hospitalier Universitaire de Lille-CHU de Lille), Lille, France
| | - Sylvana M Côté
- University of Bordeaux, Bordeaux, France
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France
- University of Montreal, Montreal, Canada
| | - Cédric Galéra
- University of Bordeaux, Bordeaux, France.
- Bordeaux Population Heltch Research Center, UMR1219, HEALTHY Team, National Institute of Health and Medical Research (Institut National de La Santé Et de La Recherche Médicale-INSERM), Bordeaux, France.
- Charles Perrens Hospital, Bordeaux, France.
- Pôle Universitaire de Psychiatrie de L'enfant et de L'adolescent, Centre Hospitalier Charles-Perrens, 146Bis, rue Léo-Saignat, 33076, Bordeaux, France.
| |
Collapse
|
10
|
Warrier V, Chamberlain SR, Thomas SA, Bowden-Jones H. Genetics of gambling disorder and related phenotypes: The potential uses of polygenic and multifactorial risk models to enable early detection and improve clinical outcomes. J Behav Addict 2024; 13:16-20. [PMID: 38224367 PMCID: PMC10988411 DOI: 10.1556/2006.2023.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 01/16/2024] Open
Abstract
Gambling Disorder (GD) is an impactful behavioural addiction for which there appear to be underpinning genetic contributors. Twin studies show significant GD heritability results and intergenerational transmission show high rates of transmission. Recent developments in polygenic and multifactorial risk prediction modelling provide promising opportunities to enable early identification and intervention for at risk individuals. People with GD often have significant delays in diagnosis and subsequent help-seeking that can compromise their recovery. In this paper we advocate for more research into the utility of polygenic and multifactorial risk modelling in GD research and treatment programs and rigorous evaluation of its costs and benefits.
Collapse
Affiliation(s)
- Varun Warrier
- Department of Psychiatry, University of Cambridge, UK
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, Southern Health NHS Foundation Trust, Southampton, UK
| | - Shane A. Thomas
- Vice Chancellor's Office and Institute of Health and Wellbeing, Federation University, Australia
| | - Henrietta Bowden-Jones
- Department of Psychiatry, University of Cambridge, UK
- National Problem Gambling Clinic & National Centre for Gaming Disorders, London, UK
- Department of Brain Sciences, University College London, London, UK
| |
Collapse
|
11
|
Horwitz TB, Zorina-Lichtenwalter K, Gustavson DE, Grotzinger AD, Stallings MC. Partitioning the Genomic Components of Behavioral Disinhibition and Substance Use (Disorder) Using Genomic Structural Equation Modeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.20.24303036. [PMID: 38464249 PMCID: PMC10925358 DOI: 10.1101/2024.02.20.24303036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and impulsivity. Externalizing research often includes substance use (SU), substance use disorder (SUD), and other (non-SU/SUD) "behavioral disinhibition" (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture within and across SUB, SUD, and BD. We created single-factor measurement models-each describing SUB, SUD, or BD traits--based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring externalizing variables. We then applied trivariate Cholesky decomposition to these factors in order to identify BD-specific genomic variation and assess the partitioning of BD's genetic covariance with each of the other facets. Even when the residuals for indicators relating to the same substance were correlated across the SUB and SUD factors, the two factors yielded a large zero-order correlation (rg=.803). BD correlated strongly with the SUD (rg=.774) and SUB factors (rg=.778). In our initial decompositions, 33% of total BD variance remained after removing variance associated with SUD and SUB. The majority of covariance between BD and SU and between BD and SUD was shared across all factors. When only nicotine/tobacco, cannabis, and alcohol were included for the SUB/SUD factors, their zero-order correlation increased to rg=.861; in corresponding decompositions, BD-specific variance decreased to 27%. In summary, BD, SU, and SUD were highly genetically correlated at the latent factor level, and a significant minority of genomic BD variation was not shared with SU and/or SUD. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/molecular correlates.
Collapse
Affiliation(s)
- Tanya B. Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| | - Katerina Zorina-Lichtenwalter
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
| | - Daniel E. Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| | - Michael C. Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, United States of America 80303
- Psychology and Neuroscience, University of Colorado Boulder, Meunzinger D244, 345 UCB, Boulder, CO, United States of America 80303
| |
Collapse
|
12
|
Javelle F, Schlagheck ML, Broos HC, Timpano KR, Joormann J, Zimmer P, Johnson SL. On the impulsivity path: Examining the unique and conjoint relations between emotion- and non-emotion-related impulsivity, internalizing symptoms, alcohol use, and physical health parameters. J Clin Psychol 2024; 80:339-354. [PMID: 37883120 PMCID: PMC11170548 DOI: 10.1002/jclp.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Researchers have increasingly differentiated trait-like tendencies toward impulsivity occurring during emotional states (emotion-related impulsivity [ERI]) from impulsivity not tied to emotion (non-ERI). Relative to non-ERI, ERI has shown robust correlations with psychopathology and mild to moderate associations with physical health parameters (e.g., physical activity, poor sleep quality, body mass index [BMI]). Therefore, we first aimed to investigate the unique contributions of ERI and non-ERI to psychopathology symptoms while controlling for neuroticism. Second, we sought to explore the combined associations of physical health parameters with several impulsivity forms. METHODS German-speaking adults (N = 350, 35.9 ± 14.6 years, 69.1% female, BMI: 24.0 ± 4.8 kg/m2 , mostly students or employees) completed measures of impulsivity, psychopathology symptoms, neuroticism, and physical health. We gathered measures of two ERI forms: Feelings Trigger Action and Pervasive Influence of Feelings. As a control comparison, we gathered a measure of non-ERI, the Lack of Follow-Through scale. We conducted separate path models for Aims 1 and 2. RESULTS For Aim 1, Pervasive Influence of Feelings showed strong links with internalizing symptoms. Feelings Trigger Action and Lack of Follow-Through showed small links with alcohol use. For Aim 2, poor sleep quality was related to all three impulsivity factors, while physical activity was only related to Pervasive Influence of Feelings and Lack of Follow-Through. BMI showed a curvilinear association with impulsivity. CONCLUSIONS ERI is more directly relevant than non-ERI for psychopathology symptoms, emphasizing the need to differentiate between the two ERI types. The association of ERI and non-ERI with physical activity and poor sleep quality may serve as potential treatment targets for impulsivity-related problems.
Collapse
Affiliation(s)
- Florian Javelle
- NeuroPsychoImmunology Research Unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Marit L. Schlagheck
- Division of Performance and Health, Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Hannah C. Broos
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Kiara R. Timpano
- Department of Psychology, University of Miami, Coral Gables, Florida, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Philipp Zimmer
- Division of Performance and Health, Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - Sheri L. Johnson
- Department of Psychology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
13
|
Lara MK, Chitre AS, Chen D, Johnson BB, Nguyen KM, Cohen KA, Muckadam SA, Lin B, Ziegler S, Beeson A, Sanches T, Solberg Woods LC, Polesskaya O, Palmer AA, Mitchell SH. Genome-wide association study of delay discounting in Heterogenous Stock rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570851. [PMID: 38168347 PMCID: PMC10760013 DOI: 10.1101/2023.12.12.570851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders, as well as multiple co-occurring psychopathologies. Genetic studies in humans and animal models have established that delay discounting is a heritable trait, but only a few specific genes have been associated with delay discounting. Here, we aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogenous Stock rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at variable delays. Preference switch points were calculated for each rat and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and indifference points for a short delay identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family of nucleoside sugar transporters, was the only gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression of that gene might be responsible for the association with behavior. The gene Adgrl3, which encodes a member of the latrophilin family of G-protein coupled receptors, was the only gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
Collapse
Affiliation(s)
- Montana Kay Lara
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Benjamin B. Johnson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Katarina A. Cohen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sakina A. Muckadam
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bonnie Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shae Ziegler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Angela Beeson
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Suzanne H. Mitchell
- Departments of Behavioral Neuroscience, Psychiatry, the Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239 USA
| |
Collapse
|
14
|
Roshandel D, Sanders EJ, Shakeshaft A, Panjwani N, Lin F, Collingwood A, Hall A, Keenan K, Deneubourg C, Mirabella F, Topp S, Zarubova J, Thomas RH, Talvik I, Syvertsen M, Striano P, Smith AB, Selmer KK, Rubboli G, Orsini A, Ng CC, Møller RS, Lim KS, Hamandi K, Greenberg DA, Gesche J, Gardella E, Fong CY, Beier CP, Andrade DM, Jungbluth H, Richardson MP, Pastore A, Fanto M, Pal DK, Strug LJ. SLCO5A1 and synaptic assembly genes contribute to impulsivity in juvenile myoclonic epilepsy. NPJ Genom Med 2023; 8:28. [PMID: 37770509 PMCID: PMC10539321 DOI: 10.1038/s41525-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Elevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model. We identified genome-wide associated SNPs at 8q13.3 (P = 7.5 × 10-9) and 10p11.21 (P = 3.6 × 10-8). The 8q13.3 locus colocalizes with SLCO5A1 expression quantitative trait loci in cerebral cortex (P = 9.5 × 10-3). SLCO5A1 codes for an organic anion transporter and upregulates synapse assembly/organisation genes. Pathway analysis demonstrates 12.7-fold enrichment for presynaptic membrane assembly genes (P = 0.0005) and 14.3-fold enrichment for presynaptic organisation genes (P = 0.0005) including NLGN1 and PTPRD. RNAi knockdown of Oatp30B, the Drosophila polypeptide with the highest homology to SLCO5A1, causes over-reactive startling behaviour (P = 8.7 × 10-3) and increased seizure-like events (P = 6.8 × 10-7). Polygenic risk score for ADHD genetically correlates with impulsivity scores in JME (P = 1.60 × 10-3). SLCO5A1 loss-of-function represents an impulsivity and seizure mechanism. Synaptic assembly genes may inform the aetiology of impulsivity in health and disease.
