1
|
Shen B, Lu R, Lv M, Chen J, Li J, Long J, Cai H, Su L, Gong Z. Association between the levels of toxic heavy metals and schizophrenia in the population of Guangxi, China: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125179. [PMID: 39490508 DOI: 10.1016/j.envpol.2024.125179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The relationship between body levels of heavy metals and the risk of schizophrenia remains unclear. This study investigates the relationship between plasma levels of toxic heavy metals and the risk of schizophrenia among adults in Guangxi, China. Plasma concentrations of lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr) were measured using inductively coupled plasma mass spectrometry (ICP-MS). To evaluate both the single and combined effects of metal exposure on the risk of schizophrenia, we employed multivariate logistic regression, Bayesian Kernel Machine Regression (BKMR), and generalized Weighted Quantile Sum (gWQS) models. Additionally, we employed the Comparative Toxicogenomics Database (CTD) to analyze the mechanistic pathways through which metal mixtures may induce schizophrenia. Relative mRNA expression levels were measured using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to predict potential biological functions. In logistic regression models, compared to the lowest exposure group (Q1), the odds ratios (ORs) for Pb in groups Q2, Q3, and Q4 were 2.18 (95% CI: 1.20-3.94), 4.74 (95% CI: 2.52-8.95), and 3.62 (95% CI: 1.80-7.28), respectively. Both BKMR and gWQS models indicated a positive correlation between the combined effects of toxic heavy metal mixtures and the risk of schizophrenia, with Pb demonstrating the most substantial impact, particularly in older adults and females. Elevated levels of tumor necrosis factor (TNF) and interleukin-1 beta (IL-1β) were observed in patients with schizophrenia, while the expression of tumor protein p53 (TP53) was significantly reduced. These findings underscore the critical need to avoid exposure to toxic heavy metals to prevent schizophrenia, highlighting significant public health implications.
Collapse
Affiliation(s)
- Bing Shen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Rumei Lu
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Miao Lv
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - JieWen Chen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jiale Li
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jianxiong Long
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Hong Cai
- Department of Medical Psychology and Behaviors, School of Public Health of Guangxi Medical University, Nanning, China
| | - Li Su
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China.
| | - Zukang Gong
- Nanning Center for Disease Control and Prevention, Nanning, China.
| |
Collapse
|
2
|
Chen L, Huai C, Song C, Wu S, Xu Y, Yi Z, Tang J, Fan L, Wu X, Ge Z, Liu C, Jiang D, Weng S, Wang G, Zhang X, Zhao X, Shen L, Zhang N, Wu H, Wang Y, Guo Z, Zhang S, Jiang B, Zhou W, Ma J, Li M, Chu Y, Zhou C, Lv Q, Xu Q, Zhu W, Zhang Y, Lian W, Liu S, Li X, Gao S, Liu A, He L, Yang Z, Dai B, Ye J, Lin R, Lu Y, Yan Q, Hu Y, Xing Q, Huang H, Qin S. Refining antipsychotic treatment strategies in schizophrenia: discovery of genetic biomarkers for enhanced drug response prediction. Mol Psychiatry 2024:10.1038/s41380-024-02841-w. [PMID: 39562719 DOI: 10.1038/s41380-024-02841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Schizophrenia (SCZ) is a severe mental disorder affecting around 1% of individuals worldwide. The variability in response to antipsychotic drugs (APDs) among SCZ patients presents a significant challenge for clinicians in determining the most effective medication. In this study, we investigated the biological markers and established a predictive model for APD response based on a large-scale genome-wide association study using 3269 Chinese schizophrenia patients. Each participant underwent an 8-week treatment regimen with one of five mono-APDs: olanzapine, risperidone, aripiprazole, quetiapine, or amisulpride. By dividing the response into ordinal groups of "high", "medium", and "low", we mitigated the bias of unclear treatment outcome and identified three novel significantly associated genetic loci in or near CDH12, WDR11, and ELAVL2. Additionally, we developed predictive models of response to each specific APDs, with accuracies ranging from 79.5% to 98.0%. In sum, we established an effective method to predict schizophrenia patients' response to APDs across three categories, integrating novel biomarkers to guide personalized medicine strategies.
