1
|
Zhang SQ, Jia S, Li X, Hu RR, Luo Z, Wang J, Xi H. Adverse events associated with aromatase inhibitors: An Analysis of Real-World Datasets and drug-gene interaction network. Expert Opin Drug Saf 2024. [PMID: 39497024 DOI: 10.1080/14740338.2024.2424443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Aromatase inhibitors (AIs) are commonly used to treat postmenopausal hormone receptor positive breast cancer, but there is currently a lack of comprehensive safety reports on AIs in large-scale cohorts. RESEARCH DESIGN AND METHODS We conducted a retrospective pharmacovigilance survey based on the FDA Adverse Event Reporting System, retrieving relevant reports from the first quarter of 2004 to the third quarter of 2023, aiming to conduct a comprehensive comparative analysis of adverse reactions associated with commonly used AIs in clinical practice. Adverse event signals were assessed using disproportionality analysis. In addition, we elucidated the potential toxicological mechanisms of aromatase inhibitor related adverse events through functional enrichment analysis of human genes that interact with AIs. RESULTS A total of 7,933 adverse event reports related to AIs were collected, and there were 642 positive signals at the preferred term level. The top three signal intensities for anastrozole are: antiphospholipid syndrome, plantar fasciitis and autoimmune pancreatitis. The top three signal intensities for letrozole are: androgenetic alopecia and myosclerosis, pneumonic herpes virus. The top three signal intensities for exemestane are: infection reactivation, thyroxine free decreased and dilatation atrial. In terms of onset time, letrozole has the earliest onset time overall, followed by exemestane, and finally anastrozole. CONCLUSIONS Our research corroborates the typical adverse events linked to AIs while highlighting potential safety concerns in their real-world clinical application.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
- Department of Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Shujing Jia
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Li
- Xiamen University affiliated Xiamen Eye Center; Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui-Rui Hu
- Department of neurosurgery, Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, Sichuan, China
| | - Zhanyang Luo
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Junhai Wang
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
| | - Hongyan Xi
- Department of Obstetrics and Gynecology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine; Yancheng TCM Hospital, Jiangsu, China
| |
Collapse
|
2
|
Ladwig KH, Marten-Mittag B, Olliges E, Johar H, Atasoy S, Holdenrieder S, Albus C, Deter HC, DeZwaan M, Fritzsche K, Jünger J, Petrowski K, Michal M, Söllner W, Weber CS, Herrmann-Lingen C, Ronel J. Recurrent depression predicts high leptin concentrations in patients with coronary artery disease over an 18-months follow-up period: Findings from the prospective multicenter randomized controlled SPIRR-CAD Trial. J Affect Disord 2024; 369:174-181. [PMID: 39321975 DOI: 10.1016/j.jad.2024.09.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Leptin, an adipokine suspected to play a role in coronary artery disease (CAD), may also be associated with deteriorated mental health. We investigated the prospective impact of recurrent depressed mood (RDM) on heightened plasma leptin levels in CAD patients. METHODS Derived from the randomized SPIRR-CAD trial, plasma leptin were measured by the Human Leptin DuoSet ELISA at baseline in 539 patients (including 115 (21.3 %) women and 424 (78.7 %) men) and in 373 participants after 18-months follow up (T3). RDM was based on the clinical course from baseline to follow-up assessed by the Hamilton Depression Rating Scale (HAMD). Multivariate binary logistic regression models identified predictors for heightened leptin at T3. RESULTS At baseline, highest leptin level (3rd tertile) was associated with type 2 diabetes (p = 0.009), heart failure symptoms (NYHA III) (p < 0.001), female sex and BMI ≥30 (p < 0.001) but not with age and depression. At study endpoint (T3), RDM was associated with a substantially increased risk of experiencing the highest plasma leptin level (OR 2.92 (95 % CI 1.27-6.75)) followed by increased NT-proBNP (the most prominent indicator of CHF) with an OR of 2.73 (1.22-6.11) - both after adjustment for concurrent factors including weight gain (diff BMI T3-T1) over the study period - the latter accounting for an OR of 1.41 (1.17-1.70). LIMITATIONS Findings are limited to people of Caucasian ancestry which prevents being generalized to other ethnicities. Although relying upon a prospective design, reverse causality cannot be excluded but is unlikely. CONCLUSIONS In CAD patients, RDM is a significant predictor of heightened leptin -a finding opening room for a new pathway of the psychobiological underpinning of depression on CAD risk.
Collapse
Affiliation(s)
- Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Munich Heart Alliance, Munich, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Birgitt Marten-Mittag
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elisabeth Olliges
- Department of Psychosomatic Medicine and Psychotherapy, Klinik Barmelweid AG, Barmelweid, Switzerland
| | - Hamima Johar
- Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany; Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Seryan Atasoy
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Psychosomatic Medicine and Psychotherapy, University of Gießen and Marburg, Gießen, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Deutsches Herzzentrum Munich, Technische Universität München, Munich, Germany
| | - Christian Albus
- Department of Psychosomatics and Psychotherapy, University of Cologne, Cologne, Germany
| | - Hans Christian Deter
- Department of Psychosomatics and Psychotherapy, Charité Universitaetsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Martina DeZwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kurt Fritzsche
- Department of Psychosomatic Medicine and Psychotherapy, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Jana Jünger
- University Heidelberg, Medical Faculty, MME Study Programme, Heidelberg, Germany; Institut für Kommunikations- und Prüfungsforschung gGmbH, Heidelberg, Germany
| | - Katja Petrowski
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wolfgang Söllner
- Department of Psychosomatic Medicine and Psychotherapy, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Cora S Weber
- Department of Psychosomatics and Psychotherapy, Charité Universitaetsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Herrmann-Lingen
- Department of Psychosomatic Medicine and Psychotherapy, University of Goettingen Medical Center, Georg-August University, Göttingen, Germany; Medical Center and German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Joram Ronel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Psychosomatic Medicine and Psychotherapy, Klinik Barmelweid AG, Barmelweid, Switzerland
| |
Collapse
|
3
|
Bruce K, Garrido AN, Zhang SY, Lam TKT. Regulation of Energy and Glucose Homeostasis by the Nucleus of the Solitary Tract and the Area Postrema. Endocrinol Metab (Seoul) 2024; 39:559-568. [PMID: 39086274 PMCID: PMC11377841 DOI: 10.3803/enm.2024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
Collapse
Affiliation(s)
- Kyla Bruce
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Tony K T Lam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Guglielmi V, Dalle Grave R, Leonetti F, Solini A. Female obesity: clinical and psychological assessment toward the best treatment. Front Endocrinol (Lausanne) 2024; 15:1349794. [PMID: 38765954 PMCID: PMC11099266 DOI: 10.3389/fendo.2024.1349794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Obesity is a heterogeneous condition which results from complex interactions among sex/gender, sociocultural, environmental, and biological factors. Obesity is more prevalent in women in most developed countries, and several clinical and psychological obesity complications show sex-specific patterns. Females differ regarding fat distribution, with males tending to store more visceral fat, which is highly correlated to increased cardiovascular risk. Although women are more likely to be diagnosed with obesity and appear more motivated to lose weight, as confirmed by their greater representation in clinical trials, males show better outcomes in terms of body weight and intra-abdominal fat loss and improvements in the metabolic risk profile. However, only a few relatively recent studies have investigated gender differences in obesity, and sex/gender is rarely considered in the assessment and management of the disease. This review summarizes the evidence of gender differences in obesity prevalence, contributing factors, clinical complications, and psychological challenges. In addition, we explored gender differences in response to obesity treatments in the specific context of new anti-obesity drugs.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Unit of Internal Medicine and Obesity Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Dalle Grave
- Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, VR, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Srour N, Lavoie O, Khouma A, Minbashi Moeini M, Plamondon J, Kinkead R, Michael NJ, Caron A. Electrophysiological Comparison of Definitive Pro-opiomelanocortin Neurons in the Arcuate Nucleus and the Retrochiasmatic Area of Male and Female Mice. Neuroscience 2023; 530:95-107. [PMID: 37619768 DOI: 10.1016/j.neuroscience.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC) are considered a major site of leptin action. Due to increasing evidence that POMC neurons are highly heterogeneous and indications that the conventional molecular tools to study their functions have important limitations, a reassessment of leptin's effects on definitive POMC neurons is needed. POMC neurons are also expressed in the retrochiasmatic area (RCA), where their function is poorly understood. Furthermore, the response of POMC neurons to leptin in females is largely unknown. Therefore, the present study aimed to determine the differences in leptin responsiveness of POMC neurons in the ARC and the RCA using a mouse model allowing adult-inducible fluorescent labeling. We performed whole-cell patch clamp electrophysiology on 154 POMC neurons from male and female mice. We confirmed and extended the model by which leptin depolarizes POMC neurons, in both the ARC and the RCA. Furthermore, we characterized the electrophysiological properties of an underappreciated subpopulation representing ∼10% of hypothalamic POMC neurons that are inhibited by leptin. We also provide evidence that sex does not appear to be a major determinant of basal properties and leptin responsiveness of POMC neurons, but that females are overall less responsive to leptin compared to males.
