1
|
Otero AM, Connolly MG, Gonzalez-Ricon RJ, Wang SS, Allen JM, Antonson AM. Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Mol Psychiatry 2025; 30:13-28. [PMID: 38961232 DOI: 10.1038/s41380-024-02648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (TH17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities. However, neither the inflammation-induced TH17 cell pathway nor fetal brain-resident macrophages have been thoroughly examined in models of live viral infection during pregnancy. Here, we inoculated pregnant mice with two infectious doses of IAV and evaluated peak innate and adaptive immune responses in the dam and fetus. While respiratory IAV infection led to dose-dependent maternal colonic shortening and microbial dysregulation, there was no elevation in intestinal TH17 cells nor IL-17. Systemically, IAV resulted in consistent dose- and time-dependent increases in IL-6 and IFN-γ. Fetal cortical abnormalities and global changes in fetal brain transcripts were observable in the high-but not the moderate-dose IAV group. Profiling of fetal microglia and BAMs revealed dose- and time-dependent differences in the numbers of meningeal but not choroid plexus BAMs, while microglial numbers and proliferative capacity of Iba1+ cells remained constant. Fetal brain-resident macrophages increased phagocytic CD68 expression, also in a dose- and time-dependent fashion. Taken together, our findings indicate that certain features of MIA are conserved between mimetic and live virus models, while others are not. Overall, we provide consistent evidence of an infection severity threshold for downstream maternal inflammation and fetal cortical abnormalities, which recapitulates a key feature of the epidemiological data and further underscores the importance of using live pathogens in NDD modeling to better evaluate the complete immune response and to improve translation to the clinic.
Collapse
Affiliation(s)
- Ashley M Otero
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Meghan G Connolly
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Selena S Wang
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adrienne M Antonson
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Shaabani Ghahremanlo M, Hojati V, Vaezi G, Sharafi S. Transgenerational of Oxidative Damage Induced by Prenatal Ethanol Exposure on Spatial Learning/Memory and BDNF in the of Male Rats. IBRO Neurosci Rep 2024; 17:398-406. [PMID: 39583589 PMCID: PMC11583777 DOI: 10.1016/j.ibneur.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Alcohol consumption during pregnancy harms fetal development, leading to various physical and behavioral issues. This study investigates how prenatal ethanol exposure triggers oxidative stress (OS) and affects neurotrophic factors (NTFs), particularly brain-derived growth factor (BDNF) gene expression in the hippocampus, influencing learning and memory decline across two generations of male offspring from ethanol-exposed female rats. A rat model of fetal alcohol spectrum disorder (FASD) was initially generated to reflect on the deficits in the first generation, and then those transmitted via the male germline to the unexposed male ones. The pregnant rats were thus divided into four groups, namely, the control group (CTRL) receiving only distilled water (DW), and three groups being exposed to ethanol (20 %, 4.5 g/kg) by oral gavage, during the first 10-day gestation (FG), the second 10-day gestation (SG), and the entire gestation (EG) periods. Subsequent Morris water maze (MWM) tests on male offspring revealed spatial learning deficits during the second and entire gestational periods in both generations. Analysis of antioxidant enzyme activity including glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA), and BDNF gene expression in the hippocampus further highlighted the impacts of prenatal ethanol exposure. The study results demonstrated that prenatal ethanol exposure caused spatial learning/memory deficits during the SG and EG, altered antioxidant enzyme activity, and reduced BDNF gene expression in both generations. The findings underscore the role of OS in developmental and behavioral issues in FASD rat models and suggest that lasting transgenerational effects in the second generation may stem from alcohol-induced changes.
Collapse
Affiliation(s)
| | | | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
3
|
Hughes BA, O'Buckley TK, Boero G, Morrow AL. Interneuron-selective HCN channel knockdown in prelimbic cortex of female rats mimics effects of chronic ethanol exposure. Alcohol 2024; 121:59-67. [PMID: 39033967 PMCID: PMC11637936 DOI: 10.1016/j.alcohol.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Our laboratory has previously shown that chronic ethanol exposure elicits enhanced working memory performance in female, but not male, adult Sprague-Dawley rats, indicative of a fundamental sex difference in cortical plasticity. Recent studies have furthermore revealed that females display markedly reduced HCN-mediated channel activity in inhibitory Martinotti interneurons after chronic ethanol exposure that is similarly not observed in males. From these observations we hypothesized that alcohol induces facilitated working memory performance via down-regulation of these channels' activity specifically within interneurons. To test this hypothesis, we employed a Pol-II compatible shRNA expression system to elicit targeted knockdown of HCN channel activity in these cells, and measured performance on a delayed Non-Match-to-Sample (NMS) T-maze test to gauge effects on working memory performance. A significant baseline enhancement of working memory performance with HCN channel knockdown was observed, indicative of a critical role for interneuron-expressed HCNs in maintaining optimal cortical network activity during cognitively-demanding tasks. Consistent with previous observations, ethanol exposure resulted in enhanced NMS T-maze performance, however elevated working memory performance was observed in both scram- and hcn-shRNA infected groups after alcohol administration. We therefore conclude that interneuron-expressed HCN channels, despite representing a minor population of total cortical HCN expression, contribute substantially to maintaining working memory processes. Downregulated HCN channel activity, though, does not alone appear sufficient to manifest alcohol-induced enhancement of working memory performance observed in female rats during acute withdrawal.
Collapse
Affiliation(s)
- Benjamin A Hughes
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Cao X, Hou Y, Liu Q, Yang Q, Liu M, Lin H, Ren Q, Mao J. Composition of Higher Alcohols in Different Alcoholic Beverages and Their Metabolic Dynamics in Bama Pigs. Foods 2024; 13:3316. [PMID: 39456377 PMCID: PMC11507985 DOI: 10.3390/foods13203316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The unique flavour contribution of higher alcohols in alcoholic beverages has received growing attention; however, there is a dearth of information on their in vivo metabolic kinetics. In this study, the composition and content of higher alcohols in different alcoholic beverages from Chinese Baijiu and Lujiu were studied via in vivo analysis using Bama pigs to elucidate the mechanisms for intoxication of alcohol in vitro and in drinkers. Direct injection combined with gas chromatography-mass spectrometry (GC-MS) were used to accurately quantify a total of 14 higher alcohols in five alcoholic beverages. Based on the external standard method, a total content of 289.37-938.33 mg/L was detected, mainly 1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol and 2-butanol. Then, headspace solid-phase microextraction (HS-SPME) and solid-phase extraction (SPE) combined with GC-MS analysis strategy, respectively, were adopted to continuously monitor the changes in the concentrations of ethanol and 11 higher alcohols in the blood within 24 h after gavage of different alcoholic beverages, and the key pharmacokinetic parameters were analysed. The peak concentration (Cmax) and area under curve (AUC) of blood higher alcohols were significantly lower than those of ethanol (p < 0.05), accompanied by a later peak time (Tmax) and a larger apparent clearance rate (CL_F), and there were certain differences between the same higher alcohols in different alcoholic beverages and between different higher alcohols in the same alcoholic beverage. This work provides valuable insights into the metabolism of alcoholic beverages.
Collapse
Affiliation(s)
- Xiaonian Cao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Yunfei Hou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Qingqing Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
| | - Qian Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Min Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
| | - Haixu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Qingxi Ren
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| |
Collapse
|
5
|
Goncalves-Garcia M, Davies S, Savage DD, Hamilton DA. The histamine H 3 receptor inverse agonist SAR-152954 reverses deficits in long-term potentiation associated with moderate prenatal alcohol exposure. Alcohol 2024; 118:45-55. [PMID: 38705312 PMCID: PMC11409852 DOI: 10.1016/j.alcohol.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.