Collapse
Affiliation(s)
- Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Eric J Sanders
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, The University of Toronto, Toronto, Canada
| | - Amy Shakeshaft
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Naim Panjwani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Fan Lin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Amber Collingwood
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anna Hall
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katherine Keenan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Celine Deneubourg
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Filippo Mirabella
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simon Topp
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jana Zarubova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Rhys H Thomas
- Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Oslo, Norway
| | - Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Anna B Smith
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kaja K Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Guido Rubboli
- Danish Epilepsy Centre, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Orsini
- Pediatric Neurology, Azienda Ospedaliero-Universitaria Pisana, Pisa University Hospital, Pisa, Italy
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Rikke S Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Kheng Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology Cardiff & Vale University Health Board, Cardiff, UK
- Department of Psychological Medicine and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | | | | | - Elena Gardella
- Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Choong Yi Fong
- Division of Paediatric Neurology, Department of Pediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Danielle M Andrade
- Adult Epilepsy Genetics Program, Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- King's College Hospital, London, UK
| | - Annalisa Pastore
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Manolis Fanto
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- King's College Hospital, London, UK.
| | - Lisa J Strug
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada.
- Division of Biostatistics, Dalla Lana School of Public Health, The University of Toronto, Toronto, Canada.
- Departments of Statistical Sciences and Computer Science, The University of Toronto, Toronto, Canada.
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
15
|
Hjell G, Rokicki J, Szabo A, Holst R, Tesli N, Bell C, Fischer-Vieler T, Werner MCF, Lunding SH, Ormerod MBEG, Johansen IT, Djurovic S, Ueland T, Andreassen OA, Melle I, Lagerberg TV, Mørch-Johnsen L, Steen NE, Haukvik UK. Impulsivity across severe mental disorders: a cross-sectional study of immune markers and psychopharmacotherapy. BMC Psychiatry 2023; 23:659. [PMID: 37674162 PMCID: PMC10483855 DOI: 10.1186/s12888-023-05154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Impulsivity is a transdiagnostic feature linked to severe clinical expression and a potential target for psychopharmacological strategies. Biological underpinnings are largely unknown, but involvement of immune dysregulation has been indicated, and the effects of psychopharmacological agents vary. We investigated if impulsivity was associated with circulating immune marker levels and with a range of psychopharmacological treatment regimens in severe mental disorders. METHODS Impulsivity was assessed in a sample (N = 657) of patients with schizophrenia or schizophreniform disorder (SCZ) (N = 116) or bipolar disorder (BD) (N = 159) and healthy participants (N = 382) using the Barratt Impulsiveness Scale (BIS-11) questionnaire. Plasma levels of systemic immune markers (RANTES, IL-1RA, IL-18, IL-18BP, sTNFR-1) were measured by enzyme immunoassays. Patients underwent thorough clinical assessment, including evaluation of psychotropic medication. Associations were assessed using linear regressions. RESULTS Impulsivity was positively associated with SCZ (p < 0.001) and BD (p < 0.001) diagnosis and negatively associated with age (p < 0.05), but not significantly associated with any of the circulating immune markers independently of diagnostic status. Among patients, impulsivity was negatively associated with lithium treatment (p = 0.003) and positively associated with antidepressant treatment (p = 0.011) after controlling for diagnosis, psychotropic co-medications, manic symptoms, and depressive symptoms. CONCLUSIONS We report elevated impulsivity across SCZ and BD but no associations to systemic immune dysregulation based on the current immune marker selection. The present study reveals associations between impulsivity in severe mental disorders and treatment with lithium and antidepressants, with opposite directions. Future studies are warranted to determine the causal directionality of the observed associations with psychopharmacotherapy.
Collapse
Affiliation(s)
- Gabriela Hjell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway.
| | - Jaroslav Rokicki
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Center of Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - René Holst
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Natalia Tesli
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christina Bell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Fischer-Vieler
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maren Caroline Frogner Werner
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Synve Hoffart Lunding
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ingrid Torp Johansen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Unn Kristin Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
- Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Lannoy S, Heron J, Hickman M, Edwards AC. Risk Factors for Binge Drinking in Young Adulthood: The Roles of Aggregate Genetic Liability and Impulsivity-Related Processes. J Stud Alcohol Drugs 2023; 84:499-507. [PMID: 36971764 PMCID: PMC10488311 DOI: 10.15288/jsad.22-00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE Binge drinking is characterized by excessive alcohol use and is widespread in youth. We explore the relationship between binge drinking's risk factors by considering (a) aggregate genetic liability (polygenic risk score [PGS]) for alcohol use and problems and (b) impulsivity-related processes. We examined whether the associations between PGS and binge drinking were mediated by impulsivity, with a possible shared genetic liability between alcohol phenotypes and impulsivity. METHOD Participants were from the Avon Longitudinal Study of Parents and Children (N = 2,545). We evaluated PGS for alcohol use and problems and impulsivity-related processes (sensation seeking at age 18 and inhibition at age 24) and measured binge drinking frequency (24 years old) as the outcome. Correlations and structural equation models were used to test a hypothesized model of the relationships among these variables. RESULTS Higher binge drinking frequency was related to higher aggregate genetic liability for alcohol use and problems in both models (standardized betas = .055-.064, all ps < .009). We found an association between binge drinking and sensation seeking (standardized beta = .224, p < .0001) but not inhibition (standardized beta = -.015, p = .437). Although the association between binge drinking and PGS for alcohol use and problems was mainly direct, a proportion of the association with alcohol problems was mediated by sensation seeking (14.61%). CONCLUSIONS Targeting sensation seeking at the end of adolescence may be means to prevent binge drinking in adulthood, whereas considering the role of genetic factors may improve our understanding of at-risk youth.
Collapse
Affiliation(s)
- Séverine Lannoy
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jon Heron
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Matthew Hickman
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexis C. Edwards
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
17
|
Miller AP, Gizer IR. Neurogenetic and multi-omic sources of overlap among sensation seeking, alcohol consumption, and alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.30.23290733. [PMID: 37333128 PMCID: PMC10274973 DOI: 10.1101/2023.05.30.23290733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensation seeking is bidirectionally associated with levels of alcohol consumption in both adult and adolescent samples and shared neurobiological and genetic influences may in part explain this association. Links between sensation seeking and alcohol use disorder (AUD) may primarily manifest via increased alcohol consumption rather than through direct effects on increasing problems and consequences. Here the overlap between sensation seeking, alcohol consumption, and AUD was examined using multivariate modeling approaches for genome-wide association study (GWAS) summary statistics in conjunction with neurobiologically-informed analyses at multiple levels of investigation. Meta-analytic and genomic structural equation modeling (GenomicSEM) approaches were used to conduct GWAS of sensation seeking, alcohol consumption, and AUD. Resulting summary statistics were used in downstream analyses to examine shared brain tissue enrichment of heritability and genome-wide evidence of overlap (e.g., stratified GenomicSEM, RRHO, genetic correlations with neuroimaging phenotypes) and to identify genomic regions likely contributing to observed genetic overlap across traits (e.g., HMAGMA, LAVA). Across approaches, results supported shared neurogenetic architecture between sensation seeking and alcohol consumption characterized by overlapping enrichment of genes expressed in midbrain and striatal tissues and variants associated with increased cortical surface area. Alcohol consumption and AUD evidenced overlap in relation to variants associated with decreased frontocortical thickness. Finally, genetic mediation models provided evidence of alcohol consumption mediating associations between sensation seeking and AUD. This study extends previous research by examining critical sources of neurogenetic and multi-omic overlap among sensation seeking, alcohol consumption, and AUD which may underlie observed phenotypic associations.