Collapse
Affiliation(s)
- Nader Srour
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Axelle Khouma
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Moein Minbashi Moeini
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | - Richard Kinkead
- Quebec Heart and Lung Institute, Quebec City, QC, Canada; Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Natalie J Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada; Quebec Heart and Lung Institute, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Rajizadeh MA, Moslemizadeh A, Hosseini MS, Rafiei F, Soltani Z, Khoramipour K. Adiponectin receptor 1 could explain the sex differences in molecular basis of cognitive improvements induced by exercise training in type 2 diabetic rats. Sci Rep 2023; 13:16267. [PMID: 37758935 PMCID: PMC10533546 DOI: 10.1038/s41598-023-43519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
Adipokines dysregulation, the main reason for cognitive impairments (CI) induced by diabetes, shows a sex-dependent pattern inherently and in response to exercise. This study aimed to compare the attenuating effect of 8-week high intensity-interval training (HIIT) on type 2 diabetes (T2D)-induced CI between male and female rats with a special focus on adiponectin and leptin. 28 male & 28 female Wistar rats with an average age of 8 weeks were randomly assigned into four groups: control (Con), exercise (EX), Diabetes (T2D), and Type 2 diabetes + exercise (T2D + Ex). Rats in EX and T2D + EX groups performed HIIT for eight weeks (80-100% Vmax, 4-10 intervals). T2D was induced by 2 months of a high-fat diet and a single dose of STZ (35 mg/kg) administration. Leptin and adiponectin levels in serum were measured along with hippocampal expression of leptin and adiponectin receptors, AMP-activated protein kinase (AMPK), dephosphorylated glycogen synthase kinase-3 beta (Dep-GSK3β), Tau, and beta-amyloid (Aβ). Homeostasis model assessments (HOMAs) and quantitative insulin-sensitivity check index (QUICKI) indices were calculated. Our results showed that following T2D, serum levels of APN, and hippocampal levels of adiponectin receptor 1 (APNR1) were higher and HOMA-IR was lower in female than male rats (P < 0.05). However, after 8 weeks of HIIT, hippocampal levels of APNR1 and AMPK as well as QUICKI were lower and hippocampal levels of GSK, Tau, and Aβ were higher in females compared to male rats (P < 0.05). While the risk of CI following T2D was more in male than female rats HIIT showed a more ameliorating effect in male animals with APN1 as the main player.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahdieh Sadat Hosseini
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Forouzan Rafiei
- Health Solutions, College of (CHS), Arizona State University, Phoenix, AZ, USA
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Hummel J, Benkendorff C, Fritsche L, Prystupa K, Vosseler A, Gancheva S, Trenkamp S, Birkenfeld AL, Preissl H, Roden M, Häring HU, Fritsche A, Peter A, Wagner R, Kullmann S, Heni M. Brain insulin action on peripheral insulin sensitivity in women depends on menstrual cycle phase. Nat Metab 2023; 5:1475-1482. [PMID: 37735274 PMCID: PMC10513929 DOI: 10.1038/s42255-023-00869-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
Insulin action in the human brain modulates eating behaviour, whole-body metabolism and body fat distribution1,2. In particular, brain insulin action increases whole-body insulin sensitivity, but these studies were mainly performed in lean men3,4. Here we investigate metabolic and hypothalamic effects of brain insulin action in women with a focus on the impact of menstrual cycle ( ClinicalTrials.gov registration: NCT03929419 ).Eleven women underwent four hyperinsulinemic-euglycemic clamps, two in the follicular phase and two in the luteal phase. Brain insulin action was introduced using nasal insulin spray5-7 and compared to placebo spray in a fourfold crossover design with change in glucose infusion rate as the primary endpoint. Here we show that during the follicular phase, more glucose has to be infused after administration of nasal insulin than after administration of placebo. This remains significant after adjustment for blood glucose and insulin. During the luteal phase, no significant influence of brain insulin action on glucose infusion rate is detected after adjustment for blood glucose and insulin (secondary endpoint). In 15 other women, hypothalamic insulin sensitivity was assessed in a within-subject design by functional magnetic resonance imaging with intranasal insulin administration8. Hypothalamus responsivity is influenced by insulin in the follicular phase but not the luteal phase.Our study therefore highlights that brain insulin action improves peripheral insulin sensitivity also in women but only during the follicular phase. Thus, brain insulin resistance could contribute to whole-body insulin resistance in the luteal phase of the menstrual cycle.
Collapse
Affiliation(s)
- Julia Hummel
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany
| | - Charlotte Benkendorff
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katsiaryna Prystupa
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Vosseler
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University of Ulm, Ulm, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Fozzato A, New LE, Griffiths JC, Patel B, Deuchars SA, Filippi BM. Manipulating mitochondrial dynamics in the NTS prevents diet-induced deficits in brown fat morphology and glucose uptake. Life Sci 2023; 328:121922. [PMID: 37423379 DOI: 10.1016/j.lfs.2023.121922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
AIMS Brown adipose tissue (BAT) can produce heat by metabolizing glucose and fatty acids. Activation of BAT is controlled by the central nervous system (CNS) through sympathetic innervation. Dysregulation of signalling molecules in selective CNS areas such as the nucleus of tractus solitarius (NTS) are linked with altered BAT activity, obesity and diabetes. High-fat diet (HFD)-feeding increases mitochondrial fragmentation in the NTS, triggering insulin resistance, hyperphagia and weight gain. Here we sought to determine whether changes in mitochondrial dynamics in the NTS can affect BAT glucose uptake. MAIN METHODS Rats received DVC stereotactic surgery for local brain administration of viruses that express mutated Drp1 genes. BAT glucose uptake was measured with PET/CT scans. Biochemical assays and immunohistochemistry determined altered levels of key signalling molecules and neural innervation of BAT. KEY FINDINGS We show that short-term HFD-feeding decreases BAT glucose uptake. However, inhibiting mitochondrial fragmentation in NTS-astrocytes of HFD-fed rats partially restores BAT glucose uptake accompanied by lower blood glucose and insulin levels. Tyrosine Hydroxylase (TH) revealed that rats with inhibited mitochondrial fragmentation in NTS astrocytes had higher levels of catecholaminergic innervation in BAT compared to HFD-fed rats, and did not exhibit HFD-dependent infiltration of enlarged white fat droplets in the BAT. In regular chow-fed rats, increasing mitochondrial fragmentation in the NTS-astrocytes reduced BAT glucose uptake, TH immune-positive boutons and β3-adrenergic receptor levels. SIGNIFICANCE Our data suggest that targeting mitochondrial dynamics in the NTS-astrocytes could be a beneficial strategy to increase glucose utilization and protect from developing obesity and diabetes.
Collapse
Affiliation(s)
- Arianna Fozzato
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joanne C Griffiths
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bianca Patel
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Susan A Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Beatrice M Filippi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y. Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? A state-of-the-art review. Prog Lipid Res 2023; 91:101240. [PMID: 37473965 DOI: 10.1016/j.plipres.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.
Collapse
Affiliation(s)
- Zhengbin Zhang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Liwen Zhu
- Department of Cardiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Ziqian Wang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Ning Hua
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Shunying Hu
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
10
|
Haque N, Ojo ES, Krager SL, Tischkau SA. Deficiency of Adipose Aryl Hydrocarbon Receptor Protects against Diet-Induced Metabolic Dysfunction through Sexually Dimorphic Mechanisms. Cells 2023; 12:1748. [PMID: 37443781 PMCID: PMC10340611 DOI: 10.3390/cells12131748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The molecular mechanisms underlying diet-induced obesity are complex and remain unclear. The activation of the aryl hydrocarbon receptor (AhR), a xenobiotic sensor, by obesogens may contribute to diet-induced obesity through influences on lipid metabolism and insulin resistance acting at various sites, including adipose tissue. Thus, our hypothesis was that conditional AhR depletion, specifically from mature adipose tissue (CadKO), would improve high-fat diet (HFD)-induced metabolic dysfunction. CadKO protects mice from HFD-induced weight gain. CadKO females eat fewer calories, leading to increased energy expenditure (EE) and improved glucose tolerance on HFD. Our exploration of adipose tissue biology suggests that the depletion of AhR from adipocytes provides female mice with an increased capacity for adipogenesis and lipolysis, allowing for the maintenance of a healthy adipocyte phenotype. The HFD-induced leptin rise was reduced in CadKO females, but the hypothalamic leptin receptor (LepR) was increased in the energy regulatory regions of the hypothalamus, suggesting an increased sensitivity to leptin. The estrogen receptor α (ERα) was higher in CadKO female adipose tissue and the hypothalamus. CadKO males displayed a delayed progression of obesity and insulin resistance. In males, CadKO ameliorated proinflammatory adipocytokine secretion (such as TNFα, IL1β, IL6) and displayed reduced inflammatory macrophage infiltration into adipose depots. Overall, CadKO improves weight control and systemic glucose homeostasis under HFD challenge but to a more profound extent in females. CadKO facilitates a lean phenotype in females and mediates healthy adipose-hypothalamic crosstalk. In males, adipose-specific AhR depletion delays the development of obesity and insulin resistance through the maintenance of healthy crosstalk between adipocytes and immune cells.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Emmanuel S. Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Stacey L. Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA; (N.H.); (E.S.O.); (S.L.K.)
