1
|
Blomqvist A. Inflammation-induced fever depends on prostaglandin E2 production by brain endothelial cells and EP3 receptors in the median preoptic nucleus of the hypothalamus. Acta Physiol (Oxf) 2024; 240:e14238. [PMID: 39352065 DOI: 10.1111/apha.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 11/10/2024]
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Mori Y, Ohta A, Kuhara A. Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans. Neurosci Res 2024:S0168-0102(24)00134-2. [PMID: 39547476 DOI: 10.1016/j.neures.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024]
Abstract
Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of "cold tolerance" and "temperature acclimation," based on an analysis of the nematode Caenorhabditis elegans as an experimental system for neural and intertissue information processing.
Collapse
Affiliation(s)
- Yukina Mori
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
3
|
Costa LHA, Trajano IP, Passaglia P, Branco LGS. Thermoregulation and survival during sepsis: insights from the cecal ligation and puncture experimental model. Intensive Care Med Exp 2024; 12:100. [PMID: 39522078 PMCID: PMC11551088 DOI: 10.1186/s40635-024-00687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sepsis remains a major global health concern due to its high prevalence and mortality. Changes in body temperature (Tb), such as hypothermia or fever, are diagnostic indicators and play a crucial role in the pathophysiology of sepsis. This study aims to characterize the thermoregulatory mechanisms during sepsis using the cecal ligation and puncture (CLP) model and explore how sepsis severity and ambient temperature (Ta) influence Tb regulation and mortality. Rats were subjected to mild or severe sepsis by CLP while housed at thermoneutral (28 °C) or subthermoneutral (22 °C) Ta, and their Tb was monitored for 12 h. Blood and hypothalamus were collected for cytokines and prostaglandin E2 (PGE2) analysis. RESULTS At 28 °C, febrile response magnitude correlated with sepsis severity and inflammatory response, with tail vasoconstriction as the primary heat retention mechanism. At 22 °C, Tb was maintained during mild sepsis but dropped during severe sepsis, linked to reduced UCP1 expression in brown adipose tissue and less effective vasoconstriction. Despite differences in thermoregulatory responses, both Ta conditions induced a persistent inflammatory response and increased hypothalamic PGE2 production. Notably, mortality in severe sepsis was significantly higher at 28 °C (80%) compared to 22 °C (0%). CONCLUSIONS Our findings reveal that ambient temperature and the inflammatory burden critically influence thermoregulation and survival during early sepsis. These results emphasize the importance of considering environmental factors in preclinical sepsis studies. Although rodents in experimental settings are often adapted to cold environments, these conditions may not fully translate to human sepsis, where cold adaptation is rare. Thus, researchers should carefully consider these variables when designing experiments and interpreting translational implications.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Isis P Trajano
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patricia Passaglia
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, SP, 14040-902, Brazil.
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Xu JH, He TH, Wang NP, Gao WM, Cheng YJ, Ji QF, Wu SH, Wei YL, Tang Y, Yang WZ, Zhang J. Thermoregulatory pathway underlying the pyrogenic effects of prostaglandin E 2 in the lateral parabrachial nucleus of male rats. Acta Pharmacol Sin 2024; 45:1832-1847. [PMID: 38702500 PMCID: PMC11336216 DOI: 10.1038/s41401-024-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.
Collapse
Affiliation(s)
- Jian-Hui Xu
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Tian-Hui He
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Nan-Ping Wang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Wen-Min Gao
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Yong-Jing Cheng
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Qiao-Feng Ji
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Si-Hao Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Yan-Lin Wei
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Yu Tang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China
| | - Wen Z Yang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
5
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. eLife 2024; 13:RP98677. [PMID: 39207910 PMCID: PMC11361704 DOI: 10.7554/elife.98677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.
Collapse
|
6
|
Ochiai T, Honsawa T, Yamaguchi K, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Prostacyclin synthase deficiency exacerbates systemic inflammatory responses in lipopolysaccharide-induced septic shock in mice. Inflamm Res 2024; 73:1349-1358. [PMID: 38832966 DOI: 10.1007/s00011-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Sepsis is a systemic inflammatory disorder characterized by life-threateningorgan dysfunction resulting from a dysregulated host response to infection. Prostacyclin (PGI2) is a bioactive lipid produced by PGI synthase (PGIS) and is known to play important roles in inflammatory reactions as well as cardiovascular regulation. However, little is known about the roles of PGIS and PGI2 in systemic inflammatory responses such as septic shock. METHODOLOGY Systemic inflammation was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS) in wild type (WT) or PGIS knockout (KO) mice. Selexipag, a selective PGI2 receptor (IP) agonist, was administered 2 h before LPS injection and again given every 12 h for 3 days. RESULTS Intraperitoneal injection of LPS induced diarrhea, shivering and hypothermia. These symptoms were more severe in PGIS KO mice than in WT micqe. The expression of Tnf and Il6 genes was notably increased in PGIS KO mice. In contrast, over 95% of WT mice survived 72 h after the administration of LPS, whereas all of the PGIS KO mice had succumbed by that time. The mortality rate of LPS-administrated PGIS KO mice was improved by selexipag administration. CONCLUSION Our study suggests that PGIS-derived PGI2 negatively regulates LPS-induced symptoms via the IP receptor. PGIS-derived PGI2-IP signaling axis may be a new drug target for systemic inflammation in septic shock.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Keishi Yamaguchi
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | | | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
7
|
Ramirez-Plascencia OD, De Luca R, Machado NLS, Eghlidi D, Khanday MA, Bandaru SS, Raffin F, Vujovic N, Arrigoni E, Saper CB. A hypothalamic circuit for circadian regulation of corticosterone secretion. RESEARCH SQUARE 2024:rs.3.rs-4718850. [PMID: 39041039 PMCID: PMC11261983 DOI: 10.21203/rs.3.rs-4718850/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The secretion of cortisol in humans and corticosterone (Cort) in rodents follows a daily rhythm which is important in readying the individual for the daily active cycle and is impaired in chronic depression. This rhythm is orchestrated by the suprachiasmatic nucleus (SCN) which governs the activity of neurons in the paraventricular nucleus of the hypothalamus that produce the corticotropin-releasing hormone (PVHCRH neurons). The dorsomedial nucleus of the hypothalamus (DMH) serves as a crucial intermediary, being innervated by the SCN both directly and via relays in the subparaventricular zone, and projecting axons to the PVH, thereby exerting influence over the cortisol/corticosterone rhythm. However, the role and synaptic mechanisms by which DMH neurons regulate the daily rhythm of Cort secretion has not been explored. We found that either ablating or acutely inhibiting the DMH glutamatergic (DMHVglut2) neurons resulted in a 40-70% reduction in the daily peak of Cort. Deletion of the Vglut2 gene within the DMH produced a similar effect, highlighting the indispensable role of glutamatergic signaling. Chemogenetic stimulation of DMHVglut2 neurons led to an increase of Cort levels, and optogenetic activation of their terminals in the PVH in hypothalamic slices directly activated PVHCRH neurons through glutamate release (the DMHVglut2 → PVHCRH pathway). Similarly, ablating, inhibiting, or disrupting GABA transmission by DMH GABAergic (DMHVgat) neurons diminished the circadian peak of Cort, particularly under constant darkness conditions. Chemogenetic stimulation of DMHVgat neurons increased Cort, although with a lower magnitude compared to DMHVglut2 neuron stimulation, suggesting a role in disinhibiting PVHCRH neurons. Supporting this hypothesis, we found that rostral DMHVgat neurons project directly to GABAergic neurons in the caudal ventral part of the PVH and adjacent peri-PVH area (cvPVH), which directly inhibit PVHCRH neurons, and that activating the DMHVgat terminals in the cvPVH in brain slices reduced GABAergic afferent input onto the PVHCRH neurons. Finally, ablation of cvPVHVgat neurons resulted in increased Cort release at the onset of the active phase, affirming the pivotal role of the DMHVgat → cvPVHVgat → PVHCRH pathway in Cort secretion. In summary, our study delineates two parallel pathways transmitting temporal information to PVHCRH neurons, collectively orchestrating the daily surge in Cort in anticipation of the active phase. These findings are crucial to understand the neural circuits regulating Cort secretion, shedding light on the mechanisms governing this physiological process and the coordinated interplay between SCN, DMH, and PVH.
