1
|
Cyr Y, Gourvest M, Ciabattoni GO, Zhang T, Newman AA, Zahr T, Delbare S, Schlamp F, Dittmann M, Moore KJ, van Solingen C. lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages. Life Sci Alliance 2025; 8:e202403021. [PMID: 39773901 PMCID: PMC11707381 DOI: 10.26508/lsa.202403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
Collapse
Affiliation(s)
- Yannick Cyr
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Morgane Gourvest
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- https://ror.org/0190ak572 Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Tracy Zhang
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexandra Ac Newman
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Tarik Zahr
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sofie Delbare
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- https://ror.org/0190ak572 Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Kathryn J Moore
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- https://ror.org/0190ak572 Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Coen van Solingen
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Bang SY, Shim SC. Early human migration determines the risk of being attacked by wolves: ethnic gene diversity on the development of systemic lupus erythematosus. JOURNAL OF RHEUMATIC DISEASES 2024; 31:200-211. [PMID: 39355544 PMCID: PMC11439634 DOI: 10.4078/jrd.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 10/03/2024]
Abstract
The prevalence of systemic lupus erythematosus (SLE) varies significantly based on ethnicity rather than geographic distribution; thus, the prevalence is higher in Asian, Hispanic, and Black African populations than in European populations. The risk of developing lupus nephritis (LN) is the highest among Asian populations. Therefore, we hypothesize that human genetic diversity between races has occurred through the early human migration and human genetic adaptation to various environments, with a particular focus on pathogens. Additionally, we compile the currently available evidence on the ethnic gene diversity of SLE and how it relates to disease severity. The human leukocyte antigen (HLA) locus is well established as associated with susceptibility to SLE; specific allele distributions have been observed across diverse populations. Notably, specific amino acid residues within these HLA loci demonstrate significant associations with SLE risk. The non-HLA genetic loci associated with SLE risk also varies across diverse ancestries, implicating distinct immunological pathways, such as the type-I interferon and janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways in Asians, the type-II interferon signaling pathway in Europeans, and B cell activation pathway in Africans. Furthermore, assessing individual genetic susceptibility using genetic risk scores (GRS) for SLE helps to reveal the diverse prevalence, age of onset, and clinical phenotypes across different ethnicities. A higher GRS increases the risk of LN and the severity of SLE. Therefore, understanding ethnic gene diversity is crucial for elucidating disease mechanisms and SLE severity, which could enable the development of novel drugs specific to each race.
Collapse
Affiliation(s)
- So-Young Bang
- Division of Rheumatology, Hanyang University Guri Hospital, Guri, Korea
- Hanyang University Institute for Rheumatology Research and Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
5
|
Purbey PK, Seo J, Paul MK, Iwamoto KS, Daly AE, Feng AC, Champhekar AS, Langerman J, Campbell KM, Schaue D, McBride WH, Dubinett SM, Ribas A, Smale ST, Scumpia PO. Opposing tumor-cell-intrinsic and -extrinsic roles of the IRF1 transcription factor in antitumor immunity. Cell Rep 2024; 43:114289. [PMID: 38833371 PMCID: PMC11315447 DOI: 10.1016/j.celrep.2024.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Joowon Seo
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ameya S Champhekar
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven M Dubinett
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
6
|
Cho Y, Kim H, Yook G, Yong S, Kim S, Lee N, Kim YJ, Kim JH, Kim TW, Chang MJ, Lee KM, Chang CB, Kang SB, Kim JH. Predisposal of Interferon Regulatory Factor 1 Deficiency to Accumulate DNA Damage and Promote Osteoarthritis Development in Cartilage. Arthritis Rheumatol 2024; 76:882-893. [PMID: 38268484 DOI: 10.1002/art.42815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Interferon regulatory factor 1 (IRF1) is a transcriptional regulator conventionally associated with immunomodulation. Recent molecular analyses mapping DNA binding sites of IRF1 have suggested its potential function in DNA repair. However, the physiologic significance of this noncanonical function remains unexplored. Here, we investigated the role of IRF1 in osteoarthritis (OA), a condition marked by senescence and chronic joint inflammation. METHODS OA progression was examined in wild-type and Irf1-/- mice using histologic assessments and microcomputed tomography analysis of whole-joint OA manifestations and behavioral assessments of joint pain. An integrated analysis of assay for transposase-accessible chromatin with sequencing and whole transcriptome data was conducted for the functional assessment of IRF1 in chondrocytes. The role of IRF1 in DNA repair and senescence was investigated by assaying γ-H2AX foci and senescence-associated beta-galactosidase activity. RESULTS Our genome-wide investigation of IRF1 footprinting in chondrocytes revealed its primary occupancies in the promoters of DNA repair genes without noticeable footprint patterns in those of interferon-responsive genes. Chondrocytes lacking IRF1 accumulated irreversible DNA damage under oxidative stress, facilitating their entry into cellular senescence. IRF1 was down-regulated in the cartilage of human and mouse OA. Although IRF1 overexpression did not elicit an inflammatory response in joints or affect OA development, genetic deletion of Irf1 caused enhanced chondrocyte senescence and exacerbated post-traumatic OA in mice. CONCLUSION IRF1 offers DNA damage surveillance in chondrocytes, protecting them from oxidative stress associated with OA risk factors. Our study provides a crucial and cautionary perspective that compromising IRF1 activity renders chondrocytes vulnerable to cellular senescence and promotes OA development.
Collapse
Affiliation(s)
- Yongsik Cho
- Institute for Basic Science and Seoul National University, Seoul, South Korea, and Liflex Science, Cheongju, South Korea
| | - Hyeonkyeong Kim
- Institute for Basic Science and Seoul National University, Seoul, South Korea, and Liflex Science, Cheongju, South Korea
| | - Geunho Yook
- Institute for Basic Science and Seoul National University, Seoul, South Korea
| | - Sangmin Yong
- Institute for Basic Science and Seoul National University, Seoul, South Korea
| | - Soy Kim
- Institute for Basic Science and Seoul National University, Seoul, South Korea
| | - Narae Lee
- Institute for Basic Science and Seoul National University, Seoul, South Korea
| | - Yi-Jun Kim
- Ewha Womans University, Seoul, South Korea
| | | | - Tae Woo Kim
- Seoul National University and Boramae Hospital, Seoul, South Korea
| | - Moon Jong Chang
- Seoul National University and Boramae Hospital, Seoul, South Korea
| | - Kyoung Min Lee
- Seoul National University and Boramae Hospital, Seoul, South Korea
| | - Chong Bum Chang
- Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung-Baik Kang
- Seoul National University and Boramae Hospital, Seoul, South Korea
| | - Jin-Hong Kim
- Seoul National University and Institute for Basic Science, Seoul, South Korea, and Institute of Green-Bio Science and Technology, Pyeongchang, South Korea
| |
Collapse
|
7
|
Liu Y, Xu XQ, Li WJ, Zhang B, Meng FZ, Wang X, Majid SM, Guo Z, Ho WZ. Cytosolic DNA sensors activation of human astrocytes inhibits herpes simplex virus through IRF1 induction. Front Cell Infect Microbiol 2024; 14:1383811. [PMID: 38808062 PMCID: PMC11130358 DOI: 10.3389/fcimb.2024.1383811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction While astrocytes participate in the CNS innate immunity against herpes simplex virus type 1 (HSV-1) infection, they are the major target for the virus. Therefore, it is of importance to understand the interplay between the astrocyte-mediated immunity and HSV-1 infection. Methods Both primary human astrocytes and the astrocyte line (U373) were used in this study. RT-qPCR and Western blot assay were used to measure IFNs, the antiviral IFN-stimulated genes (ISGs), IFN regulatory factors (IRFs) and HSV-1 DNA. IRF1 knockout or knockdown was performed with CRISPR/Cas9 and siRNA transfection techniques. Results Poly(dA:dT) could inhibit HSV-1 replication and induce IFN-β/IFN-λs production in human astrocytes. Poly(dA:dT) treatment of astrocytes also induced the expression of the antiviral ISGs (Viperin, ISG56 and MxA). Among IRFs members examined, poly(dA:dT) selectively unregulated IRF1 and IRF9, particularly IRF1 in human astrocytes. The inductive effects of poly(dA:dT) on IFNs and ISGs were diminished in the IRF1 knockout cells. In addition, IRF1 knockout attenuated poly(dA:dT)-mediated HSV-1 inhibition in the cells. Conclusion The DNA sensors activation induces astrocyte intracellular innate immunity against HSV-1. Therefore, targeting the DNA sensors has potential for immune activation-based HSV-1 therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Jing Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Biao Zhang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Feng-Zhen Meng
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Safah M. Majid
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Zihan Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Fan S, Popli S, Chakravarty S, Chakravarti R, Chattopadhyay S. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation. J Biol Chem 2024; 300:107200. [PMID: 38508315 PMCID: PMC11040127 DOI: 10.1016/j.jbc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.