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
11
|
Fernández-Rhodes L, McArdle CE, Rao H, Wang Y, Martinez-Miller EE, Ward JB, Cai J, Sofer T, Isasi CR, North KE. A Gene-Acculturation Study of Obesity Among US Hispanic/Latinos: The Hispanic Community Health Study/Study of Latinos. Psychosom Med 2023; 85:358-365. [PMID: 36917487 PMCID: PMC10159946 DOI: 10.1097/psy.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE In the United States, Hispanic/Latino adults face a high burden of obesity; yet, not all individuals are equally affected, partly due in part to this ethnic group's marked sociocultural diversity. We sought to analyze the modification of body mass index (BMI) genetic effects in Hispanic/Latino adults by their level of acculturation, a complex biosocial phenomenon that remains understudied. METHODS Among 11,747 Hispanic/Latinos adults in the Hispanic Community Health Study/Study of Latinos aged 18 to 76 years from four urban communities (2008-2011), we a) tested our hypothesis that the effect of a genetic risk score (GRS) for increased BMI may be exacerbated by higher levels of acculturation and b) examined if GRS acculturation interactions varied by gender or Hispanic/Latino background group. All genetic modeling controlled for relatedness, age, gender, principal components of ancestry, center, and complex study design within a generalized estimated equation framework. RESULTS We observed a GRS increase of 0.34 kg/m 2 per risk allele in weighted mean BMI. The estimated main effect of GRS on BMI varied both across acculturation level and across gender. The difference between high and low acculturation ranged from 0.03 to 0.23 kg/m 2 per risk allele, but varied across acculturation measure and gender. CONCLUSIONS These results suggest the presence of effect modification by acculturation, with stronger effects on BMI among highly acculturated individuals and female immigrants. Future studies of obesity in the Hispanic/Latino community should account for sociocultural environments and consider their intersection with gender to better target obesity interventions.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Cristin E. McArdle
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| | - Hridya Rao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erline E. Martinez-Miller
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Julia B. Ward
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Social & Scientific Systems, a DLH Holdings Company, Durham, NC
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tamar Sofer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Carmen R. Isasi
- Departments of Epidemiology & Population Health and Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
12
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
13
|
Montaniel KRC, Bucher M, Phillips EA, Li C, Sullivan EL, Kievit P, Rugonyi S, Nathanielsz PW, Maloyan A. Dipeptidyl peptidase IV inhibition delays developmental programming of obesity and metabolic disease in male offspring of obese mothers. J Dev Orig Health Dis 2022; 13:727-740. [PMID: 35068408 PMCID: PMC9308839 DOI: 10.1017/s2040174422000010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maternal obesity programs the offspring to metabolic diseases later in life; however, the mechanisms of programming are yet unclear, and no strategies exist for addressing its detrimental transgenerational effects. Obesity has been linked to dipeptidyl peptidase IV (DPPIV), an adipokine, and treatment of obese individuals with DPPIV inhibitors has been reported to prevent weight gain and improve metabolism. We hypothesized that DPPIV plays a role in maternal obesity-mediated programming. We measured plasma DPPIV activity in human maternal and cord blood samples from normal-weight and obese mothers at term. We found that maternal obesity increases maternal and cord blood plasma DPPIV activity but only in male offspring. Using two non-human primate models of maternal obesity, we confirmed the activation of DPPIV in the offspring of obese mothers. We then created a mouse model of maternal high-fat diet (HFD)-induced obesity, and found an early-life increase in plasma DPPIV activity in male offspring. Activation of DPPIV preceded the progression of obesity, glucose intolerance and insulin resistance in male offspring of HFD-fed mothers. We then administered sitagliptin, DPPIV inhibitor, to regular diet (RD)- and HFD-fed mothers, starting a week prior to breeding and continuing throughout pregnancy and lactation. We found that sitagliptin treatment of HFD-fed mothers delayed the progression of obesity and metabolic diseases in male offspring and had no effects on females. Our findings reveal that maternal obesity dysregulates plasma DPPIV activity in males and provide evidence that maternal inhibition of DPPIV has potential for addressing the transgenerational effects of maternal obesity.
Collapse
Affiliation(s)
- Kim Ramil C. Montaniel
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
- Physiology and Pharmacology Graduate Program, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Matthew Bucher
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Elysse A. Phillips
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Cun Li
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX, 78227, USA
- Department of Animal Sciences, University of Wyoming, Laramie, WY, 82071, USA
| | - Elinor L. Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
- Department of Psychiatry, Oregon Health & Science University, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Peter W. Nathanielsz
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX, 78227, USA
- Department of Animal Sciences, University of Wyoming, Laramie, WY, 82071, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
- Physiology and Pharmacology Graduate Program, Oregon Health & Science University, Portland, OR, 97232, USA
| |
Collapse
|
14
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
15
|
Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell 2022; 21:e13653. [PMID: 35707855 PMCID: PMC9282842 DOI: 10.1111/acel.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/24/2023] Open
Abstract
The aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti-diabetes drug, Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30-month-old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana-treated male and female mice showed significant reductions in age-associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana-treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30-month-old male but not female mice. Taken together, we demonstrate the sex-specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hashan S. M. Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Lucas K. Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Jacob J. Jaboro
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Brett C. Ginsburg
- Department of Psychiatry and Behavioral SciencesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| |
Collapse
|
16
|
Garcez ML, Bellettini-Santos T, Schiavo GL, Calixto KV, Mina F, Medeiros EB, Zabot GC, de Souza Pereira N, Nascimento NB, Tomaz DB, Manenti MC, Kucharska E, Rico EP, Budni J. Long-term administration of soft drink causes memory impairment and oxidative damage in adult and middle-aged rats. Exp Gerontol 2022; 166:111873. [PMID: 35760268 DOI: 10.1016/j.exger.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The consumption of soft drinks has increased considerably in recent decades, mainly cola soft drinks. Excessive consumption of cola-based soft drinks is associated with several diseases and cognitive decline, particularly memory impairment. Furthermore, diets with high sugar can promote insulin resistance, metabolic syndrome, and dyslipidemia. AIM Thus, the present study aimed to evaluate the effect of cola soft drink intake on behavioral alterations and oxidative damage in 2-, 8- and 14- month-old male Wistar rats. METHODS The soft drink groups drank soft drink and/or water ad libitum during 67 days, the control groups ingested only water. Radial-arm maze and Y-maze were used to evaluate spatial memory, open-field to evaluate the habituation memory, and inhibitory avoidance to evaluate aversive memory. The behavioral tests started at the day 57 and finished at day 67 of treatment. At 68th day, the rats were killed; frontal cortex and hippocampus were dissected to the analysis of antioxidants enzymes catalase (CAT) and superoxide dismutase (SOD); and the oxidative markers thiobarbituric acid reactive substances (TBARs) and dichloro-dihydro-fluorescein diacetate (DCFH) were measured in the hippocampus. RESULTS AND DISCUSSION The cola-based soft drink intake caused memory impairment in the radial-arm maze, Y-maze task, and open-field in the 2- and 8-month-old rat, but not in the 14-month-old. There were no difference among groups in the inhibitory avoidance test. In the frontal cortex, soft drink intake reduced CAT activity in the 8-month-old rats and SOD activity in the 8- and 14-month-old rats. In the hippocampus, the soft drink increased CAT activity in 8-month-old rats, increased DCFH levels at all ages, and increased TBARs levels in 2-month-rats. Therefore, the results show that long-term soft drink intake leads to memory impairment and oxidative stress. The younger seems to be more susceptible to the soft drink alterations on behavior; however, soft drink caused alterations in the oxidative system at all ages evaluated.
