1
|
Gharieb K, Doumandji N, Bensalem W, Bellon RP, Inoubli L, Siddeek B, Traverse-Glehen A, Decaussin-Petrucci M, Trabucchi M, Benahmed M, Mauduit C. Combined developmental exposure to estrogenic endocrine disruptor and nutritional imbalance induces long term adult prostate inflammation through inflammasome activation. Toxicol Lett 2024; 402:1-14. [PMID: 39368565 DOI: 10.1016/j.toxlet.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Increasing number of studies suggested that environmental deleterious impacts (such as estrogen-like endocrine disruptors, EDCs, unhealthy diet) during early human development affect the risk of developing non-communicable diseases including prostate cancer (PCa) later in life. To test if the combination of EDCs and unhealthy induces adult prostate lesions, we developed an experimental model of adult male Sprague Dawley rats exposed during gestation (from day 7) to weaning to high fat diet (HFD 60 % fat), or to a xenoestrogen (estradiol benzoate, EB, 2.5 µg/d) from post-natal days 1-5, or to a combination of both. EB and EB+HFD exposures induced decreased prostate weight in adult rats along with inflammatory status. A white blood cell infiltrate was observed after EB exposure and more dramatic lesions were observed with the combined exposure, along with a gland destruction. The lesions, following EB or EB+HFD exposure, are associated with elevated mRNA levels for TNFa, IL6 and CCL2/MCP1 pro-inflammatory cytokines while the levels of the anti-inflammatory IL10 cytokine remained unchanged. This activation of NLRP3 and elevated levels of CASP1 were observed following EB or EB+HFD exposures associated with elevated mRNA levels for IL1b, substrates for the NLRP3 complex. HFD exposure alone has mild if not pro-inflammatory effects in adult prostate. In conclusion, we showed that developmental combined exposure to EB and HFD programmed prostate inflammatory lesions in adult prostate. Since proliferative inflammatory atrophy and chronic inflammation of prostate may drive cell to become cancer cells, our model might be useful for study onset of PCa.
Collapse
Affiliation(s)
- Katia Gharieb
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Nezli Doumandji
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Wafa Bensalem
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Rachel Paul Bellon
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Lilia Inoubli
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Bénazir Siddeek
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Alexandra Traverse-Glehen
- Université Lyon 1, UFR Médecine Lyon Sud, Lyon F-69921, France; Hospices Civils de Lyon, Hopital Lyon Sud, Laboratoire d'Anatomie et de Cytologie Pathologiques, Pierre-Bénite F-69495, France
| | - Myriam Decaussin-Petrucci
- Université Lyon 1, UFR Médecine Lyon Sud, Lyon F-69921, France; Hospices Civils de Lyon, Hopital Lyon Sud, Laboratoire d'Anatomie et de Cytologie Pathologiques, Pierre-Bénite F-69495, France
| | - Michele Trabucchi
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université de Nice Sophia-Antipolis, Unité de Formation et de Recherche (UFR) Médecine, Nice F-06000, France
| | - Claire Mauduit
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, Nice F-06204, France; Université Lyon 1, UFR Médecine Lyon Sud, Lyon F-69921, France; Hospices Civils de Lyon, Hopital Lyon Sud, Laboratoire d'Anatomie et de Cytologie Pathologiques, Pierre-Bénite F-69495, France.
| |
Collapse
|
2
|
Gong J, Xu W, Chen Y, Chen S, Wu Y, Chen Y, Li Y, He Y, Yu H, Xie L. Maternal Gestational Diabetes Mellitus and High-Fat Diet Influenced Hepatic Polyunsaturated Fatty Acids Profile in the Offspring of C57BL/6J Mice. Mol Nutr Food Res 2024; 68:e2400386. [PMID: 39246092 DOI: 10.1002/mnfr.202400386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/04/2024] [Indexed: 09/10/2024]
Abstract
SCOPE This research examines the effects of maternal high-fat (HF) diet and gestational diabetes mellitus (GDM) on offspring lipid metabolism and polyunsaturated fatty acids (PUFA) profile. METHODS AND RESULTS GDM is induced using the insulin receptor antagonist S961. Weaning offspring are categorized into HF-GDM, HF-CON, NC-GDM, and NC-CON groups based on maternal diet or GDM. Adult offspring are then grouped into NC-CON-NC, NC-CON-HF, NC-GDM-NC, NC-GDM-HF, HF-CON-NC, HF-CON-HF, HF-GDM-NC, and HF-GDM-HF according to dietary patterns. Gas chromatography determines PUFA composition. Western blot assesses PI3K/Akt signaling pathway-related protein expression. Feeding a normal chow diet until adulthood improves the distribution of hepatic PUFA during weaning across the four groups. PI3K expression is upregulated during weaning in HF-CON and HF-GDM, particularly in HF-CON-NC and HF-GDM-NC, compared to NC-CON-NC during adulthood. Akt expression increases in NC-GDM-NC after weaning with a normal diet. The hepatic PUFA profile in HF-CON-HF significantly distinguishes among the maternal generation health groups. Maternal HF diet exacerbates the combined impact of maternal GDM and offspring HF diet on hepatic PUFA and PI3K/Akt signaling pathway-related proteins during adulthood. CONCLUSIONS Early exposure to HF diets and GDM affects hepatic PUFA profiles and PI3K/Akt signaling pathway protein expression in male offspring during weaning and adulthood.
Collapse
Affiliation(s)
- JiaYu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - WenHui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YiFei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - ShuTong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YanYan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YiRu Chen
- Clinical Nutrition Department, Third Hospital of Jilin University, Changchun City, Jilin Province, 130032, China
| | - YueTing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - Yuan He
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - HaiTao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| |
Collapse
|
3
|
Smith AM, Ray TJ, Hulitt AA, Vita SM, Warrington JP, Santos CDSE, Grayson BE. High-fat diet consumption negatively influences closed-head traumatic brain injury in a pediatric rodent model. Exp Neurol 2024; 379:114888. [PMID: 39009176 DOI: 10.1016/j.expneurol.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of emergency room visits in children, and it is a leading cause of death in juveniles in the United States. Similarly, a high proportion of this population consumes diets that are high in saturated fats, and millions of children are overweight or obese. The goal of the present study was to assess the relationship between diet and TBI on cognitive and cerebrovascular outcomes in juvenile rats. In the current study, groups of juvenile male Long Evans rats were subjected to either mild TBI via the Closed-Head Injury Model of Engineered Rotational Acceleration (CHIMERA) or underwent sham procedures. The animals were provided with either a combination of high-fat diet and a mixture of high-fructose corn syrup (HFD/HFCS) or a standard chow diet (CH) for 9 days prior to injury. Prior to injury, the animals were trained on the Morris water maze for three consecutive days, and they underwent a post-injury trial on the day of the injury. Immediately after TBI, the animals' righting reflexes were tested. Four days post-injury, the animals were euthanized, and brain samples and blood plasma were collected for qRT-PCR, immunohistochemistry, and triglyceride assays. Additional subsets of animals were used to investigate cerebrovascular perfusion using Laser Speckle and perform immunohistochemistry for endothelial cell marker RECA. Following TBI, the righting reflex was significantly increased in TBI rats, irrespective of diet. The TBI worsened the rats' performance in the post-injury trial of the water maze at 3 h, p(injury) < 0.05, but not at 4 days post-injury. Reduced cerebrovascular blood flow using Laser Speckle was demonstrated in the cerebellum, p(injury) < 0.05, but not foci of the cerebral cortices or superior sagittal sinus. Immunoreactive staining for RECA in the cortex and corpus callosum was significantly reduced in HFD/HFCS TBI rats, p < 0.05. qRT-PCR showed significant increases in APOE, CREB1, FCGR2B, IL1B, and IL6, particularly in the hippocampus. The results from this study offer robust evidence that HFD/HFCS negatively influences TBI outcomes with respect to cognition and cerebrovascular perfusion of relevant brain regions in the juvenile rat.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Trenton J Ray
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Alicia A Hulitt
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Sydney M Vita
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70116, United States of America.
