1
|
Jin L, Richardson A, Lynch J, Lorkiewicz P, Srivastava S, Fryar L, Miller A, Theis W, Shirk G, Bhatnagar A, Srivastava S, Riggs DW, Conklin DJ. Formaldehyde and the transient receptor potential ankyrin-1 contribute to electronic cigarette aerosol-induced endothelial dysfunction in mice. Toxicol Sci 2024; 201:331-347. [PMID: 39067042 PMCID: PMC11424888 DOI: 10.1093/toxsci/kfae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Electronic nicotine delivery systems (ENDS) aerosol exposures can induce endothelial dysfunction (ED) in healthy young humans and animals. Thermal degradation of ENDS solvents, propylene glycol, and vegetable glycerin (PG: VG), generates abundant formaldehyde (FA) and other carbonyls. Because FA can activate the transient receptor potential ankyrin-1 (TRPA1) sensor, we hypothesized that FA in ENDS aerosols provokes TRPA1-mediated changes that include ED and "respiratory braking"-biomarkers of harm. To test this, wild-type (WT) and TRPA1-null mice were exposed by inhalation to either filtered air, PG: VG-derived aerosol, or FA (5 ppm). Short-term exposures to PG: VG and FA-induced ED in female WT but not in female TRPA1-null mice. Moreover, acute exposures to PG: VG and FA stimulated respiratory braking in WT but not in TRPA1-null female mice. Urinary metabolites of FA (ie, N-1,3-thiazolidine-4-carboxylic acid, TCA; N-1,3-thiazolidine-4-carbonyl glycine, TCG) and monoamines were measured by LC-MS/MS. PG: VG and FA exposures significantly increased urinary excretion of both TCA and TCG in both WT and TRPA1-null mice. To confirm that inhaled FA directly contributed to urinary TCA, mice were exposed to isotopic 13C-FA gas (1 ppm, 6 h). 13C-FA exposure significantly increased the urine level of 13C-TCA in the early collection (0 to 3 h) supporting a direct relationship between inhaled FA and TCA. Collectively, these data suggest that ENDS use may increase CVD risk dependent on FA, TRPA1, and catecholamines, yet independently of either nicotine or flavorants. This study supports that levels of FA in ENDS-derived aerosols should be lowered to mitigate CVD risk in people who use ENDS.
Collapse
Affiliation(s)
- Lexiao Jin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Andre Richardson
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Jordan Lynch
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Pawel Lorkiewicz
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| | - Laura Fryar
- School of Medicine, University of Louisville, Louisville, KY 40202, United States
| | - Alexis Miller
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Whitney Theis
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Gregg Shirk
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
| | - Aruni Bhatnagar
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| | - Sanjay Srivastava
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| | - Daniel W Riggs
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| | - Daniel J Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States
- Superfund Research Center, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
2
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Kunovac A, Hathaway QA, Thapa D, Durr AJ, Taylor AD, Rizwan S, Sharif D, Valentine SJ, Hollander JM. N 6-methyladenosine (M 6A) in fetal offspring modifies mitochondrial gene expression following gestational nano-TiO 2 inhalation exposure. Nanotoxicology 2023; 17:651-668. [PMID: 38180356 PMCID: PMC10988778 DOI: 10.1080/17435390.2023.2293144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO2) contributes to cardiac m6A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO2 with a target aerosol mass concentration of 12 mg/m3. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m6A antibodies was performed followed by sequencing of immunoprecipitant (m6A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO2 exposed mice (Padj ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m6A methylation sites (Padj ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (P ≤ 0.05). The lack of m6A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Medical Education, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Dharendra Thapa
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Daud Sharif
- Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
4
|
Harris TR, Griffith JA, Clarke CEC, Garner KL, Bowdridge EC, DeVallance E, Engles KJ, Batchelor TP, Goldsmith WT, Wix K, Nurkiewicz TR, Rand AA. Distinct profiles of oxylipid mediators in liver, lung, and placenta after maternal nano-TiO 2 nanoparticle inhalation exposure. ENVIRONMENTAL SCIENCE. ADVANCES 2023; 2:740-748. [PMID: 37181648 PMCID: PMC10167894 DOI: 10.1039/d2va00300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 05/16/2023]
Abstract
Nano-titanium dioxide (nano-TiO2) is a widely used nanomaterial found in several industrial and consumer products, including surface coatings, paints, sunscreens and cosmetics, among others. Studies have linked gestational exposure to nano-TiO2 with negative maternal and fetal health outcomes. For example, maternal pulmonary exposure to nano-TiO2 during gestation has been associated not only with maternal, but also fetal microvascular dysfunction in a rat model. One mediator of this altered vascular reactivity and inflammation is oxylipid signaling. Oxylipids are formed from dietary lipids through several enzyme-controlled pathways as well as through oxidation by reactive oxygen species. Oxylipids have been linked to control of vascular tone, inflammation, pain and other physiological and disease processes. In this study, we use a sensitive UPLC-MS/MS based analysis to probe the global oxylipid response in liver, lung, and placenta of pregnant rats exposed to nano-TiO2 aerosols. Each organ presented distinct patterns in oxylipid signaling, as assessed by principal component and hierarchical clustering heatmap analysis. In general, pro-inflammatory mediators, such as 5-hydroxyeicosatetraenoic acid (1.6 fold change) were elevated in the liver, while in the lung, anti-inflammatory and pro-resolving mediators such as 17-hydroxy docosahexaenoic acid (1.4 fold change) were elevated. In the placenta the levels of oxylipid mediators were generally decreased, both inflammatory (e.g. PGE2, 0.52 fold change) and anti-inflammatory (e.g. Leukotriene B4, 0.49 fold change). This study, the first to quantitate the levels of these oxylipids simultaneously after nano-TiO2 exposure, shows the complex interplay of pro- and anti-inflammatory mediators from multiple lipid classes and highlights the limitations of monitoring the levels of oxylipid mediators in isolation.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| | - Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Colleen E C Clarke
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Kim Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| |
Collapse
|
5
|
Ranpara A, LeBouf RF, Nurkiewicz TR, Yi J, Cumpston JL, Stefaniak AB. Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:1-22. [PMID: 36444639 PMCID: PMC10663951 DOI: 10.1080/15287394.2022.2150730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.