Collapse
Affiliation(s)
- Alex P. Miller
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, van der Werf LC, Bianchi SB, Huang Y, Lee C, Mallard TT, Barnes SA, Wu JY, Barkley-Levenson AM, Boussaty EC, Snethlage CE, Schafer D, Babic Z, Winters BD, Watters KE, Biederer T, Mackillop J, Stephens DN, Elson SL, Fontanillas P, Khokhar JY, Young JW, Palmer AA. CADM2 is implicated in impulsive personality and numerous other traits by genome- and phenome-wide association studies in humans and mice. Transl Psychiatry 2023; 13:167. [PMID: 37173343 PMCID: PMC10182097 DOI: 10.1038/s41398-023-02453-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jazlene E Mallari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Calvin Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jin Yi Wu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ely C Boussaty
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Cedric E Snethlage
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Zeljana Babic
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Katherine E Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - James Mackillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada and Homewood Research Institute, Guelph, ON, Canada
| | - David N Stephens
- Laboratory of Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | | | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Shared genetic architecture between attention-deficit/hyperactivity disorder and lifespan. Neuropsychopharmacology 2023; 48:981-990. [PMID: 36906694 PMCID: PMC10209393 DOI: 10.1038/s41386-023-01555-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
There is evidence linking ADHD to a reduced life expectancy. The mortality rate in individuals with ADHD is twice that of the general population and it is associated with several factors, such as unhealthy lifestyle behaviors, social adversity, and mental health problems that may in turn increase mortality rates. Since ADHD and lifespan are heritable, we used data from genome-wide association studies (GWAS) of ADHD and parental lifespan, as proxy of individual lifespan, to estimate their genetic correlation, identify genetic loci jointly associated with both phenotypes and assess causality. We confirmed a negative genetic correlation between ADHD and parental lifespan (rg = -0.36, P = 1.41e-16). Nineteen independent loci were jointly associated with both ADHD and parental lifespan, with most of the alleles that increased the risk for ADHD being associated with shorter lifespan. Fifteen loci were novel for ADHD and two were already present in the original GWAS on parental lifespan. Mendelian randomization analyses pointed towards a negative causal effect of ADHD liability on lifespan (P = 1.54e-06; Beta = -0.07), although these results were not confirmed by all sensitivity analyses performed, and further evidence is required. The present study provides the first evidence of a common genetic background between ADHD and lifespan, which may play a role in the reported effect of ADHD on premature mortality risk. These results are consistent with previous epidemiological data describing reduced lifespan in mental disorders and support that ADHD is an important health condition that could negatively affect future life outcomes.
Collapse
|
20
|
Stephenson M, Lannoy S, Edwards AC. Shared genetic liability for alcohol consumption, alcohol problems, and suicide attempt: Evaluating the role of impulsivity. Transl Psychiatry 2023; 13:87. [PMID: 36899000 PMCID: PMC10006209 DOI: 10.1038/s41398-023-02389-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy drinking and diagnosis with alcohol use disorder (AUD) are consistently associated with risk for suicide attempt (SA). Though the shared genetic architecture among alcohol consumption and problems (ACP) and SA remains largely uncharacterized, impulsivity has been proposed as a heritable, intermediate phenotype for both alcohol problems and suicidal behavior. The present study investigated the extent to which shared liability for ACP and SA is genetically related to five dimensions of impulsivity. Analyses incorporated summary statistics from genome-wide association studies of alcohol consumption (N = 160,824), problems (N = 160,824), and dependence (N = 46,568), alcoholic drinks per week (N = 537,349), suicide attempt (N = 513,497), impulsivity (N = 22,861), and extraversion (N = 63,030). We used genomic structural equation modeling (Genomic SEM) to, first, estimate a common factor model with alcohol consumption, problems, and dependence, drinks per week, and SA included as indicators. Next, we evaluated the correlations between this common genetic factor and five factors representing genetic liability to negative urgency, positive urgency, lack of premeditation, sensation-seeking, and lack of perseverance. Common genetic liability to ACP and SA was significantly correlated with all five impulsive personality traits examined (rs = 0.24-0.53, ps < 0.002), and the largest correlation was with lack of premeditation, though supplementary analyses suggested that these findings were potentially more strongly influenced by ACP than SA. These analyses have potential implications for screening and prevention: Impulsivity can be comprehensively assessed in childhood, whereas heavy drinking and suicide attempt are quite rare prior to adolescence. Our findings provide preliminary evidence that features of impulsivity may serve as early indicators of genetic risk for alcohol problems and suicidality.
Collapse
Affiliation(s)
- Mallory Stephenson
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| | - Séverine Lannoy
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexis C Edwards
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Carreras-Torres R, Kim AE, Lin Y, Diez-Obrero V, Bien SA, Qu C, Wang J, Dimou N, Aglago EK, Albanes D, Arndt V, Baurley JW, Berndt SI, Bézieau S, Bishop DT, Bouras E, Brenner H, Budiarto A, Campbell PT, Casey G, Chan AT, Chang-Claude J, Chen X, Conti DV, Dampier CH, Devall MAM, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kawaguchi E, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison JL, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Shcherbina A, Slattery ML, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Cenggoro TW, Weinstein SJ, White E, Wolk A, Woods MO, Hsu L, Peters U, Moreno V, Gauderman WJ. Genome-wide Interaction Study with Smoking for Colorectal Cancer Risk Identifies Novel Genetic Loci Related to Tumor Suppression, Inflammation, and Immune Response. Cancer Epidemiol Biomarkers Prev 2023; 32:315-328. [PMID: 36576985 PMCID: PMC9992283 DOI: 10.1158/1055-9965.epi-22-0763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. METHODS A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. RESULTS Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). CONCLUSIONS Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. IMPACT These findings can guide potential prevention treatments.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190, Girona, Spain
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Virginia Diez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jun Wang
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Elom K Aglago
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christopher H Dampier
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Matthew AM Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anshul Kundaje
- Department of Genetics, Department of Computer Science, Stanford University, Stanford, California, USA
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John L Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Dept. of Biomedical Data Sciences, Stanford University
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mariana C Stern
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Franzel JB van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, and Biomedical Center, Medical Faculty, Pilsen, Czech Republic
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Socrates A, Mullins N, Gur R, Gur R, Stahl E, O'Reilly P, Reichenberg A, Jones H, Zammit S, Velthorst E. Polygenic risk of Social-isolation and its influence on social behavior, psychosis, depression and autism spectrum disorder. RESEARCH SQUARE 2023:rs.3.rs-2583059. [PMID: 36909642 PMCID: PMC10002835 DOI: 10.21203/rs.3.rs-2583059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Social-isolation has been linked to a range of psychiatric issues, but the behavioral component that drives it is not well understood. Here, a GWAS is carried out to identify genetic variants which contribute to Social-isolation behaviors in up to 449,609 participants from the UK Biobank. 17 loci were identified at genome-wide significance, contributing to a 4% SNP heritability estimate. Using the Social-isolation GWAS, polygenic risk scores (PRS) were derived in ALSPAC, an independent, developmental cohort, and used to test for association with friendship quality. At age 18, friendship scores were associated with the Social-isolation PRS, demonstrating that the genetic factors are able to predict related social traits. LD score regression using the GWAS demonstrated genetic correlation with autism spectrum disorder, schizophrenia, and major depressive disorder. However, no evidence of causality was found using a conservative Mendelian randomization approach other than that of autism spectrum disorder on Social-isolation. Our results show that Social-isolation has a small heritable component which may drive those behaviors which is associated genetically with other social traits such as friendship satisfaction as well as psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | - Eli Stahl
- Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | |
Collapse
|
23
|
Miller AP, Gizer IR. Dual-systems models of the genetic architecture of impulsive personality traits: Neurogenetic evidence of distinct but related factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.10.23285725. [PMID: 36824800 PMCID: PMC9949186 DOI: 10.1101/2023.02.10.23285725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Dual-systems models provide a parsimonious framework for understanding the interplay between cortical and subcortical brain regions relevant to impulsive personality traits (IPTs) and their associations with psychiatric disorders. Despite recent developments in multivariate analysis of genome-wide association studies (GWAS), molecular genetic investigations of these models have not been conducted. Methods Using extant IPT GWAS, we conducted confirmatory genomic structural equation models (GenomicSEM) to empirically evaluate dual-systems models of the genetic architecture of IPTs. Genetic correlations between results of multivariate GWAS of dual-systems factors and GWAS of relevant cortical and subcortical neuroimaging phenotypes (regional/structural volume, cortical surface area, cortical thickness) were calculated and compared. Results Evaluation of GenomicSEM model fit indices for dual-systems models suggested that these models highlight important sources of shared and unique genetic variance between top-down and bottom-up constructs. Specifically, a dual-systems genomic model consisting of sensation seeking and lack of self-control factors demonstrated distinct but related sources of genetic influences ( r g =.60). Genetic correlation analyses provided evidence of differential associations between dual-systems factors and cortical neuroimaging phenotypes (e.g., lack of self-control negatively associated with cortical thickness, sensation seeking positively associated with cortical surface area). However, no significant associations were observed for subcortical phenotypes inconsistent with hypothesized functional localization of dual-systems constructs. Conclusions Dual-systems models of the genetic architecture of IPTs tested here demonstrate evidence of shared and unique genetic influences and associations with relevant neuroimaging phenotypes. These findings emphasize potential advantages in utilizing dual-systems models to study genetic influences for IPTs and transdiagnostic associations with psychiatric disorders.