Collapse
Affiliation(s)
- Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil; Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Tatiani Bellettini-Santos
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gustavo Luis Schiavo
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Karen Vasconcelos Calixto
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Francielle Mina
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriel Casagrande Zabot
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Nathalia de Souza Pereira
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Natália Baltazar Nascimento
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Débora Borges Tomaz
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Maria Cecília Manenti
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ewa Kucharska
- Jesuit University Ignatianum in Krakow, Faculty of Education, Institute of Educational Science, Poland
| | - Eduardo Pacheco Rico
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
17
|
Wagner L, Veit R, Fritsche L, Häring HU, Fritsche A, Birkenfeld AL, Heni M, Preissl H, Kullmann S. Sex differences in central insulin action: Effect of intranasal insulin on neural food cue reactivity in adults with normal weight and overweight. Int J Obes (Lond) 2022; 46:1662-1670. [PMID: 35715625 PMCID: PMC9395264 DOI: 10.1038/s41366-022-01167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
Background/Objectives Central insulin action influences cognitive processes, peripheral metabolism, and eating behavior. However, the contribution of obesity and sex on central insulin-mediated neural food cue processing still remains unclear. Subjects/Methods In a randomized within-participant design, including two visits, 60 participants (30 women, BMI 18–32 kg/m2, age 21–69 years) underwent a functional MRI task measuring blood oxygen level-dependent (BOLD) signal in response to visual food cues after intranasal insulin or placebo spray administration. Central insulin action was defined as the neural BOLD response to food cues after insulin compared to placebo administration. Afterwards, participants were asked to rate the food cues for desire to eat (i.e., wanting rating). For statistical analyses, participants were grouped according to BMI and sex. Results Food cue reactivity in the amygdala showed higher BOLD activation in response to central insulin compared to placebo. Furthermore, women with overweight and obesity and men of normal weight showed higher BOLD neural food cue responsivity to central insulin compared to placebo. Higher central insulin action in the insular cortex was associated with better peripheral insulin sensitivity and higher cognitive control. Moreover, central insulin action in the dorsolateral prefrontal cortex (DLPFC) revealed significant sex differences. In response to central insulin compared to placebo, men showed lower DLPFC BOLD activity, whereas women showed higher DLPFC activity in response to highly desired food cues. On behavioral level, central insulin action significantly reduced hunger, whereas the desire to eat, especially for low caloric food cues was significantly higher with central insulin than with placebo. Conclusions Obesity and sex influenced the central insulin-mediated neural BOLD activity to visual food cues in brain regions implicated in reward and cognitive control. These findings show that central insulin action regulates food response differentially in men and women, which may have consequences for metabolism and eating behavior.
Collapse
Affiliation(s)
- Lore Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany. .,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Nutritional and Preventive Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.,Department of Internal Medicine I, Division of Endocrinology and Diabetology, Ulm University Hospital, Ulm, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Shiffler JA, Goerger KA, Gorres‐Martens BK. Estrogen receptor α activation modulates the gut microbiome and type 2 diabetes risk factors. Physiol Rep 2022; 10:e15344. [PMID: 35698449 PMCID: PMC9193963 DOI: 10.14814/phy2.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Estradiol and exercise can decrease risk factors associated with type 2 diabetes (T2D) including total body weight gain and abdominal fat gain. Estradiol functions through estrogen receptor (ER) α and ERβ. Some studies suggest that activation of ERα may provide protection against T2D. Female Wistar rats were ovariectomized and fed a high-fat diet for 10 weeks and divided into the following 5 experimental groups: (1) no treatment (control), (2) exercise, (3) estradiol, (4) propylpyrazoletriyl (a selective ERα agonist), and (5) diarylpropionitrile (a selective ERβ agonist). ERα activation decreased the abundance of Firmicutes, and ERα and ERβ activation increased the abundance of Bacteroidetes. ERα activation decreased food consumption, and ERα and ERβ activation increased voluntary activity. Exercise was the only treatment to decrease the blood glucose and serum insulin levels. ERα activation, but not ERβ, increased hepatic protein expression of ACC and FAS and decreased hepatic protein expression of LPL. ERα activation also decreased hepatic mRNA expression of PPARα and PPARγ. This study elucidates the functions of estradiol by assessing specific activation of ERα and ERβ. As obesity increases the abundance of Firmicutes and decreases the abundance of Bacteroidetes, our study shows that ERα activation can restore the gut microbiome to non-obese abundances. This study further provides novel insights into ERα's role in hepatic fat metabolism via regulation of ACC, FAS, LPL, PPARα, and PPARγ.
Collapse
Affiliation(s)
- Janelle A. Shiffler
- Exercise and Sport Sciences DepartmentAugustana UniversitySioux FallsSouth DakotaUSA
| | - Krista A. Goerger
- Biology DepartmentUniversity of Sioux FallsSioux FallsSouth DakotaUSA
| | | |
Collapse
|
19
|
Park YC, Lee S, Kim YS, Park JM, Han K, Lee H, Hong KW, Kim JK, Cho ES, Chung TH, Kim BT, Koh SB. Serum leptin level and incidence of CKD: a longitudinal study of adult enrolled in the Korean genome and epidemiology study(KoGES). BMC Nephrol 2022; 23:197. [PMID: 35619087 PMCID: PMC9137116 DOI: 10.1186/s12882-022-02795-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Background Chronic kidney disease(CKD) is a major public health issue and is highly prevalent in the general population. Leptin is an adipose tissue-derived endocrine factor that has been associated with several metabolic factors involved in cardiovascular diseases. Several studies have investigated the association between leptin and renal diseases so far. But the results are conflicting between the studies. The objective of our study was to verify the direct association of serum leptin level with CKD development. Methods This prospective cohort study included 2646 adult aged 40–70 without CKD in the Korean Genome and Epidemiology Study(KoGES) across South Korea from November 2005 to February 2012. The primary outcome was the development of CKD as defined by National Kidney Foundation Kidney Disease Outcomes Quality Initiative (KDOQI). Multivariate stepwise logistic regression analysis was done to assess the independent associations, for with the incident of CKD as the dependent variable, in tertiles of leptin values. Results Among 1100 men and 1546 women with 2.8 mean years of follow-up, incidence of CKD was 18(1.63%) for men and 50(3.23%) for women. In the multivariate logistic regression models, individuals in the highest serum leptin tertile showed significant associations with risk of CKD after adjustment compared to the lowest tertiles in the population. The crude odds ratio for trend was 2.95(p = 0.004) for men. After adjusting for age, baseline eGFR variables showed correlation with statistical significance (OR for trend = 2.25, p = 0.037) for men. The same trends were also seen observed in all population and women also, but no statistical significance was found. Conclusions Higher plasma leptin levels are associated with the incidence of CKD, independent of traditional factors such as age, baseline eGFR. Our results suggest that leptin may partly explain part of the reported association between obesity and kidney disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02795-7.
Collapse
Affiliation(s)
- Yon Chul Park
- Department of Family Medicine, Wonju Severance Christian Hospital, Yonsei University, Wonju, Republic of Korea
| | - Solam Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Young-Sang Kim
- Dept. of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jae-Min Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Kunhee Han
- Department of Family Medicine, Seoul medical center, Seoul, Republic of Korea
| | - Hunju Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | - Jong-Koo Kim
- Department of Family Medicine, Wonju Severance Christian Hospital, Yonsei University, Wonju, Republic of Korea
| | - Eun Suk Cho
- Department of Family Medicine, Wonju Severance Christian Hospital, Yonsei University, Wonju, Republic of Korea
| | - Tae-Ha Chung
- Department of Family Medicine, Wonju Severance Christian Hospital, Yonsei University, Wonju, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine and Graduate School of Medicine, Suwon, Republic of Korea.
| | - Sang Baek Koh
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
20
|
de Souza GO, Wasinski F, Donato J. Characterization of the metabolic differences between male and female C57BL/6 mice. Life Sci 2022; 301:120636. [PMID: 35568227 DOI: 10.1016/j.lfs.2022.120636] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
AIMS The present study aims to compare the responses between male and female C57BL/6 mice to multiple metabolic challenges to understand the importance of sex in the control of energy homeostasis. MAIN METHODS Male and female C57BL/6 mice were subjected to nutritional and hormonal challenges, such as food restriction and refeeding, diet-induced obesity, feeding response to ghrelin and leptin, ghrelin-induced growth hormone secretion, and central responsiveness to ghrelin and leptin. The hypothalamic expression of transcripts that control energy homeostasis was also evaluated. KEY FINDINGS Male mice lost more weight and lean body mass in response to food restriction, compared to females. During refeeding, males accumulated more body fat and exhibited lower energy expenditure and glycemia, as compared to females. Additionally, female mice exhibited a higher protection against diet-induced obesity and related metabolic imbalances in comparison to males. Low dose ghrelin injection elicited higher food intake and growth hormone secretion in male mice, whereas the acute anorexigenic effect of leptin was more robust in females. However, the sex differences in the feeding responses to ghrelin and leptin were not explained by variations in the central responsiveness to these hormones nor by differences in the fiber density from arcuate nucleus neurons. Female, but not male, mice exhibited compensatory increases in hypothalamic Pomc mRNA levels in response to diet-induced obesity. SIGNIFICANCE Our findings revealed several sexually differentiated responses to metabolic challenges in C57BL/6 mice, highlighting the importance of taking into account sex differences in metabolic studies.