Collapse
Affiliation(s)
- Anand Ranpara
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan F. LeBouf
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jared L. Cumpston
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B. Stefaniak
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
6
|
Conklin DJ. How Irritating! Electronic Cigarettes Not "95% Safer" Than Combustible Cigarettes: Recent Mechanistic Insights Into Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:1351-1354. [PMID: 36288291 PMCID: PMC10038145 DOI: 10.1161/atvbaha.122.318468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Daniel J. Conklin
- American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville
- Christina Lee Brown Envirome Institute, University of Louisville
- Superfund Research Center, University of Louisville
- Center of Cardiovascular Metabolism Science, University of Louisville
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Griffith JA, Garner KL, Bowdridge EC, DeVallance E, Schafner KJ, Engles KJ, Batchelor TP, Goldsmith WT, Wix K, Hussain S, Nurkiewicz TR. Nanomaterial Inhalation During Pregnancy Alters Systemic Vascular Function in a Cyclooxygenase-Dependent Manner. Toxicol Sci 2022; 188:219-233. [PMID: 35642938 PMCID: PMC9333412 DOI: 10.1093/toxsci/kfac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pregnancy requires rapid adaptations in the uterine microcirculation to support fetal development. Nanomaterial inhalation is associated with cardiovascular dysfunction, which may impair gestation. We have shown that maternal nano-titanium dioxide (nano-TiO2) inhalation impairs microvascular endothelial function in response to arachidonic acid and thromboxane (TXA2) mimetics. However, the mechanisms underpinning this process are unknown. Therefore, we hypothesize that maternal nano-TiO2 inhalation during gestation results in uterine microvascular prostacyclin (PGI2) and TXA2 dysfunction. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.67 mg/m3) or filtered air (sham-control). Dams were euthanized on gestational day 20, and serum, uterine radial arterioles, implantation sites, and lungs were collected. Serum was assessed for PGI2 and TXA2 metabolites. TXB2, the stable TXA2 metabolite, was significantly decreased in nano-TiO2 exposed dams (597.3 ± 84.4 vs 667.6 ± 45.6 pg/ml), whereas no difference was observed for 6-keto-PGF1α, the stable PGI2 metabolite. Radial arteriole pressure myography revealed that nano-TiO2 exposure caused increased vasoconstriction to the TXA2 mimetic, U46619, compared with sham-controls (-41.3% ± 4.3% vs -16.8% ± 3.4%). Nano-TiO2 exposure diminished endothelium-dependent vasodilation to carbaprostacyclin, a PGI2 receptor agonist, compared with sham-controls (30.0% ± 9.0% vs 53.7% ± 6.0%). Maternal nano-TiO2 inhalation during gestation decreased nano-TiO2 female pup weight when compared with sham-control males (3.633 ± 0.064 vs 3.995 ± 0.124 g). Augmented TXA2 vasoconstriction and decreased PGI2 vasodilation may lead to decreased placental blood flow and compromise maternofetal exchange of waste and nutrients, which could ultimately impact fetal health outcomes.
Collapse
Affiliation(s)
- Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kallie J Schafner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kimberley Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| |
Collapse
|
8
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
10
|
Zhao X, Xu H, Li X, Li Y, Lv S, Liu Y, Guo C, Sun Z, Li Y. Myocardial toxicity induced by silica nanoparticles in a transcriptome profile. NANOSCALE 2022; 14:6094-6108. [PMID: 35388865 DOI: 10.1039/d2nr00582d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deleterious effects of silica nanoparticles (SiNPs) on human health and the ecological system have gradually gained attention owing to their heavy annual output and extensive global flux. The updated epidemiological or experimental investigations have demonstrated the potential myocardial toxicity triggered by SiNPs, but the underlying mechanisms and long-lasting cardiac effects are still poorly understood. Here, a rat model of sub-chronic respiratory exposure to SiNPs was conducted, and the histopathological analysis and ultrastructural investigation of heart tissues were carried out. More importantly, a comprehensive analysis of whole-genome transcription was utilized in rat heart to uncover key biological and cellular mechanisms triggered by SiNPs. The widening of myocardial space and partial fiber rupture were clearly manifested in rat heart after prolonged SiNPs exposure, particularly accompanied by mitochondrial swelling and cristae rupture. With the aid of Affymetrix GeneChips, 3153 differentially expressed genes (DEGs) were identified after SiNPs exposure, including 1916 down- and 1237 up-regulated genes. GO and KEGG analysis illustrated many important biological processes and pathways perturbed by SiNPs, mainly specializing in cellular stress, energy metabolism, actin filament dynamics and immune response. Signal-net analysis revealed that Prkaca (PKA) plays a core role in the cardiac toxification process of prolonged exposure of SiNPs to rats. Furthermore, qRT-PCR verified that PKA-mediated calcium signaling is probably responsible for SiNPs-induced cardiac injury. Conclusively, our study revealed that SiNPs caused myocardial injury, and particularly, provided transcriptomic insight into the role of PKA-calcium signaling triggered by SiNPs, which would facilitate SiNPs-based nanosafety assessment and biomedicine development.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Kunovac A, Hathaway QA, Pinti MV, Durr AJ, Taylor AD, Goldsmith WT, Garner KL, Nurkiewicz TR, Hollander JM. Enhanced antioxidant capacity prevents epitranscriptomic and cardiac alterations in adult offspring gestationally-exposed to ENM. Nanotoxicology 2021; 15:812-831. [PMID: 33969789 PMCID: PMC8363568 DOI: 10.1080/17435390.2021.1921299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Maternal engineered nanomaterial (ENM) exposure during gestation has been associated with negative long-term effects on cardiovascular health in progeny. Here, we evaluate an epitranscriptomic mechanism that contributes to these chronic ramifications and whether overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) can preserve cardiovascular function and bioenergetics in offspring following gestational nano-titanium dioxide (TiO2) inhalation exposure. Wild-type (WT) and mPHGPx (Tg) dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.01 ± 0.50 mg/m3 starting from gestational day (GD) 5 for 360 mins/day for 6 nonconsecutive days over 8 days. Echocardiography was performed in pregnant dams, adult (11-week old) and fetal (GD 14) progeny. Mitochondrial function and global N6-methyladenosine (m6A) content were assessed in adult progeny. MPHGPx enzymatic function was further evaluated in adult progeny and m6A-RNA immunoprecipitation (RIP) was combined with RT-qPCR to evaluate m6A content in the 3'-UTR. Following gestational ENM exposure, global longitudinal strain (GLS) was 32% lower in WT adult offspring of WT dams, with preservation in WT offspring of Tg dams. MPHGPx activity was significantly reduced in WT offspring (29%) of WT ENM-exposed dams, but preserved in the progeny of Tg dams. M6A-RIP-qPCR for the SEC insertion sequence region of mPHGPx revealed hypermethylation in WT offspring from ENM-exposed WT dams, which was thwarted in the presence of the maternal transgene. Our findings implicate that m6A hypermethylation of mPHGPx may be culpable for diminished antioxidant capacity and resultant mitochondrial and cardiac deficits that persist into adulthood following gestational ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V. Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L. Garner
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
12
|
Alsaleh NB. Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102421. [PMID: 34166839 DOI: 10.1016/j.nano.2021.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Nanotechnology is spanning multiple fields of study from materials science to computer engineering and drug discovery. Since the early 21st century, nanotechnology and nano-enabled research have received great attention and governmental funding accompanied with interest to ensure human and environmental safety of engineered nanomaterials (ENMs). Optimal functioning of the cardiovascular (CV) system is of utmost importance for the overall health of the body. Following exposure, ENMs essentially end up in the circulation (at least partially) and hence it is key to assess any associated adverse CV consequences. Accumulating research suggests that exposure to ENMs (different compositions and physicochemical properties) has the capacity to directly and indirectly interact with CV components resulting in adverse events and worsening of CV complications. However, the underlying molecular mechanisms driving these events remain to be elucidated. In this article, we review state-of-art literature on ENM-associated adverse CV responses and discuss the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Krajnak K, Kan H, Russ KA, McKinney W, Waugh S, Zheng W, Kashon ML, Johnson C, Cumpston J, Fedan JS. Biological effects of inhaled hydraulic fracturing sand dust. VI. Cardiovascular effects. Toxicol Appl Pharmacol 2020; 406:115242. [PMID: 32931794 DOI: 10.1016/j.taap.2020.115242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
Abstract
Hydraulic fracturing is used to access oil and natural gas reserves. This process involves the high-pressure injection of fluid to fracture shale. Fracking fluid contains approximately 95% water, chemicals and 4.5% fracking sand. Workers may be exposed to fracking sand dust (FSD) during the manipulation of the sand, and negative health consequences could occur if FSD is inhaled. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan et al., 2020) was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. The goal of this study was to assess the effects of inhalation of one FSD, i.e., FSD 8, on factors and tissues that affect cardiovascular function. Male rats were exposed to 10 or 30 mg/m3 FSD (6 h/d for 4 d) by whole body inhalation, with measurements made 1, 7 or 27 d post-exposure. One day following exposure to 10 mg/m3 FSD the sensitivity to phenylephrine-induced vasoconstriction in tail arteries in vitro was increased. FSD exposure at both doses resulted in decreases in heart rate (HR), HR variability, and blood pressure in vivo. FSD induced changes in hydrogen peroxide concentrations and transcript levels for pro-inflammatory factors in heart tissues. In kidney, expression of proteins indicative of injury and remodeling was reduced after FSD exposure. When analyzed using regression analysis, changes in proteins involved in repair and remodeling were correlated. Thus, it appears that inhalation of FSD does have some prolonged effects on cardiovascular, and, possibly, renal function. The findings also provide information regarding potential mechanisms that may lead to these changes, and biomarkers that could be examined to monitor physiological changes that could be indicative of impending cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America.