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | | | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
4
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK130246 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- P30 DK017047 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Yang Z, Jiang J, Tan Y, Yang G, Chen M, Huang J, Liu J, Wei X, Wang S, Luo X, Han Z. Sexual dimorphism in thermogenic regulators and metrnl expression in adipose tissue of offspring mice exposed to maternal and postnatal overnutrition. J Physiol Biochem 2024; 80:407-420. [PMID: 38492180 DOI: 10.1007/s13105-024-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guiying Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Miao Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Siyao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Zhen Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
6
|
Huang Y, Wang A, Zhou W, Li B, Zhang L, Rudolf AM, Jin Z, Hambly C, Wang G, Speakman JR. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat Commun 2024; 15:2382. [PMID: 38493217 PMCID: PMC10944494 DOI: 10.1038/s41467-024-46589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor β (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Broad Institute of MIT and Harvard, Metabolism Program, Cambridge, MA, 02142, USA
| | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Linshan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Agata M Rudolf
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengguang Jin
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China.
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK.
- China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
7
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
8
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
9
|
Günalan E, Karagöz ME, Cıvaş CC, Bilgin VA, Erdogan CS, Güven A, Yılmaz B, Gemici B. The effect of maternal period nutritional status on oro-sensorial fat perception and taste preference in rats. Mol Cell Biochem 2023; 478:2861-2873. [PMID: 36943662 DOI: 10.1007/s11010-023-04703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
CD36 and GPR120 play an important role in the perception and preference for fat-rich food consumption. We aimed to investigate the relationship between oro-gustatory perception of lipids, fatty taste preference, and maternal (Gestation + Lactation)-maturation period nutrition status in offspring Sprague-Dawley rats. In our study, mother rats were fed with control (C) or high-fat diets (HFD) during gestation (21 days) and lactation (21 days) periods. After weaning, the offspring were fed with control (C) or high-fat diets (HFD) during the maturation (120 days) period. Daily calorie intake and weekly body weight measurements were monitored. Two-bottle preference (TBPT) and licking tests measured the fat perceptions and preferences. Plasma levels of insulin, leptin, glucose, and triglyceride were measured. The protein and mRNA expressions of CD36 and GPR120 in the circumvallate papillae (CVP) were determined. The 48 h TBPT results revealed that maternal HFD-exposed offspring rats significantly preferred 2% rapeseed oil solution regardless of the type of maturation diet. According to the licking test, C/C group (C diet exposed group in maternal and maturation periods) offspring licked 0.1% oleic acid-containing water more than C/HFD (C diet exposed in maternal period and HFD exposed group in maturation period) and HFD/HFD group. (HFD exposed group in maternal and maturation periods) groups. Plasma insulin and leptin concentrations significantly increased in HFD/HFD groups compared to C/C group. CD36 protein expressions were significantly lower in HFD/HFD than C/HFD and HFD/C groups. GPR120 and GNAT3 mRNA expressions in HFD/C group were significantly higher than in C/HFD group. Our results suggest that HFD exposure during maternal and maturation period may play a role in fat perception/preference through oral lipid sensors.
Collapse
Affiliation(s)
- Elif Günalan
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
- Faculty of Health Science, Department of Nutrition and Dietetics, Istanbul Health and Technology University, Istanbul, Turkey
| | - Meyli Ezgi Karagöz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Cihan Civan Cıvaş
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Volkan Adem Bilgin
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Cihan Suleyman Erdogan
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Aylin Güven
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey
| | - Bayram Yılmaz
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey.
| | - Burcu Gemici
- Faculty of Medicine, Department of Physiology, Yeditepe University, Ataşehir, 34755, Istanbul, Turkey.
| |
Collapse
|
10
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
11
|
Kim K, Varghese M, Sun H, Abrishami S, Bowers E, Bridges D, Meijer JL, Singer K, Gregg B. The Influence of Maternal High Fat Diet During Lactation on Offspring Hematopoietic Priming. Endocrinology 2023; 165:bqad182. [PMID: 38048597 PMCID: PMC11032250 DOI: 10.1210/endocr/bqad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Obesity and metabolic diseases are rising among women of reproductive age, increasing offspring metabolic risk. Maternal nutritional interventions during lactation present an opportunity to modify offspring outcomes. We previously demonstrated in mice that adult male offspring have metabolic impairments and increased adipose tissue macrophages (ATM) when dams are fed high fat diet (HFD) during the postnatal lactation window (HFD PN). We sought to understand the effect of HFD during lactation on early-life inflammation. HFD PN offspring were evaluated at postnatal day 16 to 19 for tissue weight and gene expression. Profiling of adipose tissue and bone marrow immune cells was conducted through lipidomics, in vitro myeloid colony forming unit assays, and flow cytometry. HFD PN mice had more visceral gonadal white adipose tissue (GWAT) and subcutaneous fat. Adipose tissue RNA sequencing demonstrated enrichment of inflammation, chemotaxis, and fatty acid metabolism and concordant changes in GWAT lipidomics. Bone marrow (BM) of both HFD PN male and female offspring had increased monocytes (CD45+Ly6G-CD11b+CD115+) and B cells (CD45+Ly6G-CD11b-CD19+). Similarly, serum from HFD PN offspring enhanced in vitro BM myeloid colonies in a toll-like receptor 4-dependent manner. We identified that male HFD PN offspring had increased GWAT pro-inflammatory CD11c+ ATMs (CD45+CD64+). Maternal exposure to HFD alters milk lipids enhancing adiposity and myeloid inflammation even in early life. Future studies are needed to understand the mechanisms driving this pro-inflammatory state of both BM and ATMs, the causes of the sexually dimorphic phenotypes, and the feasibility of intervening in this window to improve metabolic health.
Collapse
Affiliation(s)
- Katherine Kim
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haijing Sun
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Bowers
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Jennifer L Meijer
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brigid Gregg
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
13
|
Guriec N, Le Foll C, Delarue J. Long-chain n-3 PUFA given before and throughout gestation and lactation in rats prevent high-fat diet-induced insulin resistance in male offspring in a tissue-specific manner. Br J Nutr 2023; 130:1121-1136. [PMID: 36688295 DOI: 10.1017/s000711452300017x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study investigated whether long-chain n-3 PUFA (LC n-3 PUFA) given to pregnant rats fed a high-fat (HF) diet may prevent fetal programming in male offspring at adulthood. Six weeks before mating, and throughout gestation and lactation, female nulliparous Sprague-Dawley rats were given a chow (C) diet, HF (60·6 % fat from maize, rapeseed oils and lard) or HF in which one-third of fat was replaced by fish oil (HF n-3). At weaning, the three offspring groups were randomly separated in two groups fed C diet, or HF without LC n-3 PUFA, for 7 weeks until adulthood. Glucose tolerance and insulin sensitivity were assessed by an oral glucose tolerance test both at weaning and at adulthood. Insulin signalling was determined in liver, muscle and adipose tissue by quantification of the phosphorylation of Akt on Ser 473 at adulthood. At weaning, as at adulthood, offspring from HF-fed dams were obese and displayed glucose intolerance (GI) and insulin resistance (IR), but not those from HFn-3 fed dams. Following the post-weaning C diet, phosphorylation of Akt was strongly reduced in all tissues of offspring from HF dams, but to a lesser extent in liver and muscle of offspring from HFn-3 dams. However, it was abolished in all tissues of all offspring groups fed the HF post-weaning diet. Thus, LC n-3 PUFA introduced in a HF in dams partially prevented the transmission of GI and IR in adult offspring even though they were fed without LC n-3 PUFA from weaning.