Collapse
|
24
|
Chitre AS, Hebda-Bauer EK, Blandino P, Bimschleger H, Nguyen KM, Maras P, Li F, Ozel AB, Pan Y, Polesskaya O, Cheng R, Flagel SB, Watson SJ, Li J, Akil H, Palmer AA. Genome-wide association study in a rat model of temperament identifies multiple loci for exploratory locomotion and anxiety-like traits. Front Genet 2023; 13:1003074. [PMID: 36712851 PMCID: PMC9873817 DOI: 10.3389/fgene.2022.1003074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023] Open
Abstract
Common genetic factors likely contribute to multiple psychiatric diseases including mood and substance use disorders. Certain stable, heritable traits reflecting temperament, termed externalizing or internalizing, play a large role in modulating vulnerability to these disorders. To model these heritable tendencies, we selectively bred rats for high and low exploration in a novel environment [bred High Responders (bHR) vs. Low Responders (bLR)]. To identify genes underlying the response to selection, we phenotyped and genotyped 538 rats from an F2 cross between bHR and bLR. Several behavioral traits show high heritability, including the selection trait: exploratory locomotion (EL) in a novel environment. There were significant phenotypic and genetic correlations between tests that capture facets of EL and anxiety. There were also correlations with Pavlovian conditioned approach (PavCA) behavior despite the lower heritability of that trait. Ten significant and conditionally independent loci for six behavioral traits were identified. Five of the six traits reflect different facets of EL that were captured by three behavioral tests. Distance traveled measures from the open field and the elevated plus maze map onto different loci, thus may represent different aspects of novelty-induced locomotor activity. The sixth behavioral trait, number of fecal boli, is the only anxiety-related trait mapping to a significant locus on chromosome 18 within which the Pik3c3 gene is located. There were no significant loci for PavCA. We identified a missense variant in the Plekhf1 gene on the chromosome 1:95 Mb QTL and Fancf and Gas2 as potential candidate genes that may drive the chromosome 1:107 Mb QTL for EL traits. The identification of a locomotor activity-related QTL on chromosome 7 encompassing the Pkhd1l1 and Trhr genes is consistent with our previous finding of these genes being differentially expressed in the hippocampus of bHR vs. bLR rats. The strong heritability coupled with identification of several loci associated with exploratory locomotion and emotionality provide compelling support for this selectively bred rat model in discovering relatively large effect causal variants tied to elements of internalizing and externalizing behaviors inherent to psychiatric and substance use disorders.
Collapse
Affiliation(s)
- Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Pamela Maras
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Fei Li
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - A. Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Shelly B. Flagel
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J. Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Jun Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States,*Correspondence: Abraham A. Palmer,
| |
Collapse
|
25
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
26
|
Verweij KJH, Vink JM, Abdellaoui A, Gillespie NA, Derks EM, Treur JL. The genetic aetiology of cannabis use: from twin models to genome-wide association studies and beyond. Transl Psychiatry 2022; 12:489. [PMID: 36411281 PMCID: PMC9678872 DOI: 10.1038/s41398-022-02215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.
Collapse
Affiliation(s)
- Karin J. H. Verweij
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- grid.5590.90000000122931605Behavioural Science Institute, Radboud University Nijmegen, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Nathan A. Gillespie
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 East Leigh St, Suite 100, Richmond, VA 23219 USA
| | - Eske M. Derks
- grid.1049.c0000 0001 2294 1395Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
| | - Jorien L. Treur
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Trait-Related Impulsivity, Affective Temperaments and Mood Disorders: Results from a Real-World Multicentric Study. Brain Sci 2022; 12:brainsci12111554. [PMID: 36421878 PMCID: PMC9688154 DOI: 10.3390/brainsci12111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Trait-related impulsiveness is highly prevalent in patients with mood disorders, being associated with negative outcomes. The predictive role of affective temperaments on trait-related impulsivity is still understudied. The aim of the present study is to investigate the relationship between impulsivity and affective temperaments in a sample of euthymic patients with mood disorders. This is a real-world multicentric observational study, carried out at the outpatient units of seven university sites in Italy. All patients filled in the short version of Munster Temperament Evaluation of the Memphis, Pisa, Paris and San Diego and the Barratt Impulsiveness Scale. The study sample included 653 participants, mainly female (58.2%), with a mean age of 46.9 (±14.1). Regression analyses showed that higher levels of trait-related impulsivity were associated to suicide attempts (p < 0.000), the presence of psychotic symptoms during acute phases (p < 0.05), a seasonal pattern (p < 0.05), a lower age at onset of the disorder (p < 0.05), cyclothymic (p < 0.01) and irritable temperaments (p < 0.01). The results of our study highlight the importance to screen patients with mood disorders for impulsivity and affective temperaments in order to identify patients who are more likely to present a worse outcome and to develop personalized and integrated early pharmacological and psychosocial treatment plans. Novelties of the present paper include the recruitment of patients in a stable phase, which reduced possible bias in patients’ self-reports, and the multicentric nature of the study, resulting in the recruitment of a large sample of patients with mood disorders, geographically distributed across Italy, thus improving the generalizability of study results.
Collapse
|
28
|
Leventhal AM, Conti DV, Ray LA, Baurley JW, Bello MS, Cho J, Zhang Y, Pester MS, Lebovitz L, Budiarto A, Mahesworo B, Pardamean B. A genetic association study of tobacco withdrawal endophenotypes in African Americans. Exp Clin Psychopharmacol 2022; 30:673-681. [PMID: 34279980 PMCID: PMC8928755 DOI: 10.1037/pha0000492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome-wide association (GWA) genetic epidemiology research has identified several variants modestly associated with brief self-report smoking measures, predominately in European Americans. GWA research has not applied intensive laboratory-based measures of smoking endophenotypes in African Americans-a population with disproportionately low quit smoking rates and high tobacco-related disease risk. This genetic epidemiology study of non-Hispanic African Americans tested associations of 89 genetic variants identified in previous GWA research and exploratory GWAs with 24 laboratory-derived tobacco withdrawal endophenotypes. African American cigarette smokers (N = 528; ≥10 cig/day; 36.2% female) completed two counterbalanced visits following either 16-hr of tobacco deprivation or ad libitum smoking. At both visits, self-report and behavioral measures across six unique "sub-phenotype" domains within the tobacco withdrawal syndrome were assessed (Urge/Craving, Negative Affect, Low Positive Affect, Cognition, Hunger, and Motivation to Resume Smoking). Results of the candidate variant analysis found two significant small-magnitude associations. The rs11915747 alternate allele in the CAD2M gene region was associated with .09 larger deprivation-induced changes in reported impulsivity (0-4 scale). The rs2471711alternate allele in the AC097480.1/AC097480.2 gene region was associated with 0.26 lower deprivation-induced changes in confusion (0-4 scale). For both variants, associations were opposite in direction to previous research. Individual genetic variants may exert only weak influences on tobacco withdrawal in African Americans. Larger sample sizes of non-European ancestry individuals might be needed to investigate both known and novel loci that may be ancestry-specific. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Adam M. Leventhal
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
- Department of Psychology, University of Southern California
| | - David V. Conti
- Department of Psychology, University of Southern California
| | - Lara A. Ray
- Department of Psychology, University of California, Los Angeles
| | | | | | - Junhan Cho
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | - Yi Zhang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California
| | | | - Lucas Lebovitz
- Keck School of Medicine, University of Southern California
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Bens Pardamean
- BioRealm LLC, California
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| |
Collapse
|
29
|
Parsing genetically influenced risk pathways: genetic loci impact problematic alcohol use via externalizing and specific risk. Transl Psychiatry 2022; 12:420. [PMID: 36180423 PMCID: PMC9525649 DOI: 10.1038/s41398-022-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWAS) identify genetic variants associated with a trait, regardless of how those variants are associated with the outcome. Characterizing whether variants for psychiatric outcomes operate via specific versus general pathways provides more informative measures of genetic risk. In the current analysis, we used multivariate GWAS to tease apart variants associated with problematic alcohol use (ALCP-total) through either a shared risk for externalizing (EXT) or a problematic alcohol use-specific risk (ALCP-specific). SNPs associated with ALCP-specific were primarily related to alcohol metabolism. Genetic correlations showed ALCP-specific was predominantly associated with alcohol use and other forms of psychopathology, but not other forms of substance use. Polygenic scores for ALCP-total were associated with multiple forms of substance use, but polygenic scores for ALCP-specific were only associated with alcohol phenotypes. Polygenic scores for both ALCP-specific and EXT show different patterns of associations with alcohol misuse across development. Our results demonstrate that focusing on both shared and specific risk can better characterize pathways of risk for substance use disorders. Parsing risk pathways will become increasingly relevant as genetic information is incorporated into clinical practice.