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Kristen A Russ
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Wen Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Claud Johnson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jared Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America
| |
Collapse
|
14
|
Dréno B, Alexis A, Chuberre B, Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 2019; 33 Suppl 7:34-46. [DOI: 10.1111/jdv.15943] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- B. Dréno
- Onco‐Dermatology Department CHU Nantes CRCINA University Nantes Nantes France
| | - A. Alexis
- Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - B. Chuberre
- L'Oréal Cosmetique Active International Levallois‐Perret France
| | - M. Marinovich
- Department of Pharmacological and Biomolecular Sciences University of Milan Milan Italy
| |
Collapse
|
15
|
Krajnak K, Waugh S, Stefaniak A, Schwegler-Berry D, Roach K, Barger M, Roberts J. Exposure to graphene nanoparticles induces changes in measures of vascular/renal function in a load and form-dependent manner in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:711-726. [PMID: 31370764 DOI: 10.1080/15287394.2019.1645772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphenes isolated from crystalline graphite are used in several industries. Employees working in the production of graphenes may be at risk of developing respiratory problems attributed to inhalation or contact with particulate matter (PM). However, graphene nanoparticles might also enter the circulation and accumulate in other organs. The aim of this study was to examine how different forms of graphene affect peripheral vascular functions, generation of reactive oxygen species (ROS) and changes in gene expression that may be indicative of cardiovascular and/or renal dysfunction. In the first investigation, different doses of graphene nanoplatelets were administered to mice via oropharyngeal aspiration. These effects were compared to those of dispersion medium (DM) and carbon black (CB). Gene expression alterations were observed in the heart for CB and graphene; however, only CB produced changes in peripheral vascular function. In the second study, oxidized forms of graphene were administered. Both oxidized forms increased the sensitivity of peripheral blood vessels to adrenoreceptor-mediated vasoconstriction and induced changes in ROS levels in the heart. Based upon the results of these investigations, exposure to graphene nanoparticles produced physiological and alterations in ROS and gene expression that may lead to cardiovascular dysfunction. Evidence indicates that the effects of these particles may be dependent upon dose and graphene form to which an individual may be exposed to.
Collapse
Affiliation(s)
- K Krajnak
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - S Waugh
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ab Stefaniak
- b Respiratory Health Division, West Virginia University , Morgantown , WV , USA
| | - D Schwegler-Berry
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | | | - M Barger
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jr Roberts
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
16
|
Fournier SB, Kallontzi S, Fabris L, Love C, Stapleton PA. Effect of Gestational Age on Maternofetal Vascular Function Following Single Maternal Engineered Nanoparticle Exposure. Cardiovasc Toxicol 2019; 19:321-333. [PMID: 30734150 PMCID: PMC6642065 DOI: 10.1007/s12012-019-09505-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal pregnancy outcome is accomplished, in part, by rapid and expansive physiological adaptations to the systemic circulation, the extent of which is specific to gestational day (GD) and anatomical location. Pregnancy-related hemodynamic changes in uterine placental blood flow stimulate compensatory vascular signaling and remodeling that begins early and continues throughout gestation. Exposure of the maternal environment to engineered nanomaterials (ENM) during pregnancy has been shown to impact health of the dam, fetus, and adult offspring; however, the consequences of specific temporal (gestational age) and spatial (vascular location) considerations are largely undetermined. We exposed pregnant Sprague-Dawley rats to nano-TiO2 aerosols at three critical periods of fetal development (GD 4, 12, and 17) to identify vascular perturbations associated with ENM exposure at these developmental milestones. Vascular reactivity of the maternal thoracic aorta, the uterine artery, the umbilical vein, and the fetal thoracic aorta were evaluated using wire myography on GD 20. While impairments were noted at each level of the maternofetal vascular tree and at each exposure day, our results indicate the greatest effects may be identified within the fetal vasculature (umbilical vein and fetal aorta), wherein effects of a single maternal inhalational exposure to nano-TiO2 on GD 4 modified responses to cholinergic, NO, and α-adrenergic signaling.
Collapse
Affiliation(s)
- S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - S Kallontzi
- Materials Science and Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - L Fabris
- Materials Science and Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - C Love
- Biology and Environmental Studies, Grinnell College, 1116 Eighth Ave, Grinnell, IA, 50112, USA
| | - P A Stapleton
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ, Fink GK, Nurkiewicz TR, Hollander JM. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 2019; 16:24. [PMID: 31215478 PMCID: PMC6582485 DOI: 10.1186/s12989-019-0310-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. RESULTS Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. CONCLUSIONS Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Mark V. Pinti
- West Virginia University School of Pharmacy, Morgantown, WV USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
18
|
Mostovenko E, Young T, Muldoon PP, Bishop L, Canal CG, Vucetic A, Zeidler-Erdely PC, Erdely A, Campen MJ, Ottens AK. Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Part Fibre Toxicol 2019; 16:20. [PMID: 31142334 PMCID: PMC6542040 DOI: 10.1186/s12989-019-0304-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background The mechanisms driving systemic effects consequent pulmonary nanoparticle exposure remain unclear. Recent work has established the existence of an indirect process by which factors released from the lung into the circulation promote systemic inflammation and cellular dysfunction, particularly on the vasculature. However, the composition of circulating contributing factors and how they are produced remains unknown. Evidence suggests matrix protease involvement; thus, here we used a well-characterized multi-walled carbon nanotube (MWCNT) oropharyngeal aspiration model with known vascular effects to assess the distinct contribution of nanoparticle-induced peptide fragments in driving systemic pathobiology. Results Data-independent mass spectrometry enabled the unbiased quantitative characterization of 841 significant MWCNT-responses within an enriched peptide fraction, with 567 of these factors demonstrating significant correlation across animal-paired bronchoalveolar lavage and serum biofluids. A database search curated for known matrix protease substrates and predicted signaling motifs enabled identification of 73 MWCNT-responsive peptides, which were significantly associated with an abnormal cardiovascular phenotype, extracellular matrix organization, immune-inflammatory processes, cell receptor signaling, and a MWCNT-altered serum exosome population. Production of a diverse peptidomic response was supported by a wide number of upregulated matrix and lysosomal proteases in the lung after MWCNT exposure. The peptide fraction was then found bioactive, producing endothelial cell inflammation and vascular dysfunction ex vivo akin to that induced with whole serum. Results implicate receptor ligand functionality in driving systemic effects, exemplified by an identified 59-mer thrombospondin fragment, replete with CD36 modulatory motifs, that when synthesized produced an anti-angiogenic response in vitro matching that of the peptide fraction. Other identified peptides point to integrin ligand functionality and more broadly to a diversity of receptor-mediated bioactivity induced by the peptidomic response to nanoparticle exposure. Conclusion The present study demonstrates that pulmonary-sequestered nanoparticles, such as multi-walled carbon nanotubes, acutely upregulate a diverse profile of matrix proteases, and induce a complex peptidomic response across lung and blood compartments. The serum peptide fraction, having cell-surface receptor ligand properties, conveys peripheral bioactivity in promoting endothelial cell inflammation, vasodilatory dysfunction and inhibiting angiogenesis. Results here establish peptide fragments as indirect, non-cytokine mediators and putative biomarkers of systemic health outcomes from nanoparticle exposure.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Tamara Young
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Christopher G Canal
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Aleksandar Vucetic
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Patti C Zeidler-Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA.