Collapse
Affiliation(s)
- Gabriel O de Souza
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil..
| |
Collapse
|
21
|
Mishra I, Xie WR, Bournat JC, He Y, Wang C, Silva ES, Liu H, Ku Z, Chen Y, Erokwu BO, Jia P, Zhao Z, An Z, Flask CA, He Y, Xu Y, Chopra AR. Protein tyrosine phosphatase receptor δ serves as the orexigenic asprosin receptor. Cell Metab 2022; 34:549-563.e8. [PMID: 35298903 PMCID: PMC8986618 DOI: 10.1016/j.cmet.2022.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.
Collapse
Affiliation(s)
- Ila Mishra
- Harrington Discovery Institute, Cleveland, OH, USA
| | - Wei Rose Xie
- Harrington Discovery Institute, Cleveland, OH, USA
| | - Juan C Bournat
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Hailan Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhiqiang Ku
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Bernadette O Erokwu
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chris A Flask
- Departments of Radiology, Biomedical Engineering, and Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yanlin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Atul R Chopra
- Harrington Discovery Institute, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
23
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
24
|
Beetch M, Alejandro EU. Placental mTOR Signaling and Sexual Dimorphism in Metabolic Health across the Lifespan of Offspring. CHILDREN 2021; 8:children8110970. [PMID: 34828683 PMCID: PMC8619510 DOI: 10.3390/children8110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Robust evidence of fetal programming of adult disease has surfaced in the last several decades. Human and preclinical investigations of intrauterine insults report perturbations in placental nutrient sensing by the mechanistic target of rapamycin (mTOR). This review focuses on pregnancy complications associated with placental mTOR regulation, such as fetal growth restriction (FGR), fetal overgrowth, gestational diabetes mellitus (GDM), polycystic ovarian syndrome (PCOS), maternal nutrient restriction (MNR), preeclampsia (PE), maternal smoking, and related effects on offspring birthweight. The link between mTOR-associated birthweight outcomes and offspring metabolic health trajectory with a focus on sexual dimorphism are discussed. Both human physiology and animal models are summarized to facilitate in depth understanding. GDM, PCOS and fetal overgrowth are associated with increased placental mTOR, whereas FGR, MNR and maternal smoking are linked to decreased placental mTOR activity. Generally, birth weight is reduced in complications with decreased mTOR (i.e., FGR, MNR, maternal smoking) and higher with increased mTOR (GDM, PCOS). Offspring display obesity or a higher body mass index in childhood and adulthood, impaired glucose and insulin tolerance in adulthood, and deficiencies in pancreatic beta-cell mass and function compared to offspring from uncomplicated pregnancies. Defining causal players in the fetal programming of offspring metabolic health across the lifespan will aid in stopping the vicious cycle of obesity and type II diabetes.
Collapse
|
25
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Suzuki Y, Takagishi K, Kurose Y. Circadian rhythm in hypothalamic leptin receptor (Ob-Rb) mRNA expressions and cerebrospinal fluid and circulating glucose and leptin levels in lactating rats. Biochem Biophys Rep 2021; 28:101129. [PMID: 34541341 PMCID: PMC8435991 DOI: 10.1016/j.bbrep.2021.101129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
In lactating animals, the food consumption increases several-fold for milk supply to the pups. The present study was conducted to clarify the relationship between the hyperphagia during lactation and hypothalamic leptin receptor (Ob-Rb) mRNA expression, cerebrospinal fluid (CSF) and circulating leptin and glucose levels. Food intakes significantly higher in lactation than in non-lactation at all time points (3 points: light phase, 4 points: dark phase) of the day. However, the expression of the hypothalamic Ob-Rb mRNA showed similar circadian rhythms in both the non-lactation and lactation, with only slight differences between the two groups. CSF leptin and glucose levels were constant throughout the day in both non-lactation and lactation, and there was almost no difference between the two groups at each time point. Circulating leptin and glucose levels showed circadian rhythms only in the non-lactating period, and were lower in lactation than in non-lactation, especially in the dark phase. In conclusion, the present study provides evidence that Ob-Rb mRNA expression fluctuates in the lactation period as well as in the non-lactation period, suggesting that the expression profile of whole hypothalamic Ob-Rb may not contribute to the difference in food consumption between lactation and non-lactation, and that chronic decrease in blood glucose levels may be associated with the increase in food consumption during lactation. There was no difference in CSF leptin levels between lactating and non-lactating rats. Hypothalamic Ob-Rb mRNA expressions showed different circadian rhythms between non-lactation and lactation. Chronic decrease in blood glucose levels may be associated with the elevation of food consumption in lactating rats.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kiyohiko Takagishi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yohei Kurose
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
27
|
Myo-Inositol Supplementation in Suckling Rats Protects against Adverse Programming Outcomes on Hypothalamic Structure Caused by Mild Gestational Calorie Restriction, Partially Comparable to Leptin Effects. Nutrients 2021; 13:nu13093257. [PMID: 34579137 PMCID: PMC8466200 DOI: 10.3390/nu13093257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
We studied whether myo-inositol supplementation throughout lactation, alone and combined with leptin, may reverse detrimental effects on hypothalamic structure and function caused by gestational calorie gestation (CR) in rats. Candidate early transcript-based biomarkers of metabolic health in peripheral blood mononuclear cells (PBMC) were also studied. Offspring of dams exposed to 25% gestational CR and supplemented during lactation with physiological doses of leptin (CR-L), myo-inositol (CR-M), the combination (CR-LM), or the vehicle (CR-V) as well as control rats (CON-V) were followed and sacrificed at postnatal day 25. Myo-inositol and the combination increased the number of neurons in arcuate nucleus (ARC) (only in females) and paraventricular nucleus, and myo-inositol (alone) restored the number of αMSH+ neurons in ARC. Hypothalamic mRNA levels of Lepr in CR-M and Insr in CR-M and CR-LM males were higher than in CR-V and CON-V, respectively. In PBMC, increased expression levels of Lrp11 and Gls in CR-V were partially normalized in all supplemented groups (but only in males for Gls). Therefore, myo-inositol supplementation throughout lactation, alone and combined with leptin, reverts programmed alterations by fetal undernutrition on hypothalamic structure and gene expression of potential early biomarkers of metabolic health in PBMC, which might be attributed, in part, to increased leptin sensitivity.