Collapse
Affiliation(s)
- Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
9
|
Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 2024; 23:281-300. [PMID: 38263456 DOI: 10.1038/s41573-023-00859-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Mansoor M Amiji
- Departments of Pharmaceutical Sciences and Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Xu X, Qiao D, Brasier AR. Cooperative interaction of interferon regulatory factor -1 and bromodomain-containing protein 4 on RNA polymerase activation for intrinsic innate immunity. Front Immunol 2024; 15:1366235. [PMID: 38601157 PMCID: PMC11004252 DOI: 10.3389/fimmu.2024.1366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Unraveling the dynamics of hepatitis C virus adaptive mutations and their impact on antiviral responses in primary human hepatocytes. J Virol 2024; 98:e0192123. [PMID: 38319104 PMCID: PMC10949430 DOI: 10.1128/jvi.01921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
Affiliation(s)
- Nicola Frericks
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | | | - Maike Herrmann
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Florian W. R. Vondran
- Department for General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Clinic for General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
| |
Collapse
|
12
|
Stanifer ML, Boulant S. Differential signaling by type-I and type-III interferons in mucosa. Curr Opin Immunol 2024; 86:102400. [PMID: 38118395 DOI: 10.1016/j.coi.2023.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/22/2023]
Abstract
Mucosal surfaces are barrier sites that protect the body from the outside environment. They have developed mechanisms to handle microbiota-associated triggers while remaining responsive to pathogens. Cells at mucosal surfaces rely on both the type-I and -III interferons (IFNs) as key cytokines to protect the epithelium itself and to prevent systemic spread of viral infections. Type-I and -III IFNs have been shown to use distinct receptors but similar JAK/STAT signaling cascades to elicit the induction of IFN-stimulated genes. These overlapping cascades led to the original hypothesis that both IFNs provided redundant functions at mucosal surfaces. However, accumulating evidence points toward a different model where each IFN provides a unique protective and homeostatic function as well as distinct antiviral protection to epithelial cells. This review will highlight recent work shedding light on the differences in how both type -I and -III IFNs induce receptor-mediated signaling to protect mucosal surfaces.
Collapse
Affiliation(s)
- Megan L Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Lu X, Yi M, Hu Z, Yang T, Zhang W, Marsh ENG, Jia K. Feedback loop regulation between viperin and viral hemorrhagic septicemia virus through competing protein degradation pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574905. [PMID: 38260481 PMCID: PMC10802422 DOI: 10.1101/2024.01.09.574905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Viperin is an antiviral protein that exhibits a remarkably broad spectrum of antiviral activity. Viperin-like proteins are found all kingdoms of life, suggesting it is an ancient component of the innate immune system. However, viruses have developed strategies to counteract viperin's effects. Here, we describe a feedback loop between viperin and viral hemorrhagic septicemia virus (VHSV), a common fish pathogen. We show that Lateolabrax japonicus viperin (Ljviperin) is induced by both IFN-independent and IFN-dependent pathways, with the C-terminal domain of Ljviperin being important for its anti-VHSV activity. Ljviperin exerts an antiviral effect by binding both the nucleoprotein (N) and phosphoprotein (P) of VHSV and induces their degradation through the autophagy pathway, which is an evolutionarily conserved antiviral mechanism. However, counteracting viperin's activity, N protein targets and degrades transcription factors that up-regulate Ljviperin expression, interferon regulatory factor (IRF) 1 and IRF9, through ubiquitin-proteasome pathway. Together, our results reveal a previously unknown feedback loop between viperin and virus, providing potential therapeutic targets for VHSV prevention. Importance Viral hemorrhagic septicaemia (VHS) is a contagious disease caused by the viral hemorrhagic septicaemia virus (VHSV), which poses a threat to over 80 species of marine and freshwater fish. Currently, there are no effective treatments available for this disease. Understanding the mechanisms of VHSV-host interaction is crucial for preventing viral infections. Here, we found that, as an ancient antiviral protein, viperin degrades the N and P proteins of VHSV through the autophagy pathway. Additionally, the N protein also impacts the biological functions of IRF1 and IRF9 through the ubiquitin-proteasome pathway, leading to the suppression of viperin expression. Therefore, the N protein may serve as a potential virulence factor for the development of VHSV vaccines and screening of antiviral drugs. Our research will serve as a valuable reference for the development of strategies to prevent VHSV infections.
Collapse
Affiliation(s)
- Xiaobing Lu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Meisheng Yi
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Zhe Hu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Taoran Yang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - Wanwan Zhang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| | - E. Neil G. Marsh
- Departments of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kuntong Jia
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, 519082, China
| |
Collapse
|
14
|
Castillo Cabrera J, Dang H, Graves A, Zhang Z, Torres-Castillo J, Li K, King Z, Liu P, Aubé J, Bear JE, Damania B, Hagan RS, Baldwin AS. AGC kinase inhibitors regulate STING signaling through SGK-dependent and SGK-independent mechanisms. Cell Chem Biol 2023; 30:1601-1616.e6. [PMID: 37939709 PMCID: PMC10842197 DOI: 10.1016/j.chembiol.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 07/22/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1. Deletion of SGK1/3 in a macrophage cell line did not block TBK1/IRF3 activation but decreased expression of transcription factors, such as IRF7 and STAT1, required for the innate immune response. Other AGC kinase inhibitors blocked TBK1 and IRF3 activation suggesting common action on a critical regulatory node in the STING pathway. These studies reveal both SGK-dependent and SGK-independent mechanisms in the innate immune response and indicate an approach to block aberrant Ifnb1 expression.