| |
Collapse
|
19
|
Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 2019; 13:644-663. [PMID: 30704319 DOI: 10.1080/17435390.2019.1570372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nano-titanium dioxide (nano-TiO2), though one of the most utilized and produced engineered nanomaterials (ENMs), diminishes cardiovascular function through dysregulation of metabolism and mitochondrial bioenergetics following inhalation exposure. The molecular mechanisms governing this cardiac dysfunction remain largely unknown. The purpose of this study was to elucidate molecular mediators that connect nano-TiO2 exposure with impaired cardiac function. Specifically, we were interested in the role of microRNA (miRNA) expression in the resulting dysfunction. Not only are miRNA global regulators of gene expression, but also miRNA-based therapeutics provide a realistic treatment modality. Wild type and MiRNA-378a knockout mice were exposed to nano-TiO2 with an aerodynamic diameter of 182 ± 1.70 nm and a mass concentration of 11.09 mg/m3 for 4 h. Cardiac function, utilizing the Vevo 2100 Imaging System, electron transport chain complex activities, and mitochondrial respiration assessed cardiac and mitochondrial function. Immunoblotting and qPCR examined molecular targets of miRNA-378a. MiRNA-378a-3p expression was increased 48 h post inhalation exposure to nano-TiO2. Knockout of miRNA-378a preserved cardiac function following exposure as revealed by preserved E/A ratio and E/SR ratio. In knockout animals, complex I, III, and IV activities (∼2- to 6-fold) and fatty acid respiration (∼5-fold) were significantly increased. MiRNA-378a regulated proteins involved in mitochondrial fusion, transcription, and fatty acid metabolism. MiRNA-378a-3p acts as a negative regulator of mitochondrial metabolic and biogenesis pathways. MiRNA-378a knockout animals provide a protective effect against nano-TiO2 inhalation exposure by altering mitochondrial structure and function. This is the first study to manipulate a miRNA to attenuate the effects of ENM exposure.
Collapse
Affiliation(s)
- Quincy A Hathaway
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Andrya J Durr
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Danielle L Shepherd
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Mark V Pinti
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Ashley N Brandebura
- d Rockefeller Neuroscience Institute , West Virginia University School of Medicine , Morgantown , WV , USA.,e Department of Biochemistry , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Cody E Nichols
- f Immunity, Inflammation, and Disease Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Amina Kunovac
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - William T Goldsmith
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Sherri A Friend
- h CDC , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Alaeddin B Abukabda
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Garrett K Fink
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| |
Collapse
|
20
|
Kan H, Pan D, Castranova V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway. Inhal Toxicol 2019; 30:335-342. [PMID: 30604639 DOI: 10.1080/08958378.2018.1535634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human and animal studies have confirmed that inhalation of particles from ambient air or occupational settings not only causes pathophysiological changes in the respiratory system, but causes cardiovascular effects as well. At an equal mass lung burden, nanoparticles are more potent in causing systemic microvascular dysfunction than fine particles of similar composition. Thus, accumulated evidence from animal studies has led to heightened concerns about the potential short- and long-term deleterious effects of inhalation of engineered nanoparticles on the cardiovascular system. This review highlights the new observations from animal studies, which document the adverse effects of pulmonary exposure to engineered nanoparticles on the cardiovascular system and elucidate the potential mechanisms involved in regulation of cardiovascular function, in particular, how the neuronal system plays a role and reacts to pulmonary nanoparticle exposure based on both in vivo and in vitro studies. In addition, this review also discusses the possible influence of altered autonomic nervous activity on preexisting cardiovascular conditions. Whether engineered nanoparticle exposure serves as a risk factor in the development of cardiovascular diseases warrants further investigation.
Collapse
Affiliation(s)
- H Kan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA.,b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| | - D Pan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - V Castranova
- b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
21
|
Stapleton PA, McBride CR, Yi J, Abukabda AB, Nurkiewicz TR. Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 2018; 78:20-28. [PMID: 29545171 PMCID: PMC6034709 DOI: 10.1016/j.reprotox.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Preconceptive health encompasses male and female reproductive capability. In females, this takes into account each of the stages of the estrous cycle. Microvascular reactivity varies throughout the estrous cycle in response to hormonal changes and in preparation for pregnancy. Microvascular alterations in response to engineered nanomaterial (ENM) exposure have been described within 24-h of inhalation; however, the impact upon the uterine vasculature at differing estrous stages and at late-stage pregnancy is unclear. Female Sprague Dawley (SD) rats (virgin and late stage pregnancy [GD 19]) were exposed to nano-TiO aerosols (173.2 ± 6.4 nm, 10.2 ± 0.46 mg/m3, 5 h) 24-h prior to experimentation leading to a single calculated deposition of 42.2 ± 1.9 µg nano- TiO2 (exposed) or 0µg (control). Animals were anesthetized, estrous status verified, and prepared for in situ assessment of leukocyte trafficking and vascular function by means of intravital microscopy, Uterine basal arteriolar reactivity was stimulated using iontophoretically applied chemicals: acetylcholine (ACh, 0.025 M; 20, 40, 100, 200 nA), sodium nitroprusside (SNP, 0.05 M; 20, 40, 100 nA), phenylephrine (PE, 0.05 M; 20, 40, 100 nA). Finally, adenosine (ADO, 10−4 M) was superfused over the tissue to identify maximum diameter. In situ vessel reactivity after exposure was significantly blunted based on estrous stage, but not at late-stage pregnancy. Local uterine venular leukocyte trafficking and systemic inflammatory markers were also significantly affected during preparatory (proestrus), fertile (estrus), and infertile (diestrus) periods after ENM inhalation. Overall, these deficits in reactivity and increased inflammatory activity may impair female fertility after ENM exposure.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA.