Collapse
Affiliation(s)
| | - Suzy Davies
- Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Daniel D Savage
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Derek A Hamilton
- Departments of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Neurosciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Imamura F. Effects of prenatal alcohol exposure on the olfactory system development. Front Neural Circuits 2024; 18:1408187. [PMID: 38818309 PMCID: PMC11138157 DOI: 10.3389/fncir.2024.1408187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
8
|
Jurczyk M, Król M, Midro A, Dyląg K, Kurnik-Łucka M, Skowron K, Gil K. The Impact of Prenatal Alcohol Exposure on the Autonomic Nervous System and Cardiovascular System in Rats in a Sex-Specific Manner. Pediatr Rep 2024; 16:278-287. [PMID: 38651463 PMCID: PMC11036276 DOI: 10.3390/pediatric16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorder (FASD) is a consequence of prenatal alcohol exposure (PAE) associated with a range of effects, including dysmorphic features, prenatal and/or postnatal growth problems, and neurodevelopmental difficulties. Despite advances in treatment methods, there are still gaps in knowledge that highlight the need for further research. The study investigates the effect of PAE on the autonomic system, including sex differences that may aid in early FASD diagnosis, which is essential for effective interventions. METHODS During gestational days 5 to 20, five pregnant female Wistar rats were orally administered either glucose or ethanol. After 22 days, 26 offspring were born and kept with their mothers for 21 days before being isolated. Electrocardiographic recordings were taken on the 29th and 64th day. Heart rate variability (HRV) parameters were collected, including heart rate (HR), standard deviation (SD), standard deviation of normal-to-normal intervals (SDNN), and the root mean square of successive differences between normal heartbeats (RMSSD). Additionally, a biochemical analysis of basic serum parameters was performed on day 68 of the study. RESULTS The study found that PAE had a significant impact on HRV. While electrolyte homeostasis remained mostly unaffected, sex differences were observed across various parameters in both control and PAE groups, highlighting the sex-specific effects of PAE. Specifically, the PAE group had lower mean heart rates, particularly among females, and higher SDNN and RMSSD values. Additionally, there was a shift towards parasympathetic activity and a reduction in heart rate entropy in the PAE group. Biochemical changes induced by PAE were also observed, including elevated levels of alanine transaminase (ALT) and aspartate aminotransferase (AST), especially in males, increased creatinine concentration in females, and alterations in lipid metabolism. CONCLUSIONS PAE negatively affects the development of the autonomic nervous system, resulting in decreased heart rate and altered sympathetic activity. PAE also induces cardiovascular abnormalities with sex-specific effects, highlighting a relationship between PAE consequences and sex. Elevated liver enzymes in the PAE group may indicate direct toxic effects, while increased creatinine levels, particularly in females, may suggest an influence on nephrogenesis and vascular function. The reduced potassium content may be linked to hypothalamus-pituitary-adrenal axis overactivity.
Collapse
Affiliation(s)
- Michał Jurczyk
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Magdalena Król
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Aleksandra Midro
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Katarzyna Dyląg
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- St. Louis Children Hospital, Strzelecka 2, 31-503 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Kamil Skowron
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
9
|
Camilli MP, Simko OM, Bevelander B, Thebeau JM, Masood F, da Silva MCB, Raza MF, Markova S, Obshta O, Jose MS, Biganski S, Kozii IV, Zabrodski MW, Moshynskyy I, Simko E, Wood SC. Fetal Alcohol Spectrum Disorder: The Honey Bee as a Social Animal Model. Life (Basel) 2024; 14:434. [PMID: 38672706 PMCID: PMC11051024 DOI: 10.3390/life14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animal models have been essential for advancing research of fetal alcohol spectrum disorder (FASD) in humans, but few animal species effectively replicate the behavioural and clinical signs of FASD. The honey bee (Apis mellifera) is a previously unexplored research model for FASD that offers the distinct benefit of highly social behaviour. In this study, we chronically exposed honey bee larvae to incremental concentrations of 0, 3, 6, and 10% ethanol in the larval diet using an in vitro rearing protocol and measured developmental time and survival to adult eclosion, as well as body weight and motor activity of newly emerged adult bees. Larvae reared on 6 and 10% dietary ethanol demonstrated significant, dose-responsive delays to pupation and decreased survival and adult body weight. All ethanol-reared adults showed significantly decreased motor activity. These results suggest that honey bees may be a suitable social animal model for future FASD research.
Collapse
Affiliation(s)
- Marcelo P. Camilli
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Olena M. Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Breanne Bevelander
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Jenna M. Thebeau
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Fatima Masood
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada
| | - Marina C. Bezerra da Silva
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Muhammad Fahim Raza
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sofiia Markova
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Oleksii Obshta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Midhun S. Jose
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sarah Biganski
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Ivanna V. Kozii
- Prairie Diagnostic Services Inc., Saskatoon, SK S7N 5B4, Canada
| | | | - Igor Moshynskyy
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Elemir Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| | - Sarah C. Wood
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, SK S7N 5B4, Canada; (M.P.C.)
| |
Collapse
|
10
|
Goncalves-Garcia M, Hamilton DA. Unraveling the complex relationship between prenatal alcohol exposure, hippocampal LTP, and learning and memory. Front Mol Neurosci 2024; 16:1326089. [PMID: 38283699 PMCID: PMC10811250 DOI: 10.3389/fnmol.2023.1326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Prenatal alcohol exposure (PAE) has been extensively studied for its profound impact on neurodevelopment, synaptic plasticity, and cognitive outcomes. While PAE, particularly at moderate levels, has long-lasting cognitive implications for the exposed individuals, there remains a substantial gap in our understanding of the precise mechanisms underlying these deficits. This review provides a framework for comprehending the neurobiological basis of learning and memory processes that are negatively impacted by PAE. Sex differences, diverse PAE protocols, and the timing of exposure are explored as potential variables influencing the diverse outcomes of PAE on long-term potentiation (LTP). Additionally, potential interventions, both pharmacological and non-pharmacological, are reviewed, offering promising avenues for mitigating the detrimental effects of PAE on cognitive processes. While significant progress has been made, further research is required to enhance our understanding of how prenatal alcohol exposure affects neural plasticity and cognitive functions and to develop effective therapeutic interventions for those impacted. Ultimately, this work aims to advance the comprehension of the consequences of PAE on the brain and cognitive functions.
Collapse
|
11
|
Holman PJ, Raineki C. Prenatal alcohol exposure and early-life adversity: A translational perspective for dissecting compounding impacts. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2227-2230. [PMID: 38151784 DOI: 10.1111/acer.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Parker J Holman
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
12
|
Drake DM, Zhen D, Kerrebijn I, Or B, Gao S, Afsharian K, Tran J, Bhatia S, Cheng A, Wells PG. Breast cancer 1 (BRCA1) protection in altered gene expression and neurodevelopmental disorders due to physiological and ethanol-enhanced reactive oxygen species formation. Free Radic Biol Med 2023; 208:272-284. [PMID: 37541454 DOI: 10.1016/j.freeradbiomed.2023.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/08/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The breast cancer 1 (Brca1) susceptibility gene regulates the repair of reactive oxygen species (ROS)-mediated DNA damage, which is implicated in neurodevelopmental disorders. Alcohol (ethanol, EtOH) exposure during pregnancy causes fetal alcohol spectrum disorders (FASD), including abnormal brain function, associated with enhanced ROS-initiated DNA damage. Herein, oxidative DNA damage in fetal brains and neurodevelopmental disorders were enhanced in saline-exposed +/- vs. +/+ Brca1 littermates. A single EtOH exposure during gestation further enhanced oxidative DNA damage, altered the expression of developmental/DNA damage response genes in fetal brains, and resulted in neurodevelopmental disorders, all of which were BRCA1-dependent. Pretreatment with the ROS inhibitor phenylbutylnitrone (PBN) blocked DNA damage and some neurodevelopmental disorders in both saline- and EtOH-exposed progeny, corroborating a ROS-dependent mechanism. Fetal BRCA1 protects against altered gene expression and neurodevelopmental disorders caused by both physiological and EtOH-enhanced levels of ROS formation. BRCA1 deficiencies may enhance the risk for FASD.