Collapse
Affiliation(s)
- Johnny Castillo Cabrera
- Pathobiology and Translational Sciences Graduate Program, Department of Pathology and Laboratory Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Graves
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose Torres-Castillo
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zayna King
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James E Bear
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Mazzarella L, Santoro F, Ravasio R, Fumagalli V, Massa PE, Rodighiero S, Gavilán E, Romanenghi M, Duso BA, Bonetti E, Manganaro L, Pallavi R, Trastulli D, Pallavicini I, Gentile C, Monzani S, Leonardi T, Pasqualato S, Buttinelli G, Di Martino A, Fedele G, Schiavoni I, Stefanelli P, Meroni G, de Francesco R, Steinkuhler C, Fossati G, Iannacone M, Minucci S, Pelicci PG. Inhibition of the lysine demethylase LSD1 modulates the balance between inflammatory and antiviral responses against coronaviruses. Sci Signal 2023; 16:eade0326. [PMID: 38113337 DOI: 10.1126/scisignal.ade0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Fabio Santoro
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Paul E Massa
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Gavilán
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mauro Romanenghi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno A Duso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Emanuele Bonetti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lara Manganaro
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Deborah Trastulli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Gentile
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Monzani
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Sebastiano Pasqualato
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriele Buttinelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Meroni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Raffaele de Francesco
- Virology, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Christian Steinkuhler
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Gianluca Fossati
- Preclinical R&D Italfarmaco SpA, Via dei Lavoratori 54, 20092 Cinisello Balsamo (Milan), Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Biosciences, University of Milan, Milan 20123, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan 20122, Italy
| |
Collapse
|
16
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Hepatitis C virus cell culture adaptive mutations enhance cell culture propagation by multiple mechanisms but boost antiviral responses in primary human hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568224. [PMID: 38045248 PMCID: PMC10690267 DOI: 10.1101/2023.11.22.568224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants which underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establishing persistence. Author Summary HCV infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms which underly persistence are incompletely defined. We utilized a long-term cell culture adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
|
18
|
Mamatis JE, Gallardo-Flores CE, Sangwan U, Tooley TH, Walsh T, Colpitts CC. Induction of antiviral gene expression by cyclosporine A, but not inhibition of cyclophilin A or B, contributes to its restriction of human coronavirus 229E infection in a lung epithelial cell line. Antiviral Res 2023; 219:105730. [PMID: 37805057 DOI: 10.1016/j.antiviral.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The development of antivirals with an extended spectrum of activity is an attractive possibility to protect against future emerging coronaviruses (CoVs). Cyclosporine A (CsA), a clinically approved immunosuppressive drug, has established antiviral activity against diverse unrelated viruses, including several CoVs. However, its antiviral mechanisms of action against CoV infection have remained elusive, precluding the rational design of non-immunosuppressive derivatives with improved antiviral activities. In this study, we evaluated the mechanisms of CsA against HCoV-229E infection in a human lung epithelial cell line. We demonstrate that the antiviral activity of CsA against HCoV-229E is independent of classical CsA target proteins, cyclophilin A or B, which are not required host factors for HCoV-229E in A549 cells. Instead, CsA treatment induces expression of antiviral genes in a manner dependent on interferon regulatory factor 1, but independent of classical interferon responses, which contributes to its inhibitory effect against HCoV-229E infection. Our results also point to a role for the HCoV-229E nucleoprotein in antagonizing activation of type I interferon, but we show that CsA treatment does not affect evasion of innate immune signalling pathways by HCoV-229E. Overall, our findings further the understanding of the antiviral mechanisms of CsA against CoV infection and highlight a novel immunomodulatory strategy to inhibit CoV infection that may inform future drug development efforts.
Collapse
Affiliation(s)
- John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Carla E Gallardo-Flores
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ujjwal Sangwan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Trinity H Tooley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Taylor Walsh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
19
|
Rundberg Nilsson AJ, Xian H, Shalapour S, Cammenga J, Karin M. IRF1 regulates self-renewal and stress responsiveness to support hematopoietic stem cell maintenance. SCIENCE ADVANCES 2023; 9:eadg5391. [PMID: 37889967 PMCID: PMC10610924 DOI: 10.1126/sciadv.adg5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation. Our findings demonstrate that the loss of IRF1 from mouse HSCs significantly impairs self-renewal, increases stress-induced proliferation, and confers resistance to apoptosis. In addition, given the frequent abnormal expression of IRF1 in leukemia, we explored the potential of IRF1 expression level as a stratification marker for human acute myeloid leukemia. We show that IRF1-based stratification identifies distinct cancer-related signatures in patient subgroups. These findings establish IRF1 as a pivotal HSC controller and provide previously unknown insights into HSC regulation, with potential implications to IRF1 functions in the context of leukemia.
Collapse
Affiliation(s)
- Alexandra J. S. Rundberg Nilsson
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jörg Cammenga
- Division of Molecular Medicine and Gene Therapy, Institution for Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
- Lund Stem Cell Center, Medical Faculty, Lund University, Lund, Sweden
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Garrett O, Whalen KE. A bacterial quorum sensing signal is a potent inhibitor of de novo pyrimidine biosynthesis in the globally abundant Emiliania huxleyi. Front Microbiol 2023; 14:1266972. [PMID: 37869665 PMCID: PMC10587436 DOI: 10.3389/fmicb.2023.1266972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacterium Pseudoalteromonas spp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophore Emiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version of E. huxleyi DHODH was heterologously expressed in E. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Ki of 2.3 nM) of E. huxleyi DHODH. E. huxleyi cells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposed E. huxleyi including significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.
Collapse
Affiliation(s)
| | - Kristen E. Whalen
- Department of Biology, Haverford College, Haverford, PA, United States
| |
Collapse
|
21
|
Waugh S, Ranasinghe A, Gomez A, Houston S, Lithgow KV, Eshghi A, Fleetwood J, Conway KME, Reynolds LA, Cameron CE. Syphilis and the host: multi-omic analysis of host cellular responses to Treponema pallidum provides novel insight into syphilis pathogenesis. Front Microbiol 2023; 14:1254342. [PMID: 37795301 PMCID: PMC10546344 DOI: 10.3389/fmicb.2023.1254342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Syphilis is a chronic, multi-stage infection caused by the extracellular bacterium Treponema pallidum ssp. pallidum. Treponema pallidum widely disseminates through the vasculature, crosses endothelial, blood-brain and placental barriers, and establishes systemic infection. Although the capacity of T. pallidum to traverse the endothelium is well-described, the response of endothelial cells to T. pallidum exposure, and the contribution of this response to treponemal traversal, is poorly understood. Methods To address this knowledge gap, we used quantitative proteomics and cytokine profiling to characterize endothelial responses to T. pallidum. Results Proteomic analyses detected altered host pathways controlling extracellular matrix organization, necroptosis and cell death, and innate immune signaling. Cytokine analyses of endothelial cells exposed to T. pallidum revealed increased secretion of interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF), and decreased secretion of monocyte chemoattractant protein-1 (MCP-1). Discussion This study provides insight into the molecular basis of syphilis disease symptoms and the enhanced susceptibility of individuals infected with syphilis to HIV co-infection. These investigations also enhance understanding of the host response to T. pallidum exposure and the pathogenic strategies used by T. pallidum to disseminate and persist within the host. Furthermore, our findings highlight the critical need for inclusion of appropriate controls when conducting T. pallidum-host cell interactions using in vitro- and in vivo-grown T. pallidum.