Collapse
|
30
|
Matrov D, Kurrikoff T, Villa I, Sakala K, Pulver A, Veidebaum T, Shimmo R, Harro J. Association of Impulsivity With Food, Nutrients, and Fitness in a Longitudinal Birth Cohort Study. Int J Neuropsychopharmacol 2022; 25:1014-1025. [PMID: 35977538 PMCID: PMC9743963 DOI: 10.1093/ijnp/pyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Impulsivity is a psychiatric vulnerability factor strongly associated with substance abuse but also with unhealthy diet. Whether these associations extend to specific nutrients is largely unknown. Therefore, we investigated the longitudinal association between diet, cardiorespiratory fitness, and 2 impulsivity dimensions in a representative sample of south Estonian adolescents and young adults. Impulsivity and dietary intake were measured 3 times in 2 birth cohorts at regular intervals in individuals aged 15 to 33 years. METHODS The sample included 2 birth cohorts of the longitudinal Estonian Children Personality Behaviour and Health Study. The analytic sample size consisted of 2883 observations (56.4% females). The primary outcomes were adaptive and maladaptive impulsivity scores measured by an original 24-item Likert-type questionnaire. Impulsivity scores were predicted from the food diaries data converted into nutrient categories. A linear mixed-effects approach was used to model the time dependence between observations. RESULTS Lower maladaptive impulsivity was associated with higher cardiorespiratory fitness (β = -.07; 95% CI = -0.12; -0.03). Higher maladaptive impulsivity was associated with lower dietary intake of zinc (β = -.10; -0.15; -0.06) and vegetables (β = -.04; -0.07; -0.01) and higher intake of sodium (β = .06; 0.02; 0.10). Vitamin B6 was positively associated with adaptive impulsivity (β = .04; 0.01; 0.07). Additionally, some of the adjusted models showed significant but weak associations with selenium, alcohol, fish, and cereal products. CONCLUSIONS Food choice may affect the neurochemistry and therefore regulate the manifestations of impulsivity. We identified associations between several (micro)nutrients and maladaptive impulsivity.
Collapse
Affiliation(s)
- Denis Matrov
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia,Department of Psychology, Faculty of Social Sciences, University of Tartu, Tartu, Estonia
| | - Triin Kurrikoff
- Department of Psychology, Faculty of Social Sciences, University of Tartu, Tartu, Estonia,Chair of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Inga Villa
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Katre Sakala
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia,Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia,Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Aleksander Pulver
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Toomas Veidebaum
- Research Centre, National Institute for Health Development, Tallinn, Estonia
| | - Ruth Shimmo
- Tallinn University Centre of Excellence in Neural and Behavioural Sciences, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jaanus Harro
- Correspondence: Jaanus Harro, MD, PhD, Chair of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia ()
| |
Collapse
|
31
|
Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, Lauricella C, Han L, Morley T, Niestroj LM, Ulirsch J, Everett S, Howrigan DP, Boone PM, Fu J, Karczewski KJ, Kellaris G, Lowther C, Lucente D, Mohajeri K, Nõukas M, Nuttle X, Samocha KE, Trinh M, Ullah F, Võsa U, Hurles ME, Aradhya S, Davis EE, Finucane H, Gusella JF, Janze A, Katsanis N, Matyakhina L, Neale BM, Sanders D, Warren S, Hodge JC, Lal D, Ruderfer DM, Meck J, Mägi R, Esko T, Reymond A, Kutalik Z, Hakonarson H, Sunyaev S, Brand H, Talkowski ME. A cross-disorder dosage sensitivity map of the human genome. Cell 2022; 185:3041-3055.e25. [PMID: 35917817 PMCID: PMC9742861 DOI: 10.1016/j.cell.2022.06.036] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023]
Abstract
Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Joseph T Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maarja Lepamets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | - Lide Han
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Theodore Morley
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jacob Ulirsch
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Selin Everett
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Daniel P Howrigan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konrad J Karczewski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Georgios Kellaris
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Margit Nõukas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Xander Nuttle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Mi Trinh
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Farid Ullah
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | | | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | | | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hilary Finucane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | - Nicholas Katsanis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Benjamin M Neale
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Precision Medicine, Department of Biomedical Informatics, and Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Center for Primary Care and Public Health, University of Lausanne, 1015 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shamil Sunyaev
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Boscutti A, Pigoni A, Delvecchio G, Lazzaretti M, Mandolini GM, Girardi P, Ferro A, Sala M, Abbiati V, Cappucciati M, Bellani M, Perlini C, Rossetti MG, Balestrieri M, Damante G, Bonivento C, Rossi R, Finos L, Serretti A, Brambilla P. The Influence of 5-HTTLPR, BDNF Rs6265 and COMT Rs4680 Polymorphisms on Impulsivity in Bipolar Disorder: The Role of Gender. Genes (Basel) 2022; 13:genes13030482. [PMID: 35328036 PMCID: PMC8954186 DOI: 10.3390/genes13030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Impulsivity has been proposed as an endophenotype for bipolar disorder (BD); moreover, impulsivity levels have been shown to carry prognostic significance and to be quality-of-life predictors. To date, reports about the genetic determinants of impulsivity in mood disorders are limited, with no studies on BD individuals. Individuals with BD and healthy controls (HC) were recruited in the context of an observational, multisite study (GECOBIP). Subjects were genotyped for three candidate single-nucleotide polymorphisms (SNPs) (5-HTTLPR, COMT rs4680, BDNF rs6265); impulsivity was measured through the Italian version of the Barratt Impulsiveness Scale (BIS-11). A mixed-effects regression model was built, with BIS scores as dependent variables, genotypes of the three polymorphisms as fixed effects, and centers of enrollment as random effect. Compared to HC, scores for all BIS factors were higher among subjects with euthymic BD (adjusted β for Total BIS score: 5.35, p < 0.001). No significant interaction effect was evident between disease status (HC vs. BD) and SNP status for any polymorphism. Considering the whole sample, BDNF Met/Met homozygosis was associated with lower BIS scores across all three factors (adjusted β for Total BIS score: −10.2, p < 0.001). A significant 5-HTTLPR x gender interaction was found for the SS genotype, associated with higher BIS scores in females only (adjusted β for Total BIS score: 12.0, p = 0.001). Finally, COMT polymorphism status was not significantly associated with BIS scores. In conclusion, BD diagnosis did not influence the effect on impulsivity scores for any of the three SNPs considered. Only one SNP—the BDNF rs6265 Met/Met homozygosis—was independently associated with lower impulsivity scores. The 5-HTTLPR SS genotype was associated with higher impulsivity scores in females only. Further studies adopting genome-wide screening in larger samples are needed to define the genetic basis of impulsivity in BD.
Collapse
Affiliation(s)
- Andrea Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Alessandro Pigoni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Paolo Girardi
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (P.G.); (L.F.)
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
| | - Michela Sala
- Mental Health Department, Azienda Sanitaria Locale Alessandria, 15121 Alessandria, Italy;
| | - Vera Abbiati
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marco Cappucciati
- Department of Mental Health and Substance Abuse, Azienda Sanitaria Locale Piacenza, 29121 Piacenza, Italy;
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Matteo Balestrieri
- Psychiatry Unit, Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Giuseppe Damante
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Carolina Bonivento
- IRCCS “E. Medea”, Polo Friuli-Venezia Giulia, San Vito al Tagliamento, 33078 Pordenone, Italy;
| | - Roberta Rossi
- Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio FBF, 25125 Brescia, Italy;
| | - Livio Finos
- Department of Developmental Psychology and Socialization, University of Padua, 35131 Padua, Italy; (P.G.); (L.F.)
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40123 Bologna, Italy;
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.P.); (G.D.); (M.L.); (G.M.M.); (A.F.); (M.G.R.)
- Correspondence:
| | | |
Collapse
|
33
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Working memory and reaction time variability mediate the relationship between polygenic risk and ADHD traits in a general population sample. Mol Psychiatry 2022; 27:5028-5037. [PMID: 36151456 PMCID: PMC9763105 DOI: 10.1038/s41380-022-01775-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 01/14/2023]
Abstract
Endophenotypes are heritable and quantifiable traits indexing genetic liability for a disorder. Here, we examined three potential endophenotypes, working memory function, response inhibition, and reaction time variability, for attention-deficit hyperactivity disorder (ADHD) measured as a dimensional latent trait in a large general population sample derived from the Adolescent Brain Cognitive DevelopmentSM Study. The genetic risk for ADHD was estimated using polygenic risk scores (PRS) whereas ADHD traits were quantified as a dimensional continuum using Bartlett factor score estimates, derived from Attention Problems items from the Child Behaviour Checklist and Effortful Control items from the Early Adolescent Temperament Questionnaire-Revised. The three candidate cognitive endophenotypes were quantified using task-based performance measures. Higher ADHD PRSs were associated with higher ADHD traits, as well as poorer working memory performance and increased reaction time variability. Lower working memory performance, poorer response inhibition, and increased reaction time variability were associated with more pronounced ADHD traits. Working memory and reaction time variability partially statistically mediated the relationship between ADHD PRS and ADHD traits, explaining 14% and 16% of the association, respectively. The mediation effect was specific to the genetic risk for ADHD and did not generalise to genetic risk for four other major psychiatric disorders. Together, these findings provide robust evidence from a large general population sample that working memory and reaction time variability can be considered endophenotypes for ADHD that mediate the relationship between ADHD PRS and ADHD traits.