Collapse
Affiliation(s)
- Oscar D. Ramirez-Plascencia
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Natalia L. S. Machado
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dominique Eghlidi
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Mudasir A. Khanday
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Sathyajit S. Bandaru
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Francesca Raffin
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, PV 27100, Italy
| | - Nina Vujovic
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
- Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Clifford B. Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Cutler B, Haesemeyer M. Vertebrate behavioral thermoregulation: knowledge and future directions. NEUROPHOTONICS 2024; 11:033409. [PMID: 38769950 PMCID: PMC11105118 DOI: 10.1117/1.nph.11.3.033409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Thermoregulation is critical for survival across species. In animals, the nervous system detects external and internal temperatures, integrates this information with internal states, and ultimately forms a decision on appropriate thermoregulatory actions. Recent work has identified critical molecules and sensory and motor pathways controlling thermoregulation. However, especially with regard to behavioral thermoregulation, many open questions remain. Here, we aim to both summarize the current state of research, the "knowledge," as well as what in our mind is still largely missing, the "future directions." Given the host of circuit entry points that have been discovered, we specifically see that the time is ripe for a neuro-computational perspective on thermoregulation. Such a perspective is largely lacking but is increasingly fueled and made possible by the development of advanced tools and modeling strategies.
Collapse
Affiliation(s)
- Bradley Cutler
- Graduate program in Molecular, Cellular and Developmental Biology, Columbus, Ohio, United States
- The Ohio State University, Columbus, Ohio, United States
| | | |
Collapse
|
9
|
Tabarean IV. Opposing actions of co-released GABA and neurotensin on the activity of preoptic neurons and on body temperature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589556. [PMID: 38659782 PMCID: PMC11042348 DOI: 10.1101/2024.04.15.589556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (PACAP) neurons firing activity. GABA-A receptor antagonist or genetic deletion of VGAT in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking VGAT resulted in excitation of PACAP neurons and hypothermia. Mice lacking VGAT expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5 °C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic PACAP neurons. Taken together our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic PACAP neurons is the cellular mechanism that triggers this response.
Collapse
|
10
|
Nakamura K. Central Mechanisms of Thermoregulation and Fever in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:141-159. [PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermoregulation is a fundamental homeostatic function in mammals mediated by the central nervous system. The framework of the central circuitry for thermoregulation lies in the hypothalamus and brainstem. The preoptic area (POA) of the hypothalamus integrates cutaneous and central thermosensory information into efferent control signals that regulate excitatory descending pathways through the dorsomedial hypothalamus (DMH) and rostral medullary raphe region (rMR). The cutaneous thermosensory feedforward signals are delivered to the POA by afferent pathways through the lateral parabrachial nucleus, while the central monitoring of body core temperature is primarily mediated by warm-sensitive neurons in the POA for negative feedback regulation. Prostaglandin E2, a pyrogenic mediator produced in response to infection, acts on the POA to trigger fever. Recent studies have revealed that this circuitry also functions for physiological responses to psychological stress and starvation. Master psychological stress signaling from the medial prefrontal cortex to the DMH has been discovered to drive a variety of physiological responses for stress coping, including hyperthermia. During starvation, hunger signaling from the hypothalamus was found to activate medullary reticular neurons, which then suppress thermogenic sympathetic outflows from the rMR for energy saving. This thermoregulatory circuit represents a fundamental mechanism of the central regulation for homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
11
|
Zhang Y, Pool AH, Wang T, Liu L, Kang E, Zhang B, Ding L, Frieda K, Palmiter R, Oka Y. Parallel neural pathways control sodium consumption and taste valence. Cell 2023; 186:5751-5765.e16. [PMID: 37989313 PMCID: PMC10761003 DOI: 10.1016/j.cell.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Collapse
Affiliation(s)
- Yameng Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Departments of Neuroscience and Anesthesia and Pain Management and Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elin Kang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Liang Ding
- Spatial Genomics, Inc., Pasadena, CA, USA
| | | | - Richard Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Lv X, Gao K, Nie J, Zhang X, Zhang S, Ren Y, Sun X, Li Q, Huang J, Liu L, Zhang X, Zhang W, Liu X. Structures of human prostaglandin F 2α receptor reveal the mechanism of ligand and G protein selectivity. Nat Commun 2023; 14:8136. [PMID: 38065938 PMCID: PMC10709307 DOI: 10.1038/s41467-023-43922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostaglandins and their receptors regulate various physiological processes. Carboprost, an analog of prostaglandin F2α and an agonist for the prostaglandin F2-alpha receptor (FP receptor), is clinically used to treat postpartum hemorrhage (PPH). However, off-target activation of closely related receptors such as the prostaglandin E receptor subtype EP3 (EP3 receptor) by carboprost results in side effects and limits the clinical application. Meanwhile, the FP receptor selective agonist latanoprost is not suitable to treat PPH due to its poor solubility and fast clearance. Here, we present two cryo-EM structures of the FP receptor bound to carboprost and latanoprost-FA (the free acid form of latanoprost) at 2.7 Å and 3.2 Å resolution, respectively. The structures reveal the molecular mechanism of FP receptor selectivity for both endogenous prostaglandins and clinical drugs, as well as the molecular mechanism of G protein coupling preference by the prostaglandin receptors. The structural information may guide the development of better prostaglandin drugs.