Collapse
|
28
|
Yuan S, Wang N, Wang JL, Pan J, Xue XY, Zhang YN, Ma T. Gender differences in Damp-Heat Syndrome: A review. Biomed Pharmacother 2021; 143:112128. [PMID: 34492424 DOI: 10.1016/j.biopha.2021.112128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 01/30/2023] Open
Abstract
Gender differences have important biological significance for medical research. In this study, a bias towards males was identified in animal experiments of Damp-Heat Syndrome in traditional Chinese medicine, as was first proposed by a data mining method. Combined with the correlation between Damp-Heat Syndrome in traditional Chinese medicine and Gender differences, it was considered that Gender-related factors have a significant influence on the development of Damp-Heat Syndrome in traditional Chinese medicine. However, most traditional Chinese medicine studies ignore the key significance of Gender-related factors. This study emphasises that the development of modern traditional Chinese medicine research needs to pay full attention to the biological significance of Gender-related factors and to apply this concept to the research on the Gender equivalence strategy in basic research and the practice of personalised medical diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Shun Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ning Wang
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jun-Lei Wang
- Institute of Traditional Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jin Pan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiao-Yan Xue
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Centre of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Ting Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Centre of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
29
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Harris RBS. Phosphorylation of STAT3 in hypothalamic nuclei is stimulated by lower doses of leptin than are needed to inhibit food intake. Am J Physiol Endocrinol Metab 2021; 321:E190-E201. [PMID: 34121448 PMCID: PMC8321824 DOI: 10.1152/ajpendo.00143.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
This experiment investigated which hypothalamic nuclei were activated by a dose of leptin that inhibited food intake. Foodnot intake, energy expenditure, respiratory exchange ratio (RER), and intrascapular brown adipose tissue (IBAT) temperature were measured in male and female Sprague Dawley rats for 36 h following an intraperitoneal injection of 0, 50, 200, 500, or 1,000 µg leptin/kg with each rat tested with each dose of leptin in random order. In both males and females, RER and 12-h food intake were inhibited only by 1,000 µg leptin/kg, but there was no effect on energy expenditure or IBAT temperature. At the end of the experiment, phosphorylated signal transducer and activator of transcription 3 (pSTAT3) immunoreactivity was measured 1 h after injection of 0, 50, 500, or 1,000 µg leptin/kg. In male rats, the lowest dose of leptin produced a maximal activation of STAT3 in the Arc and nucleus of the solitary tract (NTS). There was no response in the dorsomedial hypothalamus, but there was a progressive increase in ventromedial nucleus of the hypothalamus (VMH) pSTAT3 with increasing doses of leptin. In female rats, there was no significant change in Arc and pSTAT3 NTS activation was maximal with 500 mg leptin/kg, but only the highest dose of leptin increased VMH pSTAT3. These results suggest that the VMH plays an important role in the energetic response to elevations of circulating leptin but do not exclude the possibility that multiple nuclei provide the appropriate integrated response to hyperleptinemia.NEW & NOTEWORTHY The results of this experiment show that doses of leptin too small to inhibit food intake produce a maximal response to leptin in the arcuate nucleus. By contrast the VMH shows a robust response that correlates with inhibition of food intake. This suggests that the VMH plays an important role in the energetic response to hyperleptinemia.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
31
|
Zhang L, Clark T, Gopalasingam G, Neely GG, Herzog H. Ninjin'yoeito modulates feeding and activity under negative energy balance conditions via the NPY system. Neuropeptides 2021; 87:102149. [PMID: 33882337 DOI: 10.1016/j.npep.2021.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| | - Tereli Clark
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - G Gregory Neely
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; School of Medical Sciences, University of NSW, Sydney, NSW, Australia; Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
32
|
Sex-dependent effects of forced exercise in the body composition of adolescent rats. Sci Rep 2021; 11:10154. [PMID: 33980961 PMCID: PMC8115159 DOI: 10.1038/s41598-021-89584-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Determining the body composition during adolescence can predict diseases such as obesity, diabetes, and metabolic syndromes later in life; and physical activity became an effective way to restore changes in body composition. However, current available literature assessing the body composition before, during and after adolescence in female and male rodents by in vivo techniques is scarce. Thus, by using computerized tomography, we aimed to define the baseline of the weight and body composition during the adolescence and young adulthood of female and male Sprague-Dawley rats (on P30, P60 and P90) under standard diet. Then, we determined the effect of 18 days of forced exercise on the body weight and composition during the early adolescence (P27-45). The highest percentual increments in weight, body volume and relative adipose contents occurred during the female and male adolescence. Forced running during the early adolescence decreased weight, body volume and relative adipose delta and increment values in males only. The adolescence of rats is a period of drastic body composition changes, where exercise interventions have sex-dependent effects. These results support a model that could open new research windows in the field of adolescent obesity.
Collapse
|
33
|
Adams DM, Reay WR, Geaghan MP, Cairns MJ. Investigation of glycaemic traits in psychiatric disorders using Mendelian randomisation revealed a causal relationship with anorexia nervosa. Neuropsychopharmacology 2021; 46:1093-1102. [PMID: 32920595 PMCID: PMC8115098 DOI: 10.1038/s41386-020-00847-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Data from observational studies have suggested an involvement of abnormal glycaemic regulation in the pathophysiology of psychiatric illness. This may be an attractive target for clinical intervention as glycaemia can be modulated by both lifestyle factors and pharmacological agents. However, observational studies are inherently confounded, and therefore, causal relationships cannot be reliably established. We employed genetic variants rigorously associated with three glycaemic traits (fasting glucose, fasting insulin, and glycated haemoglobin) as instrumental variables in a two-sample Mendelian randomisation analysis to investigate the causal effect of these measures on the risk for eight psychiatric disorders. A significant protective effect of a natural log transformed pmol/L increase in fasting insulin levels was observed for anorexia nervosa after the application of multiple testing correction (OR = 0.48 [95% CI: 0.33-0.71]-inverse-variance weighted estimate). There was no consistently strong evidence for a causal effect of glycaemic factors on the other seven psychiatric disorders considered. The relationship between fasting insulin and anorexia nervosa was supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between insulin levels and anorexia.
Collapse
Affiliation(s)
- Danielle M Adams
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael P Geaghan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
34
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
35
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Ladyman SR, Brooks VL. Central actions of insulin during pregnancy and lactation. J Neuroendocrinol 2021; 33:e12946. [PMID: 33710714 PMCID: PMC9198112 DOI: 10.1111/jne.12946] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation are highly metabolically demanding states. Maternal glucose is a key fuel source for the growth and development of the fetus, as well as for the production of milk during lactation. Hence, the maternal body undergoes major adaptations in the systems regulating glucose homeostasis to cope with the increased demand for glucose. As part of these changes, insulin levels are elevated during pregnancy and lower in lactation. The increased insulin secretion during pregnancy plays a vital role in the periphery; however, the potential effects of increased insulin action in the brain have not been widely investigated. In this review, we consider the impact of pregnancy on brain access and brain levels of insulin. Moreover, we explore the hypothesis that pregnancy is associated with site-specific central insulin resistance that is adaptive, allowing for the increases in peripheral insulin secretion without the consequences of increased central and peripheral insulin functions, such as to stimulate glucose uptake into maternal tissues or to inhibit food intake. Conversely, the loss of central insulin actions may impair other functions, such as insulin control of the autonomic nervous system. The potential role of low insulin in facilitating adaptive responses to lactation, such as hyperphagia and suppression of reproductive function, are also discussed. We end the review with a list of key research questions requiring resolution.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
37
|
Rathod YD, Di Fulvio M. The feeding microstructure of male and female mice. PLoS One 2021; 16:e0246569. [PMID: 33539467 PMCID: PMC7861458 DOI: 10.1371/journal.pone.0246569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
The feeding pattern and control of energy intake in mice housed in groups are poorly understood. Here, we determined and quantified the normal feeding microstructure of social male and female mice of the C57BL/6J genetic background fed a chow diet. Mice at 10w, 20w and 30w of age showed the expected increase in lean and fat mass, being the latter more pronounced and variable in males than in females. Under ad libitum conditions, 20w and 30w old females housed in groups showed significantly increased daily energy intake when adjusted to body weight relative to age-matched males. This was the combined result of small increases in energy intake during the nocturnal and diurnal photoperiods of the day without major changes in the circadian pattern of energy intake or spontaneous ambulatory activity. The analysis of the feeding microstructure suggests sex- and age-related contributions of meal size, meal frequency and intermeal interval to the control of energy intake under stable energy balance, but not under negative energy balance imposed by prolonged fasting. During the night, 10-20w old females ate less frequently bigger meals and spent more time eating them resulting in reduced net energy intake relative to age-matched males. In addition, male and female mice at all ages tested significantly shortened the intermeal interval during the first hours of re-feeding in response to fasting without affecting meal size. Further, 20-30w old males lengthened their intermeal interval as re-feeding time increased to reach fed-levels faster than age-matched females. Collectively, our results suggest that the physiological mechanisms controlling meal size (satiation) and the non-eating time spent between meals (satiety) during stable or negative energy balance are regulated in a sex- and age-dependent manner in social mice.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| |
Collapse
|
38
|