Collapse
Affiliation(s)
- Nathalie Guriec
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| | - Jacques Delarue
- Department of Nutritional Sciences, University Hospital/Faculty of Medicine/University of Brest, Brest, France
- ER 7479 SPURBO, University Hospital/Faculty of Medicine/University of Brest, Brest, France
| |
Collapse
|
14
|
Tsukada A, Okamatsu-Ogura Y, Futagawa E, Habu Y, Takahashi N, Kato-Suzuki M, Kato Y, Ishizuka S, Sonoyama K, Kimura K. White adipose tissue undergoes browning during preweaning period in association with microbiota formation in mice. iScience 2023; 26:107239. [PMID: 37485363 PMCID: PMC10362363 DOI: 10.1016/j.isci.2023.107239] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Beige adipocytes are transiently induced during early postnatal period in mice. Previous studies have suggested that, unlike in adults, the induction is independent of the sympathetic nerve activity; however, the mechanism is yet unknown. Here, we showed that beige adipocytes are induced during the preweaning period in association with the formation of microbiota in mice. Alteration of gut microbiota composition in preweaning mice by maternal treatment with antibiotics or high-fat diet feeding substantially suppressed WAT browning. The suppression was also found in pups transplanted cecal microbiota from pups of high-fat diet-fed dams. These treatments reduced the hepatic expression of genes involved in bile acid synthesis and the serum bile acids level. The abundance of Porphyromonadaceae and Ruminococcaceae in microbiota showed a positive and negative correlation with the induction of beige adipocytes, respectively. This finding may provide comprehensive understanding of the association between gut microbiota and adipose tissue development in the neonatal period.
Collapse
Affiliation(s)
- Anju Tsukada
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Emi Futagawa
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuki Habu
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Natsumi Takahashi
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuko Kato
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Satoshi Ishizuka
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kei Sonoyama
- Laboratory of Food Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-0809, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
15
|
Donato J. Programming of metabolism by adipokines during development. Nat Rev Endocrinol 2023:10.1038/s41574-023-00828-1. [PMID: 37055548 DOI: 10.1038/s41574-023-00828-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
The intrauterine and early postnatal periods represent key developmental stages in which an organism is highly susceptible to being permanently influenced by maternal factors and nutritional status. Strong evidence indicates that either undernutrition or overnutrition during development can predispose individuals to disease later in life, especially type 2 diabetes mellitus and obesity, a concept known as metabolic programming. Adipose tissue produces important signalling molecules that control energy and glucose homeostasis, including leptin and adiponectin. In addition to their well-characterized metabolic effects in adults, adipokines have been associated with metabolic programming by affecting different aspects of development. Therefore, alterations in the secretion or signalling of adipokines, caused by nutritional insults in early life, might lead to metabolic diseases in adulthood. This Review summarizes and discusses the potential role of several adipokines in inducing metabolic programming through their effects during development. The identification of the endocrine factors that act in early life to permanently influence metabolism represents a key step in understanding the mechanisms behind metabolic programming. Thus, future strategies aiming to prevent and treat these metabolic diseases can be designed, taking into consideration the relationship between adipokines and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
16
|
Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med 2023; 21:50. [PMID: 36782211 PMCID: PMC9924890 DOI: 10.1186/s12916-023-02730-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND It is now understood that it is the quality rather than the absolute amount of adipose tissue that confers risk for obesity-associated disease. Adipose-derived stem cells give rise to adipocytes during the developmental establishment of adipose depots. In adult depots, a reservoir of progenitors serves to replace adipocytes that have reached their lifespan and for recruitment to increase lipid buffering capacity under conditions of positive energy balance. MAIN: The adipose tissue expandability hypothesis posits that a failure in de novo differentiation of adipocytes limits lipid storage capacity and leads to spillover of lipids into the circulation, precipitating the onset of obesity-associated disease. Since adipose progenitors are specified to their fate during late fetal life, perturbations in the intrauterine environment may influence the rapid expansion of adipose depots that occurs in childhood or progenitor function in established adult depots. Neonates born to mothers with obesity or diabetes during pregnancy tend to have excessive adiposity at birth and are at increased risk for childhood adiposity and cardiometabolic disease. CONCLUSION In this narrative review, we synthesize current knowledge in the fields of obesity and developmental biology together with literature from the field of the developmental origins of health and disease (DOHaD) to put forth the hypothesis that the intrauterine milieu of pregnancies complicated by maternal metabolic disease disturbs adipogenesis in the fetus, thereby accelerating the trajectory of adipose expansion in early postnatal life and predisposing to impaired adipose plasticity.
Collapse
Affiliation(s)
- Taylor B. Scheidl
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Amy L. Brightwell
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Sarah H. Easson
- Cumming School of Medicine, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Jennifer A. Thompson
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
17
|
Schade R, Song L, Cordner ZA, Ding H, Peterson DA, Moran TH, Tamashiro KL, Serre CBDL. Rat offspring's microbiota composition is predominantly shaped by the postnatal maternal diet rather than prenatal diet. Physiol Behav 2023; 258:113987. [PMID: 36198343 PMCID: PMC10088501 DOI: 10.1016/j.physbeh.2022.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/26/2023]
Abstract
This study assessed the impact of maternal diet during pregnancy versus lactation on offspring gut microbiota. Sprague-Dawley dams were fed high fat (HF) or Chow diets during pregnancy, and their male offspring were raised by a different dam consuming the same or opposite diet (Chow-Chow, Chow-HF, HF-Chow, and HF-HF). Microbiota analysis showed that maternal lactation diet, rather than pregnancy diet, determined offspring microbiota profiles at weaning. Increased abundances of Turicibacter, Staphylococcus , and Ruminococcus were characteristic of chow lactation groups. Lactococcus , Streptococcus , and Parabacteroides were characteristic of HF lactation groups and positively correlated with offspring body weight.
Collapse
Affiliation(s)
- Ruth Schade
- Department of Nutritional Sciences, University of Georgia, Athens, GA, U.S.A; Current address: Department of Microbiology and Immunology, Stanford University, Palo Alto, CA, U.S.A
| | - Lin Song
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zachary A Cordner
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Hua Ding
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Timothy H Moran
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Kellie L Tamashiro
- Departments of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A.
| | | |
Collapse
|
18
|
Ross MG, Kobayashi K, Han G, Desai M. Modulation of Milk and Lipid Synthesis and Secretion in a3-Dimensional Mouse Mammary Epithelial Cell Culture Model: Effects of Palmitate and Orlistat. Nutrients 2022; 14:4948. [PMID: 36500977 PMCID: PMC9739267 DOI: 10.3390/nu14234948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Human milk synthesis is impacted by maternal diet, serum composition, and substrate uptake and synthesis by mammary epithelial cells (MECs). The milk of obese/high-fat-diet women has an increased fat content, which promote excess infant weight gain and the risk of childhood/adult obesity. Yet, the knowledge of milk synthesis regulation is limited, and there are no established approaches to modulate human milk composition. We established a 3-dimensional mouse MEC primary culture that recreates the milk production pathway and tested the effects of the major saturated fatty acid in human milk (palmitate) and a lipoprotein lipase inhibitor (orlistat) on triglyceride production. Positive immunostaining confirmed the presence of milk protein and intracellular lipid including milk globules in the cytoplasm and extracellular space. The treatment with palmitate activated "milk" production by MECs (β-casein) and the lipid pathway (as evident by increased protein and mRNA expression). Consistent with these cellular changes, there was increased secretion of milk protein and triglyceride in MEC "milk". The treatment with orlistat suppressed milk triglyceride production. Palmitate increased milk and lipid synthesis, partly via lipoprotein lipase activation. These findings demonstrate the ability to examine MEC pathways of milk production via both protein and mRNA and to modulate select pathways regulating milk composition in MEC culture.