Collapse
Affiliation(s)
- Xiuqing Lv
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Kaixuan Gao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Jia Nie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Shuhao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Yinhang Ren
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Qi Li
- Reproductive Medicine Center, Xiangya Hospital Central South University, Changsha, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Lijuan Liu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Xiaowen Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China.
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China.
| |
Collapse
|
13
|
Pool AH, Poldsam H, Chen S, Thomson M, Oka Y. Recovery of missing single-cell RNA-sequencing data with optimized transcriptomic references. Nat Methods 2023; 20:1506-1515. [PMID: 37697162 DOI: 10.1038/s41592-023-02003-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Single-cell RNA-sequencing (scRNA-seq) is an indispensable tool for characterizing cellular diversity and generating hypotheses throughout biology. Droplet-based scRNA-seq datasets often lack expression data for genes that can be detected with other methods. Here we show that the observed sensitivity deficits stem from three sources: (1) poor annotation of 3' gene ends; (2) issues with intronic read incorporation; and (3) gene overlap-derived read loss. We show that missing gene expression data can be recovered by optimizing the reference transcriptome for scRNA-seq through recovering false intergenic reads, implementing a hybrid pre-mRNA mapping strategy and resolving gene overlaps. We demonstrate, with a diverse collection of mouse and human tissue data, that reference optimization can substantially improve cellular profiling resolution and reveal missing cell types and marker genes. Our findings argue that transcriptomic references need to be optimized for scRNA-seq analysis and warrant a reanalysis of previously published datasets and cell atlases.
Collapse
Affiliation(s)
- Allan-Hermann Pool
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Helen Poldsam
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Harder HJ, Gomez MG, Searles CT, Vogt ME, Murphy AZ. Increased LPS-Induced Fever and Sickness Behavior in Adult Male and Female Rats Perinatally Exposed to Morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558690. [PMID: 37790325 PMCID: PMC10542495 DOI: 10.1101/2023.09.20.558690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
As a result of the current opioid crisis, the rate of children born exposed to opioids has skyrocketed. Later in life, these children have an increased risk for hospitalization and infection, raising concerns about potential immunocompromise, as is common with chronic opioid use. Opioids can act directly on immune cells or indirectly via the central nervous system to decrease immune system activity, leading to increased susceptibility, morbidity, and mortality to infection. However, it is currently unknown how perinatal opioid exposure (POE) alters immune function. Using a clinically relevant and translatable model of POE, we have investigated how baseline immune function and the reaction to an immune stimulator, lipopolysaccharide, is influenced by in utero opioid exposure in adult male and female rats. We report here that POE potentiates the febrile and neuroinflammatory response to lipopolysaccharide, likely as a consequence of suppressed immune function at baseline (including reduced antibody production). This suggests that POE increases susceptibility to infection by manipulating immune system development, consistent with the clinical literature. Investigation of the mechanisms whereby POE increases susceptibility to pathogens is critical for the development of potential interventions for immunosuppressed children exposed to opioids in utero.
Collapse
Affiliation(s)
- Hannah J Harder
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Morgan G Gomez
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Christopher T Searles
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Meghan E Vogt
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303
| |
Collapse
|
15
|
Yang WZ, Xie H, Du X, Zhou Q, Xiao Y, Zhao Z, Jia X, Xu J, Zhang W, Cai S, Li Z, Fu X, Hua R, Cai J, Chang S, Sun J, Sun H, Xu Q, Ni X, Tu H, Zheng R, Xu X, Wang H, Fu Y, Wang L, Li X, Yang H, Yao Q, Yu T, Shen Q, Shen WL. A parabrachial-hypothalamic parallel circuit governs cold defense in mice. Nat Commun 2023; 14:4924. [PMID: 37582782 PMCID: PMC10427655 DOI: 10.1038/s41467-023-40504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.
Collapse
Affiliation(s)
- Wen Z Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hengchang Xie
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaosa Du
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qian Zhou
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Zhengdong Zhao
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xiaoning Jia
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jianhui Xu
- Thermoregulation and Inflammation Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China
| | - Zhangjie Li
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Xin Fu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Rong Hua
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Junhao Cai
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Shuang Chang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Jing Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongbin Sun
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qingqing Xu
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Xinyan Ni
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Hongqing Tu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, 100871, China
- Neuroscience Research Institute, Peking University, Beijing, 100871, China
| | - Xiaohong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hong Wang
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xi Li
- Institute of life sciences, Chongqing Medical University, Chongqing, 400044, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China
| | - Qiyuan Yao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563006, China.
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200433, China.
| | - Wei L Shen
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, Shanghaitech University, Shanghai, 201210, China.
| |
Collapse
|
16
|
Mota CMD, Madden CJ. Mediobasal hypothalamic neurons contribute to the control of brown adipose tissue sympathetic nerve activity and cutaneous vasoconstriction. J Therm Biol 2023; 114:103551. [PMID: 37216765 PMCID: PMC10330581 DOI: 10.1016/j.jtherbio.2023.103551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
The mediobasal hypothalamus (MBH) contains heterogeneous neuronal populations that regulate food intake and energy expenditure. However, the role of MBH neurons in the neural control of thermoeffector activity for thermoregulation is not known. This study sought to determine the effects of modulating the activity of MBH neurons on the sympathetic outflow to brown adipose tissue (BAT), BAT thermogenesis, and cutaneous vasomotion. Pharmacological inhibition of MBH neurons by local administration of muscimol, a GABAA receptor agonist, reduced skin cooling-evoked BAT thermogenesis, expired CO2, body temperature, heart rate, and mean arterial pressure, while blockade of GABAA receptors by nanoinjection of bicuculline in the MBH induced large increases in BAT sympathetic nerve activity (SNA), BAT temperature, body temperature, expired CO2, heart rate, and cutaneous vasoconstriction. Neurons in the MBH send projections to neurons in the dorsal hypothalamic area and dorsomedial hypothalamus (DMH), which excite sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) that control sympathetic outflow to BAT. The increases in BAT SNA, BAT temperature, and expired CO2 elicited by blockade of GABAA receptors in the MBH were reversed by blocking excitatory amino acid receptors in the DMH or in the rRPa. Together, our data show that MBH neurons provide a modest contribution to BAT thermogenesis for cold defense, while GABAergic disinhibition of these neurons produces large increases in the sympathetic outflow to BAT, and cutaneous vasoconstriction. Activation of glutamate receptors on BAT thermogenesis-promoting neurons of the DMH and rRPa is necessary for the increased sympathetic outflow to BAT evoked by disinhibition of MBH neurons. These data demonstrate neural mechanisms that contribute to the control of thermoeffector activity, and may have important implications for regulating body temperature and energy expenditure.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Santacroce L, Colella M, Charitos IA, Di Domenico M, Palmirotta R, Jirillo E. Microbial and Host Metabolites at the Backstage of Fever: Current Knowledge about the Co-Ordinate Action of Receptors and Molecules Underlying Pathophysiology and Clinical Implications. Metabolites 2023; 13:461. [PMID: 36984901 PMCID: PMC10056708 DOI: 10.3390/metabo13030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Fever represents an elevation of body temperature, that exerts a protective effect against pathogens. Innate immune cells and neurons are implicated in the regulation of body temperature. Pathogen-associated molecular patterns, i.e., lipopolysaccharides from Gram-negative bacteria and peptidoglycan and lipoteichoic acid from Gram-positive bacteria are exogenous pyrogens, that bind to Toll-like receptors on immune and non-immune cells. The subsequent release of pro-inflammatory cytokines [interleukin-1 (IL-1), IL-6 and Tumor necrosis factor-alpha] and their passage through the brain trigger the febrile response. In fact, neurons of the pre-optic area produce prostaglandin E2 (PGE2), that, in turn, bind to the PGE2 receptors; thus, generating fever. Apart from classical non-steroidal anti-inflammatory drugs, i.e., aspirin and acetaminophen, various botanicals are currently used as antipyretic agents and, therefore, their mechanisms of action will be elucidated.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Ioannis Alexandros Charitos
- CEDICLO—Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, 70121 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy;
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (L.S.); (R.P.); (E.J.)