Collapse
Affiliation(s)
- Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Danlin Zhen
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Isabel Kerrebijn
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Or
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Gao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kian Afsharian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jason Tran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Cheng
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Crofton EJ, O'Buckley TK, Bohnsack JP, Morrow AL, Herman MA. Divergent Population-Specific Effects of Chronic Ethanol Exposure on Excitability and Inhibitory Transmission in Male and Female Rat Central Amygdala. J Neurosci 2023; 43:7056-7068. [PMID: 37657933 PMCID: PMC10586533 DOI: 10.1523/jneurosci.0717-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is implicated in alcohol use disorder (AUD) and AUD-associated plasticity. The CeA is a primarily GABAergic nucleus that is subdivided into lateral and medial compartments with genetically diverse subpopulations. GABAA receptors are heteromeric pentamers with subunits conferring distinct physiological characteristics. GABAA receptor signaling in the CeA has been implicated in ethanol-associated plasticity; however, population-specific changes in inhibitory signaling and subunit expression remain unclear. Here, we combined electrophysiology with single-cell gene expression analysis of population markers and GABAA receptor subunits to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure. We found that chronic ethanol exposure and withdrawal produced global changes in GABAA receptor subunit expression at the transcript and protein levels, increased excitability in female CeA neurons, and increased inhibitory synaptic transmission in male CeA neurons. When we examined CeA neurons at the single-cell level we found heterogenous populations, as previously reported. We observed ethanol-induced increases in excitability only in somatostatin neurons in the CeA of females, decreases in excitability only in the protein kinase C delta (PKCd) population in males, and ethanol-induced increases in inhibitory transmission in male PKCd and calbindin 2-expressing CeA neurons. There were no population-specific differences in GABAA receptor (Gabr) subunits in males but reduced GabrA5 expression in female somatostatin neurons. Collectively, these findings suggest that defined CeA populations display differential ethanol sensitivity in males and females, which may play a role in sex differences in vulnerability to AUD or expression of AUD pathology.SIGNIFICANCE STATEMENT The CeA is involved in the effects of ethanol in the brain; however, the population-specific changes in CeA activity remain unclear. We used recordings of CeA neuronal activity and single-cell gene expression to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure and found sex- and population-specific effects of chronic ethanol exposure and withdrawal. Specifically, female CeA neurons displayed increased excitability in the somatostatin CeA population, whereas male CeA neurons displayed increased inhibitory control in both PKCd and calbindin populations and decreased excitability in the PKCd population. These findings identify CeA populations that display differential sensitivity to ethanol exposure, which may contribute to sex differences in vulnerability to alcohol use disorder.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, Emmanuel College, Boston, Massachusetts 02115
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - John P Bohnsack
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A Leslie Morrow
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Melissa A Herman
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
14
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
15
|
Bhatia S, Bodenstein D, Cheng AP, Wells PG. Altered Epigenetic Marks and Gene Expression in Fetal Brain, and Postnatal Behavioural Disorders, Following Prenatal Exposure of Ogg1 Knockout Mice to Saline or Ethanol. Cells 2023; 12:2308. [PMID: 37759530 PMCID: PMC10527575 DOI: 10.3390/cells12182308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) is widely known to repair the reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG), and more recently was shown to act as an epigenetic modifier. We have previously shown that saline-exposed Ogg1 -/- knockout progeny exhibited learning and memory deficits, which were enhanced by in utero exposure to a single low dose of ethanol (EtOH) in both Ogg1 +/+ and -/- progeny, but more so in Ogg1 -/- progeny. Herein, OGG1-deficient progeny exposed in utero to a single low dose of EtOH or its saline vehicle exhibited OGG1- and/or EtOH-dependent alterations in global histone methylation and acetylation, DNA methylation and gene expression (Tet1 (Tet Methylcytosine Dioxygenase 1), Nlgn3 (Neuroligin 3), Hdac2 (Histone Deacetylase 2), Reln (Reelin) and Esr1 (Estrogen Receptor 1)) in fetal brains, and behavioural changes in open field activity, social interaction and ultrasonic vocalization, but not prepulse inhibition. OGG1- and EtOH-dependent changes in Esr1 and Esr2 mRNA and protein levels were sex-dependent, as was the association of Esr1 gene expression with gene activation mark histone H3 lysine 4 trimethylation (H3K4me3) and gene repression mark histone H3 lysine 27 trimethylation (H3K27me3) measured via ChIP-qPCR. The OGG1-dependent changes in global epigenetic marks and gene/protein expression in fetal brains, and postnatal behavioural changes, observed in both saline- and EtOH-exposed progeny, suggest the involvement of epigenetic mechanisms in developmental disorders mediated by 8-oxoG and/or OGG1. Epigenetic effects of OGG1 may be involved in ESR1-mediated gene regulation, which may be altered by physiological and EtOH-enhanced levels of ROS formation, possibly contributing to sex-dependent developmental disorders observed in Ogg1 knockout mice. The OGG1- and EtOH-dependent associations provide a basis for more comprehensive mechanistic studies to determine the causal involvement of oxidative DNA damage and epigenetic changes in ROS-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - David Bodenstein
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Ashley P. Cheng
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G. Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (S.B.); (A.P.C.)
- Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
16
|
Abruzzese GA, Ferreira SR, Ferrer MJ, Silva AF, Motta AB. Prenatal Androgen Excess Induces Multigenerational Effects on Female and Male Descendants. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231196461. [PMID: 37705939 PMCID: PMC10496475 DOI: 10.1177/11795514231196461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/15/2023] [Indexed: 09/15/2023] Open
Abstract
Background It is still unelucidated how hormonal alterations affect developing organisms and their descendants. Particularly, the effects of androgen levels are of clinical relevance as they are usually high in women with Polycystic Ovary Syndrome (PCOS). Moreover, it is still unknown how androgens may affect males' health and their descendants. Objectives We aimed to evaluate the multigenerational effect of prenatal androgen excess until a second generation at early developmental stages considering both maternal and paternal effects. Design And Methods This is an animal model study. Female rats (F0) were exposed to androgens during pregnancy by injections of 1 mg of testosterone to obtain prenatally hyperandrogenized (PH) animals (F1), leading to a well-known animal model that resembles PCOS features. A control (C) group was obtained by vehicle injections. The PH-F1 animals were crossed with C males (m) or females (f) and C animals were also mated, thus obtaining 3 different mating groups: Cf × Cm, PHf × Cm, Cf × PHm and their offspring (F2). Results F1-PHf presented altered glucose metabolism and lipid profile compared to F1-C females. In addition, F1-PHf showed an increased time to mating with control males compared to the C group. At gestational day 14, we found alterations in glucose and total cholesterol serum levels and in the placental size of the pregnant F1-PHf and Cf mated to F1-PHm. The F2 offspring resulting from F1-PH mothers or fathers showed alterations in their growth, size, and glucose metabolism up to early post-natal development in a sex-dependent manner, being the females born to F1-PHf the most affected ones. Conclusion androgen exposure during intrauterine life leads to programing effects in females and males that affect offspring health in a sex-dependent manner, at least up-to a second generation. In addition, this study suggests paternally mediated effects on the F2 offspring development.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocio Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Maria José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Baker JA, Mulligan MK, Hamre KM. Effects of genetics and sex on adolescent behaviors following neonatal ethanol exposure in BXD recombinant inbred strains. Front Neurosci 2023; 17:1197292. [PMID: 37564365 PMCID: PMC10410115 DOI: 10.3389/fnins.2023.1197292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the leading preventable neurodevelopmental disorders and two hallmark symptoms of FASD are abnormal behavior, and cognitive and learning deficits. The severity of alcohol's teratogenic effects on the developing brain is influenced by genetics and sex. We previously identified recombinant inbred BXD mouse strains that show differential vulnerability to ethanol-induced cell death in the developing hippocampus, a brain region important in learning and memory. The present study aimed to test the hypothesis that strains with increased vulnerability to ethanol-induced cell death in the hippocampus have concomitant deficits in multiple hippocampal-related behaviors during adolescence. Methods The current study evaluated the effects of developmental ethanol exposure on adolescent behavior in two BXD strains that show high cell death (BXD48a, BXD100), two that show low cell death (BXD60, BXD71), and the two parental strains (C57BL/6 J (B6), DBA/2 J (D2)). On postnatal day 7, male and female neonatal pups were treated with ethanol (5.0 g/kg) or saline given in two equal doses 2 h apart. Adolescent behavior was assessed across multiple behavioral paradigms including the elevated plus maze, open field, Y-maze, and T-maze. Results Our results demonstrate that the effects of developmental ethanol exposure on adolescent behavioral responses are highly dependent on strain. The low cell death strains, BXD60 and BXD71, showed minimal effect of ethanol exposure on all behavioral measures but did present sex differences. The parental -B6 and D2-strains and high cell death strains, BXD48a and BXD100, showed ethanol-induced effects on activity-related or anxiety-like behaviors. Interestingly, the high cell death strains were the only strains that showed a significant effect of postnatal ethanol exposure on hippocampal-dependent spatial learning and memory behaviors. Discussion Overall, we identified effects of ethanol exposure, strain, and/or sex on multiple behavioral measures. Interestingly, the strains that showed the most effects of postnatal ethanol exposure on adolescent behavior were the BXD strains that show high ethanol-induced cell death in the neonatal hippocampus, consistent with our hypothesis. Additionally, we found evidence for interactions among strain and sex, demonstrating that these factors have a complex effect on alcohol responses and that both are important considerations.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Chaudoin TR, Bonasera SJ, Dunaevsky A, Padmashri R. Exploring behavioral phenotypes in a mouse model of fetal alcohol spectrum disorders. Dev Neurobiol 2023; 83:184-204. [PMID: 37433012 PMCID: PMC10546278 DOI: 10.1002/dneu.22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Fetal alcohol spectrum disorders are one of the leading causes of developmental abnormalities worldwide. Maternal consumption of alcohol during pregnancy leads to a diverse range of cognitive and neurobehavioral deficits. Although moderate-to-heavy levels of prenatal alcohol exposure (PAE) have been associated with adverse offspring outcomes, there is limited data on the consequences of chronic low-level PAE. Here, we use a model of maternal voluntary alcohol consumption throughout gestation in a mouse model to investigate the effects of PAE on behavioral phenotypes during late adolescence and early adulthood in male and female offspring. Body composition was measured by dual-energy X-ray absorptiometry. Baseline behaviors, including feeding, drinking, and movement, were examined by performing home cage monitoring studies. The impact of PAE on motor function, motor skill learning, hyperactivity, acoustic reactivity, and sensorimotor gating was investigated by performing a battery of behavioral tests. PAE was found to be associated with altered body composition. No differences in overall movement, food, or water consumption were observed between control and PAE mice. Although PAE offspring of both sexes exhibited deficits in motor skill learning, no differences were observed in basic motor skills such as grip strength and motor coordination. PAE females exhibited a hyperactive phenotype in a novel environment. PAE mice exhibited increased reactivity to acoustic stimuli, and PAE females showed disrupted short-term habituation. Sensorimotor gating was not altered in PAE mice. Collectively, our data show that chronic low-level exposure to alcohol in utero results in behavioral impairments.