Collapse
Affiliation(s)
- Michael G. Ross
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Guang Han
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| |
Collapse
|
19
|
Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol 2022; 12:940937. [PMID: 36189369 PMCID: PMC9523142 DOI: 10.3389/fcimb.2022.940937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of obesity is increasingly common in the United States, with ~25% of women of reproductive age being overweight or obese. Metaflammation, a chronic low grade inflammatory state caused by altered metabolism, is often present in pregnancies complicated by obesity. As a result, the fetuses of mothers who are obese are exposed to an in-utero environment that has altered nutrients and cytokines. Notably, both human and preclinical studies have shown that children born to mothers with obesity have higher risks of developing chronic illnesses affecting various organ systems. In this review, the authors sought to present the role of cytokines and inflammation during healthy pregnancy and determine how maternal obesity changes the inflammatory landscape of the mother, leading to fetal reprogramming. Next, the negative long-term impact on offspring’s health in numerous disease contexts, including offspring’s risk of developing neuropsychiatric disorders (autism, attention deficit and hyperactive disorder), metabolic diseases (obesity, type 2 diabetes), atopy, and malignancies will be discussed along with the potential of altered immune/inflammatory status in offspring as a contributor of these diseases. Finally, the authors will list critical knowledge gaps in the field of developmental programming of health and diseases in the context of offspring of mothers with obesity, particularly the understudied role of hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Merve Denizli
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
| | - Maegan L. Capitano
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis IN, United States
| | - Kok Lim Kua
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
- *Correspondence: Kok Lim Kua,
| |
Collapse
|
20
|
Maternal Treatment with Metformin Persistently Ameliorates High-Fat Diet-Induced Metabolic Symptoms and Modulates Gut Microbiota in Rat Offspring. Nutrients 2022; 14:nu14173612. [PMID: 36079869 PMCID: PMC9460832 DOI: 10.3390/nu14173612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A maternal high-fat (HF) diet has long-term deleterious effect on offspring. This study aims to evaluate whether maternal metformin (MT) treatment ameliorates the adverse effects of maternal HF diet on offspring and the role of gut microbiota in it. Pregnant Sprague-Dawley rats were randomly assigned to a HF diet (60% fat) or a standard chow diet (11.8% fat) group, and part of the HF diet group rats were co-treated with MT via drinking water (300 mg/kg/day), resulting in three groups according to maternal diet and MT treatment during gestation and lactation. All offspring were weaned on a chow diet. A maternal HF diet showed a significant deleterious effect on offspring’s metabolic phenotype and induced colonic inflammation and gut-barrier disruption through the reshaped gut microbiota. The daily oral administration of MT to HF-fed dams during gestation and lactation reversed the dysbiosis of gut microbiota in both dams and adult offspring. The hypothalamic TGR5 expression and plasma bile acids composition in adult male offspring was restored by maternal MT treatment, which could regulate hypothalamic appetite-related peptides expression and alleviate inflammation, thereby improving male offspring’s metabolic phenotype. The present study indicates that targeting the gut–brain axis through the mother may be an effective strategy to control the metabolic phenotype of offspring.
Collapse
|
21
|
Zheng J, Zhang L, Gao Y, Wu H, Zhang J. The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Front Nutr 2022; 9:941969. [PMID: 35928844 PMCID: PMC9343994 DOI: 10.3389/fnut.2022.941969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dysbiosis of gut microbiota can contribute to the progression of diabetes and obesity. Previous studies have shown that maternal high-fat (HF) diet during the perinatal period can alter the microbiota and induce metabolic disorders at weaning. However, whether dysbiosis of gut microbiota and metabolism could be recovered by a normal diet after weaning and the dynamic changes of gut microbiota have not been fully studied. In this study, C57BL/6J female mice were fed with a normal chow (NC) or HF diet for 4 weeks preconception, during gestation, and until pup weaning. After weaning, male offspring were fed with an NC diet until 9 weeks of age. The microbiota of offspring at weaning and 9 weeks of age was collected for 16S rRNA gene amplicon sequencing. We found that dams fed with an HF diet showed glucose intolerance after lactation. Compared with the offspring from NC dams, the offspring from HF dams exhibited a higher body weight, hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and leptin resistance and lower adiponectin at weaning. Fecal analysis indicated altered microbiota composition between the offspring of the two groups. The decrease in favorable bacteria (such as norank f Bacteroidales S24-7 group) and increase in unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) were strongly associated with a disturbance of glucose and lipid metabolism. After 6 weeks of normal diet, no difference in body weight, glucose, and lipid profiles was observed between the offspring of the two groups. However, the microbiota composition of offspring in the HF group was still different from that in the NC group, and microbiota diversity was lower in offspring of the HF group. The abundance of Lactobacillus was lower in the offspring of the HF group. In conclusion, a maternal HF diet can induce metabolic homeostasis and gut microbiota disturbance in offspring at weaning. Gut microbiota dysbiosis can persist into adulthood in the offspring, which might have a role in the promotion of susceptibility to obesity and diabetes in the later life of the offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
23
|
Hu X, An J, Ge Q, Sun M, Zhang Z, Cai Z, Tan R, Ma T, Lu H. Maternal High-Fat Diet Reduces Type-2 Neural Stem Cells and Promotes Premature Neuronal Differentiation during Early Postnatal Development. Nutrients 2022; 14:nu14142813. [PMID: 35889772 PMCID: PMC9316544 DOI: 10.3390/nu14142813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Maternal obesity or exposure to a high-fat diet (HFD) has an irreversible impact on the structural and functional development of offspring brains. This study aimed to investigate whether maternal HFD during pregnancy and lactation impairs dentate gyrus (DG) neurogenesis in offspring by altering neural stem cells (NSCs) behaviors. Pregnant Sprague-Dawley rats were fed a chow diet (CHD) or HFD (60% fat) during gestation and lactation. Pups were collected on postnatal day 1 (PND 1), PND 10 and PND 21. Changes in offspring body weight, brain structure and granular cell layer (GCL) thickness in the hippocampus were analyzed. Hippocampal NSCs behaviors, in terms of proliferation and differentiation, were investigated after immunohistochemical staining with Nestin, Ki67, SOX2, Doublecortin (DCX) and NeuN. Maternal HFD accelerated body weight gain and brain structural development in offspring after birth. It also reduced the number of NSCs and their proliferation, leading to a decrease in NSCs pool size. Furthermore, maternal HFD intensified NSCs depletion and promoted neuronal differentiation in the early postnatal development period. These findings suggest that maternal HFD intake significantly reduced the amount and capability of NSCs via reducing type–2 NSCs and promoting premature neuronal differentiation during postnatal hippocampal development.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Qian Ge
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Tianyou Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (T.M.); (H.L.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (X.H.); (J.A.); (Q.G.); (M.S.); (Z.Z.); (Z.C.); (R.T.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Correspondence: (T.M.); (H.L.)
| |
Collapse
|
24
|
Saullo C, Cruz LLD, Damasceno DC, Volpato GT, Sinzato YK, Karki B, Gallego FQ, Vesentini G. Effects of a maternal high-fat diet on adipose tissue in murine offspring: A systematic review and meta-analysis. Biochimie 2022; 201:18-32. [PMID: 35779649 DOI: 10.1016/j.biochi.2022.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
The aim of this systematic review and meta-analysis was to analyze the influence of a maternal and/or offspring high-fat diet (HFD) on the morphology of the offspring adipocytes and amount of food and energy consumption. The search was conducted through Pubmed, EMBASE, and Web of Science databases up to October 31st, 2021. The outcomes were extracted and pooled as a standardized mean difference with random effect models. 5,004 articles were found in the databases. Of these, only 31 were selected for this systematic review and 21 were included in the meta-analysis. A large discrepancy in the percentage of fat composing the HFD (from 14% to 62% fat content) was observed. Considering the increase of adipose tissue by hyperplasia (cell number increase) and hypertrophy (cell size increase) in HFD models, the meta-analysis showed that excessive consumption of a maternal HFD influences the development of visceral white adipose tissue in offspring, related to adipocyte hypertrophy, regardless of their HFD or control diet consumption. Upon following a long-term HFD, hyperplasia was confirmed in the offspring. When analyzing the secondary outcome in terms of the amount of food and energy consumed, there was an increase of caloric intake in the offspring fed with HFD whose mothers consumed HFD. Furthermore, the adipocyte hypertrophy in different regions of the adipose tissue is related to the sex of the pups. Thus, the adipose tissue obesity phenotypes in offspring are programmed by maternal consumption of a high-fat diet, independent of postnatal diet.