| |
Collapse
|
18
|
Nakamura Y, Yahiro T, Fukushima A, Kataoka N, Hioki H, Nakamura K. Prostaglandin EP3 receptor-expressing preoptic neurons bidirectionally control body temperature via tonic GABAergic signaling. SCIENCE ADVANCES 2022; 8:eadd5463. [PMID: 36563142 PMCID: PMC9788766 DOI: 10.1126/sciadv.add5463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 05/30/2023]
Abstract
The bidirectional controller of the thermoregulatory center in the preoptic area (POA) is unknown. Using rats, here, we identify prostaglandin EP3 receptor-expressing POA neurons (POAEP3R neurons) as a pivotal bidirectional controller in the central thermoregulatory mechanism. POAEP3R neurons are activated in response to elevated ambient temperature but inhibited by prostaglandin E2, a pyrogenic mediator. Chemogenetic stimulation of POAEP3R neurons at room temperature reduces body temperature by enhancing heat dissipation, whereas inhibition of them elicits hyperthermia involving brown fat thermogenesis, mimicking fever. POAEP3R neurons innervate sympathoexcitatory neurons in the dorsomedial hypothalamus (DMH) via tonic (ceaseless) inhibitory signaling. Although many POAEP3R neuronal cell bodies express a glutamatergic messenger RNA marker, their axons in the DMH predominantly release γ-aminobutyric acid (GABA), and their GABAergic terminals are increased by chronic heat exposure. These findings demonstrate that tonic GABAergic inhibitory signaling from POAEP3R neurons is a fundamental determinant of body temperature for thermal homeostasis and fever.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takaki Yahiro
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Fukushima
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoya Kataoka
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Nagoya 464-8601, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
19
|
Kamm GB, Siemens J. Neuroscience: Detection of systemic inflammation by the brain. Curr Biol 2022; 32:R751-R753. [PMID: 35820388 DOI: 10.1016/j.cub.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
When confronted with illness, humans and animals undergo critical changes in their behavior and physiology. New research shows how neuronal circuits detect sickness and coordinate illness-specific responses.
Collapse
Affiliation(s)
- Gretel B Kamm
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
20
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
21
|
Osterhout JA, Kapoor V, Eichhorn SW, Vaughn E, Moore JD, Liu D, Lee D, DeNardo LA, Luo L, Zhuang X, Dulac C. A preoptic neuronal population controls fever and appetite during sickness. Nature 2022; 606:937-944. [PMID: 35676482 PMCID: PMC9327738 DOI: 10.1038/s41586-022-04793-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
During infection, animals exhibit adaptive changes in physiology and behaviour aimed at increasing survival. Although many causes of infection exist, they trigger similar stereotyped symptoms such as fever, warmth-seeking, loss of appetite and fatigue1,2. Yet exactly how the nervous system alters body temperature and triggers sickness behaviours to coordinate responses to infection remains unknown. Here we identify a previously uncharacterized population of neurons in the ventral medial preoptic area (VMPO) of the hypothalamus that are activated after sickness induced by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid. These neurons are crucial for generating a fever response and other sickness symptoms such as warmth-seeking and loss of appetite. Single-nucleus RNA-sequencing and multiplexed error-robust fluorescence in situ hybridization uncovered the identity and distribution of LPS-activated VMPO (VMPOLPS) neurons and non-neuronal cells. Gene expression and electrophysiological measurements implicate a paracrine mechanism in which the release of immune signals by non-neuronal cells during infection activates nearby VMPOLPS neurons. Finally, we show that VMPOLPS neurons exert a broad influence on the activity of brain areas associated with behavioural and homeostatic functions and are synaptically and functionally connected to circuit nodes controlling body temperature and appetite. Together, these results uncover VMPOLPS neurons as a control hub that integrates immune signals to orchestrate multiple sickness symptoms in response to infection.
Collapse
Affiliation(s)
- Jessica A. Osterhout
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Vikrant Kapoor
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Stephen W. Eichhorn
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Department of Physics, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Eric Vaughn
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D. Moore
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ding Liu
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Dean Lee
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Laura A. DeNardo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Current address: Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaowei Zhuang
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Department of Physics, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA,Corresponding author:
| |
Collapse
|
22
|
Osaka T. The EP 3 and EP 4 Receptor Subtypes both Mediate the Fever-producing Effects of Prostaglandin E 2 in the Rostral Ventromedial Preoptic Area of the Hypothalamus in Rats. Neuroscience 2022; 494:25-37. [PMID: 35550162 DOI: 10.1016/j.neuroscience.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to re-examine the receptor subtype that mediates the fever-producing effects of prostaglandin E2 (PGE2) in the rostral ventromedial preoptic area (rvmPOA) of the hypothalamus. Among the four subtypes of PGE2 receptors (EP1, EP2, EP3, and EP4), EP3 receptor is crucially involved in the febrile effects of PGE2. However, it is possible for other subtypes of PGE2 receptor to contribute in the central mechanism of fever generation. Accordingly, effects of microinjection of PGE2 receptor subtype-specific agonists or antagonists were examined at the locus where a microinjection of a small amount (420 fmol) of PGE2 elicited prompt increases in the O2 consumption rate (VO2), heart rate, and colonic temperature (Tc) in the rvmPOA of urethane-chloralose-anesthetized rats. The EP3 agonist sulprostone mimicked, whereas its antagonist L-798,106 reduced, the febrile effects of PGE2 microinjected into the same site. Similarly, the EP4 agonist rivenprost mimicked, whereas its antagonist ONO-AE3-208 reduced, the effects of PGE2 microinjected into the same site. In contrast, microinjection of the EP1 agonist iloprost induced a very small increase in VO2 but did not have significant influences on the heart rate and Tc, whereas its antagonist, AH6809, did not affect the PGE2-induced responses. Microinjection of the EP2 agonist butaprost had no effects on the VO2, heart rate, and Tc. The results suggest that the EP3 and EP4 receptor subtypes are both involved in the fever generated by PGE2 in the rvmPOA.