Collapse
Affiliation(s)
- Tammy R Chaudoin
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ragunathan Padmashri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
19
|
Serwatka CA, Griebel-Thompson AK, Eiden RD, Kong KL. Nutrient Supplementation during the Prenatal Period in Substance-Using Mothers: A Narrative Review of the Effects on Offspring Development. Nutrients 2023; 15:2990. [PMID: 37447316 DOI: 10.3390/nu15132990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Substance use during pregnancy increases the risk for poor developmental outcomes of the offspring, and for substance-dependent mothers, abstaining from substance use during pregnancy is often difficult. Given the addictive nature of many substances, strategies that may mitigate the harmful effects of prenatal substance exposure are important. Prenatal nutrient supplementation is an emerging intervention that may improve developmental outcomes among substance-exposed offspring. We provide a narrative review of the literature on micronutrient and fatty acid supplementation during pregnancies exposed to substance use in relation to offspring developmental outcomes. We first discuss animal models exposed to ethanol during pregnancy with supplementation of choline, zinc, vitamin E, iron, and fatty acids. We follow with human studies of both alcohol- and nicotine-exposed pregnancies with supplementation of choline and vitamin C, respectively. We identified only 26 animal studies on ethanol and 6 human studies on alcohol and nicotine that supplemented nutrients during pregnancy and reported offspring developmental outcomes. There were no studies that examined nutrient supplementation during pregnancies exposed to cannabis, illicit substances, or polysubstance use. Implementations and future directions are discussed.
Collapse
Affiliation(s)
- Catherine A Serwatka
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Adrianne K Griebel-Thompson
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Rina D Eiden
- Department of Psychology and the Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Kai Ling Kong
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Center for Children's Healthy Lifestyles and Nutrition, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Truong L, Chen YW, Barrere-Cain R, Levenson MT, Shuck K, Xiao W, da Veiga Beltrame E, Panter B, Reich E, Sternberg PW, Yang X, Allard P. Single-nucleus resolution mapping of the adult C. elegans and its application to elucidate inter- and trans-generational response to alcohol. Cell Rep 2023; 42:112535. [PMID: 37227821 PMCID: PMC10592506 DOI: 10.1016/j.celrep.2023.112535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Single-cell transcriptomic platforms provide an opportunity to map an organism's response to environmental cues with high resolution. Here, we applied single-nucleus RNA sequencing (snRNA-seq) to establish the tissue and cell type-resolved transcriptome of the adult C. elegans and characterize the inter- and trans-generational transcriptional impact of ethanol. We profiled the transcriptome of 41,749 nuclei resolving into 31 clusters, representing a diverse array of adult cell types including syncytial tissues. Following exposure to human-relevant doses of alcohol, several germline, striated muscle, and neuronal clusters were identified as being the most transcriptionally impacted at the F1 and F3 generations. The effect on germline clusters was confirmed by phenotypic enrichment analysis as well as by functional validation, which revealed a remarkable inter- and trans-generational increase in germline apoptosis, aneuploidy, and embryonic lethality. Together, snRNA-seq represents a valuable approach for the detailed examination of an adult organism's response to environmental exposures.
Collapse
Affiliation(s)
- Lisa Truong
- Human Genetics Graduate Program, UCLA, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Rio Barrere-Cain
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Max T Levenson
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Karissa Shuck
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | - Blake Panter
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Ella Reich
- Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Paul W Sternberg
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, UCLA, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Inter-Departmental Program, UCLA, Los Angeles, CA 90095, USA; Institute for Society & Genetics, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Lei A, Breit KR, Thomas JD. Prenatal alcohol and tetrahydrocannabinol exposure: Effects on spatial and working memory. Front Neurosci 2023; 17:1192786. [PMID: 37383100 PMCID: PMC10293645 DOI: 10.3389/fnins.2023.1192786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Alcohol and cannabis are widely used recreational drugs that can negatively impact fetal development, leading to cognitive impairments. However, these drugs may be used simultaneously and the effects of combined exposure during the prenatal period are not well understood. Thus, this study used an animal model to investigate the effects of prenatal exposure to ethanol (EtOH), Δ-9-tetrahydrocannabinol (THC), or the combination on spatial and working memory. Methods Pregnant Sprague-Dawley rats were exposed to vaporized ethanol (EtOH; 68 ml/h), THC (100 mg/ml), the combination, or vehicle control during gestational days 5-20. Adolescent male and female offspring were evaluated using the Morris water maze task to assess spatial and working memory. Results Prenatal THC exposure impaired spatial learning and memory in female offspring, whereas prenatal EtOH exposure impaired working memory. The combination of THC and EtOH did not exacerbate the effects of either EtOH or THC, although subjects exposed to the combination were less thigmotaxic, which might represent an increase in risk-taking behavior. Discussion Our results highlight the differential effects of prenatal exposure to THC and EtOH on cognitive and emotional development, with substance- and sex-specific patterns. These findings highlight the potential harm of THC and EtOH on fetal development and support public health policies aimed at reducing cannabis and alcohol use during pregnancy.
Collapse
Affiliation(s)
- Annie Lei
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
| | - Kristen R. Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
- Department of Psychology, West Chester University of Pennsylvania, West Chester, PA, United States
| | - Jennifer D. Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
22
|
Pagliaccio D, Cao X, Sussman TJ. No Meta-analytic Evidence for Risks due to Prenatal Magnetic Resonance Imaging in Animal Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:592-598. [PMID: 36773800 PMCID: PMC10257767 DOI: 10.1016/j.bpsc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is a powerful, noninvasive tool for both clinical practice and research. Though the safety of MRI has been endorsed by many professional societies and government bodies, some concerns have remained about potential risk from prenatal MRI. Case-control animal studies of MRI scanning during gestation and effects on offspring are the most direct test available for potential risks. We performed a meta-analysis of extant animal studies of prenatal MRI examining reproductive and offspring outcomes. METHODS Relevant articles were identified through PubMed search and citation searching of known articles and review papers. Eighteen relevant studies were identified with case-control designs of prenatal scanning conducted in vivo with mammalian species using MRI-relevant field strength. Standardized mean difference effect sizes were analyzed across k = 81 outcomes assessed across 649 unexposed dams, 622 exposed dams, 3024 unexposed offspring, and 3328 exposed offspring using a multilevel meta-analytic approach that clustered effect sizes within publications. RESULTS The meta-analysis indicated no significant evidence for a deleterious effects of prenatal MRI (standardized mean difference = 0.17, 95% CI [-0.19, 0.54], t80 = 0.94, p = .35) across outcomes. Similarly, no effects were observed when separately examining the 4 most commonly assessed outcomes: birth weight, litter size, fetal viability, and physical malformations (p > .05). CONCLUSIONS Case-control mammalian animal studies indicate no significant known risks of prenatal MRI to reproductive outcomes or offspring development. This finding is largely mirrored in human research, though the lack of randomized case-control designs limits direct comparison. The current findings provide additional support to the prevailing consensus that prenatal MRI poses no known risk to offspring.