Collapse
|
35
|
Moulin V, Framorando D, Gasser J, Dan-Glauser E. The Link Between Cannabis Use and Violent Behavior in the Early Phase of Psychosis: The Potential Role of Impulsivity. Front Psychiatry 2022; 13:746287. [PMID: 35392388 PMCID: PMC8980530 DOI: 10.3389/fpsyt.2022.746287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Recently, the literature has shown that Cannabis Use (CU) was a risk factor for Violent Behavior (VB) in patients with psychosis, and those in the early phase of psychosis (EPP). These findings are relevant because of the high prevalence of CU in this EPP, and the potential for prevention during this phase of illness. However, there is still a lack of clear explanations, supported by empirical evidence, about what underlies the link between CU and VB against other. METHOD This viewpoint reviews the scientific literature on the link between CU and VB, and the involvement of impulsivity in this relationship. This last point will be addressed at clinical and neurobiological levels. RESULTS Recent studies confirmed that CU is particularly high in the EPP, and is a risk factor for VB in the EPP and schizophrenia. Studies have also shown that impulsivity is a risk factor for VB in psychosis, is associated with CU, and may mediate the link between CU and VB. Research suggests a neurobiological mechanism, as CU affects the structures and function of frontal areas, known to play a role in impulsive behavior. CONCLUSION Scientific evidence support the hypothesis of an involvement of impulsivity as a variable that could mediate the link between CU and aggression, particularly, when CU has an early onset. However, this hypothesis should be confirmed with longitudinal studies and by taking into account confounding factors. The studies highlight the relevance of early prevention in the EPP, in addition to interventions focusing on psychotic disorders.
Collapse
Affiliation(s)
- Valerie Moulin
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - David Framorando
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacques Gasser
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Elise Dan-Glauser
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Fernàndez-Castillo N, Cabana-Domínguez J, Kappel DB, Torrico B, Weber H, Lesch KP, Lao O, Reif A, Cormand B. Exploring the Contribution to ADHD of Genes Involved in Mendelian Disorders Presenting with Hyperactivity and/or Inattention. Genes (Basel) 2021; 13:93. [PMID: 35052433 PMCID: PMC8775234 DOI: 10.3390/genes13010093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Djenifer B. Kappel
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF10 3AT, UK;
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Heike Weber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, 97080 Wurzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Wurzburg, Germany;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6221 LK Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), 08028 Barcelona, Spain;
- Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt, Germany; (H.W.); (A.R.)
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (B.T.); (B.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
37
|
Genomic and Personalized Medicine Approaches for Substance Use Disorders (SUDs) Looking at Genome-Wide Association Studies. Biomedicines 2021; 9:biomedicines9121799. [PMID: 34944615 PMCID: PMC8698472 DOI: 10.3390/biomedicines9121799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.
Collapse
|
38
|
Brumback T, Thompson W, Cummins K, Brown S, Tapert S. Psychosocial predictors of substance use in adolescents and young adults: Longitudinal risk and protective factors. Addict Behav 2021; 121:106985. [PMID: 34087768 PMCID: PMC8240028 DOI: 10.1016/j.addbeh.2021.106985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022]
Abstract
Many psychosocial factors have been implicated in the onset and escalation of substance use in adolescence and young adulthood. Typically, each factor explains a small amount of the variance in substance use outcomes, and effects are typically applied across a broad range of ages or computed from cross-sectional data. The current study evaluated the association of factors including social influence (e.g., peer substance use), cognitive features (e.g., alcohol expectancies), and personality and emotional characteristics (e.g., impulsivity and typical responses to stress) in substance use throughout adolescence and emerging adulthood (ages 13-25; N = 798). Mixed-effects models tailored for the accelerated longitudinal design employed in this study were constructed with psychosocial and developmental factors predicting alcohol and cannabis use. As most participants in the sample exhibited little or no substance use at baseline by design, we excluded baseline assessments and examined data from follow-up years 1, 2, 3, and 4. Interactions between age cohort, change in age, and psychosocial predictors of substance use revealed differing associations over the developmental window for alcohol and cannabis use. For example, positive alcohol expectancies and sensation seeking were most strongly associated with greater drinking after age 18, whereas sensation seeking was associated with increased cannabis use as early as age 15. Higher emotion regulation skills led to less cannabis use in younger ages (i.e., shallower slopes below age 17), but this protective effect diminished after age 17. Results highlight developmentally important factors that differentially contribute to substance use in adolescence and young adulthood. We also demonstrate the importance of developmentally sensitive analyses that maximize the value of data from accelerated longitudinal designs.
Collapse
Affiliation(s)
- Ty Brumback
- Northern Kentucky University, United States.
| | | | | | - Sandra Brown
- University of California, San Diego, United States
| | - Susan Tapert
- University of California, San Diego, United States
| |
Collapse
|
39
|
Karlsson Linnér R, Mallard TT, Barr PB, Sanchez-Roige S, Madole JW, Driver MN, Poore HE, de Vlaming R, Grotzinger AD, Tielbeek JJ, Johnson EC, Liu M, Rosenthal SB, Ideker T, Zhou H, Kember RL, Pasman JA, Verweij KJH, Liu DJ, Vrieze S, Kranzler HR, Gelernter J, Harris KM, Tucker-Drob EM, Waldman ID, Palmer AA, Harden KP, Koellinger PD, Dick DM. Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction. Nat Neurosci 2021; 24:1367-1376. [PMID: 34446935 PMCID: PMC8484054 DOI: 10.1038/s41593-021-00908-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Behaviors and disorders related to self-regulation, such as substance use, antisocial behavior and attention-deficit/hyperactivity disorder, are collectively referred to as externalizing and have shared genetic liability. We applied a multivariate approach that leverages genetic correlations among externalizing traits for genome-wide association analyses. By pooling data from ~1.5 million people, our approach is statistically more powerful than single-trait analyses and identifies more than 500 genetic loci. The loci were enriched for genes expressed in the brain and related to nervous system development. A polygenic score constructed from our results predicts a range of behavioral and medical outcomes that were not part of genome-wide analyses, including traits that until now lacked well-performing polygenic scores, such as opioid use disorder, suicide, HIV infections, criminal convictions and unemployment. Our findings are consistent with the idea that persistent difficulties in self-regulation can be conceptualized as a neurodevelopmental trait with complex and far-reaching social and health correlates.
Collapse
Affiliation(s)
| | - Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Peter B Barr
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James W Madole
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Morgan N Driver
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Holly E Poore
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Ronald de Vlaming
- Department of Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jorim J Tielbeek
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, VA CT Healthcare System, West Haven, CT, USA
| | - Rachel L Kember
- Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State University, Hershey, PA, USA
- Institute of Personalized Medicine, Penn State University, Hershey, PA, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, VA CT Healthcare System, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, West Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, West Haven, CT, USA
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
- Center for Computational and Quantitative Genetics, Emory University, Atlanta, GA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Philipp D Koellinger
- Department of Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA.
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
40
|
Hindley G, Bahrami S, Steen NE, O'Connell KS, Frei O, Shadrin A, Bettella F, Rødevand L, Fan CC, Dale AM, Djurovic S, Smeland OB, Andreassen OA. Characterising the shared genetic determinants of bipolar disorder, schizophrenia and risk-taking. Transl Psychiatry 2021; 11:466. [PMID: 34497263 PMCID: PMC8426401 DOI: 10.1038/s41398-021-01576-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Increased risk-taking is a central component of bipolar disorder (BIP) and is implicated in schizophrenia (SCZ). Risky behaviours, including smoking and alcohol use, are overrepresented in both disorders and associated with poor health outcomes. Positive genetic correlations are reported but an improved understanding of the shared genetic architecture between risk phenotypes and psychiatric disorders may provide insights into underlying neurobiological mechanisms. We aimed to characterise the genetic overlap between risk phenotypes and SCZ, and BIP by estimating the total number of shared variants using the bivariate causal mixture model and identifying shared genomic loci using the conjunctional false discovery rate method. Summary statistics from genome wide association studies of SCZ, BIP, risk-taking and risky behaviours were acquired (n = 82,315-466,751). Genomic loci were functionally annotated using FUMA. Of 8.6-8.7 K variants predicted to influence BIP, 6.6 K and 7.4 K were predicted to influence risk-taking and risky behaviours, respectively. Similarly, of 10.2-10.3 K variants influencing SCZ, 9.6 and 8.8 K were predicted to influence risk-taking and risky behaviours, respectively. We identified 192 loci jointly associated with SCZ and risk phenotypes and 206 associated with BIP and risk phenotypes, of which 68 were common to both risk-taking and risky behaviours and 124 were novel to SCZ or BIP. Functional annotation implicated differential expression in multiple cortical and sub-cortical regions. In conclusion, we report extensive polygenic overlap between risk phenotypes and BIP and SCZ, identify specific loci contributing to this shared risk and highlight biologically plausible mechanisms that may underlie risk-taking in severe psychiatric disorders.