Collapse
Affiliation(s)
- Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Akash Ranasinghe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karen V. Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Jenna Fleetwood
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Kate M. E. Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
22
|
Qiao D, Xu X, Zhang Y, Yang J, Brasier AR. RSV replication modifies the XBP1s binding complex on the IRF1 upstream enhancer to potentiate the mucosal anti-viral response. Front Immunol 2023; 14:1197356. [PMID: 37564646 PMCID: PMC10411192 DOI: 10.3389/fimmu.2023.1197356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction The unfolded protein response (UPR) has emerged as an important signaling pathway mediating anti-viral defenses to Respiratory Syncytial Virus (RSV) infection. Earlier we found that RSV replication predominantly activates the evolutionarily conserved Inositol Requiring Enzyme 1α (IRE1α)-X-Box Binding Protein 1 spliced (XBP1s) arm of the Unfolded Protein Response (UPR) producing inflammation, metabolic adaptation and cellular plasticity, yet the mechanisms how the UPR potentiates inflammation are not well understood. Methods To understand this process better, we examined the genomic response integrating RNA-seq and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analyses. These data were integrated with an RNA-seq analysis conducted on RSV-infected small airway cells ± an IRE1α RNAse inhibitor. Results We identified RSV induced expression changes in ~3.2K genes; of these, 279 required IRE1α and were enriched in IL-10/cytokine signaling pathways. From this data set, we identify those genes directly under XBP1s control by CUT&RUN. Although XBP1s binds to ~4.2 K high-confidence genomic binding sites, surprisingly only a small subset of IL10/cytokine signaling genes are directly bound. We further apply CUT&RUN to find that RSV infection enhances XBP1s loading on 786 genomic sites enriched in AP1/Fra-1, RELA and SP1 binding sites. These control a subset of cytokine regulatory factor genes including IFN response factor 1 (IRF1), CSF2, NFKB1A and DUSP10. Focusing on the downstream role of IRF1, selective knockdown (KD) and overexpression experiments demonstrate IRF1 induction controls type I and -III interferon (IFN) and IFN-stimulated gene (ISG) expression, demonstrating that ISG are indirectly regulated by XBP1 through IRF1 transactivation. Examining the mechanism of IRF1 activation, we observe that XBP1s directly binds a 5' enhancer sequence whose XBP1s loading is increased by RSV. The functional requirement for the enhancer is demonstrated by targeting a dCas9-KRAB silencer, reducing IRF1 activation. Chromatin immunoprecipitation shows that XBP1 is required, but not sufficient, for RSV-induced recruitment of activated phospho-Ser2 Pol II to the enhancer. Discussion We conclude that XBP1s is a direct activator of a core subset of IFN and cytokine regulatory genes in response to RSV. Of these IRF1 is upstream of the type III IFN and ISG response. We find that RSV modulates the XBP1s binding complex on the IRF1 5' enhancer whose activation is required for IRF1 expression. These findings provide novel insight into how the IRE1α-XBP1s pathway potentiates airway mucosal anti-viral responses.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Sekrecka A, Kluzek K, Sekrecki M, Boroujeni ME, Hassani S, Yamauchi S, Sada K, Wesoly J, Bluyssen HAR. Time-dependent recruitment of GAF, ISGF3 and IRF1 complexes shapes IFNα and IFNγ-activated transcriptional responses and explains mechanistic and functional overlap. Cell Mol Life Sci 2023; 80:187. [PMID: 37347298 DOI: 10.1007/s00018-023-04830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.
Collapse
Affiliation(s)
- Agata Sekrecka
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Michal Sekrecki
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sanaz Hassani
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Shota Yamauchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Joanna Wesoly
- High Throughput Technologies Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
24
|
Rossi M, Anerillas C, Idda ML, Munk R, Shin CH, Donega S, Tsitsipatis D, Herman AB, Martindale JL, Yang X, Piao Y, Mazan-Mamczarz K, Fan J, Ferrucci L, Johnson PF, De S, Abdelmohsen K, Gorospe M. Pleiotropic effects of BAFF on the senescence-associated secretome and growth arrest. eLife 2023; 12:e84238. [PMID: 37083495 PMCID: PMC10121226 DOI: 10.7554/elife.84238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-β-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research (IRGB), National Research CouncilSassaryItaly
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Stefano Donega
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, NIA IRP, NIHBaltimoreUnited States
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute IRPFrederickUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of HealthBaltimoreUnited States
| |
Collapse
|
25
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
27
|
Kerner G, Neehus AL, Philippot Q, Bohlen J, Rinchai D, Kerrouche N, Puel A, Zhang SY, Boisson-Dupuis S, Abel L, Casanova JL, Patin E, Laval G, Quintana-Murci L. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. CELL GENOMICS 2023; 3:100248. [PMID: 36819665 PMCID: PMC9932995 DOI: 10.1016/j.xgen.2022.100248] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Guillaume Laval
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
- Collège de France, Chair of Human Genomics and Evolution, 75005 Paris, France
| |
Collapse
|
28
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
29
|
Transcriptomic analysis of the innate immune response to in vitro transfection of plasmid DNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:43-56. [PMID: 36618265 PMCID: PMC9800263 DOI: 10.1016/j.omtn.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The innate immune response to cytosolic DNA is intended to protect the host from viral infections, but it can also inhibit the delivery and expression of therapeutic transgenes in gene and cell therapies. The goal of this work was to use mRNA sequencing to identify genes that may influence transfection efficiency in four different cell types (PC-3, Jurkat, HEK-293T, and primary T cells). The highest transfection efficiency was observed in HEK-293T cells, which upregulated only 142 genes with no known antiviral functions after transfection with lipofectamine. Lipofection upregulated 1,057 cytokine-stimulated genes (CSGs) in PC-3 cells, which exhibited a significantly lower transfection efficiency. However, when PC-3 cells were transfected in serum-containing media or electroporated, the observed transfection efficiencies were significantly higher while the expression levels of cytokines and CSGs decreased. In contrast, lipofection of Jurkat and primary T cells only upregulated a few genes, but several of the antiviral CSGs that were absent in HEK-293T cells and upregulated in PC-3 cells were observed to be constitutively expressed in T cells, which may explain the relatively low Lipofection efficiencies observed with T cells (8%-21% GFP+). Indeed, overexpression of one CSG (IFI16) significantly decreased transfection efficiency in HEK-293T cells.