Collapse
Affiliation(s)
- David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University, New York, New York.
| | - Xiaohe Cao
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University, New York, New York
| | - Tamara J Sussman
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University, New York, New York
| |
Collapse
|
23
|
Baker JA, Bodnar TS, Breit KR, Weinberg J, Thomas JD. Choline Supplementation Alters Hippocampal Cytokine Levels in Adolescence and Adulthood in an Animal Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:546. [PMID: 36831213 PMCID: PMC9953782 DOI: 10.3390/cells12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Alcohol (ethanol) exposure during pregnancy can adversely affect development, with long-lasting consequences that include neuroimmune, cognitive, and behavioral dysfunction. Alcohol-induced alterations in cytokine levels in the hippocampus may contribute to abnormal cognitive and behavioral outcomes in individuals with fetal alcohol spectrum disorders (FASD). Nutritional intervention with the essential nutrient choline can improve hippocampal-dependent behavioral impairments and may also influence neuroimmune function. Thus, we examined the effects of choline supplementation on hippocampal cytokine levels in adolescent and adult rats exposed to alcohol early in development. From postnatal day (PD) 4-9 (third trimester-equivalent), Sprague-Dawley rat pups received ethanol (5.25 g/kg/day) or sham intubations and were treated with choline chloride (100 mg/kg/day) or saline from PD 10-30; hippocampi were collected at PD 35 or PD 60. Age-specific ethanol-induced increases in interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO) were identified in adulthood, but not adolescence, whereas persistent ethanol-induced increases of interleukin-6 (IL-6) levels were present at both ages. Interestingly, choline supplementation reduced age-related changes in interleukin-1 beta (IL-1β) and interleukin-5 (IL-5) as well as mitigating the long-lasting increase in IFN-γ in ethanol-exposed adults. Moreover, choline influenced inflammatory tone by modulating ratios of pro- to -anti-inflammatory cytokines. These results suggest that ethanol-induced changes in hippocampal cytokine levels are more evident during adulthood than adolescence, and that choline can mitigate some effects of ethanol exposure on long-lasting inflammatory tone.
Collapse
Affiliation(s)
- Jessica A. Baker
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kristen R. Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
- Department of Psychology, West Chester University, West Chester, PA 19383, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
24
|
Meombe Mbolle A, Thapa S, Bukiya AN, Jiang H. High-resolution imaging in studies of alcohol effect on prenatal development. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10790. [PMID: 37593366 PMCID: PMC10433240 DOI: 10.3389/adar.2023.10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics. The present review provides an analysis of high-resolution imaging techniques that are used in animals and human subjects to characterize PAE-driven changes in the developing brain. Variants of magnetic resonance imaging such as magnetic resonance microscopy, magnetic resonance spectroscopy, diffusion tensor imaging, along with positron emission tomography, single-photon emission computed tomography, and photoacoustic imaging, are modalities that are used to study the influence of PAE on brain structure and function. This review briefly describes the aforementioned imaging modalities, the main findings that were obtained using each modality, and touches upon the advantages/disadvantages of each imaging approach.
Collapse
Affiliation(s)
- Augustine Meombe Mbolle
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shiwani Thapa
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anna N. Bukiya
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Huabei Jiang
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
25
|
Bleeser T, Brenders A, Hubble TR, Van de Velde M, Deprest J, Rex S, Devroe S. Preclinical evidence for anaesthesia-induced neurotoxicity. Best Pract Res Clin Anaesthesiol 2023. [DOI: 10.1016/j.bpa.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
26
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
27
|
Baker JA, Brettin JT, Mulligan MK, Hamre KM. Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains. Brain Sci 2022; 12:1634. [PMID: 36552094 PMCID: PMC9776411 DOI: 10.3390/brainsci12121634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are prevalent neurodevelopmental disorders. Genetics have been shown to have a role in the severity of alcohol's teratogenic effects on the developing brain. We previously identified recombinant inbred BXD mouse strains that show high (HCD) or low cell death (LCD) in the hippocampus following ethanol exposure. The present study aimed to identify gene networks that influence this susceptibility. On postnatal day 7 (3rd-trimester-equivalent), male and female neonates were treated with ethanol (5.0 g/kg) or saline, and hippocampi were collected 7hrs later. Using the Affymetrix microarray platform, ethanol-induced gene expression changes were identified in all strains with divergent expression sets found between sexes. Genes, such as Bcl2l11, Jun, and Tgfb3, showed significant strain-by-treatment interactions and were involved in many apoptosis pathways. Comparison of HCD versus LCD showed twice as many ethanol-induced genes changes in the HCD. Interestingly, these changes were regulated in the same direction suggesting (1) more perturbed effects in HCD compared to LCD and (2) limited gene expression changes that confer resistance to ethanol-induced cell death in LCD. These results demonstrate that genetic background and sex are important factors that affect differential cell death pathways after alcohol exposure during development that could have long-term consequences.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jacob T. Brettin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
28
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
29
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos. Sci Prog 2022; 105:368504221137458. [PMID: 36474426 PMCID: PMC10306152 DOI: 10.1177/00368504221137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. β-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of β-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While β-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. β-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety
Research Team, National Nanotechnology Center, National Science and Technology
Development Agency, Klong Luang, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Drug Discovery and Development Center, Thammasat University, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
30
|
Torres DJ, Yorgason JT, Andres MA, Bellinger FP. Methamphetamine Exposure During Development Causes Lasting Changes to Mesolimbic Dopamine Signaling in Mice. Cell Mol Neurobiol 2022; 42:2433-2438. [PMID: 34138411 PMCID: PMC8678368 DOI: 10.1007/s10571-021-01120-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Methamphetamine (MA) abuse remains a public health issue. Prenatal MA exposure (PME) poses a significant health problem, as we know very little about the drug's long-term physiological impact on the developing human brain. We investigated the long-term consequences of early MA exposure using a mouse model that targets the brain growth spurt, which occurs during human third-trimester. Adult mice previously subjected to acute MA during post-natal days 4-9 exhibited hyperactivity during the Open-Field Test, while exhibiting no motor coordination changes during the Rotarod Test. Neonatal MA exposure reduced basal dopamine (DA) uptake rates in adult nucleus accumbens slices compared with saline-injected controls. Although slices from neonatal MA-exposed mice showed no change in evoked DA signals in the presence of MA, they exhibited potentiated non-evoked DA release through DA efflux in response to MA. These data suggest that developmental MA exposure alters brain development to produce long-lasting physiological changes to the adult mesolimbic DA system, as well as altering responses to acute MA exposure in adulthood. This study provides new insights into an important, under-investigated area in drugs of abuse research.
Collapse
Affiliation(s)
- Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Jordan T Yorgason
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Marilou A Andres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| |
Collapse
|
31
|
Sex-Related Differences in Voluntary Alcohol Intake and mRNA Coding for Synucleins in the Brain of Adult Rats Prenatally Exposed to Alcohol. Biomedicines 2022; 10:biomedicines10092163. [PMID: 36140264 PMCID: PMC9496239 DOI: 10.3390/biomedicines10092163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Maternal alcohol consumption is one of the strong predictive factors of alcohol use and consequent abuse; however, investigations of sex differences in response to prenatal alcohol exposure (PAE) are limited. Here we compared the effects of PAE throughout gestation on alcohol preference, state anxiety and mRNA expression of presynaptic proteins α-, β- and γ-synucleins in the brain of adult (PND60) male and female Wistar rats. Total RNA was isolated from the hippocampus, midbrain and hypothalamus and mRNA levels were assessed with quantitative RT-PCR. Compared with naïve males, naïve female rats consumed more alcohol in “free choice” paradigm (10% ethanol vs. water). At the same time, PAE produced significant increase in alcohol consumption and preference in males but not in females compared to male and female naïve groups, correspondingly. We found significantly lower α-synuclein mRNA levels in the hippocampus and midbrain of females compared to males and significant decrease in α-synuclein mRNA in these brain areas in PAE males, but not in females compared to the same sex controls. These findings indicate that the impact of PAE on transcriptional regulation of synucleins may be sex-dependent, and in males’ disruption in α-synuclein mRNA expression may contribute to increased vulnerability to alcohol-associated behavior.