Collapse
Affiliation(s)
- Carolina Saullo
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Giovana Vesentini
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil.
| |
Collapse
|
25
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
26
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
27
|
Maternal exercise and high-fat diet affect hypothalamic neural projections in rat offspring in a sex-specific manner. J Nutr Biochem 2022; 103:108958. [DOI: 10.1016/j.jnutbio.2022.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
|
28
|
Yang Z, Jiang J, Chen M, Huang J, Liu J, Wei X, Jia R, Song L, Sun B, Luo X, Song Q, Han Z. Sex-Specific Effects of Maternal and Post-Weaning High-Fat Diet on Adipose Tissue Remodeling and Asprosin Expression in Mice Offspring. Mol Nutr Food Res 2021; 66:e2100470. [PMID: 34933410 DOI: 10.1002/mnfr.202100470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Perinatal high-fat diet (HFD) increases risk of metabolic disorders in offspring. Adipose tissue remodeling is associated with metabolic syndrome. The current study characterizes the profile of maternal HFD-induced changes in adipose tissue remodeling and adipokines expression in mice offspring. METHODS AND RESULTS Female C57BL/6 mice are fed with CHOW or HFD for 2 weeks before mating, throughout gestation and lactation. At weaning, pups are randomly fed with CHOW or HFD, resulting in eight groups according to sex and maternal diet: Male CHOW-CHOW (MCC), Male CHOW-HFD (MCH), Male HFD-CHOW (MHC), Male HFD-HFD (MHH), Female CHOW-CHOW (FCC), Female CHOW-HFD (FCH), Female HFD-CHOW (FHC), and Female HFD-HFD (FHH). Increased body weight, impaired glucose tolerance, increased adipose tissue mass and hypertrophy, and decreased circulating asprosin level are only observed in male offspring exposure to maternal HFD. Serum asprosin level negatively correlates with fasting blood glucose, serum cholesterol (CHO), and high-density lipoprotein (HDL) levels, while positively correlates with serum low-density lipoprotein (LDL) and glutamate-oxaloacetate transaminase (GOT) levels in male offspring. A combination of genetic and biochemical analyses of adipokines shows the depot- and sex-specific changes in response to maternal and/or post-weaning HFD. CONCLUSION This study's results reveal the differential metabolic changes in response to maternal and/or post-weaning HFD in male and female offspring. The effect of maternal HFD on metabolic phonotype is more obvious in male offspring, supporting the notion that males are more susceptible to HFD-induced metabolic disorders.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Miao Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ru Jia
- Department of Prosthodontics, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.,Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qing Song
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhen Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
29
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Huang Y, Osorio Mendoza J, Li M, Jin Z, Li B, Wu Y, Togo J, Speakman JR. Impact of graded maternal dietary fat content on offspring susceptibility to high-fat diet in mice. Obesity (Silver Spring) 2021; 29:2055-2067. [PMID: 34813173 DOI: 10.1002/oby.23270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Maternal high-fat diet (HFD) increases offspring obesity, yet the impacts of different levels of maternal dietary fat have seldom been addressed. In mice, the impact of graded maternal dietary fat on offspring adiposity and offspring's later susceptibility to HFD were assessed. METHODS Lactating mice were fed diets with graded fat content from 8.3% to 66.6%. One male and one female pup from each litter were weaned onto a low-fat diet for 15 weeks. HFD (41.7%) was then introduced to half of the offspring for 12 weeks. RESULTS Offspring body weight and adiposity were positively related to maternal dietary fat content and were higher when mothers were exposed to HFD. The maternal diet effect was nonlinear and sex dependent. A maternal dietary fat of 41.7% and above exaggerated the offspring body weight gain in males but was not significant in females. Maternal 8.3% fat and 25% fat diets led to the highest daily energy expenditure and respiratory exchange ratio in offspring. Offspring fed a low-fat diet had higher daily energy expenditure and respiratory exchange ratio than those fed an HFD. CONCLUSIONS Increasing maternal dietary fat during lactation, and HFD in later life, had significant and interacting impacts on offspring obesity. Maternal diet had a bigger impact on male offspring. The effects of maternal dietary fat content were nonlinear.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengguang Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medical Science, Dali University, Dali, Yunnan, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| |
Collapse
|
31
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
32
|
Cui J, Song L, Wang R, Hu S, Yang Z, Zhang Z, Sun B, Cui W. Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients 2021; 13:nu13103417. [PMID: 34684418 PMCID: PMC8538935 DOI: 10.3390/nu13103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/04/2022] Open
Abstract
Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring’s skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM.
Collapse
Affiliation(s)
- Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Rui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Shuyuan Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zengtie Zhang
- Department of Pathology, Xi’an Jiao Tong University Health Science Center, Xi’an 710061, China;
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (B.S.); (W.C.)
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (B.S.); (W.C.)
| |
Collapse
|
33
|
Song L, Yan J, Wang N, Wei X, Luo X, Meng K, Sun B. Prenatal exercise reverses high-fat-diet-induced placental alterations and alters male fetal hypothalamus during late gestation in rats†. Biol Reprod 2021; 102:705-716. [PMID: 31742332 DOI: 10.1093/biolre/ioz213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal high-fat (HF) diet negatively affects maternal metabolism and placental function. This study aimed to determine whether gestational exercise prevents the effect of HF diet on placental amino acid transporter expression and nutrient-sensing signaling and the fetal response. Pregnant Sprague-Dawley rats were either fed with a CHOW (13.5% fat) or HF (60% fat) diet during gestation and further divided into two subgroups: voluntary exercised and sedentary. Placentae were collected on gestational day (GD) 14 and GD20, and male placentae were used in this study. We found that gestational exercise ameliorated the detrimental effects of HF diet on dams' adiposity, plasma leptin, and insulin concentrations. Maternal exercise did not influence fetoplacental growth but affected male fetal hypothalamic Leprb, Stat3, Insr, Agrp, and Pomc expressions on GD20. Maternal HF diet decreased placental labyrinth thickness and increased system A amino acid transporter SNAT2 expression, while these changes were normalized by exercise. The activation of placental mechanistic target of rapamycin complex 1/4E-BP1 and LepRb/STAT3 signaling might contribute to the increased placental SNAT2 expression in HF-fed dams, which were reversed by exercise on GD20. These data highlight that gestational exercise reverses HF-diet-induced placental alterations during late gestation without influencing fetal growth. However, maternal exercise altered fetal hypothalamic gene expression, which may affect long-term offspring health.