Collapse
|
30
|
IRF2 Cooperates with Phosphoprotein of Spring Viremia of Carp Virus to Suppress Antiviral Response in Zebrafish. J Virol 2022; 96:e0131422. [PMID: 36314827 PMCID: PMC9683000 DOI: 10.1128/jvi.01314-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN regulatory factor (IRF) 2 belongs to the IRF1 subfamily, and its functions are not yet fully understood. In this study, we showed that IRF2a was a negative regulator of the interferon (IFN) response induced by spring viremia of carp virus (SVCV). Irf2a-/- knockout zebrafish were less susceptible to SVCV than wild-type fish. Transcriptomic analysis reveals that differentially expressed genes (DEGs) in the irf2a-/- and irf2a+/+ cells derived caudal fins were mainly involved in cytokine-cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-beta (TGF-beta) signaling pathway. Interestingly, the basal expression levels of interferon stimulating genes (ISGs), including pkz, mx, apol, and stat1 were higher in the irf2a-/- cells than irf2a+/+ cells, suggesting that they may contribute to the increased viral resistance of the irf2a-/- cells. Overexpression of IRF2a inhibited the activation of ifnφ1 and ifnφ3 induced by SVCV and poly(I:C) in the epithelioma papulosum cyprini (EPC) cells. Further, it was found that SVCV phosphoprotein (SVCV-P) could interact with IRF2a to promote IRF2a nuclear translocation and protein stability via suppressing K48-linked ubiquitination of IRF2a. Both IRF2a and SVCV-P not only destabilized STAT1a but reduced its translocation into the nucleus. Our work demonstrates that IRF2a cooperates with SVCV-P to suppress host antiviral response against viral infection in zebrafish. IMPORTANCE Interferon regulatory factors (IRFs) are central in the regulation of interferon-mediated antiviral immunity. Here, we reported that IRF2a suppressed interferon response and promoted virus replication in zebrafish. The suppressive effects were enhanced by the phosphoprotein of the spring viremia of carp virus (SVCV) via inhibition of K48-linked ubiquitination of IRF2a. IRF2a and SVCV phosphoprotein cooperated to degrade STAT1 and block its nuclear translocation. Our work demonstrated that IRFs and STATs were targeted by the virus through posttranslational modifications to repress interferon-mediated antiviral response in lower vertebrates.
Collapse
|
31
|
Patricio DDO, Dias GBM, Granella LW, Trigg B, Teague HC, Bittencourt D, Báfica A, Zanotto-Filho A, Ferguson B, Mansur DS. DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Front Immunol 2022; 13:1042463. [PMID: 36311766 PMCID: PMC9606669 DOI: 10.3389/fimmu.2022.1042463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 04/23/2024] Open
Abstract
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with significant public health impact. ZIKV infection induces double-strand DNA breaks (DSBs) in human neural progenitor cells that may contribute to severe neuronal manifestations in newborns. The DNA-PK complex plays a critical role in repairing DSBs and in the innate immune response to infection. It is unknown, however, whether DNA-PK regulates ZIKV infection. Here we investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV infection in human epithelial cells. Increased ZIKV replication and spread in DNA-PKcs deficient cells is related to a notable decrease in transcription of type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be independent of IRF1, IRF3, or p65, canonical transcription factors necessary for activation of both type I and III interferon promoters. The mechanism of DNA-PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest a non-canonical role for DNA-PK during Zika virus infection, acting downstream of IFNs transcription factors for an efficient antiviral immune response.
Collapse
Affiliation(s)
- Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ben Trigg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dina Bittencourt
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
32
|
Abstract
An effective innate immune response to virus infection requires the induction of type I interferons and up-regulation of hundreds of interferon-stimulated genes (ISGs) that instruct antiviral functions and immune regulation. Deciphering the regulatory mechanisms that direct expression of the ISG network is critical for understanding the fundamental organization of the innate immune response and the development of antiviral therapies. We define a regulatory role for the primate-specific long noncoding RNA CHROMR in coordinating ISG transcription. CHROMR sequesters the interferon regulatory factor (IRF)-2/IRF2BP2 complex that restrains ISG transcription and thus is required to restrict influenza virus replication. These data identify a novel regulator of the antiviral gene program in humans and provide insights into the multilayered regulatory network that controls the innate immune response. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.
Collapse
|
33
|
Kusiak A, Brady G. Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochem Pharmacol 2022; 205:115246. [PMID: 36088989 DOI: 10.1016/j.bcp.2022.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022]
Abstract
The human innate immune response can be activated through a wide range of stimuli. This multi-faceted system can be triggered by a range of immunostimulants including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These stimuli drive intracellular signalling pathways that branch off downstream to activate several distinct transcription factors. The two most impactful of which in innate immune outcomes are the NF-κB and the IRF family members. Both transcription factor families play defining roles in driving inflammation as well as the antiviral response. Pathways leading to their simultaneous activation share common upstream components but eventually distinct regulators which directly facilitate their activation. This review will discuss the current state of knowledge about what is known about how these pathways bifurcate to activate NF-κB and IRF family members.
Collapse
Affiliation(s)
- Aleksandra Kusiak
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| | - Gareth Brady
- Trinity Translational Medicine Institute, St James' Campus, Trinity College Dublin, D08 W9RT Dublin, Ireland.
| |
Collapse
|
34
|
Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022; 13:e0130822. [PMID: 35699371 PMCID: PMC9426431 DOI: 10.1128/mbio.01308-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Liu Y, Zhang X, Liu Z, Huang L, Jia W, Lian X, Weng C, Zhang G, Qi W, Chen J. Toosendanin suppresses African swine fever virus replication through upregulating interferon regulatory factor 1 in porcine alveolar macrophage cultures. Front Microbiol 2022; 13:970501. [PMID: 36110293 PMCID: PMC9468581 DOI: 10.3389/fmicb.2022.970501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Melia toosendan Sieb. Et Zucc, has been demonstrated to possess analgesic, anti-inflammatory, anti-botulism and anti-microbial activities, and was used clinically as an anthelmintic, while the antiviral effect of TSN on ASFV has not been reported. In this study, we revealed that TSN exhibited a potent inhibitory effect on ASFV GZ201801-38 strain in porcine alveolar macrophages (PAMs; EC50 = 0.085 μM, SI = 365) in a dose-dependent manner. TSN showed robust antiviral activity in different doses of ASFV infection and reduced the transcription and translation levels of ASFV p30 protein, viral genomic DNA quantity as well as viral titer at 24 and 48 h post-infection. In addition, TSN did not affect virion attachment and release but intervened in its internalization in PAMs. Further investigations disclosed that TSN played its antiviral role by upregulating the host IFN-stimulated gene (ISG) IRF1 rather than by directly inactivating the virus particles. Overall, our results suggest that TSN is an effective antiviral agent against ASFV replication in vitro and may have the potential for clinical use.
Collapse
Affiliation(s)
- Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weixin Jia
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinlei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guihong Zhang
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Guihong Zhang,
| | - Wenbao Qi
- African Swine Fever Regional Laboratory of China (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Wenbao Qi,
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Jianxin Chen,
| |
Collapse
|
36
|
Abstract
XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.