Collapse
Affiliation(s)
- Guy Hindley
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK.
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Kevin S O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Blindern, 0316, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Francesco Bettella
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Chun C Fan
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anders M Dale
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B Smeland
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| |
Collapse
|
41
|
Analysis of Selected Variants of DRD2 and ANKK1 Genes in Combat Athletes. Genes (Basel) 2021; 12:genes12081239. [PMID: 34440413 PMCID: PMC8393533 DOI: 10.3390/genes12081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/01/2022] Open
Abstract
The level of physical activity is conditioned by many different factors, including, among others, the personality traits of a person. Important is the fact that personality traits are a moderately heritable factor and on the basis of the analysis of several genes, various lifetime outcomes can be predicted. One of the most important pathways influencing personality traits is connected to the dopaminergic system; hence, we decided to analyze the DRD2 PROM. rs1799732, DRD2 rs1076560, DRD2 Tag1D rs1800498, DRD2 Ex8 rs6276, DRD2Tag1B rs1079597 and ANKK1 Tag1A rs180049. The research group included 258 male athletes (mean age = 26.02; SD = 8.30), whereas the control group was 284 healthy male volunteers matched for age (mean age = 22.89; SD = 4.78), both of Caucasian origin and without history of substance dependency or psychosis. Genomic DNA was extracted from venous blood using standard procedures. Genotyping was conducted with the real-time PCR method. Differences in the frequency of the DRD2Tag1B rs1079597 gene polymorphism were found between people practicing combat sports and the control group, and the DRD2 PROM. rs1799732, DRD2 rs1076560, DRD2 Tag1D rs1800498, DRD2 Ex8 rs6276, DRD2Tag1B rs1079597 and ANKK1 Tag1A rs1800497 genotypes and allele frequencies in the studied sample did not differ between the analyzed groups. Hence, we considered these polymorphic places as an interesting area for the further search for unambiguous associations between personality traits and attitude towards physical effort.
Collapse
|
42
|
Genetic underpinnings of affective temperaments: a pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. Transl Psychiatry 2021; 11:337. [PMID: 34075027 PMCID: PMC8169753 DOI: 10.1038/s41398-021-01436-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Although recently a large-sample GWASs identified significant loci in the background of depression, the heterogeneity of the depressive phenotype and the lack of accurate phenotyping hinders applicability of findings. We carried out a pilot GWAS with in-depth phenotyping of affective temperaments, considered as subclinical manifestations and high-risk states for affective disorders, in a general population sample of European origin. Affective temperaments were measured by TEMPS-A. SNP-level association was assessed by linear regression models, assuming an additive genetic effect, using PLINK1.9. Gender, age, the first ten principal components (PCs) and the other four temperaments were included in the regression models as covariates. SNP-level relevances (p-values) were aggregated to gene level using the PEGASUS method1. In SNP-based tests, a Bonferroni-corrected significance threshold of p ≤ 5.0 × 10-8 and a suggestive significance threshold of p ≤ 1.0 × 10-5, whereas in gene-based tests a Bonferroni-corrected significance of 2.0 × 10-6 and a suggestive significance of p ≤ 4.0 × 10-4 was established. To explore known functional effects of the most significant SNPs, FUMA v1.3.5 was used. We identified 1 significant and 21 suggestively significant SNPs in ADGRB3, expressed in the brain, for anxious temperament. Several other brain-relevant SNPs and genes emerged at suggestive significance for the other temperaments. Functional analyses reflecting effect on gene expression and participation in chromatin interactions also pointed to several genes expressed in the brain with potentially relevant phenotypes regulated by our top SNPs. Our findings need to be tested in larger GWA studies and candidate gene analyses in well-phenotyped samples in relation to affective disorders and related phenotypes.
Collapse
|
43
|
Bertin L, Benca-Bachman CE, Kogan SM, Palmer RH. Examining the differential effects of latent impulsivity factors on substance use outcomes in African American men. Addict Behav 2021; 117:106847. [PMID: 33578106 DOI: 10.1016/j.addbeh.2021.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
African Americans have elevated substance use-related problems during adulthood despite initiating use later than individuals of other racial/ethnic backgrounds. The present study first validated the structure of the UPPS-P Impulsive Behavior Scale and then examined impulsivity as a prospective risk factor for future alcohol, cannabis, and tobacco use, as well as generalized substance problems, in African American men. Data were drawn from the African-American Men's Project, which recruited participants (NWAVE-1 = 504; Mean ageWAVE-1 = 20.7; NWAVE-3 = 379; Mean ageWAVE-3 = 23.6) from rural counties of Georgia. Participants responded to an adapted version of the UPPS-P at Wave 1. Confirmatory factor analyses determined that a 5-factor model of impulsivity and a 3-factor hierarchical model of impulsivity described the data equally well, in comparison to 1-factor, 4-factor, or bifactor models. This supports that the structure of the abbreviated UPPS-P in African Americans is likely consistent with observations in White, Hispanic/Latino, and admixed samples. Notably, all second-order factors of the UPPS-P are not alike in predicting substance use outcomes when examined jointly in African American men. Only Deficits in Conscientiousness, which is a second-order factor comprised of Lack of Premeditation and Lack of Perseverance, affected whether individuals met any criteria for future substance use problems. Our findings provide novel insight into the relationship between impulsivity and substance involvement during emerging adulthood in African American men.
Collapse
|
44
|
Gerring ZF, Vargas AM, Gamazon ER, Derks EM. An integrative systems-based analysis of substance use: eQTL-informed gene-based tests, gene networks, and biological mechanisms. Am J Med Genet B Neuropsychiatr Genet 2021; 186:162-172. [PMID: 33369091 PMCID: PMC8137546 DOI: 10.1002/ajmg.b.32829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Genome-wide association studies have identified multiple genetic risk factors underlying susceptibility to substance use, however, the functional genes and biological mechanisms remain poorly understood. The discovery and characterization of risk genes can be facilitated by the integration of genome-wide association data and gene expression data across biologically relevant tissues and/or cell types to identify genes whose expression is altered by DNA sequence variation (expression quantitative trait loci; eQTLs). The integration of gene expression data can be extended to the study of genetic co-expression, under the biologically valid assumption that genes form co-expression networks to influence the manifestation of a disease or trait. Here, we integrate genome-wide association data with gene expression data from 13 brain tissues to identify candidate risk genes for 8 substance use phenotypes. We then test for the enrichment of candidate risk genes within tissue-specific gene co-expression networks to identify modules (or groups) of functionally related genes whose dysregulation is associated with variation in substance use. We identified eight gene modules in brain that were enriched with gene-based association signals for substance use phenotypes. For example, a single module of 40 co-expressed genes was enriched with gene-based associations for drinks per week and biological pathways involved in GABA synthesis, release, reuptake and degradation. Our study demonstrates the utility of eQTL and gene co-expression analysis to uncover novel biological mechanisms for substance use traits.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Angela Mina Vargas
- Translational Neurogenomics Laboratory; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Clare Hall, University of Cambridge, Cambridge, United Kingdom
| | - Eske M Derks
- Translational Neurogenomics Laboratory; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Javelle F, Wiegand M, Joormann J, Timpano KR, Zimmer P, Johnson SL. The German Three Factor Impulsivity Index: Confirmatory factor analysis and ties to demographic and health-related variables. PERSONALITY AND INDIVIDUAL DIFFERENCES 2021; 171. [PMID: 35185234 DOI: 10.1016/j.paid.2020.110470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A growing body of research has focused on the differentiation of emotion-related versus non-emotion-related impulsivity, assessed by the Three-Factor Impulsivity (TFI) index. The goal of this study is to develop a German TFI index, and to validate the emotion-related impulsivity subscales against indices of substance abuse, physical or psychological disorder, physical exercise, BMI, and hours of sleep. 395 native-German speakers completed the German TFI index and questions on validity indicators online. Factor analyses supported the three-factor structure, including Pervasive Influence of Feelings, Lack of Follow Through, and Feelings Trigger Action. Correlations between factors were higher than in the original work. Both emotion-related impulsivity subscales correlated significantly with psychological disorder, engagement in and minutes of physical exercise per week. When included in multivariate regression models, the three factors explained 3.1%, and 29.2% of variance in amount of exercise per week and psychological disorder, respectively. In sum, findings indicated that the German TFI index has a robust three-factor structure that showed expected links to validity indicators, and novel effects in relation to physical exercise.