Collapse
Affiliation(s)
- Toshimasa Osaka
- National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku 162-8636, Japan.
| |
Collapse
|
23
|
Ambler M, Hitrec T, Pickering A. Turn it off and on again: characteristics and control of torpor. Wellcome Open Res 2022; 6:313. [PMID: 35087956 PMCID: PMC8764563 DOI: 10.12688/wellcomeopenres.17379.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Torpor is a hypothermic, hypoactive, hypometabolic state entered into by a wide range of animals in response to environmental challenge. This review summarises the current understanding of torpor. We start by describing the characteristics of the wide-ranging physiological adaptations associated with torpor. Next follows a discussion of thermoregulation, control of food intake and energy expenditure, and the interactions of sleep and thermoregulation, with particular emphasis on how those processes pertain to torpor. We move on to review the evidence for the systems that control torpor entry, including both the efferent circulating factors that signal the need for torpor, and the central processes that orchestrate it. Finally, we consider how the putative circuits responsible for torpor induction integrate with the established understanding of thermoregulation under non-torpid conditions and highlight important areas of uncertainty for future studies.
Collapse
Affiliation(s)
- Michael Ambler
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| | - Timna Hitrec
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| | - Anthony Pickering
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Machado NL, Todd WD, Kaur S, Saper CB. Median preoptic GABA and glutamate neurons exert differential control over sleep behavior. Curr Biol 2022; 32:2011-2021.e3. [PMID: 35385692 PMCID: PMC9090993 DOI: 10.1016/j.cub.2022.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 11/10/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Previous studies suggest that the median preoptic nucleus (MnPO) of the hypothalamus plays an important role in regulating the wake-sleep cycle and, in particular, homeostatic sleep drive. However, the precise cellular phenotypes, targets, and central mechanisms by which the MnPO neurons regulate the wake-sleep cycle remain unknown. Both excitatory and inhibitory MnPO neurons innervate brain regions implicated in sleep promotion and maintenance, suggesting that both cell types may participate in sleep control. Using genetically targeted approaches, we investigated the role of the MnPO GABAergic (MnPOVgat) and glutamatergic (MnPOVglut2) neurons in modulating wake-sleep behavior of mice. We found that both neuron populations differentially participate in wake-sleep control, with MnPOVgat neurons being involved in sleep homeostasis and MnPOVglut2 neurons facilitating sleep during allostatic (stressful) challenges.
Collapse
|
25
|
The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022; 23:ijms23062905. [PMID: 35328326 PMCID: PMC8954377 DOI: 10.3390/ijms23062905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
For over a century, the role of the preoptic hypothalamus and adjacent basal forebrain in sleep-wake regulation has been recognized. However, for years, the identity and location of sleep- and wake-promoting neurons in this region remained largely unresolved. Twenty-five years ago, Saper and colleagues uncovered a small collection of sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) of the preoptic hypothalamus, and since this seminal discovery the VLPO has been intensively investigated by labs around the world, including our own. Herein, we first review the history of the preoptic area, with an emphasis on the VLPO in sleep-wake control. We then attempt to synthesize our current understanding of the circuit, cellular and synaptic bases by which the VLPO both regulates and is itself regulated, in order to exert a powerful control over behavioral state, as well as examining data suggesting an involvement of the VLPO in other physiological processes.
Collapse
|
26
|
Saper CB, Machado NLS. Identifying specific populations of preoptic thermoregulatory neurons: The way forward. Temperature (Austin) 2022; 9:12-13. [PMID: 35655664 PMCID: PMC9154754 DOI: 10.1080/23328940.2022.2033075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Affiliation(s)
- Clifford B. Saper
- Department of Neurology, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Natalia L. S. Machado
- Department of Neurology, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Machado NLS, Saper CB. Genetic identification of preoptic neurons that regulate body temperature in mice. Temperature (Austin) 2022; 9:14-22. [PMID: 35655663 PMCID: PMC9154766 DOI: 10.1080/23328940.2021.1993734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There has been an explosion recently in our understanding of the neuronal populations in the preoptic area involved in thermoregulation of mice. Recent studies have identified several genetically specified populations of neurons predominantly in the median preoptic nucleus (MnPO) but spreading caudolaterally into the preoptic area that regulate body temperature. . These include warm-responsive neurons that express the peptides PACAP, BDNF, or QRFP; and receptors for temperature, leptin, estrogen, or prostaglandin E2 (PGE2). These neurons are predominantly glutamatergic and driving them opto- or chemogenetically can cause profound hypothermia, and in some cases, periods of torpor or a hibernation-like state. Conversely, fever response is likely to depend upon inhibiting the activity of these neurons through the PGE2 receptor EP3. Another cell group, the Brs3-expressing MnPO neurons, are apparently cold-responsive and cause increases in body temperature. MnPO-QRFP neurons cause hypothermia via activation of their terminals in the region of the dorsomedial nucleus of the hypothalamus (DMH). As the MnPO-QRFP neurons are essentially glutamatergic, and the DMH largely uses glutamatergic projections to the raphe pallidus to increase body temperature, this model suggests the existence of local inhibitory interneurons in the DMH region between the MnPO-QRFP glutamatergic neurons that cause hypothermia and the DMH glutamatergic neurons that cause hyperthermia. The new genetically targeted studies in mice provide a way to identify the precise neuronal circuitry that is responsible for our physiological observations in this species, and will suggest critical experiments that can be undertaken to compare these with the thermoregulatory circuitry in other species.