Collapse
|
37
|
CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection. Viruses 2022; 14:v14081735. [PMID: 36016357 PMCID: PMC9416398 DOI: 10.3390/v14081735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted for ZIKV infection, and that this restriction was relieved by ectopic expression of CD24. We tested the hypothesis that CD24 expression allowed ZIKV replication by suppression of the antiviral response. SK-N-AS cells expressing an empty vector (termed CD24-low cells) showed elevated basal levels of phosphorylated STAT1, IRF-1, IKKE, and NFκB. In response to exogenously added type I interferon (IFN-I), CD24-low cells had higher-level induction of antiviral genes and activity against two IFN-I-sensitive viruses (VSV and PIV5-P/V) compared to SK-N-AS cells with ectopic CD24 expression (termed CD24-high cells). Media-transfer experiments showed that the inherent antiviral state of CD24-low cells was not dependent on a secreted factor such as IFN-I. Transcriptomics analysis revealed that CD24 expression decreased expression of genes involved in intracellular antiviral pathways, including IFN-I, NFκB, and Ras. Our findings that CD24 expression in neuroblastoma cells represses intracellular antiviral pathways support the proposal that CD24 may represent a novel biomarker in cancer cells for susceptibility to oncolytic viruses.
Collapse
|
38
|
Read JF, Serralha M, Mok D, Holt B, Cruickshank M, Karpievitch YV, Broadhurst DI, Sly PD, Strickland DH, Reinke SN, Holt PG, Bosco A. Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life. Front Immunol 2022; 13:876654. [PMID: 35990635 PMCID: PMC9389556 DOI: 10.3389/fimmu.2022.876654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Appropriate innate immune function is essential to limit pathogenesis and severity of severe lower respiratory infections (sLRI) during infancy, a leading cause of hospitalization and risk factor for subsequent asthma in this age group. Employing a systems biology approach to analysis of multi-omic profiles generated from a high-risk cohort (n=50), we found that the intensity of activation of an LPS-induced interferon gene network at birth was predictive of sLRI risk in infancy (AUC=0.724). Connectivity patterns within this network were stronger among susceptible individuals, and a systems biology approach identified IRF1 as a putative master regulator of this response. These findings were specific to the LPS-induced interferon response and were not observed following activation of viral nucleic acid sensing pathways. Comparison of responses at birth versus age 5 demonstrated that LPS-induced interferon responses but not responses triggered by viral nucleic acid sensing pathways may be subject to strong developmental regulation. These data suggest that the risk of sLRI in early life is in part already determined at birth, and additionally that the developmental status of LPS-induced interferon responses may be a key determinant of susceptibility. Our findings provide a rationale for the identification of at-risk infants for early intervention aimed at sLRI prevention and identifies targets which may be relevant for drug development.
Collapse
Affiliation(s)
- James F. Read
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: James F. Read, ; Anthony Bosco,
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Barbara J. Holt
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Mark Cruickshank
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Yuliya V. Karpievitch
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - David I. Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Peter D. Sly
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Deborah H. Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- The University of Western Australia Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Stacey N. Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- The University of Western Australia Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- The University of Western Australia Centre for Child Health Research, The University of Western Australia, Nedlands, WA, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
- *Correspondence: James F. Read, ; Anthony Bosco,
| |
Collapse
|
39
|
Shin J, Toyoda S, Nishitani S, Onodera T, Fukuda S, Kita S, Fukuhara A, Shimomura I. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism 2022; 133:155236. [PMID: 35688210 PMCID: PMC9173833 DOI: 10.1016/j.metabol.2022.155236] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND COVID-19 can cause multiple organ damages as well as metabolic abnormalities such as hyperglycemia, insulin resistance, and new onset of diabetes. The insulin/IGF signaling pathway plays an important role in regulating energy metabolism and cell survival, but little is known about the impact of SARS-CoV-2 infection. The aim of this work was to investigate whether SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the host cell/tissue, and if so, the potential mechanism and association with COVID-19 pathology. METHODS To determine the impact of SARS-CoV-2 on insulin/IGF signaling pathway, we utilized transcriptome datasets of SARS-CoV-2 infected cells and tissues from public repositories for a wide range of high-throughput gene expression data: autopsy lungs from COVID-19 patients compared to the control from non-COVID-19 patients; lungs from a human ACE2 transgenic mouse infected with SARS-CoV-2 compared to the control infected with mock; human pluripotent stem cell (hPSC)-derived liver organoids infected with SARS-CoV-2; adipose tissues from a mouse model of COVID-19 overexpressing human ACE2 via adeno-associated virus serotype 9 (AAV9) compared to the control GFP after SARS-CoV-2 infection; iPS-derived human pancreatic cells infected with SARS-CoV-2 compared to the mock control. Gain and loss of IRF1 function models were established in HEK293T and/or Calu3 cells to evaluate the impact on insulin signaling. To understand the mechanistic regulation and relevance with COVID-19 risk factors, such as older age, male sex, obesity, and diabetes, several transcriptomes of human respiratory, metabolic, and endocrine cells and tissue were analyzed. To estimate the association with COVID-19 severity, whole blood transcriptomes of critical patients with COVID-19 compared to those of hospitalized noncritical patients with COVID-19. RESULTS We found that SARS-CoV-2 infection impaired insulin/IGF signaling pathway genes, such as IRS, PI3K, AKT, mTOR, and MAPK, in the host lung, liver, adipose tissue, and pancreatic cells. The impairments were attributed to interferon regulatory factor 1 (IRF1), and its gene expression was highly relevant to risk factors for severe COVID-19; increased with aging in the lung, specifically in men; augmented by obese and diabetic conditions in liver, adipose tissue, and pancreatic islets. IRF1 activation was significantly associated with the impaired insulin signaling in human cells. IRF1 intron variant rs17622656-A, which was previously reported to be associated with COVID-19 prevalence, increased the IRF1 gene expression in human tissue and was frequently found in American and European population. Critical patients with COVID-19 exhibited higher IRF1 and lower insulin/IGF signaling pathway genes in the whole blood compared to hospitalized noncritical patients. Hormonal interventions, such as dihydrotestosterone and dexamethasone, ameliorated the pathological traits in SARS-CoV-2 infectable cells and tissues. CONCLUSIONS The present study provides the first scientific evidence that SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in respiratory, metabolic, and endocrine cells and tissues. This feature likely contributes to COVID-19 severity with cell/tissue damage and metabolic abnormalities, which may be exacerbated in older, male, obese, or diabetic patients.
Collapse
Affiliation(s)
- Jihoon Shin
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Shinichiro Toyoda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigeki Nishitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
40
|
Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev 2022; 64:1-6. [PMID: 35090813 DOI: 10.1016/j.cytogfr.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Transient Increases in Inflammation and Proapoptotic Potential Are Associated with the HESN Phenotype Observed in a Subgroup of Kenyan Female Sex Workers. Viruses 2022; 14:v14030471. [PMID: 35336878 PMCID: PMC8948937 DOI: 10.3390/v14030471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Interferon (IFN) -stimulated genes (ISGs) are critical effectors of IFN response to viral infection, but whether ISG expression is a correlate of protection against HIV infection remains elusive. A well-characterized subcohort of Kenyan female sex workers, who, despite being repeatedly exposed to HIV-1 remain seronegative (HESN), exhibit reduced baseline systemic and mucosal immune activation. This study tested the hypothesis that regulation of ISGs in the cells of HESN potentiates a robust antiviral response against HIV. Transcriptional profile of a panel of ISGs with antiviral function in PBMC and isolated CD4+ T cells from HESN and non-HESN sex worker controls were defined following exogenous IFN-stimulation using relative RT-qPCR. This study identified a unique profile of proinflammatory and proapoptotic ISGs with robust but transient responses to exogenous IFN-γ and IFN-α2 in HESN cells. In contrast, the non-HESN cells had a strong and prolonged proinflammatory ISG profile at baseline and following IFN challenge. Potential mechanisms may include augmented bystander apoptosis due to increased TRAIL expression (16-fold), in non-HESN cells. The study also identified two negative regulators of ISG induction associated with the HESN phenotype. Robust upregulation of SOCS-1 and IRF-1, in addition to HDM2, could contribute to the strict regulation of proinflammatory and proapoptotic ISGs in HESN cells. As reducing IRF-1 in the non-HESN cells resulted in the identified HESN ISG profile, and decreased HIV susceptibility, the unique HESN ISG profile could be a correlate of protection against HIV infection.