| | - C R McBride
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - J Yi
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
| | - A B Abukabda
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - T R Nurkiewicz
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Stapleton PA, Hathaway QA, Nichols CE, Abukabda AB, Pinti MV, Shepherd DL, McBride CR, Yi J, Castranova VC, Hollander JM, Nurkiewicz TR. Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol 2018; 15:3. [PMID: 29321036 PMCID: PMC5763571 DOI: 10.1186/s12989-017-0239-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023] Open
Abstract
Background The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0.5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation (ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by gestational ENM exposure. Results The results of the sequencing experiments provide initial evidence that significant epigenetic and transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal physiology were linked with other tissues, including liver and kidneys. Conclusions These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome. Electronic supplementary material The online version of this article (10.1186/s12989-017-0239-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Q A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C E Nichols
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A B Abukabda
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - M V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C R McBride
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - J Yi
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - V C Castranova
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - J M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - T R Nurkiewicz
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
23
|
Abukabda AB, Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Front Cardiovasc Med 2017; 4:33. [PMID: 28596957 PMCID: PMC5442182 DOI: 10.3389/fcvm.2017.00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023] Open
Abstract
A growing body of research links engineered nanomaterial (ENM) exposure to adverse cardiovascular endpoints. The purpose of this study was to evaluate the impact of ENM exposure on vascular reactivity in discrete segments so that we may determine the most sensitive levels of the vasculature where these negative cardiovascular effects are manifest. We hypothesized that acute nano-TiO2 exposure differentially affects reactivity with a more robust impairment in the microcirculation. Sprague-Dawley rats (8–10 weeks) were exposed to nano-TiO2via intratracheal instillation (20, 100, or 200 µg suspended per 250 µL of vehicle) 24 h prior to vascular assessments. A serial assessment across distinct compartments of the vascular tree was then conducted. Wire myography was used to evaluate macrovascular active tension generation specifically in the thoracic aorta, the femoral artery, and third-order mesenteric arterioles. Pressure myography was used to determine vascular reactivity in fourth- and fifth-order mesenteric arterioles. Vessels were treated with phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Nano-TiO2 exposure decreased endothelium-dependent relaxation in the thoracic aorta and femoral arteries assessed via ACh by 53.96 ± 11.6 and 25.08 ± 6.36%, respectively. Relaxation of third-order mesenteric arterioles was impaired by 100 and 20 µg nano-TiO2 exposures with mean reductions of 50.12 ± 8.7 and 68.28 ± 8.7%. Cholinergic reactivity of fourth- and fifth-order mesenteric arterioles was negatively affected by nano-TiO2 with diminished dilations of 82.86 ± 12.6% after exposure to 200 µg nano-TiO2, 42.6 ± 12.6% after 100 µg nano-TiO2, and 49.4 ± 12.6% after 20 µg nano-TiO2. Endothelium-independent relaxation was impaired in the thoracic aorta by 34.05 ± 25% induced by exposure to 200 µg nano-TiO2 and a reduction in response of 49.31 ± 25% caused by 100 µg nano-TiO2. Femoral artery response was reduced by 18 ± 5%, while third-order mesenteric arterioles were negatively affected by 20 µg nano-TiO2 with a mean decrease in response of 38.37 ± 10%. This is the first study to directly compare the differential effect of ENM exposure on discrete anatomical segments of the vascular tree. Pulmonary ENM exposure produced macrovascular and microvascular dysfunction resulting in impaired responses to endothelium-dependent, endothelium-independent, and adrenergic agonists with a more robust dysfunction at the microvascular level. These results provide additional evidence of an endothelium-dependent and endothelium-independent impairment in vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
24
|
Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb) 2017; 6:115-133. [PMID: 30090482 PMCID: PMC6061230 DOI: 10.1039/c6tx00338a] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are inorganic materials with a diameter of 1-100 nm. In recent years, TiO2 NPs have been used in a wide range of products, including food, toothpaste, cosmetics, medicine, paints and printing materials, due to their unique properties (high stability, anti-corrosion, and efficient photocatalysis). Following exposure via various routes including inhalation, injection, dermal deposition and gastrointestinal tract absorption, NPs can be found in various organs in the body potentially inducing toxic effects. Thus more attention to the safety of TiO2 NPs is necessary. Therefore, the present review aims to provide a comprehensive evaluation of the toxic effects induced by TiO2 NPs in the lung, liver, stomach, intestine, kidney, spleen, brain, hippocampus, heart, blood vessels, ovary and testis of mice and rats in in vivo experiments, and evaluate their potential toxic mechanisms. The findings will provide an important reference for human risk evaluation and management following TiO2 NP exposure.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Xiaohong Yu
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Yu-Qing Zhang
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| |
Collapse
|
25
|
Armstead AL, Simoes TA, Wang X, Brydson R, Brown A, Jiang BH, Rojanasakul Y, Li B. Toxicity and oxidative stress responses induced by nano- and micro-CoCrMo particles. J Mater Chem B 2017. [DOI: 10.1039/c7tb01372h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Particles on the nano- and micro-meter scales present unique cell-specific cellular effects (i.e.cytotoxicity and oxidative stress).
Collapse
Affiliation(s)
- Andrea L. Armstead
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Thiago A. Simoes
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Xianfeng Wang
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| | - Rik Brydson
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Andy Brown
- Institute for Materials Research
- School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Bing-Hua Jiang
- Department of Pathology
- Anatomy and Cell Biology
- Thomas Jefferson University
- Philadelphia
- USA
| | - Yon Rojanasakul
- School of Pharmacy
- West Virginia University
- Morgantown
- USA
- Mary Babb Randolph Cancer Center
| | - Bingyun Li
- Department of Orthopaedics
- School of Medicine
- West Virginia University
- Morgantown
- USA
| |
Collapse
|
26
|
Hathaway QA, Nichols CE, Shepherd DL, Stapleton PA, McLaughlin SL, Stricker JC, Rellick SL, Pinti MV, Abukabda AB, McBride CR, Yi J, Stine SM, Nurkiewicz TR, Hollander JM. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol Heart Circ Physiol 2016; 312:H446-H458. [PMID: 28011589 PMCID: PMC5402018 DOI: 10.1152/ajpheart.00634.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 01/25/2023]
Abstract
Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m3, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational day 5-6 Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational day 20), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction.NEW & NOTEWORTHY Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO2) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO2 inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Cody E Nichols
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Phoebe A Stapleton
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Sarah L McLaughlin
- Department of Cancer Cell Biology, West Virginia University School of Medicine; Morgantown, West Virginia; and
| | - Janelle C Stricker
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Seth M Stine
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; .,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
27
|
Dubes V, Parpaite T, Ducret T, Quignard JF, Mornet S, Reinhardt N, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Muller B, Savineau JP, Courtois A. Calcium signalling induced by in vitro exposure to silicium dioxide nanoparticles in rat pulmonary artery smooth muscle cells. Toxicology 2016; 375:37-47. [PMID: 27939335 DOI: 10.1016/j.tox.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The development and use of nanomaterials, especially engineered nanoparticles (NP), is expected to provide many benefits. But at the same time the development of such materials is also feared because of their potential human health risks. Indeed, NP display some characteristics similar to ultrafine environmental particles which are known to exert deleterious cardiovascular effects including pro-hypertensive ones. In this context, the effect of NP on calcium signalling, whose deregulation is often involved in hypertensive diseases, remain poorly described. We thus assessed the effect of SiO2 NP on calcium signalling by fluorescence imaging and on the proliferation response in rat pulmonary artery smooth muscle cells (PASMC). In PASMC, acute exposure to SiO2 NP, from 1 to 500μg/mL, produced an increase of the [Ca2+]i. In addition, when PASMC were exposed to NP at 200μg/mL, a proliferative response was observed. This calcium increase was even greater in PASMC isolated from rats suffering from pulmonary hypertension. The absence of extracellular calcium, addition of diltiazem or nicardipine (L-type voltage-operated calcium channel inhibitors both used at 10μM), and addition of capsazepine or HC067047 (TRPV1 and TRPV4 inhibitors used at 10μM and 5μM, respectively) significantly reduced this response. Moreover, this response was also inhibited by thapsigargin (SERCA inhibitor, 1μM), ryanodine (100μM) and dantrolene (ryanodine receptor antagonists, 10μM) but not by xestospongin C (IP3 receptor antagonist, 10μM). Thus, NP induce an intracellular calcium rise in rat PASMC originating from both extracellular and intracellular calcium sources. This study also provides evidence for the implication of TRPV channels in NP induced calcium rise that may highlight the role of these channels in the deleterious cardiovascular effects of NP.
Collapse
Affiliation(s)
- Virginie Dubes
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thibaud Parpaite
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Thomas Ducret
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-François Quignard
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Stéphane Mornet
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Nora Reinhardt
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; CNRS, ICMCB, UPR 9048, 87 Avenue du Dr Albert Schweitzer, 33600 Pessac, France.
| | - Isabelle Baudrimont
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Mathilde Dubois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Véronique Freund-Michel
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Roger Marthan
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut-Lévêque, Service d'Exploration Fonctionnelle Respiratoire, Avenue de Magellan, Pessac, F-33076, France.
| | - Bernard Muller
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Jean-Pierre Savineau
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France.
| | - Arnaud Courtois
- Université de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, 146, rue Léo Saignat, Bordeaux, F-33076, France; Centre Hospitalier Universitaire de Bordeaux, Centre AntiPoison et de Toxicovigilance d'Aquitaine et de Poitou Charente, Place Amélie Raba Léon, Bordeaux, F-33076, France.
| |
Collapse
|
28
|
Abukabda AB, Stapleton PA, Nurkiewicz TR. Metal Nanomaterial Toxicity Variations Within the Vascular System. Curr Environ Health Rep 2016; 3:379-391. [PMID: 27686080 PMCID: PMC5112123 DOI: 10.1007/s40572-016-0112-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity is discussed. Additionally, the toxicity of metallic and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity.