Collapse
|
32
|
Anderson RC, O'Keeffe GW, McDermott KW. Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. J Anat 2022; 241:938-950. [PMID: 35808977 PMCID: PMC9482694 DOI: 10.1111/joa.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal immune activation (MIA) during gestation has been implicated in the development of neurological disorders such as schizophrenia and autism. Epidemiological studies have suggested that the effect of MIA may depend on the gestational timing of the immune challenge and the region of the central nervous system (CNS) in question. This study investigated the effects of MIA with 100 μg/kg lipopolysaccharide at either Embryonic days (E)12 or E16 on the oligodendrocytes, microglia and astrocytes of the offspring spinal cord. At E16, MIA decreased the number of olig2+ and Iba‐1+ cells in multiple grey and white matter regions of the developing spinal cord 5 h after injection. These decreases were not observed at postnatal day 14. In contrast, MIA at E12 did not alter Olig2+ or Iba‐1+ cell number in the developing spinal cord 5 h after injection, however, Olig2+ cell number was decreased in the ventral grey matter of the P14 spinal cord. No changes were observed in glial fibrillary acidic protein (GFAP) expression at P14 following MIA at either E12 or E16. These data suggest that E16 may be a window of immediate vulnerability to MIA during spinal cord development, however, the findings also suggest that the developmental process may be capable of compensation over time. Potential changes in P14 animals following the challenge at E12 are indicative of the complexity of the effects of MIA during the developmental process.
Collapse
Affiliation(s)
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
33
|
Reduced and delayed myelination and volume of corpus callosum in an animal model of Fetal Alcohol Spectrum Disorders partially benefit from voluntary exercise. Sci Rep 2022; 12:10653. [PMID: 35739222 PMCID: PMC9226126 DOI: 10.1038/s41598-022-14752-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
1 in 20 live births in the United States is affected by prenatal alcohol exposure annually, creating a major public health crisis. The teratogenic impact of alcohol on physical growth, neurodevelopment, and behavior is extensive, together resulting in clinical disorders which fall under the umbrella term of Fetal Alcohol Spectrum Disorders (FASD). FASD-related impairments to executive function and perceptual learning are prevalent among affected youth and are linked to disruptions to corpus callosum growth and myelination in adolescence. Targeted interventions that support neurodevelopment in FASD-affected youth are nonexistent. We evaluated the capacity of an adolescent exercise intervention, a stimulator of myelinogenesis, to upregulate corpus callosum myelination in a rat model of FASD (third trimester-equivalent alcohol exposure). This study employs in vivo diffusion tensor imaging (DTI) scanning to investigate the effects of: (1) neonatal alcohol exposure and (2) an adolescent exercise intervention on corpus callosum myelination in a rodent model of FASD. DTI scans were acquired twice longitudinally (pre- and post-intervention) in male and female rats using a 9.4 Tesla Bruker Biospec scanner to assess alterations to corpus callosum myelination noninvasively. Fractional anisotropy values as well as radial/axial diffusivity values were compared within-animal in a longitudinal study design. Analyses using mixed repeated measures ANOVA’s confirm that neonatal alcohol exposure in a rodent model of FASD delays the trajectory of corpus callosum growth and myelination across adolescence, with a heightened vulnerability in the male brain. Alterations to corpus callosum volume are correlated with reductions to forebrain volume which mediates an indirect relationship between body weight gain and corpus callosum growth. While we did not observe any significant effects of voluntary aerobic exercise on corpus callosum myelination immediately after completion of the 12-day intervention, we did observe a beneficial effect of exercise intervention on corpus callosum volume growth in all rats. In line with clinical findings, we have shown that prenatal alcohol exposure leads to hypomyelination of the corpus callosum in adolescence and that the severity of damage is sexually dimorphic. Further, exercise intervention improves corpus callosum growth in alcohol-exposed and control rats in adolescence.
Collapse
|
34
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
35
|
Dong E, Zhang H, Chu A, Pandey SC. Acute and Protracted Prenatal Stress Produce Mood Disorder-Like and Ethanol Drinking Behaviors in Male and Female Adult Offspring. Front Behav Neurosci 2022; 16:862390. [PMID: 35722193 PMCID: PMC9204301 DOI: 10.3389/fnbeh.2022.862390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Alcohol use disorder (AUD) is a complex and chronic relapsing brain disease, which is often co-morbid with psychiatric disorders such as anxiety and depression. AUD phenotypes differ in men and women. Although genetic factors play an important role in its pathophysiology, epidemiologic evidence suggests that during prenatal development, individuals are more vulnerable to the negative effects of environmental factors that may predispose them to AUD later in life. We explored the effects of prenatal stress on the development of AUD phenotypes as well as anxiety- and depression-like behaviors using rat model. Methods In this study, timed-pregnant Sprague Dawley dams were used. Dams in the control group were left undisturbed throughout gestation, whereas dams in stress groups were either subjected to protracted or acute restraint stress under bright light. At adulthood, the anxiety-like, ethanol drinking, and sucrose drinking behaviors were measured using the Light/Dark Box test and two-bottle free-choice procedure. Results Compared to the control group, both the male and female offspring in the stress groups exhibited anxiety-like behavior and consumed significantly higher amounts of ethanol in which the acute stress group demonstrated the higher ethanol preference. Moreover, male but not female offspring from the stress groups had decreased sucrose preferences. Conclusion These findings suggest that protracted and acute prenatal stress in late pregnancy can induce in anxiety-, depressive-like behaviors, and excessive ethanol intake in adult offspring.
Collapse
Affiliation(s)
- Erbo Dong
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, College of Medicine, Psychiatric Institute, University of Illinois, Chicago, IL, United States,*Correspondence: Erbo Dong
| | - Huaibo Zhang
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, College of Medicine, Psychiatric Institute, University of Illinois, Chicago, IL, United States
| | - Alison Chu
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, College of Medicine, Psychiatric Institute, University of Illinois, Chicago, IL, United States
| | - Subhash C. Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, College of Medicine, Psychiatric Institute, University of Illinois, Chicago, IL, United States,Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
36
|
Carugati M, Goodlett CR, Cudd TA, Washburn SE. The effects of gestational choline supplementation on cerebellar Purkinje cell number in the sheep model of binge alcohol exposure during the first trimester-equivalent. Alcohol 2022; 100:11-21. [PMID: 35114358 PMCID: PMC8983574 DOI: 10.1016/j.alcohol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Individuals with fetal alcohol spectrum disorders (FASD) incur enduring brain damage and neurodevelopmental impairments from prenatal alcohol exposure (PAE). Preclinical rodent models have demonstrated that choline supplementation during development can reduce the severity of adverse neurodevelopmental consequences of PAE. This study used the sheep model to evaluate dietary choline supplementation during pregnancy as a therapeutic intervention, testing the hypothesis that choline can ameliorate alcohol-induced cerebellar Purkinje cell loss. Pregnant ewes were randomly assigned either to a normal control [NC] group (n = 8), or to groups given intravenous infusions of alcohol (or saline) from gestational days 4-41 (the first trimester-equivalent). A weekly binge-drinking pattern was modeled, with three consecutive days of infusions of saline [SAL], 1.75 g/kg/day alcohol [1.75ALC], or 2.5 g/kg/day alcohol [2.5ALC] followed by four days off. Infused ewes were randomly assigned to receive dietary supplements throughout pregnancy of choline (10 mg/kg/day) or placebo (n = 8 per group). Mean blood alcohol concentrations (BAC) were significantly higher in the 2.5ALC groups (287 mg/dL) than the 1.75ALC groups (197 mg/dL). Lamb cerebella were harvested on postnatal day 180 and processed for stereological counts of Purkinje cells. Both alcohol doses caused significant reductions in Purkinje number relative to NC and SAL-Placebo groups, confirming previous findings. Effects of choline supplementation depended on infusion group: it significantly protected against Purkinje cell loss in the 2.5ALC group, had no effect in the 1.75ALC group, and significantly reduced numbers in the SAL-Choline group (though neither the SAL-Choline nor the SAL-Placebo group differed from the NC group). The protection by choline evident only in the 2.5ALC group suggests that multiple, BAC-dependent mechanisms of cerebellar damage may be activated with alcohol exposure in the first trimester, and that choline may protect against pathogenic mechanisms that emerge at higher BACs. These outcomes extend the evidence that early choline supplementation can mitigate some neurodevelopmental defects resulting from binge-like PAE.