Collapse
|
42
|
Sales Conniff A, Encalada G, Patel S, Bhandary M, Al-Takrouri F, Heller L. Poly(I:C) transfection induces a pro-inflammatory cascade in murine mammary carcinoma and fibrosarcoma cells. RNA Biol 2022; 19:841-851. [PMID: 35737804 PMCID: PMC9235898 DOI: 10.1080/15476286.2022.2084861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Germline-encoded pattern recognition receptors [PRRs] in mammalian cells function in the detection of molecular patterns associated with pathogen invasion or cellular damage. A PRR subset is activated by the atypical presence and location of double-stranded RNA [dsRNA] or its synthetic analogue polyinosinic-polycytidylic acid [poly(I:C)], triggering pro-inflammatory signalling and death in many cell types. Poly(I:C) has been tested as a sole or combination cancer therapy in preclinical studies and clinical trials. The purpose of this study was to evaluate the effects of poly(I:C) transfection via electroporation on cell lines from a cancer of epithelial origin, 4T1 mammary carcinoma, and a cancer of mesenchymal origin, WEHI 164 fibrosarcoma. The effects of the poly(I:C) delivery on cell metabolism implicate the induction of cell death. A pro-inflammatory response was demonstrated by mRNA upregulation and the secretion of Type I interferon and several cytokines and chemokines. The mRNAs of dsRNA sensor DExD/H-box helicase 58/retinoic acid-inducible gene I protein [Ddx58/RIG-I] and sensor/co-sensor DEAH-box helicase 9 [Dhx9] were not regulated, but the mRNAs of RNA sensors toll-like receptor 3 [TLR3], interferon-induced with helicase C domain 1/melanoma differentiation-associated protein 5 [Ifih1/MDA5] and Z-DNA binding protein 1 [Zbp1] and co-sensors DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 [Ddx60] and interferon-inducible protein 204 [Ifi204] were upregulated in both cell lines. The mRNAs encoding signalling pathways components were present or upregulated in both cell types. These data demonstrate that RNA sensing effects can be amplified by electroporation delivery, potentially expanding the practicality of this immunotherapeutic approach.
Collapse
Affiliation(s)
- A Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - G Encalada
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - S Patel
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - M Bhandary
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - F Al-Takrouri
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| | - L Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
43
|
Rinkenberger N, Abrams ME, Matta SK, Schoggins JW, Alto NM, Sibley LD. Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. eLife 2021; 10:e73137. [PMID: 34871166 PMCID: PMC8789288 DOI: 10.7554/elife.73137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNγ) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNγ, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNγ induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNγ induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNγ-mediated immunity to T. gondii infection is a complex, multifactorial process.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - Michael E Abrams
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Sumit K Matta
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - John W Schoggins
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Neal M Alto
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
44
|
Russo C, Morello G, Malaguarnera R, Piro S, Furno DL, Malaguarnera L. Candidate genes of SARS-CoV-2 gender susceptibility. Sci Rep 2021; 11:21968. [PMID: 34753980 PMCID: PMC8578384 DOI: 10.1038/s41598-021-01131-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) initiated a global viral pandemic since late 2019. Understanding that Coronavirus disease (COVID-19) disproportionately affects men than women results in great challenges. Although there is a growing body of published study on this topic, effective explanations underlying these sex differences and their effects on the infection outcome still remain uncertain. We applied a holistic bioinformatics method to investigate molecular variations of known SARS-CoV-2 interacting human proteins mainly expressed in gonadal tissues (testis and ovary), allowing for the identification of potential genetic targets for this infection. Functional enrichment and interaction network analyses were also performed to better investigate the biological differences between testicular and ovarian responses in the SARS-CoV-2 infection, paying particular attention to genes linked to immune-related pathways, reactions of host cells after intracellular infection, steroid hormone biosynthesis, receptor signaling, and the complement cascade, in order to evaluate their potential association with sexual difference in the likelihood of infection and severity of symptoms. The analysis revealed that within the testis network TMPRSS2, ADAM10, SERPING1, and CCR5 were present, while within the ovary network we found BST2, GATA1, ENPEP, TLR4, TLR7, IRF1, and IRF2. Our findings could provide potential targets for forthcoming experimental investigation related to SARS-CoV-2 treatment.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy.
| | | | - Salvatore Piro
- Department of Clinical and Molecular Medicine, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
45
|
Mathison AJ, Kerketta R, de Assuncao TM, Leverence E, Zeighami A, Urrutia G, Stodola TJ, di Magliano MP, Iovanna JL, Zimmermann MT, Lomberk G, Urrutia R. Kras G12D induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells. Genome Biol 2021; 22:289. [PMID: 34649604 PMCID: PMC8518179 DOI: 10.1186/s13059-021-02498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma initiation is most frequently caused by Kras mutations. RESULTS Here, we apply biological, biochemical, and network biology methods to validate GEMM-derived cell models using inducible KrasG12D expression. We describe the time-dependent, chromatin remodeling program that impacts function during early oncogenic signaling. We find that the KrasG12D-induced transcriptional response is dominated by downregulated expression concordant with layers of epigenetic events. More open chromatin characterizes the ATAC-seq profile associated with a smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that promoter hypermethylation does not account for the silencing of the extensive gene promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization plays little role in this early transcriptional program. Notably, both gene activation and silencing primarily depend on the marking of genes with a combination of H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these datasets shows that KrasG12D regulates its transcriptional program primarily through unique super-enhancers and enhancers, and marking specific gene promoters and bodies. We also report chromatin remodeling across genomic areas that, although not contributing directly to cis-gene transcription, are likely important for KrasG12D functions. CONCLUSIONS In summary, we report a comprehensive, time-dependent, and coordinated early epigenomic program for KrasG12D in pancreatic cells, which is mechanistically relevant to understanding chromatin remodeling events underlying transcriptional outcomes needed for the function of this oncogene.