Collapse
Affiliation(s)
- Alaeddin B. Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A. Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
29
|
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biol Trace Elem Res 2016; 172:1-36. [PMID: 26554951 DOI: 10.1007/s12011-015-0550-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Samina Shabbir
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Saleem Khan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
30
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
31
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Zheng W, McKinney W, Kashon M, Salmen R, Castranova V, Kan H. The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system. Part Fibre Toxicol 2016; 13:8. [PMID: 26864021 PMCID: PMC4750189 DOI: 10.1186/s12989-016-0119-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Heart rate and cardiovascular function are regulated by the autonomic nervous system. Heart rate variability (HRV) as a marker reflects the activity of autonomic nervous system. The prognostic significance of HRV in cardiovascular disease has been reported in clinical and epidemiological studies. The present study focused on the influence of inhaled multi-walled carbon nanotubes (MWCNTs) on autonomic nervous system by HRV analysis. Methods Male Sprague–Dawley rats were pre-implanted with a telemetry device and kept in the individual cages for recovery. At week four after device implantation, rats were exposed to MWCNTs for 5 h at a concentration of 5 mg/m3. The real-time EKGs were recorded by a telemetry system at pre-exposure, during exposure, 1 day and 7 days post-exposure. HRV was measured by root mean square of successive differences (RMSSD); the standard deviation of inter-beat (RR) interval (SDNN); the percentage of successive RR interval differences greater than 5 ms (pNN5) and 10 ms (pNN10); low frequency (LF) and high frequency (HF). Results Exposure to MWCNTs increased the percentage of differences between adjacent R-R intervals over 10 ms (pNN10) (p < 0.01), RMSSD (p < 0.01), LF (p < 0.05) and HF (p < 0.01). Conclusions Inhalation of MWCNTs significantly alters the balance between sympathetic and parasympathetic nervous system. Whether such transient alterations in autonomic nervous performance would alter cardiovascular function and raise the risk of cardiovascular events in people with pre-existing cardiovascular conditions warrants further study.
Collapse
Affiliation(s)
- W Zheng
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - W McKinney
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - M Kashon
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - R Salmen
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - V Castranova
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| | - H Kan
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA. .,Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
33
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
34
|
Thompson LC, Holland NA, Snyder RJ, Luo B, Becak DP, Odom JT, Harrison BS, Brown JM, Gowdy KM, Wingard CJ. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol 2015; 310:L142-54. [PMID: 26589480 DOI: 10.1152/ajplung.00384.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Ryan J Snyder
- NanoHealth Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina; and
| | - Bin Luo
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Daniel P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Jillian T Odom
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Benjamin S Harrison
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Jared M Brown
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina;
| |
Collapse
|
35
|
Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 2015; 309:H1609-20. [PMID: 26386111 DOI: 10.1152/ajpheart.00546.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Steven L Hardy
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
36
|
Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment. Toxicol Appl Pharmacol 2015; 288:420-8. [PMID: 26375943 DOI: 10.1016/j.taap.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m(3), 5h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10(-4)M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - C R McBride
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - J Yi
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - T R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
37
|
Maurer MM, Donohoe GC, Maleki H, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry. J Proteomics 2015; 130:85-93. [PMID: 26375203 DOI: 10.1016/j.jprot.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Mounting evidence suggests that pulmonary exposure to nanoparticles (NPs) has a toxic effect on biological systems. A number of studies have shown that exposure to NPs result in systemic inflammatory response, oxidative stress, and leukocyte adhesion. However, significant knowledge gaps exist for understanding the key molecular mechanisms responsible for altered microvasculature function. Utilizing comprehensive LC-MS/MS and comparative proteomic analysis strategies, important proteins related to TiO2 NP exposure in rat plasma have been identified. Molecular pathway analysis of these proteins revealed 13 canonical pathways as being significant (p ≤ 0.05), but none were found to be significantly up or down-regulated (z>|2|). This work lays the foundation for future research that will monitor relative changes in protein abundance in plasma and tissue as a function of post-exposure time and TiO2 NP dosage to further elucidate mechanisms of pathway activation as well as to decipher other affected pathways.
Collapse
Affiliation(s)
- Megan M Maurer
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Carroll McBride
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
38
|
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015; 9:941-51. [PMID: 25475392 DOI: 10.3109/17435390.2014.984251] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Cody E Nichols
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Jinghai Yi
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Carroll R McBride
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Valerie C Minarchick
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Danielle L Shepherd
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| |
Collapse
|
39
|
Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 2015; 10:e0118778. [PMID: 25738830 PMCID: PMC4349695 DOI: 10.1371/journal.pone.0118778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
Exposure to hard metal tungsten carbide cobalt (WC-Co) "dusts" in enclosed industrial environments is known to contribute to the development of hard metal lung disease and an increased risk for lung cancer. Currently, the influence of local and systemic inflammation on disease progression following WC-Co exposure remains unclear. To better understand the relationship between WC-Co nanoparticle (NP) exposure and its resultant effects, the acute local pulmonary and systemic inflammatory responses caused by WC-Co NPs were explored using an intra-tracheal instillation (IT) model and compared to those of CeO2 (another occupational hazard) NP exposure. Sprague-Dawley rats were given an IT dose (0-500 μg per rat) of WC-Co or CeO2 NPs. Following 24-hr exposure, broncho-alveolar lavage fluid and whole blood were collected and analyzed. A consistent lack of acute local pulmonary inflammation was observed in terms of the broncho-alveolar lavage fluid parameters examined (i.e. LDH, albumin, and macrophage activation) in animals exposed to WC-Co NP; however, significant acute pulmonary inflammation was observed in the CeO2 NP group. The lack of acute inflammation following WC-Co NP exposure contrasts with earlier in vivo reports regarding WC-Co toxicity in rats, illuminating the critical role of NP dose and exposure time and bringing into question the potential role of impurities in particle samples. Further, we demonstrated that WC-Co NP exposure does not induce acute systemic effects since no significant increase in circulating inflammatory cytokines were observed. Taken together, the results of this in vivo study illustrate the distinct differences in acute local pulmonary and systemic inflammatory responses to NPs composed of WC-Co and CeO2; therefore, it is important that the outcomes of pulmonary exposure to one type of NPs may not be implicitly extrapolated to other types of NPs.