Collapse
Affiliation(s)
- F Javelle
- Clinical Exercise-Neuroimmunology Group, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - M Wiegand
- Department of Psychology, University of Cologne, Germany
| | - J Joormann
- Department of Psychology, Yale University, United States
| | - K R Timpano
- Department of Psychology, University of Miami, United States
| | - P Zimmer
- Clinical Exercise-Neuroimmunology Group, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany.,Department for Performance and Health (Sports Medicine), Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| | - S L Johnson
- Department of Psychology, University of California Berkeley, United States
| |
Collapse
|
46
|
Preadult polytoxicomania-strong environmental underpinnings and first genetic hints. Mol Psychiatry 2021; 26:3211-3222. [PMID: 33824432 PMCID: PMC8505259 DOI: 10.1038/s41380-021-01069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022]
Abstract
Considering the immense societal and personal costs and suffering associated with multiple drug use or "polytoxicomania", better understanding of environmental and genetic causes is crucial. While previous studies focused on single risk factors and selected drugs, effects of early-accumulated environmental risks on polytoxicomania were never addressed. Similarly, evidence of genetic susceptibility to particular drugs is abundant, while genetic predisposition to polytoxicomania is unexplored. We exploited the GRAS data collection, comprising information on N~2000 deep-phenotyped schizophrenia patients, to investigate effects of early-life environmental risk accumulation on polytoxicomania and additionally provide first genetic insight. Preadult accumulation of environmental risks (physical or sexual abuse, urbanicity, migration, cannabis, alcohol) was strongly associated with lifetime polytoxicomania (p = 1.5 × 10-45; OR = 31.4), preadult polytoxicomania with OR = 226.6 (p = 1.0 × 10-33) and adult polytoxicomania with OR = 17.5 (p = 3.4 × 10-24). Parallel accessibility of genetic data from GRAS patients and N~2100 controls for genome-wide association (GWAS) and phenotype-based genetic association studies (PGAS) permitted the creation of a novel multiple GWAS-PGAS approach. This approach yielded 41 intuitively interesting SNPs, potentially conferring liability to preadult polytoxicomania, which await replication upon availability of suitable deep-phenotyped cohorts anywhere world-wide. Concisely, juvenile environmental risk accumulation, including cannabis and alcohol as starter/gateway drugs, strongly predicts polytoxicomania during adolescence and adulthood. This pivotal message should launch more effective sociopolitical measures to prevent this deleterious psychiatric condition.
Collapse
|
47
|
Reynolds T, Johnson EC, Huggett SB, Bubier JA, Palmer RHC, Agrawal A, Baker EJ, Chesler EJ. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology 2021; 46:86-97. [PMID: 32791514 PMCID: PMC7688940 DOI: 10.1038/s41386-020-00795-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies and other discovery genetics methods provide a means to identify previously unknown biological mechanisms underlying behavioral disorders that may point to new therapeutic avenues, augment diagnostic tools, and yield a deeper understanding of the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made possible through large-scale collaborative efforts. These studies have begun to unearth many novel genetic variants associated with psychiatric disorders and behavioral traits in human populations. Significant challenges remain in characterizing the resulting disease-associated genetic variants and prioritizing functional follow-up to make them useful for mechanistic understanding and development of therapeutics. Model organism research has generated extensive genomic data that can provide insight into the neurobiological mechanisms of variant action, but a cohesive effort must be made to establish which aspects of the biological modulation of behavioral traits are evolutionarily conserved across species. Scalable computing, new data integration strategies, and advanced analysis methods outlined in this review provide a framework to efficiently harness model organism data in support of clinically relevant psychiatric phenotypes.
Collapse
Affiliation(s)
- Timothy Reynolds
- The Jackson Laboratory, Bar Harbor, ME, USA
- Computer Science Department, Baylor University, Waco, TX, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | | | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Erich J Baker
- Computer Science Department, Baylor University, Waco, TX, USA
| | | |
Collapse
|
48
|
Early environmental enrichment and impoverishment differentially affect addiction-related behavioral traits, cocaine-taking, and dopamine D 2/3 receptor signaling in a rat model of vulnerability to drug abuse. Psychopharmacology (Berl) 2021; 238:3543-3557. [PMID: 34463825 PMCID: PMC8629910 DOI: 10.1007/s00213-021-05971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 11/03/2022]
Abstract
RATIONALE Risk factors for drug addiction include genetics, environment, and behavioral traits such as impulsivity and novelty preference (NP), which have been related to deficits in striatal dopamine (DA) D2/3-receptors (D2/3R) and heightened amphetamine (AMPH)-induced DA release. However, the influence of the early rearing environment on these behavioral and neurochemical variables is not clear. OBJECTIVES We investigated the influence of early rearing environment on striatal D2/3R availabilities and AMPH-induced DA release in relation to impulsivity, NP, and propensity to drug self-administration (SA) in "addiction-prone" Roman high- (RHA) and "addiction-resistant" Roman low-avoidance (RLA) rats. METHODS Animals were reared post-weaning in either environmental enrichment (EE) or impoverishment (EI) and were assessed at adulthood for impulsivity, NP, and propensity to cocaine SA. EE and EI rats were also scanned using single-photon emission computed tomography to concurrently measure in vivo striatal D2/3R availability and AMPH-induced DA release. RESULTS EE vs. EI was associated with heightened impulsivity and a lack of NP in both rat lines. Higher dorsal striatal D2/3R densities were found in RHA EE and higher AMPH-induced DA release in RLA EE. Both impulsivity and NP were negatively correlated to dorsal striatal D2/3R availabilities and positively correlated with AMPH-induced DA release in EI but not in EE. EE vs. EI was related to a faster rate of cocaine intake and elevated active timeout responses in RHAs. CONCLUSION Our results suggest non-monotonic, environment-dependent, relationships between impulsivity, NP, and D2/3R-mediated signaling, and suggest that EI vs. EE may decrease the reinforcing effects of psychostimulants in predisposed individuals.
Collapse
|
49
|
Thapa KS, Chen AB, Lai D, Xuei X, Wetherill L, Tischfield JA, Liu Y, Edenberg HJ. Identification of Functional Genetic Variants Associated With Alcohol Dependence and Related Phenotypes Using a High-Throughput Assay. Alcohol Clin Exp Res 2020; 44:2494-2518. [PMID: 33119910 PMCID: PMC7725989 DOI: 10.1111/acer.14492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) of alcohol dependence (AD) and related phenotypes have identified multiple loci, but the functional variants underlying the loci have in most cases not been identified. Noncoding variants can influence phenotype by affecting gene expression; for example, variants in the 3' untranslated regions (3'UTR) can affect gene expression posttranscriptionally. METHODS We adapted a high-throughput assay known as PASSPORT-seq (parallel assessment of polymorphisms in miRNA target sites by sequencing) to identify among variants associated with AD and related phenotypes those that cause differential expression in neuronal cell lines. Based upon meta-analyses of alcohol-related traits in African American and European Americans in the Collaborative Study on the Genetics of Alcoholism, we tested 296 single nucleotide polymorphisms (SNPs with meta-analysis p values ≤ 0.001) that were located in 3'UTRs. RESULTS We identified 60 SNPs that affected gene expression (false discovery rate [FDR] < 0.05) in SH-SY5Y cells and 92 that affected expression in SK-N-BE(2) cells. Among these, 30 SNPs altered RNA levels in the same direction in both cell lines. Many of these SNPs reside in the binding sites of miRNAs and RNA-binding proteins and are expression quantitative trait loci of genes including KIF6,FRMD4A,CADM2,ADD2,PLK2, and GAS7. CONCLUSION The SNPs identified in the PASSPORT-seq assay are functional variants that might affect the risk for AD and related phenotypes. Our study provides insights into gene regulation in AD and demonstrates the value of PASSPORT-seq as a tool to screen genetic variants in GWAS loci for one potential mechanism of action.
Collapse
Affiliation(s)
- Kriti S. Thapa
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andy B Chen
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dongbing Lai
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaoling Xuei
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah Wetherill
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jay A. Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, 99999, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Howard J. Edenberg
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
50
|
Poveda A, Atabaki‐Pasdar N, Ahmad S, Hallmans G, Renström F, Franks PW. Association of Established Blood Pressure Loci With 10-Year Change in Blood Pressure and Their Ability to Predict Incident Hypertension. J Am Heart Assoc 2020; 9:e014513. [PMID: 32805198 PMCID: PMC7660819 DOI: 10.1161/jaha.119.014513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.
Collapse
Affiliation(s)
- Alaitz Poveda
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Naeimeh Atabaki‐Pasdar
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Shafqat Ahmad
- Preventive Medicine DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMA
- Department of Medical SciencesMolecular EpidemiologyUppsala UniversityUppsalaSweden
| | - Göran Hallmans
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
| | - Frida Renström
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Division of Endocrinology and DiabetesCantonal Hospital St. GallenSt. GallenSwitzerland
| | - Paul W. Franks
- Genetic and Molecular Epidemiology UnitDepartment of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
- Section for Nutritional ResearchDepartment of Public Health and Clinical MedicineUmeå UniversityUmeåSweden
- Department of NutritionHarvard Chan School of Public HealthBostonMA
| |
Collapse
|