Collapse
Affiliation(s)
- Natalia L. S. Machado
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Clifford B. Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, United States,CONTACT Clifford B. Saper
| |
Collapse
|
28
|
Cheng Y, Xu J, Zeng R, Zhao X, Gao W, Quan J, Hu X, Shen Z, Zhang J. The Role of Prostaglandin E2 Synthesized in Rat Lateral Parabrachial Nucleus in LPS-Induced Fever. Neuroendocrinology 2022; 112:399-416. [PMID: 34348333 DOI: 10.1159/000518491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The lateral parabrachial nucleus (LPBN) is considered to be a brain site of the pyrogenic action of prostaglandin (PG) E2 outside of the preoptic area. Yet, the role of the LPBN in fever following a systemic immune challenge remains poorly understood. METHODS We examined the expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in the LPBN after the intraperitoneal injection of lipopolysaccharide (LPS). We investigated the effects of LPBN NS-398 (COX-2 inhibitor) on LPS-induced fever, the effects of direct LPBN PGE2 administration on the energy expenditure (EE), brown adipose tissue (BAT) thermogenesis, neck muscle electromyographic activity and tail temperature, and the effects of PGE2 on the spontaneous firing activity and thermosensitivity of in vitro LPBN neurons in a brain slice. RESULTS The COX-2 and mPGES-1 enzymes were upregulated at both mRNA and protein levels. The microinjection of NS-398 in the LPBN attenuated the LPS-induced fever. Direct PGE2 administration in the LPBN resulted in a febrile response by a coordinated response of increased EE, BAT thermogenesis, shivering, and possibly decreased heat loss through the tail. The LPBN neurons showed a clear anatomical distinction in the firing rate response to PGE2, with the majority of PGE2-excited or -inhibited neurons being located in the external lateral or dorsal subnucleus of the LPBN, respectively. However, neither the firing rate nor the thermal coefficient response to PGE2 showed any difference between warm-sensitive, cold-sensitive, and temperature-insensitive neurons in the LPBN. CONCLUSIONS PGE2 synthesized in the LPBN was at least partially involved in LPS-induced fever via its different modulations of the firing rate of neurons in different LPBN subnuclei.
Collapse
Affiliation(s)
- Yongjing Cheng
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Jianhui Xu
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Ruixin Zeng
- School of Dentistry, Zunyi Medical University, Zunyi, China
| | - Xi Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenmin Gao
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Junru Quan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaosong Hu
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Ziling Shen
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| |
Collapse
|
29
|
Piñol RA, Reitman ML. Preoptic bombesin-like receptor-3 neurons heat it up. Temperature (Austin) 2022; 9:306-309. [PMID: 36339094 PMCID: PMC9629094 DOI: 10.1080/23328940.2022.2047574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
31
|
Krapić M, Kavazović I, Wensveen FM. Immunological Mechanisms of Sickness Behavior in Viral Infection. Viruses 2021; 13:v13112245. [PMID: 34835051 PMCID: PMC8624889 DOI: 10.3390/v13112245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Sickness behavior is the common denominator for a plethora of changes in normal behavioral routines and systemic metabolism during an infection. Typical symptoms include temperature, muscle weakness, and loss of appetite. Whereas we experience these changes as a pathology, in fact they are a carefully orchestrated response mediated by the immune system. Its purpose is to optimize immune cell functionality against pathogens whilst minimizing viral replication in infected cells. Sickness behavior is controlled at several levels, most notably by the central nervous system, but also by other organs that mediate systemic homeostasis, such as the liver and adipose tissue. Nevertheless, the changes mediated by these organs are ultimately initiated by immune cells, usually through local or systemic secretion of cytokines. The nature of infection determines which cytokine profile is induced by immune cells and therefore which sickness behavior ensues. In context of infection, sickness behavior is typically beneficial. However, inappropriate activation of the immune system may induce adverse aspects of sickness behavior. For example, tissue stress caused by obesity may result in chronic activation of the immune system, leading to lasting changes in systemic metabolism. Concurrently, metabolic disease prevents induction of appropriate sickness behavior following viral infection, thus impairing the normal immune response. In this article, we will revisit recent literature that elucidates both the benefits and the negative aspects of sickness behavior in context of viral infection.
Collapse
|
32
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
33
|
Esh CJ, Chrismas BCR, Mauger AR, Taylor L. Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol Res Perspect 2021; 9:e00835. [PMID: 34278737 PMCID: PMC8287062 DOI: 10.1002/prp2.835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The precise mechanistic action of acetaminophen (ACT; paracetamol) remains debated. ACT's analgesic and antipyretic actions are attributed to cyclooxygenase (COX) inhibition preventing prostaglandin (PG) synthesis. Two COX isoforms (COX1/2) share 60% sequence structure, yet their functions vary. COX variants have been sequenced among various mammalian species including humans. A COX1 splice variant (often termed COX3) is purported by some as the elusive target of ACT's mechanism of action. Yet a physiologically functional COX3 isoform has not been sequenced in humans, refuting these claims. ACT may selectively inhibit COX2, with evidence of a 4.4-fold greater COX2 inhibition than COX1. However, this is markedly lower than other available selective COX2 inhibitors (up to 433-fold) and tempered by proof of potent COX1 inhibition within intact cells when peroxide tone is low. COX isoform inhibition by ACT may depend on subtle in vivo physiological variations specific to ACT. In vivo ACT efficacy is reliant on intact cells and low peroxide tone while the arachidonic acid concentration state can dictate the COX isoform preferred for PG synthesis. ACT is an effective antipyretic (COX2 preference for PG synthesis) and can reduce afebrile core temperature (likely COX1 preference for PG synthesis). Thus, we suggest with specificity to human in vivo physiology that ACT: (i) does not act on a third COX isoform; (ii) is not selective in its COX inhibition; and (iii) inhibition of COX isoforms are determined by subtle and nuanced physiological variations. Robust research designs are required in humans to objectively confirm these hypotheses.
Collapse
Affiliation(s)
- Christopher J Esh
- Aspetar-Qatar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support, Aspire Zone, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Bryna C R Chrismas
- Department of Physical Education, College of Education, Qatar University, Doha, Qatar
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
- Human Performance Research Centre, Faculty of Health, University of Technology Sydney (UTS), Sydney, Australia
| |
Collapse
|
34
|
Zhang Z, DiVittorio JR, Joseph AM, Correa SM. The Effects of Estrogens on Neural Circuits That Control Temperature. Endocrinology 2021; 162:6262699. [PMID: 33939822 PMCID: PMC8237993 DOI: 10.1210/endocr/bqab087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Declining and variable levels of estrogens around the time of menopause are associated with a suite of metabolic, vascular, and neuroendocrine changes. The archetypal adverse effects of perimenopause are vasomotor symptoms, which include hot flashes and night sweats. Although vasomotor symptoms are routinely treated with hormone therapy, the risks associated with these treatments encourage us to seek alternative treatment avenues. Understanding the mechanisms underlying the effects of estrogens on temperature regulation is a first step toward identifying novel therapeutic targets. Here we outline findings in rodents that reveal neural and molecular targets of estrogens within brain regions that control distinct components of temperature homeostasis. These insights suggest that estrogens may alter the function of multiple specialized neural circuits to coordinate the suite of changes after menopause. Thus, defining the precise cells and neural circuits that mediate the effects of estrogens on temperature has promise to identify strategies that would selectively counteract hot flashes or other negative side effects without the health risks that accompany systemic hormone therapies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Johnathon R DiVittorio
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: Stephanie Correa, Ph.D., UCLA Dept. of Integrative Biology and Physiology 2028 Terasaki Life Sciences Building, 610 Charles E Young Drive East, Box 957239 Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
The search for thermoregulatory neurons is heating up. Cell Metab 2021; 33:1269-1271. [PMID: 34233168 DOI: 10.1016/j.cmet.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent studies have shown that the median preoptic area contains a population of neurons expressing an array of fast neurotransmitters and receptors that collectively cause a fall in body temperature in response to environmental warming or depleted energy stores. In this issue of Cell Metabolism, Piñol et al. (2021) identify a separate population of median preoptic neurons that are responsible for cold defense and cause stress-related hyperthermia.