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and Energy Imbalance in Dysglycemia-Based Chronic Disease. Diabetes Metab Syndr Obes 2021; 14:165-184. [PMID: 33488105 PMCID: PMC7816219 DOI: 10.2147/dmso.s286888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient availability and requirement that is essential to maintain homeostasis in times of either caloric excess or restriction and during the energy-demanding state. This regulation is orchestrated in multiple organ systems by the alliance of numerous metabolic pathways under the master control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key metabolic enzymes and transcription factors, many of which interact closely with and culminate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised due to the continuous mismatch between availability and intake of calorie-dense foods and reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as mitochondrial dysfunction characterized by ineffective substrate switching and incomplete substrate utilization. At the systemic level, the manifestation of metabolic inflexibility comprises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluconeogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro-hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by oxidative stress, advanced glycation end products, and inflammation, which potentiates the risk of micro- and macro-vascular complications. This review aims to elucidate underlying mechanisms mediating the onset of metabolic inflexibility operating at the main target organs and to understand the progression of metabolic diseases. This could potentially translate into a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and depth of metabolic flexibility and its impact on health and disease.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | | | - Manash P Baruah
- Department of Endocrinology, Excel Hospitals, Guwahati, India
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Ganapathi Bantwal
- Department of Endocrinology, St. John’s Medical College and Hospital, Bangalore, Karnataka, India
| |
Collapse
|
39
|
Ferrer B, Prince LM, Tinkov AA, Santamaria A, Farina M, Rocha JB, Bowman AB, Aschner M. Chronic exposure to methylmercury enhances the anorexigenic effects of leptin in C57BL/6J male mice. Food Chem Toxicol 2020; 147:111924. [PMID: 33338554 DOI: 10.1016/j.fct.2020.111924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Several studies have demonstrated that heavy metals disrupt energy homeostasis. Leptin inhibits food intake and decreases body weight through activation of its receptor in the hypothalamus. The impact of heavy metals on leptin signaling in the hypothalamus is unclear. Here, we show that the environmental pollutant, methylmercury (MeHg), favors an anorexigenic profile in wild-type males. C57BL/6J mice were exposed to MeHg via drinking water (5 ppm) up to 30 days. Our data shows that MeHg exposure was associated with changes in leptin induced activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the hypothalamus. In males, the activation of JAK2/STAT3 signaling pathway was sustained by an increase in SOCS3 protein levels. In females, MeHg-activated STAT3 was inhibited by a concomitant increase in PTP1B. Taken together, our data suggest that MeHg enhanced leptin effects in males, favoring an anorexigenic profile in males, which notably, have been shown to be more sensitive to the neurological effects of this organometal than females. A better understanding of MeHg-induced molecular mechanism alterations in the hypothalamus advances the understanding of its neurotoxicity and provides molecular sites for novel therapies.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - Marcelo Farina
- Department of Biochemistry, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - João Batista Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
40
|
Rojo D, McCarthy C, Raingo J, Rubinstein M. Mouse models for V103I and I251L gain of function variants of the human MC4R display decreased adiposity but are not protected against a hypercaloric diet. Mol Metab 2020; 42:101077. [PMID: 32916307 PMCID: PMC7559519 DOI: 10.1016/j.molmet.2020.101077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor that plays major roles in the central control of energy balance. Loss-of-function mutations of MC4R constitute the most common monogenic cause of early-onset extreme obesity in humans, whereas gain-of-function mutations appear to be protective. In particular, two relatively frequent alleles carrying the non-synonymous coding mutations V103I or I251L are associated with lower risks of obesity and type-2 diabetes. Although V103I and I251L MC4Rs showed more efficient signalling in transfected cells, their specific effects in live animals remain unexplored. Here, we investigated whether the introduction of V103I and I251L mutations into the mouse MC4R leads to a lean phenotype and provides protection against an obesogenic diet. METHODS Using CRISPR/Cas9, we generated two novel strains of mice carrying single-nucleotide mutations into the mouse Mc4r which are identical to those present in V103I and I251L MCR4 human alleles, and studied their phenotypic outcomes in mice fed with normal chow or a high-fat diet. In particular, we measured body weight progression, food intake and adiposity. In addition, we analysed glucose homeostasis through glucose and insulin tolerance tests. RESULTS We found that homozygous V103I females displayed shorter longitudinal length and decreased abdominal white fat, whereas homozygous I251L females were also shorter and leaner due to decreased weight in all white fat pads examined. Homozygous Mc4rV103I/V103I and Mc4rI251L/I251L mice of both sexes showed improved glucose homeostasis when challenged in a glucose tolerance test, whereas Mc4rI251L/I251L females showed improved responses to insulin. Despite being leaner and metabolically more efficient, V103I and I251L mutants fed with a hypercaloric diet increased their fasting glucose levels and adiposity similar to their wild-type littermates. CONCLUSIONS Our results demonstrate that mice carrying V103I and I251L MC4R mutations displayed gain-of-function phenotypes that were more evident in females. However, hypermorphic MC4R mutants were as susceptible as their control littermates to the obesogenic and diabetogenic effects elicited by a long-term hypercaloric diet, highlighting the importance of healthy feeding habits even under favourable genetic conditions.
Collapse
Affiliation(s)
- Daniela Rojo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | - Clara McCarthy
- Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata and Comisión de Investigaciones de la Provincia de Buenos Aires, La Plata, Province of Buenos Aires, Argentina
| | - Jesica Raingo
- Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata and Comisión de Investigaciones de la Provincia de Buenos Aires, La Plata, Province of Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
41
|
Huang KP, Raybould HE. Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides 2020; 133:170389. [PMID: 32860834 PMCID: PMC8461656 DOI: 10.1016/j.peptides.2020.170389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
Estrogens modulate different physiological functions, including reproduction, inflammation, bone formation, energy expenditure, and food intake. In this review, we highlight the effect of estrogens on food intake regulation and the latest literature on intracellular estrogen signaling. In addition, gut satiety hormones, such as cholecystokinin, glucagon-like peptide 1 and leptin are essential to regulate ingestive behaviors in the postprandial period. These peripheral signals are sensed by vagal afferent terminals in the gut wall and transmitted to the hindbrain axis. Here we 1. review the role of the vagus-hindbrain axis in response to gut satiety signals and 2. consider the potential synergistic effects of estrogens on gut satiety signals at the level of vagal afferent neurons and nuclei located in the hindbrain. Understanding the action of estrogens in gut-brain axis provides a potential strategy to develop estrogen-based therapies for metabolic diseases and emphasizes the importance of sex difference in the treatment of obesity.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, CA, United States
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, CA, United States.
| |
Collapse
|
42
|
Khant Aung Z, Grattan DR, Ladyman SR. Pregnancy-induced adaptation of central sensitivity to leptin and insulin. Mol Cell Endocrinol 2020; 516:110933. [PMID: 32707081 DOI: 10.1016/j.mce.2020.110933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a time of increased food intake and fat deposition in the mother, and adaptations of glucose homeostasis to meet the energy demands of the growing fetus. As part of these adaptations, leptin and insulin concentrations increase in the maternal circulation during pregnancy. Central effects of leptin and insulin, however, are counterproductive to pregnancy, as increased action of these hormones in the brain lead to suppression of food intake. To prevent this, it is well documented that pregnancy induces a state of leptin- and insulin-insensitivity in the brain, particularly the hypothalamus, in a range of species. While the mechanisms underlying leptin- or insulin-insensitivity during pregnancy vary between species, there is evidence of reduced transport into the brain, impaired activation of intracellular signalling pathways, including reduced leptin receptor expression, and attenuated activation of downstream neuronal pathways, especially for leptin insensitivity. Pregnancy-induced changes in prolactin, growth hormone and leptin are discussed in terms of their role in mediating this reduced response to leptin and insulin.
Collapse
Affiliation(s)
- Z Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - S R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
| |
Collapse
|
43
|
Blood clearance kinetics and organ delivery of medium-chain triglyceride and fish oil-containing lipid emulsions: Comparing different animal species. Clin Nutr 2020; 40:987-996. [PMID: 32753350 DOI: 10.1016/j.clnu.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Medium-chain triglycerides (TG) (MCT) and fish oil (FO) TG are incorporated as the core TG component into intravenous (IV) lipid emulsions for infusion in parenteral nutrition. Bolus injections of IV emulsions, on the other hand, have emerged as a novel therapeutic approach to treat various acute disorders. However, intravascular metabolism and organ delivery of acute IV injection of emulsions containing both MCT and FO are not fully defined, nor have they been characterized across common experimental animal models. We characterized and compared blood clearance kinetics and organ distribution of bolus injections of MCT/FO emulsions among different animal species. We also examined whether sex differences or feeding status can affect catabolic properties of MCT/FO lipid emulsions. DESIGN Blood clearance rates of lipid emulsions with specific TG composition were compared in rats IV injected with [3H]cholesteryl hexadecyl ether labeled pure n-6 long-chain (LCT) and n-3 FO TG lipid emulsions, or emulsions containing MCT and FO at different ratios (wt/wt), which include 8:2 (80% MCT: 20% FO), 5:4:1 (50% MCT: 40% LCT: 10% FO) and SMOF (30% LCT: 30% MCT: 25% olive oil: 10% FO). Dose-response effects (0.016 mg-1.6 mg TG/g body weight) of the MCT/FO 8:2 emulsions on blood clearance properties and organ delivery were determined in both mice and rats. Blood clearance kinetics and organ uptake of MCT/FO 8:2 emulsions were compared between male and female rats and between fed and fasted rats. Changes in plasma lipid profiles after acute injections of MCT/FO 8:2 lipid emulsion at different doses (0.043, 0.133, and 0.4 mg TG/g body weight) were characterized in non-human primates (Cynomolgus monkeys). RESULTS MCT/FO 8:2 emulsion was cleared faster in rats when compared with other emulsions with different TG contents. Mice had faster blood clearance and higher fractional catabolic rates (FCR) when compared with the rats injected with MCT/FO 8:2 emulsions regardless of the injected doses. Mice and rats had similar plasma TG and free fatty acid (FFA) levels after low- or high-dose injections of the MCT/FO emulsion. Tissue distribution of the MCT/FO 8:2 lipid emulsion are comparable between mice and rats, where liver had the highest uptake per recovered dose among all organs (>60%). Feeding status and sex differences did not alter the blood clearance rate of the MCT/FO 8:2 emulsion in rats. In a nonhuman primate model, dose-response increases in plasma TG and FFA were observed after IV injection of MCT/FO 8:2 emulsions within the 1st 10 min. CONCLUSION A lipid emulsion containing both MCT and FO TG is cleared rapidly in blood and readily available for organ uptake in rodent and primate animal models. Characterization of the blood clearance properties of the MCT/FO 8:2 emulsion administered in various animal models may provide further insight into the safety and efficacy profiles for future therapeutic use of bolus injections of MCT/FO emulsions in humans.