Collapse
Affiliation(s)
- Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Strain J, Spaans F, Serhan M, Davidge ST, Connor KL. Programming of weight and obesity across the lifecourse by the maternal metabolic exposome: A systematic review. Mol Aspects Med 2021; 87:100986. [PMID: 34167845 DOI: 10.1016/j.mam.2021.100986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Exposome research aims to comprehensively understand the multiple environmental exposures that influence human health. To date, much of exposome science has focused on environmental chemical exposures and does not take a lifecourse approach. The rising prevalence of obesity, and the limited success in its prevention points to the need for a better understanding of the diverse exposures that associate with, or protect against, this condition, and the mechanisms driving its pathogenesis. The objectives of this review were to 1. evaluate the evidence on the maternal metabolic exposome in the programming of offspring growth/obesity and 2. identify and discuss the mechanisms underlying the programming of obesity. A systematic review was conducted following PRISMA guidelines to capture articles that investigated early life metabolic exposures and offspring weight and/or obesity outcomes. Scientific databases were searched using pre-determined indexed search terms, and risk of bias assessments were conducted to determine study quality. A final total of 76 articles were obtained and extracted data from human and animal studies were visualised using GOfER diagrams. Multiple early life exposures, including maternal obesity, diabetes and adverse nutrition, increase the risk of high weight at birth and postnatally, and excess adipose accumulation in human and animal offspring. The main mechanisms through which the metabolic exposome programmes offspring growth and obesity risk include epigenetic modifications, altered placental function, altered composition of the gut microbiome and breast milk, and metabolic inflammation, with downstream effects on development of the central appetite system, adipose tissues and liver. Understanding early life risks and protectors, and the mechanisms through which the exposome modifies health trajectories, is critical for developing and applying early interventions to prevent offspring obesity later in life.
Collapse
Affiliation(s)
- Jamie Strain
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Serhan
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Pang H, Ling D, Cheng Y, Akbar R, Jin L, Ren J, Wu H, Chen B, Zhou Y, Zhu H, Zhou Y, Huang H, Sheng J. Gestational high-fat diet impaired demethylation of Pparα and induced obesity of offspring. J Cell Mol Med 2021; 25:5404-5416. [PMID: 33955677 PMCID: PMC8184666 DOI: 10.1111/jcmm.16551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/06/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Gestational and postpartum high‐fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post‐weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator‐activated receptor‐α (Pparα), and the decreased mRNA levels of ten‐eleven translocation 1 (Tet1) and/or ten‐eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long‐term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.
Collapse
Affiliation(s)
- Haiyan Pang
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Dandan Ling
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Yi Cheng
- Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rubab Akbar
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyang Jin
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Jun Ren
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyan Wu
- Department of Reproductive Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Bin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Center for Reproductive Medicine, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuzhong Zhou
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China
| | - Hefeng Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China.,Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jianzhong Sheng
- The Key Laboratory of Reproductive Genetics (Zhejiang University School of Medicine), Ministry of Education, Hangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest 2021; 51:e13482. [PMID: 33350459 DOI: 10.1111/eci.13482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), University of the Balearic Islands, Palma (Mallorca), Spain.,Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma (Mallorca), Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma (Mallorca), Spain
| | - Flávio Reis
- Faculty of Medicine, Institute of Pharmacology & Experimental Therapeutics and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Conceição Egas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Faculty of Medicine, Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
37
|
Kushwaha P, Khambadkone SG, Li M, Goodman EJ, Aravindan N, Riddle RC, Tamashiro KLK. Maternal High-Fat Diet Induces Long-Lasting Defects in Bone Structure in Rat Offspring Through Enhanced Osteoclastogenesis. Calcif Tissue Int 2021; 108:680-692. [PMID: 33386478 PMCID: PMC8064999 DOI: 10.1007/s00223-020-00801-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Maternal stressors during the prenatal and perinatal periods are associated with increased susceptibility for and severity of chronic disease phenotypes in adult offspring. In this study, we used a rat model of maternal high-fat diet (HFD) exposure during pregnancy and lactation to investigate the impact on skeletal homeostasis in offspring. In the distal femur, young male and female offspring (up to 3 weeks of age) from dams fed a HFD exhibited marked increases in trabecular bone volume relative to offspring from dams fed a chow diet, but this was followed by sustained bone loss. By 15 weeks of age, male offspring of HFD fed dams exhibited a 33% reduction in trabecular bone volume fraction that histomorphometric analyses revealed was due to a nearly threefold increase in the abundance of bone-resorbing osteoclasts, while there were no differences between female control and HFD offspring by 15 weeks of age. The osteoblastic differentiation of male offspring-derived bone marrow stromal cells was not affected by maternal diet. However, osteoclastic precursors isolated from the male offspring of HFD fed dams exhibited enhanced differentiation in vitro, forming larger osteoclasts with higher expression of the fusion marker DC-STAMP. This effect appears to be mediated by a cell autonomous increase in the sensitivity of precursors to RANKL. Taken together, these results suggest that maternal stressors like HFD exposure have persistent consequences for the skeletal health of offspring that may ultimately lead to a predisposition for osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 209, Baltimore, MD, 21205, USA
| | - Seva G Khambadkone
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mengni Li
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Ethan J Goodman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Nandini Aravindan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 209, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| | - Kellie L K Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Gao R, Fu Q, Jiang HM, Shen M, Zhao RL, Qian Y, He YQ, Xu KF, Xu XY, Chen H, Zhang Q, Yang T. Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. iScience 2021; 24:102265. [PMID: 33817571 PMCID: PMC8008187 DOI: 10.1016/j.isci.2021.102265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the molecular mechanisms underlying islet dysfunction and insulin resistance in diet-induced diabetes, we conducted temporal RNA sequencing of tissues responsible for insulin secretion (islets) and action (liver) every 4 weeks in mice on high-fat (HFD) or chow diet for 24 weeks, linking to longitudinal profile of metabolic characteristics. The diverse responses of α, β, and δ cells to glucose and palmitate indicated HFD-induced dynamic deterioration of islet function from dysregulation to failure. Insulin resistance developed with variable time course in different tissues. Weighted gene co-expression network analysis and Ingenuity Pathway Analysis implicated islets and liver jointly programmed β-cell compensatory adaption via cell proliferation at early phase and irreversible islet dysfunction by inappropriate immune response at later stage, and identified interconnected molecules including growth differentiation factor 15. Frequencies of T cell subpopulation showed an early decrement in Tregs followed by increases in Th1 and Th17 cells during progression to diabetes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - He-Min Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui-Ling Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun-Qiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kuan-Feng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin-Yu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
39
|
Savva C, Helguero LA, González-Granillo M, Couto D, Melo T, Li X, Angelin B, Domingues MR, Kutter C, Korach-André M. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun Biol 2021; 4:14. [PMID: 33398027 PMCID: PMC7782679 DOI: 10.1038/s42003-020-01513-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Daniela Couto
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
40
|
Ramaiyan B, Zarei M, Acharya P, Talahalli RR. Dietary n-3 but not n-6 fatty acids modulate anthropometry and fertility indices in high-fat diet fed rats: a two-generation study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:349-355. [PMID: 33505079 PMCID: PMC7813903 DOI: 10.1007/s13197-020-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022]
Abstract
The present study assessed the modulatory potentials of dietary n-3 [α-linolenic acid (ALA, 18:3n-3, eicosapentaenoic acid (EPA, 20:5n-3 + docosahexaenoic acid (DHA) 22:6n-3), and n-6 fatty acid (LA, 18:2n-6)] on anthropometric parameters and fertility indices in high-fat-fed rats. Weanling female Wistar rats were fed with control diet (7% lard), high-fat diet (35% lard, HFL), high-fat with fish oil (21% fish oil + 14% lard, HFF), high-fat with canola oil (21% canola oil + 14% lard, HFC) and high-fat with sunflower oil (21% sunflower oil + 14% lard, HFS) for 2 months, mated and continued on their diets during pregnancy. At gestation day 18-20, the intra-uterine environment was examined in representative rats, and the rest were allowed for delivering pups. The pups after lactation were subjected to mating and feeding trials as above. Growth parameters (body weight, body length (BL), abdominal circumference (AC), thoracic circumference (TC), and Lee index and fertility parameters (litter size and sex ratio) were studied. Feeding HFL diet increased BL (16%), AC (33%) and TC (21%) compared to control (p < 0.05). Adipose tissue accumulation was 11% higher in the HFL group compared to control and was lowered with n-3 fatty acid incorporation in the diet. HFL group exhibited a lower percentage of fertility, pregnancy, and delivery indices. Litter size was decreased by 20%, and litter weight was increased by 23% in HFL group compared to control with more male pups. Our study indicated that n-3 to a larger extent than n-6 fatty acids modulated high-fat induced changes in the anthropometric parameters and fertility indices.