Collapse
|
36
|
Piñol RA, Mogul AS, Hadley CK, Saha A, Li C, Škop V, Province HS, Xiao C, Gavrilova O, Krashes MJ, Reitman ML. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab 2021; 33:1389-1403.e6. [PMID: 34038711 PMCID: PMC8266747 DOI: 10.1016/j.cmet.2021.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022]
Abstract
The preoptic area (POA) is a key brain region for regulation of body temperature (Tb), dictating thermogenic, cardiovascular, and behavioral responses that control Tb. Previously characterized POA neuronal populations all reduced Tb when activated. Using mice, we now identify POA neurons expressing bombesin-like receptor 3 (POABRS3) as a population whose activation increased Tb; inversely, acute inhibition of these neurons reduced Tb. POABRS3 neurons that project to either the paraventricular nucleus of the hypothalamus or the dorsomedial hypothalamus increased Tb, heart rate, and blood pressure via the sympathetic nervous system. Long-term inactivation of POABRS3 neurons caused increased Tb variability, overshooting both increases and decreases in Tb set point, with RNA expression profiles suggesting multiple types of POABRS3 neurons. Thus, POABRS3 neuronal populations regulate Tb and heart rate, contribute to cold defense, and fine-tune feedback control of Tb. These findings advance understanding of homeothermy, a defining feature of mammalian biology.
Collapse
Affiliation(s)
- Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Allison S Mogul
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen K Hadley
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Atreyi Saha
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haley S Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
38
|
Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021; 15:664781. [PMID: 34276287 PMCID: PMC8280336 DOI: 10.3389/fnins.2021.664781] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
Collapse
Affiliation(s)
- Rebecca Rothhaas
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Münzberg H, Floyd E, Chang JS. Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige? Physiology (Bethesda) 2021; 36:246-255. [PMID: 34159808 DOI: 10.1152/physiol.00038.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa. We further highlight emerging concepts for the differential neuronal regulation of brown/beige versus white adipocyte and the interdependence of both for metabolic regulation.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Ji Suk Chang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
40
|
Upton BA, D'Souza SP, Lang RA. QPLOT Neurons-Converging on a Thermoregulatory Preoptic Neuronal Population. Front Neurosci 2021; 15:665762. [PMID: 34017237 PMCID: PMC8130930 DOI: 10.3389/fnins.2021.665762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The preoptic area of the hypothalamus is a homeostatic control center. The heterogeneous neurons in this nucleus function to regulate the sleep/wake cycle, reproduction, thirst and hydration, as well as thermogenesis and other metabolic responses. Several recent studies have analyzed preoptic neuronal populations and demonstrated neuronal subtype-specific roles in suppression of thermogenesis. These studies showed similar thermogenesis responses to chemogenetic modulation, and similar synaptic tracing patterns for neurons that were responsive to cold, to inflammatory stimuli, and to violet light. A reanalysis of single-cell/nucleus RNA-sequencing datasets of the preoptic nucleus indicate that these studies have converged on a common neuronal population that when activated, are sufficient to suppress thermogenesis. Expanding on a previous name for these neurons (Q neurons, which reflect their ability to promote quiescence and expression of Qrfp), we propose a new name: QPLOT neurons, to reflect numerous molecular markers of this population and to capture its broader roles in metabolic regulation. Here, we summarize previous findings on this population and present a unified description of QPLOT neurons, the excitatory preoptic neuronal population that integrate a variety of thermal, metabolic, hormonal and environmental stimuli in order to regulate metabolism and thermogenesis.
Collapse
Affiliation(s)
- Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Pediatric Ophthalmology, Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Medical Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Shane P D'Souza
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Pediatric Ophthalmology, Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Molecular and Developmental Biology Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Pediatric Ophthalmology, Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
41
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
42
|
Wu J, Liu D, Li J, Sun J, Huang Y, Zhang S, Gao S, Mei W. Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States. Curr Neuropharmacol 2021; 20:223-253. [PMID: 33632102 PMCID: PMC9199556 DOI: 10.2174/1570159x19666210225152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anesthetics-induced-hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jiayan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Yujie Huang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shuang Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1095, Wuhan 430030. China
| |
Collapse
|
43
|
Tabarean IV. Activation of Preoptic Arginine Vasopressin Neurons Induces Hyperthermia in Male Mice. Endocrinology 2021; 162:6010022. [PMID: 33249461 PMCID: PMC7758908 DOI: 10.1210/endocr/bqaa217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) is a neuropeptide acting as a neuromodulator in the brain and plays multiple roles, including a thermoregulatory one. However, the cellular mechanisms of action are not fully understood. Carried out are patch clamp recordings and calcium imaging combined with pharmacological tools and single-cell RT-PCR to dissect the signaling mechanisms activated by AVP. Optogenetics combined with patch-clamp recordings were used to determine the neurochemical nature of these neurons. Also used is telemetry combined with chemogenetics to study the effect of activation of AVP neurons in thermoregulatory mechanisms. This article reports that AVP neurons in the medial preoptic (MPO) area release GABA and display thermosensitive firing activity. Their optogenetic stimulation results in a decrease of the firing rates of MPO pituitary adenylate cyclase-activating polypeptide (PACAP) neurons. Local application of AVP potently modulates the synaptic inputs of PACAP neurons, by activating neuronal AVPr1a receptors and astrocytic AVPr1b receptors. Chemogenetic activation of MPO AVP neurons induces hyperthermia. Chemogenetic activation of all AVP neurons in the brain similarly induces hyperthermia and, in addition, decreases the endotoxin activated fever as well as the stress-induced hyperthermia.