Collapse
Affiliation(s)
- Megan Carugati
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Charles R Goodlett
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Timothy A Cudd
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, United States.
| |
Collapse
|
37
|
Macht VA, Vetreno RP, Crews FT. Cholinergic and Neuroimmune Signaling Interact to Impact Adult Hippocampal Neurogenesis and Alcohol Pathology Across Development. Front Pharmacol 2022; 13:849997. [PMID: 35308225 PMCID: PMC8926387 DOI: 10.3389/fphar.2022.849997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/21/2023] Open
Abstract
Alcohol (ethanol) use and misuse is a costly societal issue that can affect an individual across the lifespan. Alcohol use and misuse typically initiates during adolescence and generally continues into adulthood. Not only is alcohol the most widely abused drug by adolescents, but it is also one of the most widely abused drugs in the world. In fact, high rates of maternal drinking make developmental ethanol exposure the most preventable cause of neurological deficits in the Western world. Preclinical studies have determined that one of the most consistent effects of ethanol is its disruption of hippocampal neurogenesis. However, the severity, persistence, and reversibility of ethanol’s effects on hippocampal neurogenesis are dependent on developmental stage of exposure and age at assessment. Complicating the neurodevelopmental effects of ethanol is the concurrent development and maturation of neuromodulatory systems which regulate neurogenesis, particularly the cholinergic system. Cholinergic signaling in the hippocampus directly regulates hippocampal neurogenesis through muscarinic and nicotinic receptor actions and indirectly regulates neurogenesis by providing anti-inflammatory regulatory control over the hippocampal environmental milieu. Therefore, this review aims to evaluate how shifting maturational patterns of the cholinergic system and its regulation of neuroimmune signaling impact ethanol’s effects on adult neurogenesis. For example, perinatal ethanol exposure decreases basal forebrain cholinergic neuron populations, resulting in long-term developmental disruptions to the hippocampus that persist into adulthood. Exaggerated neuroimmune responses and disruptions in adult hippocampal neurogenesis are evident after environmental, developmental, and pharmacological challenges, suggesting that perinatal ethanol exposure induces neurogenic deficits in adulthood that can be unmasked under conditions that strain neural and immune function. Similarly, adolescent ethanol exposure persistently decreases basal forebrain cholinergic neuron populations, increases hippocampal neuroimmune gene expression, and decreases hippocampal neurogenesis in adulthood. The effects of neither perinatal nor adolescent ethanol are mitigated by abstinence whereas adult ethanol exposure-induced reductions in hippocampal neurogenesis are restored following abstinence, suggesting that ethanol-induced alterations in neurogenesis and reversibility are dependent upon the developmental period. Thus, the focus of this review is an examination of how ethanol exposure across critical developmental periods disrupts maturation of cholinergic and neuroinflammatory systems to differentially affect hippocampal neurogenesis in adulthood.
Collapse
Affiliation(s)
- Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Xia H, Akay YM, Akay M. Investigating miRNA-mRNA interactions and gene regulatory networks from VTA dopaminergic neurons following perinatal nicotine and alcohol exposure using Bayesian network analysis. IEEE J Biomed Health Inform 2022; 26:3550-3555. [PMID: 35290190 DOI: 10.1109/jbhi.2022.3158620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MicroRNAs play an important role in gene regulation for many biological systems, including nicotine and alcohol addiction. However, the underlying mechanism behind miRNAs and mRNA interaction is not well characterized. Microarrays are commonly used to quantify the expression levels of mRNAs and/or miRNAs simultaneously. In this study, we performed a Bayesian network analysis to identify mRNA and miRNA interactions following perinatal exposure to nicotine and/or alcohol. We utilized three sets of microarray data to predict the regulation relationship between mRNA and miRNAs. Following perinatal alcohol exposure, we identified two miRNAs: miR-542-5p and miR-874-3p, that exhibited a strong mutual influence on several mRNA in gene regulatory pathways, mainly Axon guidance and Dopaminergic synapses. Finally, we confirmed our predicted addiction pathways based on the Bayesian network analysis with the widely used Kyoto Encyclopedia of Genes and Genomes (KEGG)-based database and identified comparable relevant miRNA-mRNA pairs. We believe the Bayesian network can provide insight into the complexity biological process related to addiction and can potentially be applied to other diseases.
Collapse
|
39
|
Crofton EJ, Zhu M, Curtis KN, Nolan GW, O’Buckley TK, Morrow AL, Herman MA. Medial prefrontal cortex-basolateral amygdala circuit dysfunction in chronic alcohol-exposed male rats. Neuropharmacology 2022; 205:108912. [PMID: 34883134 PMCID: PMC8800149 DOI: 10.1016/j.neuropharm.2021.108912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Alcohol is a commonly used drug that can produce alcohol use disorders (AUDs). Few individuals with AUDs receive treatment and treatment options are complicated by issues with effectiveness and compliance. Alcohol has been shown to differentially affect specific brain regions and an improved understanding of circuit-specific dysregulation caused by alcohol is warranted. Previous work has implicated both the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) in alcohol-associated plasticity, however studies directly examining the impact of alcohol exposure on this circuit are lacking. The current study employed an optogenetic strategy to investigate the prelimbic mPFC to BLA circuit and changes in circuit activity following chronic intragastric ethanol exposure in male Sprague Dawley rats. We observed monosynaptic connections with light-evoked stimulation of mPFC terminals in the BLA with efficacy and short latency. We also found that mPFC-BLA projections are primarily glutamatergic under basal inhibitory control, with a lesser population of GABAergic projections. We examined optically-evoked glutamate currents in the BLA using repeated trains of stimulation that displayed accommodation, or a reduction in evoked current amplitude over repeated stimulations. We found that following chronic ethanol exposure mPFC-BLA glutamatergic connections were dysregulated such that there were decreases in overall function, notably in synaptic strength and accommodation, with no change in probability of evoked glutamate release. The lesser GABAergic component of the mPFC-BLA circuit was not altered by chronic ethanol exposure. Collectively these data indicate that mPFC-BLA circuitry is a significant target of alcohol-associated plasticity, which may contribute to pathological behavior associated with AUDs.