Collapse
Affiliation(s)
- Breetha Ramaiyan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Mehrdad Zarei
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Pooja Acharya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | | |
Collapse
|
41
|
Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat Commun 2020; 11:5772. [PMID: 33188191 PMCID: PMC7666216 DOI: 10.1038/s41467-020-19638-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Hypothalamic neurons including proopiomelanocortin (POMC)-producing neurons regulate body weights. The non-motile primary cilium is a critical sensory organelle on the cell surface. An association between ciliary defects and obesity has been suggested, but the underlying mechanisms are not fully understood. Here we show that inhibition of ciliogenesis in POMC-expressing developing hypothalamic neurons, by depleting ciliogenic genes IFT88 and KIF3A, leads to adulthood obesity in mice. In contrast, adult-onset ciliary dysgenesis in POMC neurons causes no significant change in adiposity. In developing POMC neurons, abnormal cilia formation disrupts axonal projections through impaired lysosomal protein degradation. Notably, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; through these effects they critically modulate the organization of hypothalamic feeding circuits. Our findings reveal a mechanism of early life programming of adult adiposity, which is mediated by primary cilia in developing hypothalamic neurons. Ciliary defects and obesity has been associated, but the underlying mechanism is unclear. Here, the authors show that inhibition of ciliogenesis in POMC neurons during development results in lysosomal protein degradation-dependent axonal disruption and adult obesity in mice.
Collapse
|
42
|
Kim JG, Lee BJ, Jeong JK. Temporal Leptin to Determine Cardiovascular and Metabolic Fate throughout the Life. Nutrients 2020; 12:nu12113256. [PMID: 33114326 PMCID: PMC7690895 DOI: 10.3390/nu12113256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
Leptin links peripheral adiposity and the central nervous system (CNS) to regulate cardiometabolic physiology. Within the CNS, leptin receptor-expressing cells are a counterpart to circulating leptin, and leptin receptor-mediated neural networks modulate the output of neuroendocrine and sympathetic nervous activity to balance cardiometabolic homeostasis. Therefore, disrupted CNS leptin signaling is directly implicated in the development of metabolic diseases, such as hypertension, obesity, and type 2 diabetes. Independently, maternal leptin also plays a central role in the development and growth of the infant during gestation. Accumulating evidence points to the dynamic maternal leptin environment as a predictor of cardiometabolic fate in their offspring as it is directly associated with infant metabolic parameters at birth. In postnatal life, the degree of serum leptin is representative of the level of body adiposity/weight, a driving factor for cardiometabolic alterations, and therefore, the levels of blood leptin through the CNS mechanism, in a large part, are a strong determinant for future cardiometabolic fate. The current review focuses on highlighting and discussing recent updates for temporal dissection of leptin-associated programing of future cardiometabolic fate throughout the entire life.
Collapse
Affiliation(s)
- Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea;
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (B.J.L.); (J.K.J.); Tel.: +82-52-259-2351 (B.J.L.); +1-202-994-9815 (J.K.J.)
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
- Correspondence: (B.J.L.); (J.K.J.); Tel.: +82-52-259-2351 (B.J.L.); +1-202-994-9815 (J.K.J.)
| |
Collapse
|
43
|
Yamasaki S, Kimura G, Koizumi K, Dai N, Ketema RM, Tomihara T, Ueno Y, Ohno Y, Sato S, Kurasaki M, Hosokawa T, Saito T. Maternal green tea extract intake during lactation attenuates hepatic lipid accumulation in adult male rats exposed to a continuous high-fat diet from the foetal period. Food Nutr Res 2020; 64:5231. [PMID: 34908919 PMCID: PMC8634344 DOI: 10.29219/fnr.v64.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Maternal lipid intake in the early postnatal period has a long-term effect on the possibility of fatty liver formation in children; besides, the importance of lipid consumption during lactation for children’s health has been suggested. Green tea extract (GTE) contains abundant catechins, and it has been reported to improve lipid metabolism and prevent fatty liver. Objective The aim of this study was to examine the effects of maternal GTE intake during lactation on hepatic lipid accumulation in adult male rats exposed to a continuous high-fat (HF) diet from the foetal period. Methods Pregnant Wistar rats received diets containing 13% (control-fat, CON) or 45% (high-fat, HF) fat. CON-fed mothers received the same diet during lactation, whereas HF-fed mothers received either HF diet alone or HF diet supplemented with 0.24% GTE. At weaning, male offspring were divided into three groups, i.e. CON/CON/CON, HF/HF/HF (HF-offspring) or HF/HF+GTE/HF (GTE-offspring), and were fed until 51 weeks. Results A significant hepatic triglyceride (Tg) accumulation was observed in the HF-offspring when compared with the other offspring. This is presumed to be caused by the promotion of Tg synthesis derived from exogenous fatty acid due to a significant increase in diacylglycerol O-acyltransferase 1 and a decrease in Tg expenditure caused by decreasing microsomal triglyceride transfer protein (MTTP) and long-chain acyl-CoA dehydrogenase. On the other hand, attenuated hepatic Tg accumulation was observed in the GTE-offspring. The levels of the hepatic lipid metabolism-related enzymes were improved to the same level as the CON-offspring, and particularly, MTTP was significantly increased as compared with the HF-offspring. Conclusion This study indicates the potential protective effects of maternal GTE intake during lactation on HF diet-induced hepatic lipid accumulation in adult male rat offspring and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Shojiro Yamasaki
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Goh Kimura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kazunari Koizumi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ning Dai
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Tomomi Tomihara
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yukako Ueno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuki Ohno
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shin Sato
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Masaaki Kurasaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Early life overnutrition impairs plasticity of non-neuronal brainstem cells and drives obesity in offspring across development in rats. Int J Obes (Lond) 2020; 44:2405-2418. [PMID: 32999409 DOI: 10.1038/s41366-020-00658-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/17/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prevalence of adolescent obesity has increased dramatically, becoming a serious public health concern. While previous evidence suggests that in utero- and early postnatal overnutrition increases adult-onset obesity risk, the neurobiological mechanisms underlying this outcome are not well understood. Non-neuronal cells play an underestimated role in the physiological responses to metabolic/nutrient signals. Hypothalamic glial-mediated inflammation is now considered a contributing factor in the development and perpetuation of obesity; however, attention on the role of gliosis and microglia activation in other nuclei is still needed. METHODS/RESULTS Here, we demonstrate that early life consumption of high-fat/sucrose diet (HFSD) is sufficient to increase offspring body weight, hyperleptinemia and potentially maladaptive cytoarchitectural changes in the brainstem dorsal-vagal-complex (DVC), an essential energy balance processing hub, across postnatal development. Our data demonstrate that pre- and postnatal consumption of HFSD result in increased body weight, hyperleptinemia and dramatically affects the non-neuronal landscape, and therefore the plasticity of the DVC in the developing offspring. CONCLUSIONS Current findings are very provocative, considering the importance of the DVC in appetite regulation, suggesting that HFSD-consumption during early life may contribute to subsequent obesity risk via DVC cytoarchitectural changes.