Collapse
Affiliation(s)
- Andrea L. Armstead
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
| | - Valerie C. Minarchick
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Dale W. Porter
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Timothy R. Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
| | - Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, West Virginia, United States of America
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, United States of America
- Mary Babb Randolph Cancer Center, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bianchi MG, Allegri M, Costa AL, Blosi M, Gardini D, Del Pivo C, Prina-Mello A, Di Cristo L, Bussolati O, Bergamaschi E. Titanium dioxide nanoparticles enhance macrophage activation by LPS through a TLR4-dependent intracellular pathway. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00193a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2nanoparticles enhance LPS-dependent NO production and cytokine secretion through a mechanism that involves TLR4-mediated p38-signalling and requires phagocytosis.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Unit of Occupational Medicine
- Department of Clinical and Experimental Medicine
- University of Parma
- 43026 Parma
- Italy
| | - Manfredi Allegri
- Unit of General Pathology
- Department of Biomedical
- Biotechnological and Translational Sciences
- University of Parma
- 43025 Parma
| | - Anna L. Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC)
- National Research Council of Italy
- 48018 Faenza (RA)
- Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC)
- National Research Council of Italy
- 48018 Faenza (RA)
- Italy
| | - Davide Gardini
- Institute of Science and Technology for Ceramics (CNR-ISTEC)
- National Research Council of Italy
- 48018 Faenza (RA)
- Italy
| | - Camilla Del Pivo
- Institute of Science and Technology for Ceramics (CNR-ISTEC)
- National Research Council of Italy
- 48018 Faenza (RA)
- Italy
| | - Adriele Prina-Mello
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Medicine
- Trinity College Dublin
- Dublin
- Ireland
| | - Luisana Di Cristo
- Unit of Occupational Medicine
- Department of Clinical and Experimental Medicine
- University of Parma
- 43026 Parma
- Italy
| | - Ovidio Bussolati
- Unit of General Pathology
- Department of Biomedical
- Biotechnological and Translational Sciences
- University of Parma
- 43025 Parma
| | - Enrico Bergamaschi
- Unit of Occupational Medicine
- Department of Clinical and Experimental Medicine
- University of Parma
- 43026 Parma
- Italy
| |
Collapse
|
41
|
Oberdörster G, Castranova V, Asgharian B, Sayre P. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:121-212. [PMID: 26361791 PMCID: PMC4706753 DOI: 10.1080/10937404.2015.1051611] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation. A minimum data set of specific bronchoalveolar lavage parameters is recommended. Retained lung burden data need to be gathered such that exposure-dose-response correlations may be analyzed and potency comparisons between materials and mammalian species are obtained considering dose metric parameters for interpretation of results. Finally, a list of research needs is presented to fill data gaps for further improving design, analysis, and interpretation and extrapolation of results of rodent inhalation studies to refine meaningful risk assessments for humans.
Collapse
Affiliation(s)
- Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Vincent Castranova
- Formerly with the National Institute for Occupational Safety and Health, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | | | - Phil Sayre
- Formerly with the U.S. Environmental Protection Agency, Washington, DC, USA
| |
Collapse
|
42
|
Donohoe GC, Maleki H, Arndt JR, Khakinejad M, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. A new ion mobility-linear ion trap instrument for complex mixture analysis. Anal Chem 2014; 86:8121-8. [PMID: 25068446 DOI: 10.1021/ac501527y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nunes ADC, Ramalho LS, Souza APS, Mendes EP, Colugnati DB, Zufelato N, Sousa MH, Bakuzis AF, Castro CH. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects. Int J Nanomedicine 2014; 9:3299-312. [PMID: 25031535 PMCID: PMC4099104 DOI: 10.2147/ijn.s64254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs). The samples were characterized by vibrating sample magnetometer, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. The direct effects of the MNPs on cardiac contractility were evaluated in isolated perfused rat hearts. The CiMNPs, but not PhMNPs and BaMNPs, induced a transient decrease in the left ventricular end-systolic pressure. The PhMNPs and BaMNPs, but not CiMNPs, induced an increase in left ventricular end-diastolic pressure, which resulted in a decrease in a left ventricular end developed pressure. Indeed, PhMNPs and BaMNPs also caused a decrease in the maximal rate of left ventricular pressure rise (+dP/dt) and maximal rate of left ventricular pressure decline (−dP/dt). The three MNPs studied induced an increase in the perfusion pressure of isolated hearts. BaMNPs, but not PhMNPs or CiMNPs, induced a slight vasorelaxant effect in the isolated aortic rings. None of the MNPs were able to change heart rate or arterial blood pressure in conscious rats. In summary, although the MNPs were able to induce effects ex vivo, no significant changes were observed in vivo. Thus, given the proper dosages, these MNPs should be considered for possible therapeutic applications.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Alvaro P S Souza
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Elizabeth P Mendes
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil ; National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| | - Diego B Colugnati
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Marcelo H Sousa
- Faculty of Ceilândia, University of Brasília, Brasília-DF, Brazil
| | | | - Carlos H Castro
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil ; National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Thompson LC, Urankar RN, Holland NA, Vidanapathirana AK, Pitzer JE, Han L, Sumner SJ, Lewin AH, Fennell TR, Lust RM, Brown JM, Wingard CJ. C₆₀ exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicol Sci 2014; 138:365-78. [PMID: 24431213 DOI: 10.1093/toxsci/kfu008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential uses of engineered C₆₀ fullerene (C₆₀) have expanded in recent decades to include industrial and biomedical applications. Based on clinical findings associated with particulate matter exposure and our data with multi-walled carbon nanotubes, we hypothesized that ischemia/reperfusion (I/R) injury and pharmacological responses in isolated coronary arteries would depend upon the route of exposure and gender in rats instilled with C₆₀. Male and female Sprague Dawley rats were used to test this hypothesis by surgical induction of cardiac I/R injury in situ 24 h after intratracheal (IT) or intravenous (IV) instillation of 28 μg of C₆₀ formulated in polyvinylpyrrolidone (PVP) or PVP vehicle. Serum was collected for quantification of various cytokines. Coronary artery segments were isolated for assessment of vasoactive pharmacology via wire myography. Both IV and IT exposure to C₆₀ resulted in expansion of myocardial infarction in male and female rats following I/R injury. Serum-collected post-I/R showed elevated concentrations of interleukin-6 and monocyte chemotactic protein-1 in male rats exposed to IV C₆₀. Coronary arteries isolated from male rats exposed to IT C₆₀ demonstrated augmented vasocontraction in response to endothelin-1 that was attenuated with Indomethacin. IV C₆₀ exposure resulted in impaired acetylcholine relaxation in male rats and IT C₆₀ exposure resulted in depressed vasorelaxation in response to sodium nitroprusside in female rats. Based on these data, we conclude that IT and IV exposure to C₆₀ results in unique cardiovascular consequences that may favor heightened coronary resistance and myocardial susceptibility to I/R injury.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 2013; 209:227.e1-11. [PMID: 23643573 DOI: 10.1016/j.ajog.2013.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/01/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. Although the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding "special" circulations is the enhanced maternal system to support fetal development. The Barker hypothesis proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was 2-fold: (1) to determine whether maternal ENM exposure alters uterine and/or fetal microvascular function and (2) test the Barker hypothesis at the microvascular level. STUDY DESIGN Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3 ± 0.039 mg/m(3)/hr, 5 hr/d, 8.2 ± 0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150 μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. RESULTS ENM exposures led to significant maternal and fetal microvascular dysfunction, which was seen as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment that impacted fetal weight. The fetal microvessels that were isolated from exposed dams demonstrated significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. CONCLUSION To our knowledge, this is the first report to provide evidence that maternal ENM inhalation is capable of influencing fetal health and that the Barker hypothesis is applicable at the microvascular level.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506-9105, USA
| | | | | | | | | | | |
Collapse
|
46
|
Knuckles TL, Stapleton PA, Minarchick VC, Esch L, McCawley M, Hendryx M, Nurkiewicz TR. Air pollution particulate matter collected from an Appalachian mountaintop mining site induces microvascular dysfunction. Microcirculation 2013; 20:158-69. [PMID: 22963349 DOI: 10.1111/micc.12014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/05/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Air pollution PM is associated with cardiovascular morbidity and mortality. In Appalachia, PM from mining may represent a health burden to this sensitive population that leads the nation in cardiovascular disease, among others. Cardiovascular consequences following inhalation of PM(MTM) are unclear, but must be identified to establish causal effects. METHODS PM was collected within 1 mile of an active MTM site in southern WV. The PM was extracted and was primarily <10 μm in diameter (PM10), consisting largely of sulfur (38%) and silica (24%). Adult male rats were IT with 300 μg PM(MTM) . Twenty-four hours following exposure, rats were prepared for intravital microscopy, or isolated arteriole experiments. RESULTS PM(MTM) exposure blunted endothelium-dependent dilation in mesenteric and coronary arterioles by 26%, and 25%, respectively, as well as endothelium-independent dilation. In vivo, PM(MTM) exposure inhibited endothelium-dependent arteriolar dilation (60% reduction). α-adrenergic receptor blockade inhibited PVNS-induced vasoconstriction in exposed animals compared with sham. CONCLUSIONS These data suggest that PM(MTM) exposure impairs microvascular function in disparate microvascular beds, through alterations in NO-mediated dilation and sympathetic nerve influences. Microvascular dysfunction may contribute to cardiovascular disease in regions with MTM sites.