Collapse
Affiliation(s)
- Elizabeth J. Crofton
- Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - ManHua Zhu
- Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katelin N. Curtis
- Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - Gavin W. Nolan
- Department of Psychology and Neuroscience, Emmanuel College, Boston, MA, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - A. Leslie Morrow
- Department of Psychiatry, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Melissa A. Herman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Age-dependent effects of embryonic ethanol exposure on anxiety-like behaviours in young zebrafish: A genotype comparison study. Pharmacol Biochem Behav 2022; 214:173342. [DOI: 10.1016/j.pbb.2022.173342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
41
|
Chen MH, Hong CL, Wang YT, Wang TJ, Chen JR. The Effect of Astaxanthin Treatment on the Rat Model of Fetal Alcohol Spectrum Disorders (FASD). Brain Res Bull 2022; 183:57-72. [DOI: 10.1016/j.brainresbull.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
|
42
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Graf A, Ksenofontov A, Bunik V. Inhibition of 2-Oxoglutarate Dehydrogenase as a Chemical Model of Acute Hypobaric Hypoxia. Front Med (Lausanne) 2022; 8:751639. [PMID: 34977062 PMCID: PMC8718613 DOI: 10.3389/fmed.2021.751639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Both hypoxia and inhibition of 2-oxoglutarate dehydrogenase complex (OGDHC) are known to change cellular amino acid pools, but the quantitative comparison of the metabolic and physiological outcomes has not been done. We hypothesize that OGDHC inhibition models metabolic changes caused by hypoxia, as both perturb the respiratory chain function, limiting either the NADH (OGDHC inhibition) or oxygen (hypoxia) supply. In the current study, we quantify the changes in the amino acid metabolism after OGDHC inhibition in the highly sensitive to hypoxia cerebellum and compare them to the earlier characterized changes after acute hypobaric hypoxia. In addition, the associated physiological effects are characterized and compared. A specific OGDHC inhibitor succinyl phosphonate (SP) is shown to act similar to hypoxia, increasing levels of many amino acids in the cerebellum of non-pregnant rats, without affecting those in the pregnant rats. Compared with hypoxia, stronger effects of SP in non-pregnant rats are observed on the levels of cerebellar amino acids, electrocardiography (ECG), and freezing time. In pregnant rats, hypoxia affects ECG and behavior more than SP, although none of the stressors significantly change the levels of cerebellar amino acids. The biochemical differences underlying the different physiological actions of SP and hypoxia are revealed by correlation analysis of the studied parameters. The negative correlations of cerebellar amino acids with OGDHC and/or tryptophan, shown to arise after the action of SP and hypoxia, discriminate the overall metabolic action of the stressors. More negative correlations are induced in the non-pregnant rats by hypoxia, and in the pregnant rats by SP. Thus, our findings indicate that the OGDHC inhibition mimics the action of acute hypobaric hypoxia on the cerebellar amino acid levels, but a better prediction of the physiological outcomes requires assessment of integral network changes, such as increases in the negative correlations among the amino acids, OGDHC, and/or tryptophan.
Collapse
Affiliation(s)
- Anastasia Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational and Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.,Andrey Nikolaevich (A. N.) Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Ksenofontov
- Andrey Nikolaevich (A. N.) Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria Bunik
- Andrey Nikolaevich (A. N.) Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Biochemistry Department, Sechenov University, Moscow, Russia
| |
Collapse
|
44
|
Alsakran A, Kudoh T. Zebrafish as a Model for Fetal Alcohol Spectrum Disorders. Front Pharmacol 2022; 12:721924. [PMID: 34975467 PMCID: PMC8714738 DOI: 10.3389/fphar.2021.721924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
In this review, we will discuss zebrafish as a model for studying mechanisms of human fetal alcohol spectrum disorders (FASDs). We will overview the studies on FASDs so far and will discuss with specific focus on the mechanisms by which alcohol alters cell migration during the early embryogenesis including blastula, gastrula, and organogenesis stages which later cause morphological defects in the brain and other tissues. FASDs are caused by an elevated alcohol level in the pregnant mother’s body. The symptoms of FASDs include microcephaly, holoprosencephaly, craniofacial abnormalities, and cardiac defects with birth defect in severe cases, and in milder cases, the symptoms lead to developmental and learning disabilities. The transparent zebrafish embryo offers an ideal model system to investigate the genetic, cellular, and organismal responses to alcohol. In the zebrafish, the effects of alcohol were observed in many places during the embryo development from the stem cell gene expression at the blastula/gastrula stage, gastrulation cell movement, morphogenesis of the central nervous system, and neuronal development. The data revealed that ethanol suppresses convergence, extension, and epiboly cell movement at the gastrula stage and cause the failure of normal neural plate formation. Subsequently, other cell movements including neurulation, eye field morphogenesis, and neural crest migration are also suppressed, leading to the malformation of the brain and spinal cord, including microcephaly, cyclopia, spinal bifida, and craniofacial abnormalities. The testing cell migration in zebrafish would provide convenient biomarkers for the toxicity of alcohol and other related chemicals, and investigate the molecular link between the target signaling pathways, following brain development.
Collapse
Affiliation(s)
- Amena Alsakran
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tetsuhiro Kudoh
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,University of Exeter, Exeter, United Kingdom
| |
Collapse
|
45
|
Affiliation(s)
- Vishal D Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Shannon Washburn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- J. Ramadoss, Department of Obstetrics & Gynecology and Department of Physiology, 275 E Hancock St, C.S. Mott Center for Human Growth and Development, Rm 195, School of Medicine, Wayne State University, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
46
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
47
|
Bariselli S, Lovinger DM. Corticostriatal Circuit Models of Cognitive Impairments Induced by Fetal Exposure to Alcohol. Biol Psychiatry 2021; 90:516-528. [PMID: 34281711 PMCID: PMC8463431 DOI: 10.1016/j.biopsych.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
The term fetal alcohol spectrum disorder includes a group of diseases caused by fetal alcohol exposure (FAE). Patients with fetal alcohol spectrum disorder display heterogeneous socioemotional and cognitive deficits, particularly in the domain of executive function, that share symptoms with other neuropsychiatric disorders. Despite the availability of several preclinical models, the developmental brain defects causally linked to behavioral deficits induced by FAE remain poorly understood. Here, we first review the effects of FAE on corticostriatal development and its impact on both corticostriatal pathway function and cognitive abilities. We propose three non-mutually exclusive circuit models of corticostriatal dysfunctions to account for some of the FAE-induced cognitive deficits. One model posits that associative-sensorimotor imbalance causes hyper goal-directed behavior, and a second model implies that alteration of prefrontal-striatal behavioral suppression circuits results in loss of behavioral inhibition. A third model suggests that local striatal circuit deficits affect striatal neuronal ensemble function to impair action selection and performance. Finally, we discuss how preclinical approaches applied to these circuit models could offer potential rescue strategies for executive function deficits in patients with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M. Lovinger
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), 5625 Fishers Lane, Bethesda, MD (20892-941),Corresponding author:
| |
Collapse
|
48
|
Maternal Mid-Gestation Cytokine Dysregulation in Mothers of Children with Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:3919-3932. [PMID: 34505185 PMCID: PMC9349096 DOI: 10.1007/s10803-021-05271-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterised by deficits in social interactions and communication, with stereotypical and repetitive behaviours. Recent evidence suggests that maternal immune dysregulation may predispose offspring to ASD. Independent samples t-tests revealed downregulation of IL-17A concentrations in cases, when compared to controls, at both 15 weeks (p = 0.02), and 20 weeks (p = 0.02), which persisted at 20 weeks following adjustment for confounding variables. This adds to the growing body of evidence that maternal immune regulation may play a role in foetal neurodevelopment.
Collapse
|
49
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
50
|
Lee J, Naik V, Orzabal M, Lunde-Young R, Ramadoss J. Morphological alteration in rat hippocampal neuronal dendrites following chronic binge prenatal alcohol exposure. Brain Res 2021; 1768:147587. [PMID: 34297994 DOI: 10.1016/j.brainres.2021.147587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Prenatal alcohol exposure (PAE) may result in Fetal Alcohol Spectrum Disorders (FASD). The hippocampus has been recognized as a vulnerable target to alcohol-induced developmental damage. However, the effect of prenatal exposure to alcohol on dendritic morphological adaptations throughout the hippocampal fields in the developing brain still remains largely unknown in the context of FASD. We hypothesized that chronic binge alcohol exposure during pregnancy alters dendrite arborization throughout the developing rat hippocampus. Pregnant Sprague-Dawley rats were assigned to either a pair-fed control (PF-Cont) or a binge alcohol (Alcohol) treatment group. Alcohol dams were acclimatized via a once-daily orogastric gavage of 4.5 g/kg alcohol from gestational day (GD) 5-10 and progressed to 6 g/kg alcohol from GD 11-21. Pair-fed dams similarly received isocaloric maltose dextrin. After parturition, all dams received an ad libitum diet and nursed their offspring until postnatal day (PND) 10 when the pup brains were collected for morphological analysis. PAE increased dendritic arborization and complexities of CA1, CA2/3, and DG neurons in the PND 10 rat hippocampus. The number of primary dendrites, total dendritic length, and number of dendritic branches were significantly increased following PAE, and Sholl analysis revealed significantly more intersections of the dendritic processes in PND 10 offspring following PAE compared with those in the PF-Cont group. We conclude that chronic binge PAE significantly alters hippocampal dendritic morphology in the developing hippocampus. We conjecture that this morphological alteration in postnatal rat hippocampal dendrites following chronic binge prenatal alcohol exposure may play a critical role in FASD neurobiological phenotypes.
Collapse
Affiliation(s)
- Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|