Collapse
Affiliation(s)
- Iustin V Tabarean
- Scintillon Institute, San Diego, CA, USA
- Correspondence: Iustin Tabarean, PhD, Scintillon Institute, 6868 Nancy Ridge Dr, San Diego, CA 92121, USA.
| |
Collapse
|
44
|
Saper CB. The intermediate nucleus in humans: Cytoarchitecture, chemoarchitecture, and relation to sleep, sex, and Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:461-469. [PMID: 34225983 DOI: 10.1016/b978-0-12-819975-6.00030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The intermediate nucleus of Brockhaus (INH), also known as the interstitial nucleus of the anterior hypothalamus-1 of Allen and Gorski (INAH-1), the sexually dimorphic nucleus of Swaab and colleagues (SDN), and the ventrolateral preoptic nucleus of Saper and colleagues (VLPO), is a cluster of largely galanin-expressing neurons in the lateral preoptic area, at the level of the crossing of the anterior commissure and dorsal to the supraoptic nucleus. The number of Nissl-stained neurons in the INH has been reported to be larger in men than women and to decrease with aging, although these findings have been controversial, in part because of differences in patient populations and methods used to assess the nucleus. However, recent studies have confirmed that the number of galanin-immunoreactive INH neurons is larger in men than women and decreases with age and have reported further loss with Alzheimer disease. The galanin-immunoreactive VLPO neurons have been thought to drive sleep behavior in many species, and their numbers in older humans correlate with the amount of consolidated sleep they experience. Sleep differences between men and women, during aging, and with Alzheimer disease may also depend upon the integrity of this nucleus.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
45
|
Province HS, Xiao C, Mogul AS, Sahoo A, Jacobson KA, Piñol RA, Gavrilova O, Reitman ML. Activation of neuronal adenosine A1 receptors causes hypothermia through central and peripheral mechanisms. PLoS One 2020; 15:e0243986. [PMID: 33326493 PMCID: PMC7743955 DOI: 10.1371/journal.pone.0243986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular adenosine, a danger signal, can cause hypothermia. We generated mice lacking neuronal adenosine A1 receptors (A1AR, encoded by the Adora1 gene) to examine the contribution of these receptors to hypothermia. Intracerebroventricular injection of the selective A1AR agonist (Cl-ENBA, 5'-chloro-5'-deoxy-N6-endo-norbornyladenosine) produced hypothermia, which was reduced in mice with deletion of A1AR in neurons. A non-brain penetrant A1AR agonist [SPA, N6-(p-sulfophenyl) adenosine] also caused hypothermia, in wild type but not mice lacking neuronal A1AR, suggesting that peripheral neuronal A1AR can also cause hypothermia. Mice expressing Cre recombinase from the Adora1 locus were generated to investigate the role of specific cell populations in body temperature regulation. Chemogenetic activation of Adora1-Cre-expressing cells in the preoptic area did not change body temperature. In contrast, activation of Adora1-Cre-expressing dorsomedial hypothalamus cells increased core body temperature, concordant with agonism at the endogenous inhibitory A1AR causing hypothermia. These results suggest that A1AR agonism causes hypothermia via two distinct mechanisms: brain neuronal A1AR and A1AR on neurons outside the blood-brain barrier. The variety of mechanisms that adenosine can use to induce hypothermia underscores the importance of hypothermia in the mouse response to major metabolic stress or injury.
Collapse
Affiliation(s)
- Haley S. Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Allison S. Mogul
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Ankita Sahoo
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Ramón A. Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Zhang Z, Reis FMCV, He Y, Park JW, DiVittorio JR, Sivakumar N, van Veen JE, Maesta-Pereira S, Shum M, Nichols I, Massa MG, Anderson S, Paul K, Liesa M, Ajijola OA, Xu Y, Adhikari A, Correa SM. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat Commun 2020; 11:6378. [PMID: 33311503 PMCID: PMC7732979 DOI: 10.1038/s41467-020-20050-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Fernando M C V Reis
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yanlin He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Johnathon R DiVittorio
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nilla Sivakumar
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sandra Maesta-Pereira
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Shum
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - India Nichols
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Shawn Anderson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ketema Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Avishek Adhikari
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
da Conceição EPS, Morrison SF, Cano G, Chiavetta P, Tupone D. Median preoptic area neurons are required for the cooling and febrile activations of brown adipose tissue thermogenesis in rat. Sci Rep 2020; 10:18072. [PMID: 33093475 PMCID: PMC7581749 DOI: 10.1038/s41598-020-74272-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Within the central neural circuitry for thermoregulation, the balance between excitatory and inhibitory inputs to the dorsomedial hypothalamus (DMH) determines the level of activation of brown adipose tissue (BAT) thermogenesis. We employed neuroanatomical and in vivo electrophysiological techniques to identify a source of excitation to thermogenesis-promoting neurons in the DMH that is required for cold defense and fever. Inhibition of median preoptic area (MnPO) neurons blocked the BAT thermogenic responses during both PGE2-induced fever and cold exposure. Disinhibition or direct activation of MnPO neurons induced a BAT thermogenic response in warm rats. Blockade of ionotropic glutamate receptors in the DMH, or brain transection rostral to DMH, blocked cold-evoked or NMDA in MnPO-evoked BAT thermogenesis. RNAscope technique identified a glutamatergic population of MnPO neurons that projects to the DMH and expresses c-Fos following cold exposure. These discoveries relative to the glutamatergic drive to BAT sympathoexcitatory neurons in DMH augment our understanding of the central thermoregulatory circuitry in non-torpid mammals. Our data will contribute to the development of novel therapeutic approaches to induce therapeutic hypothermia for treating drug-resistant fever, and for improving glucose and energy homeostasis.
Collapse
Affiliation(s)
- Ellen Paula Santos da Conceição
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Georgina Cano
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Pierfrancesco Chiavetta
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA. .,Department of Biomedical and Neuromotor Science, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
48
|
Zhang KX, D'Souza S, Upton BA, Kernodle S, Vemaraju S, Nayak G, Gaitonde KD, Holt AL, Linne CD, Smith AN, Petts NT, Batie M, Mukherjee R, Tiwari D, Buhr ED, Van Gelder RN, Gross C, Sweeney A, Sanchez-Gurmaches J, Seeley RJ, Lang RA. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 2020; 585:420-425. [PMID: 32879486 PMCID: PMC8130195 DOI: 10.1038/s41586-020-2683-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.
Collapse
Affiliation(s)
- Kevin X Zhang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Shane D'Souza
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Stace Kernodle
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin D Gaitonde
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Amanda L Holt
- Department of Physics, Yale University, New Haven, CT, USA
| | - Courtney D Linne
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - April N Smith
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan T Petts
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Division of Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Department of Biological Structure, University of Washington Medical School, Seattle, WA, USA
- Department of Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Alison Sweeney
- Department of Physics, Yale University, New Haven, CT, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
49
|
|