Collapse
Affiliation(s)
- Travis L Knuckles
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Yi J, Chen BT, Schwegler-Berry D, Frazer D, Castranova V, McBride C, Knuckles TL, Stapleton PA, Minarchick VC, Nurkiewicz TR. Whole-body nanoparticle aerosol inhalation exposures. J Vis Exp 2013:e50263. [PMID: 23685643 PMCID: PMC3679583 DOI: 10.3791/50263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling time (minute). The chamber pressure, temperature, relative humidity (RH), O2 and CO2 concentrations were monitored and controlled continuously. Nano-TiO2 aerosols collected on Nuclepore filters were analyzed with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis. In summary, we report that the nano-particle aerosols generated and delivered to our exposure chamber have: 1) steady mass concentration; 2) homogenous composition free of contaminants; 3) stable particle size distributions with a count-median aerodynamic diameter of 157 nm during aerosol generation. This system reliably and repeatedly creates test atmospheres that simulate occupational, environmental or domestic ENM aerosol exposures.
Collapse
Affiliation(s)
- Jinghai Yi
- Center for Cardiovascular and Respiratory Sciences, West Virginia University, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Castranova V, Schulte PA, Zumwalde RD. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 2013; 46:642-9. [PMID: 23210709 PMCID: PMC4690205 DOI: 10.1021/ar300004a] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbon nanotubes (CNTs) are carbon atoms arranged in a crystalline graphene lattice with a tubular morphology. CNTs exhibit high tensile strength, possess unique electrical properties, are durable, and can be functionalized. These properties allow applications as structural materials, in electronics, as heating elements, in batteries, in the production of stain-resistant fabric, for bone grafting and dental implants, and for targeted drug delivery. Carbon nanofibers (CNFs) are strong, flexible fibers that are currently used to produce composite materials. Agitation can lead to aerosolized CNTs and CNFs, and peak airborne particulate concentrations are associated with workplace activities such as weighing, transferring, mixing, blending, or sonication. Most airborne CNTs or CNFs found in workplaces are loose agglomerates of micrometer diameter. However, due to their low density, they linger in workplace air for a considerable time, and a large fraction of these structures are respirable. In rat and mouse models, pulmonary exposure to single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), or CNFs causes the following pulmonary reactions: acute pulmonary inflammation and injury, rapid and persistent formation of granulomatous lesions at deposition sites of large CNT agglomerates, and rapid and progressive alveolar interstitial fibrosis at deposition sites of more dispersed CNT or CNF structures. Pulmonary exposure to SWCNTs can induce oxidant stress in aortic tissue and increases plaque formation in an atherosclerotic mouse model. Pulmonary exposure to MWCNTs depresses the ability of coronary arterioles to respond to dilators. These cardiovascular effects may result from neurogenic signals from sensory irritant receptors in the lung. Pulmonary exposure to MWCNTs also upregulates mRNA for inflammatory mediators in selected brain regions, and pulmonary exposure to SWCNTs upregulates the baroreceptor reflex. In addition, pulmonary exposure to MWCNTs may induce levels of inflammatory mediators in the blood, which may affect the cardiovascular system. Intraperitoneal instillation of MWCNTs in mice has been associated with abdominal mesothelioma. MWCNTs deposited in the distal alveoli can migrate to the intrapleural space, and MWCNTs injected in the intrapleural space can cause lesions at the parietal pleura. However, further studies are required to determine whether pulmonary exposure to MWCNTs can induce pleural lesions or mesothelioma. In light of the anticipated growth in the production and use of CNTs and CNFs, worker exposure is possible. Because pulmonary exposure to CNTs and CNFs causes inflammatory and fibrotic reactions in the rodent lung, adverse health effects in workers represent a concern. NIOSH has conducted a risk assessment using available animal exposure-response data and is developing a recommended exposure limit for CNTs and CNFs. Evidence indicates that engineering controls and personal protective equipment can significantly decrease workplace exposure to CNTs and CNFs. Considering the available data on health risks, it appears prudent to develop prevention strategies to minimize workplace exposure. These strategies would include engineering controls (enclosure, exhaust ventilation), worker training, administrative controls, implementation of good handling practices, and the use of personal protective equipment (such as respirators) when necessary. NIOSH has published a document containing recommendations for the safe handling of nanomaterials.
Collapse
Affiliation(s)
- Vincent Castranova
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
49
|
O'Shaughnessy PT. Occupational health risk to nanoparticulate exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:49-62. [PMID: 24592427 DOI: 10.1039/c2em30631j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The evolution of nanotechnology from laboratory research to full-scale production has led to the need to understand the health risk to workers in that industry from the dispersion of nanoparticles escaping from various aspects of the production process. Risk is a function of both the hazard imposed by a compound or material and the expected exposure level. Therefore, research to evaluate proper exposure assessment methods specific to nanoparticles in a workplace atmosphere, as well as research on the toxicological properties of nanoparticles, has been conducted to better understand methods for protecting the health of workers in this burgeoning industry. From an assessment standpoint, researchers are evaluating both the accuracy and validity of currently available instruments and the merits of each of the three metrics – mass, surface area, and count – as indicators of exposure that provide the most relevant indication of worker health risk. Likewise, toxicologists are employing both in vitro and in vivo methods to understand the potential hazard to workers who may inhale aerosolized nanoparticles. This review provides an overview of current research efforts in nanoparticle exposure assessment and toxicology with an emphasis on how information from both fields of study combine to provide guidance to minimize the health risk posed by nanoparticulate exposure in the workplace.
Collapse
|
50
|
Thompson LC, Frasier CR, Sloan RC, Mann EE, Harrison BS, Brown JM, Brown DA, Wingard CJ. Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology 2012; 8:38-49. [PMID: 23102262 DOI: 10.3109/17435390.2012.744858] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The growing use of multi-walled carbon nanotubes (MWCNTs) across industry has increased human exposures. We tested the hypothesis that pulmonary instillation of MWCNTs would exacerbate cardiac ischaemia/reperfusion (I/R) injury. One day following intratracheal instillation of 1, 10 or 100 μg MWCNT in Sprague-Dawley rats, we used a Langendorff isolated heart model to examine cardiac I/R injury. In the 100 μg MWCNT group we report increased premature ventricular contractions at baseline and increased myocardial infarction. This was associated with increased endothelin-1 (ET-1) release and depression of coronary flow during early reperfusion. We also tested if isolated coronary vascular responses were affected by MWCNT instillation and found trends for enhanced coronary tone, which were dependent on ET-1, cyclooxygenase, thromboxane and Rho-kinase. We concluded that instillation of MWCNTs promoted cardiac injury and depressed coronary flow by invoking vasoconstrictive mechanisms involving ET-1, cyclooxygenase, thromboxane and Rho-kinase.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University , Greenville, NC , USA
| | | | | | | | | | | | | | | |
Collapse
|