Collapse
|
44
|
Tan SY, Lei X, Little HC, Rodriguez S, Sarver DC, Cao X, Wong GW. CTRP12 ablation differentially affects energy expenditure, body weight, and insulin sensitivity in male and female mice. Am J Physiol Endocrinol Metab 2020; 319:E146-E162. [PMID: 32421370 PMCID: PMC7468785 DOI: 10.1152/ajpendo.00533.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted hormones facilitate tissue cross talk to maintain energy balance. We previously described C1q/TNF-related protein 12 (CTRP12) as a novel metabolic hormone. Gain-of-function and partial-deficiency mouse models have highlighted important roles for this fat-derived adipokine in modulating systemic metabolism. Whether CTRP12 is essential and required for metabolic homeostasis is unknown. We show here that homozygous deletion of Ctrp12 gene results in sexually dimorphic phenotypes. Under basal conditions, complete loss of CTRP12 had little impact on male mice, whereas it decreased body weight (driven by reduced lean mass and liver weight) and improved insulin sensitivity in female mice. When challenged with a high-fat diet, Ctrp12 knockout (KO) male mice had decreased energy expenditure, increased weight gain and adiposity, elevated serum TNFα level, and reduced insulin sensitivity. In contrast, female KO mice had reduced weight gain and liver weight. The expression of lipid synthesis and catabolism genes, as well as profibrotic, endoplasmic reticulum stress, and oxidative stress genes were largely unaffected in the adipose tissue of Ctrp12 KO male mice. Despite greater adiposity and insulin resistance, Ctrp12 KO male mice fed an obesogenic diet had lower circulating triglyceride and free fatty acid levels. In contrast, lipid profiles of the leaner female KO mice were not different from those of WT controls. These data suggest that CTRP12 contributes to whole body energy metabolism in genotype-, diet-, and sex-dependent manners, underscoring complex gene-environment interactions influencing metabolic outcomes.
Collapse
Affiliation(s)
- Stefanie Y Tan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah C Little
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xi Cao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
45
|
Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients 2020; 12:nu12071942. [PMID: 32629783 PMCID: PMC7400469 DOI: 10.3390/nu12071942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
While the global prevalence of obesity has risen among both men and women over the past 40 years, obesity has consistently been more prevalent among women relative to men. Neuroimaging studies have highlighted several potential mechanisms underlying an individual’s propensity to become obese, including sex/gender differences. Obesity has been associated with structural, functional, and chemical alterations throughout the brain. Whereas changes in somatosensory regions appear to be associated with obesity in men, reward regions appear to have greater involvement in obesity among women than men. Sex/gender differences have also been observed in the neural response to taste among people with obesity. A more thorough understanding of these neural and behavioral differences will allow for more tailored interventions, including diet suggestions, for the prevention and treatment of obesity.
Collapse
|
46
|
Effects of metabolic state on the regulation of melanocortin circuits. Physiol Behav 2020; 224:113039. [PMID: 32610101 PMCID: PMC7387173 DOI: 10.1016/j.physbeh.2020.113039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction in neurophysiological systems that regulate food intake and metabolism are at least partly responsible for obesity and related comorbidities. An important component of this process is the hypothalamic melanocortin system, where an imbalance can result in severe obesity and deficits in glucose metabolism. Exercise offers many health benefits related to cardiovascular improvements, hunger control, and blood glucose homeostasis. However, the molecular mechanism underlying the exercise-induced improvements to the melanocortin system remain undefined. Here, we review the role of the melanocortin system to sense hormonal, nutrient, and neuronal signals of energy status. This information is then relayed onto secondary neurons in order to regulate physiological parameters, which promote proper energy and glucose balance. We also provide an overview on the effects of physical exercise to induce biophysical changes in the melanocortin circuit which may regulate food intake, glucose metabolism and improve overall metabolic health.
Collapse
|
47
|
Kullmann S, Kleinridders A, Small DM, Fritsche A, Häring HU, Preissl H, Heni M. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 2020; 8:524-534. [PMID: 32445739 DOI: 10.1016/s2213-8587(20)30113-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Insulin acts on the CNS to modulate behaviour and systemic metabolism. Disturbances in brain insulin action represent a possible link between metabolic and cognitive health. Current findings from human research suggest that boosting central insulin action in the brain modulates peripheral metabolism, enhancing whole-body insulin sensitivity and suppressing endogenous glucose production. Moreover, central insulin action curbs food intake by reducing the salience of highly palatable food cues and increasing cognitive control. Animal models show that the mesocorticolimbic circuitry is finely tuned in response to insulin, driven mainly by the dopamine system. These mechanisms are impaired in people with obesity, which might increase their risk of developing type 2 diabetes and associated diseases. Overall, current findings highlight the role of insulin action in the brain and its consequences on peripheral metabolism and cognition. Hence, improving central insulin action could represent a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - André Kleinridders
- German Center for Diabetes Research, Neuherberg, Germany; Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Dana M Small
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Psychiatry, Yale University, New Haven, CT, USA; Modern Diet and Physiology Research Centre, Yale University, New Haven, CT, USA
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
48
|
Massa MG, Correa SM. Sexes on the brain: Sex as multiple biological variables in the neuronal control of feeding. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165840. [PMID: 32428559 DOI: 10.1016/j.bbadis.2020.165840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
Abstract
Neuronal interactions at the level of vagal, homeostatic, and hedonic circuitry work to regulate the neuronal control of feeding. This integrative system appears to vary across sex and gender in the animal and human worlds. Most feeding research investigating these variations across sex and gender focus on how the organizational and activational mechanisms of hormones contribute to these differences. However, in limited studies spanning both the central and peripheral nervous systems, sex differences in feeding have been shown to manifest not just at the level of the hormonal, but also at the chromosomal, epigenetic, cellular, and even circuitry levels to alter food intake. In this review, we provide a brief orientation to the current understanding of how these neuronal systems interact before dissecting selected studies from the recent literature to exemplify how feeding physiology at all levels can be affected by the various components of sex.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America; Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States of America.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
49
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Kesić M, Baković P, Horvatiček M, Proust BLJ, Štefulj J, Čičin-Šain L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis. Front Neurosci 2020; 14:219. [PMID: 32269507 PMCID: PMC7109468 DOI: 10.3389/fnins.2020.00219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Central and peripheral pools of biogenic monoamine serotonin (5-hydroxytryptamine [5HT]) exert opposite effects on the body weight regulation: increase in brain 5HT activity is expected to decrease body weight, whereas increase in peripheral 5HT activity will increase body weight and adiposity. In a genetic model of rats with constitutionally high- or low-5HT homeostasis (hyperserotonergic/hyposerotonergic rats), we have studied how individual differences in endogenous 5HT tone modulate net energy balance of the organism. The high-5HT and low-5HT sublines of the model were developed by selective breeding toward extreme platelet activities of 5HT transporter, a key molecule determining 5HT bioavailability/activity. In animals from high-5HT and low-5HT sublines, we assessed physiological characteristics associated with body weight homeostasis and expression profile of a large scale of body weight–regulating genes in hypothalamus, a major brain region controlling energy balance. Results showed that under standard chow diet animals from the high-5HT subline, as compared to low-5HT animals, have lifelong increased body weight (by 12%), higher absolute daily food intake (by 9%), and different pattern of fat distribution (larger amount of white adipose tissue and lower amount of brown adipose tissue). A large number of body weight–regulating hypothalamic genes were analyzed for their mRNA expression: 24 genes by reverse transcription–quantitative polymerase chain reaction (n = 9–10 rats/subline) including neuropeptides and their receptors, growth factors, transcriptional factors, and receptors for peripheral signals, and a total of 84 genes of various classes by polymerase chain reaction array (pools of six rats/subline). Only few genes showed significant differences in mRNA expression levels between 5HT sublines (e.g. neuropeptide Y receptor, fibroblast growth factor 10), but high-5HT animals displayed a clear trend to upregulation of mRNAs for a number of orexigenic signaling peptides, their receptors, and other molecules with orexigenic activity. Receptors for peripheral signals (leptin, insulin) and molecules in their downstream signaling were not altered, indicating no changes in central insulin/leptin resistance. At the protein level, there were no differences in the content of hypothalamic leptin receptor between 5HT sublines, but significant sex and age effects were observed. Results show that higher constitutive/individual 5HT tone favors higher body weight and adiposity probably due to concurrent upregulation of several hypothalamic orexigenic pathways.
Collapse
Affiliation(s)
- Maja Kesić
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Petra Baković
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marina Horvatiček
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bastien Lucien Jean Proust
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jasminka Štefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|