Collapse
|
45
|
Kislal S, Shook LL, Edlow AG. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat Diagn 2020; 40:1109-1125. [PMID: 32643194 DOI: 10.1002/pd.5784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Evidence from epidemiological, clinical, and animal model studies clearly demonstrates that prenatal and lactational maternal obesity and high-fat diet consumption are associated with cardiometabolic morbidity in offspring. Fetal and offspring sex may be an important effect modifier. Adverse offspring cardiometabolic outcomes observed in the setting of maternal obesity include an increased risk for obesity, features of metabolic syndrome (hypertension, hyperglycemia and insulin resistance, hyperlipidemia, increased adiposity), and non-alcoholic fatty liver disease. This review article synthesizes human and animal data linking maternal obesity and high-fat diet consumption in pregnancy and lactation to adverse cardiometabolic outcomes in offspring. We review key mechanisms underlying skeletal muscle, adipose tissue, pancreatic, liver, and central brain reward programming in obesity-exposed offspring, and how such malprogramming contributes to offspring cardiometabolic morbidity.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Galan C, Krykbaeva M, Rando OJ. Early life lessons: The lasting effects of germline epigenetic information on organismal development. Mol Metab 2020; 38:100924. [PMID: 31974037 PMCID: PMC7300385 DOI: 10.1016/j.molmet.2019.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND An organism's metabolic phenotype is primarily affected by its genotype, its lifestyle, and the nutritional composition of its food supply. In addition, it is now clear from studies in many different species that ancestral environments can also modulate metabolism in at least one to two generations of offspring. SCOPE OF REVIEW We limit ourselves here to paternal effects in mammals, primarily focusing on studies performed in inbred rodent models. Although hundreds of studies link paternal diets and offspring metabolism, the mechanistic basis by which epigenetic information in sperm programs nutrient handling in the next generation remains mysterious. Our goal in this review is to provide a brief overview of paternal effect paradigms and the germline epigenome. We then pivot to exploring one key mystery in this literature: how do epigenetic changes in sperm, most of which are likely to act transiently in the early embryo, ultimately direct a long-lasting physiological response in offspring? MAJOR CONCLUSIONS Several potential mechanisms exist by which transient epigenetic modifications, such as small RNAs or methylation states erased shortly after fertilization, could be transferred to more durable heritable information. A detailed mechanistic understanding of this process will provide deep insights into early development, and could be of great relevance for human health and disease.
Collapse
Affiliation(s)
- Carolina Galan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Marina Krykbaeva
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
47
|
Charron MJ, Williams L, Seki Y, Du XQ, Chaurasia B, Saghatelian A, Summers SA, Katz EB, Vuguin PM, Reznik SE. Antioxidant Effects of N-Acetylcysteine Prevent Programmed Metabolic Disease in Mice. Diabetes 2020; 69:1650-1661. [PMID: 32444367 PMCID: PMC7372077 DOI: 10.2337/db19-1129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
An adverse maternal in utero and lactation environment can program offspring for increased risk for metabolic disease. The aim of this study was to determine whether N-acetylcysteine (NAC), an anti-inflammatory antioxidant, attenuates programmed susceptibility to obesity and insulin resistance in offspring of mothers on a high-fat diet (HFD) during pregnancy. CD1 female mice were acutely fed a standard breeding chow or HFD. NAC was added to the drinking water (1 g/kg) of the treatment cohorts from embryonic day 0.5 until the end of lactation. NAC treatment normalized HFD-induced maternal weight gain and oxidative stress, improved the maternal lipidome, and prevented maternal leptin resistance. These favorable changes in the in utero environment normalized postnatal growth, decreased white adipose tissue (WAT) and hepatic fat, improved glucose and insulin tolerance and antioxidant capacity, reduced leptin and insulin, and increased adiponectin in HFD offspring. The lifelong metabolic improvements in the offspring were accompanied by reductions in proinflammatory gene expression in liver and WAT and increased thermogenic gene expression in brown adipose tissue. These results, for the first time, provide a mechanistic rationale for how NAC can prevent the onset of metabolic disease in the offspring of mothers who consume a typical Western HFD.
Collapse
Affiliation(s)
- Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
- Department of Medicine and Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY
| | - Lyda Williams
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT
| | - Ellen B Katz
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY
| | - Patricia M Vuguin
- Department of Pediatrics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Sandra E Reznik
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY
- Department of Pathology, Albert Einstein College of Medicine, New York, NY
- Department of Pharmaceutical Sciences, St. John's University, New York, NY
| |
Collapse
|
48
|
Schellong K, Melchior K, Ziska T, Rancourt RC, Henrich W, Plagemann A. Maternal but Not Paternal High-Fat Diet (HFD) Exposure at Conception Predisposes for 'Diabesity' in Offspring Generations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4229. [PMID: 32545776 PMCID: PMC7345576 DOI: 10.3390/ijerph17124229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
While environmental epigenetics mainly focuses on xenobiotic endocrine disruptors, dietary composition might be one of the most important environmental exposures for epigenetic modifications, perhaps even for offspring generations. We performed a large-scale rat study on key phenotypic consequences from parental (F0) high-caloric, high-fat diet (HFD) food intake, precisely and specifically at mating/conception, focusing on 'diabesity' risk in first- (F1) and second- (F2) generation offspring of both sexes. F0 rats (maternal or paternal, respectively) received HFD overfeeding, starting six weeks prior to mating with normally fed control rats. The maternal side F1 offspring of both sexes developed a 'diabesity' predisposition throughout life (obesity, hyperleptinemia, hyperglycemia, insulin resistance), while no respective alterations occurred in the paternal side F1 offspring, neither in males nor in females. Mating the maternal side F1 females with control males under standard feeding conditions led, again, to a 'diabesity' predisposition in the F2 generation, which, however, was less pronounced than in the F1 generation. Our observations speak in favor of the critical impact of maternal but not paternal metabolism around the time frame of reproduction for offspring metabolic health over generations. Such fundamental phenotypic observations should be carefully considered in front of detailed molecular epigenetic approaches on eventual mechanisms.
Collapse
Affiliation(s)
- Karen Schellong
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Kerstin Melchior
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Thomas Ziska
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Rebecca C. Rancourt
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| | - Wolfgang Henrich
- Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany;
| | - Andreas Plagemann
- Division of ‘Experimental Obstetrics’, Clinic of Obstetrics, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow-Klinikum, 13353 Berlin, Germany; (K.S.); (K.M.); (T.Z.); (R.C.R.)
| |
Collapse
|
49
|
Teixeira AE, Rocha-Gomes A, Pereira dos Santos T, Amaral BLS, da Silva AA, Malagutti AR, Leite FRF, Stuckert-Seixas SR, Riul TR. Cafeteria diet administered from lactation to adulthood promotes a change in risperidone sensitivity on anxiety, locomotion, memory, and social interaction of Wistar rats. Physiol Behav 2020; 220:112874. [DOI: 10.1016/j.physbeh.2020.112874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
|
50
|
Khaire A, Wadhwani N, Madiwale S, Joshi S. Maternal fats and pregnancy complications: Implications for long-term health. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102098. [PMID: 32380367 DOI: 10.1016/j.plefa.2020.102098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Pregnancy imposes increased nutritional requirements for the well being of the mother and fetus. Maternal lipid metabolism is critical for fetal development and long-term health of the offspring as it plays a key role in energy storage, tissue growth and cell signaling. Maternal fat composition is considered as a modifiable risk for abnormal lipid metabolism and glucose tolerance during pregnancy. Data derived from observational studies demonstrate that higher intake of saturated fats during pregnancy is associated with pregnancy complications (preeclampsia, gestational diabetes mellitus and preterm delivery) and poor birth outcomes (intra uterine growth retardation and large for gestational age babies). On the other hand, prenatal long chain polyunsaturated fatty acids status is shown to improve birth outome. In this article, we discuss the role of maternal lipids during pregnancy on fetal growth and development and its consequences on the health of the offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Nisha Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Shweta Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|