Collapse
Affiliation(s)
- Angela J Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Romica Kerketta
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Elise Leverence
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Atefeh Zeighami
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy J Stodola
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Raul Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
46
|
Yan JM, Zhang WK, Li F, Zhou CM, Yu XJ. Integrated transcriptome profiling in THP-1 macrophages infected with bunyavirus SFTSV. Virus Res 2021; 306:198594. [PMID: 34637813 DOI: 10.1016/j.virusres.2021.198594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne bunyavirus that causes an emerging hemorrhagic fever termed SFTS with high mortality. However, knowledge of SFTSV-host interactions is largely limited. Here, we performed a global transcriptome analysis of mRNAs and lncRNAs in THP-1 macrophages infected with SFTSV for 24 and 48 h. A total of 2,334 differentially expressed mRNAs and 154 differentially expressed lncRNAs were identified with 577 mRNAs and 31 lncRNAs commonly changed at both time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed mRNAs were mainly associated with innate immune, cytokine signaling, systemic lupus erythematosus, and alcoholism. Differentially expressed lncRNAs were enriched in systemic lupus erythematosus, alcoholism, and ribosome. Bioinformatic analysis also revealed hub regulatory mRNAs including IL6, TNF, UBA52, SRC, IL10, CXCL10, and CDK1 and core regulatory lncRNAs including XLOC_083027 and XLOC_113317. Transcription factor analysis of the differentially expressed mRNAs revealed that IRF1, SPI1, SPIB, ELF5, and FEV were enriched during SFTSV infection. Taken together, our studies illustrate the complex interaction between THP-1 macrophages and SFTSV.
Collapse
Affiliation(s)
- Jia-Min Yan
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Kang Zhang
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Fei Li
- School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China; Zhongnan hospital of Wuhan University, Wuhan, 430071, China.
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
47
|
Wüst S, Schad P, Burkart S, Binder M. Comparative Analysis of Six IRF Family Members in Alveolar Epithelial Cell-Intrinsic Antiviral Responses. Cells 2021; 10:2600. [PMID: 34685580 PMCID: PMC8533862 DOI: 10.3390/cells10102600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Host cell-intrinsic antiviral responses are largely mediated by pattern-recognition receptor (PRR) signaling and the interferon (IFN) system. The IFN regulatory factor (IRF) family of transcription factors takes up a central role in transcriptional regulation of antiviral innate immunity. IRF3 and IRF7 are known to be key players downstream of PRRs mediating the induction of type I and III IFNs. IFN signaling then requires IRF9 for the expression of the full array of interferon stimulated genes (ISGs) ultimately defining the antiviral state of the cell. Other members of the IRF family clearly play a role in mediating or modulating IFN responses, such as IRF1, IRF2 or IRF5, however their relative contribution to mounting a functional antiviral response is much less understood. In this study, we systematically and comparatively assessed the impact of six members of the IRF family on antiviral signaling in alveolar epithelial cells. We generated functional knockouts of IRF1, -2, -3, -5, -7, and -9 in A549 cells, and measured their impact on the expression of IFNs and further cytokines, ISGs and other IRFs, as well as on viral replication. Our results confirmed the vital importance of IRF3 and IRF9 in establishing an antiviral state, whereas IRF1, 5 and 7 were largely dispensable. The previously described inhibitory activity of IRF2 could not be observed in our experimental system.
Collapse
Affiliation(s)
- Sandra Wüst
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| | - Paulina Schad
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sandy Burkart
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| |
Collapse
|
48
|
Brocato RL, Altamura LA, Carey BD, Perley CC, Blancett CD, Minogue TD, Hooper JW. Comparison of transcriptional responses between pathogenic and nonpathogenic hantavirus infections in Syrian hamsters using NanoString. PLoS Negl Trop Dis 2021; 15:e0009592. [PMID: 34339406 PMCID: PMC8360559 DOI: 10.1371/journal.pntd.0009592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/12/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Syrian hamsters infected with Andes virus (ANDV) develop a disease that recapitulates many of the salient features of human hantavirus pulmonary syndrome (HPS), including lethality. Infection of hamsters with Hantaan virus (HTNV) results in an asymptomatic, disseminated infection. In order to explore this dichotomy, we examined the transcriptome of ANDV- and HTNV-infected hamsters. RESULTS Using NanoString technology, we examined kinetic transcriptional responses in whole blood collected from ANDV- and HTNV-infected hamsters. Of the 770 genes analyzed, key differences were noted in the kinetics of type I interferon sensing and signaling responses, complement activation, and apoptosis pathways between ANDV- and HTNV-infected hamsters. CONCLUSIONS Delayed activation of type I interferon responses in ANDV-infected hamsters represents a potential mechanism that ANDV uses to subvert host immune responses and enhance disease. This is the first genome-wide analysis of hantavirus-infected hamsters and provides insight into potential avenues for therapeutics to hantavirus disease.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Louis A. Altamura
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Brian D. Carey
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Casey C. Perley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Candace D. Blancett
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Timothy D. Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S, Li C, Dvorak M, Foecke MH, Chang SE, Hagan T, De Jong SE, Maecker HT, van der Most R, Cheung P, Cortese M, Bosinger SE, Davis M, Rouphael N, Subramaniam S, Yosef N, Utz PJ, Khatri P, Pulendran B. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 2021; 184:3915-3935.e21. [PMID: 34174187 PMCID: PMC8316438 DOI: 10.1016/j.cell.2021.05.039] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michele Donato
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex Kuo
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mariko Hinton Foecke
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Hagan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanne E De Jong
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Peggie Cheung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Maras JS, Sharma S, Bhat A, Rooge S, aggrawal R, Gupta E, Sarin SK. Multi-omics analysis of respiratory specimen characterizes baseline molecular determinants associated with SARS-CoV-2 outcome. iScience 2021; 24:102823. [PMID: 34308298 PMCID: PMC8268673 DOI: 10.1016/j.isci.2021.102823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection still remains a major challenge. A multi-omic approach was adopted to analyze the respiratory specimens of 20 SARS-CoV-2-positive, 20 negative and 15 H1N1 pdm 2009 positive cases. Increased basal level of MX1 (MX dynamin-like GTPase 1) and WARS (tryptophan-tRNA ligase) correlated with SARS-CoV-2 infection and its outcome. These markers were further validated in 200 suspects. MX1>30pg/ml and WARS>25ng/ml segregated virus positives [AUC = 94% CI: (0.91–0.97)] and severe patients [AUC>0.85%]. Our results documented significant increase in immune activation; metabolic reprograming and decrease in oxygen transport, wound healing and others linked proteins and metabolites in patients with coronavirus disease 2019 (COVID-19). Multi-omics profiling correlated with viremia and segregated asymptomatic patients with COVID-19. Additionally, we identified increased respiratory pathogens (Burkholderiales, Klebsiella pneumonia) and decreased lactobacillus salivarius (FDR<0.05) in COVID-19 specimens. In conclusion, increased basal MX1 and WARS levels correlates with SARS-CoV-2 infection and could aid in the identification of patient's predisposed to higher severity. Multi-omics analysis of respiratory specimen is distinct in SARS-CoV-2 infection Change in oropharyngeal metaproteome correlates with SARS-CoV-2 infection Multi-omics analysis reveals various process regulated by SARS-CoV-2 infection Increased basal MX1 and WARS could segregate patients with severe and positive SARS-CoV-2
Collapse
Affiliation(s)
- Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
- Corresponding author
| | - Shvetank Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Adil Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Sheetalnath Rooge
- Department of Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Reshu aggrawal
- Department of Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi 110070, India
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
- Corresponding author
| |
Collapse
|