Collapse
Affiliation(s)
- Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chuanfu Song
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Shaochang Wu
- The Second People's Hospital of Lishui, Lishui, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen City, Guangdong Province, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzi Fan
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Xuming Wu
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Zhenhua Ge
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Chuanxin Liu
- Department of Psychiatry, Jining Medical University School of Mental Health, Jining, China
| | - Deguo Jiang
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Saizheng Weng
- Fuzhou Neuro-psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Guoqiang Wang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi, China
| | | | - Xudong Zhao
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute (SJTUSRI), Chengdu, Sichuan Province, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suli Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Bixuan Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health & Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yunpeng Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, China
| | - Weibin Lian
- The Second People's Hospital of Lishui, Lishui, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Songyin Gao
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Aihong Liu
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Lei He
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Zhenzhen Yang
- Department of Psychiatry, Jining Medical University School of Mental Health, Jining, China
| | - Bojian Dai
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jiaen Ye
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Ruiqian Lin
- Fuzhou Neuro-psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yana Lu
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi, China
| | - Qi Yan
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Yalan Hu
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Jiao Tong University Sichuan Research Institute (SJTUSRI), Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Boudriot E, Gabriel V, Popovic D, Pingen P, Yakimov V, Papiol S, Roell L, Hasanaj G, Xu S, Moussiopoulou J, Priglinger S, Kern C, Schulte EC, Hasan A, Pogarell O, Falkai P, Schmitt A, Schworm B, Wagner E, Keeser D, Raabe FJ. Signature of Altered Retinal Microstructures and Electrophysiology in Schizophrenia Spectrum Disorders Is Associated With Disease Severity and Polygenic Risk. Biol Psychiatry 2024; 96:792-803. [PMID: 38679358 DOI: 10.1016/j.biopsych.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Optical coherence tomography and electroretinography studies have revealed structural and functional retinal alterations in individuals with schizophrenia spectrum disorders (SSDs). However, it remains unclear which specific retinal layers are affected; how the retina, brain, and clinical symptomatology are connected; and how alterations of the visual system are related to genetic disease risk. METHODS Optical coherence tomography, electroretinography, and brain magnetic resonance imaging were applied to comprehensively investigate the visual system in a cohort of 103 patients with SSDs and 130 healthy control individuals. The sparse partial least squares algorithm was used to identify multivariate associations between clinical disease phenotype and biological alterations of the visual system. The association of the revealed patterns with individual polygenic disease risk for schizophrenia was explored in a post hoc analysis. In addition, covariate-adjusted case-control comparisons were performed for each individual optical coherence tomography and electroretinography parameter. RESULTS The sparse partial least squares analysis yielded a phenotype-eye-brain signature of SSDs in which greater disease severity, longer duration of illness, and impaired cognition were associated with electrophysiological alterations and microstructural thinning of most retinal layers. Higher individual loading onto this disease-relevant signature of the visual system was significantly associated with elevated polygenic risk for schizophrenia. In case-control comparisons, patients with SSDs had lower macular thickness, thinner retinal nerve fiber and inner plexiform layers, less negative a-wave amplitude, and lower b-wave amplitude. CONCLUSIONS This study demonstrates multimodal microstructural and electrophysiological retinal alterations in individuals with SSDs that are associated with disease severity and individual polygenic burden.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - David Popovic
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Pauline Pingen
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, Munich, Germany; Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simiao Xu
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph Kern
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany; Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Benedikt Schworm
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elias Wagner
- Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; Munich Center for Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
4
|
Germanenko I, Vrublevska J, Bezborodovs N, Rancans E. Internal Validation of the Latvian Version of 16-Item Prodromal Questionnaire in A Help-Seeking Adolescent Population: Psychometric Analysis and Associated Factors. Early Interv Psychiatry 2024. [PMID: 39511931 DOI: 10.1111/eip.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES The prodromal phase of a psychotic disorder is a period of altered functioning before the onset of the acute state; several interviews have been developed to determine whether individuals present with prodromal symptoms. The 16-item Prodromal Questionnaire (PQ-16) is a screening tool for evaluating those at risk of developing a psychotic disorder. The study aimed to evaluate the psychometric properties of the Latvian version of the PQ-16 in a sample of help-seeking adolescents referred for diagnostic assessment and look for possible associated socio-demographic and health-related factors. METHODS A cross-sectional study included patients admitted for evaluation between November 2022 and February 2023 in Riga's Children's Clinical University Hospital Child Psychiatry clinic. The data were collected during outpatient consultations by mental health professionals. We used the Latvian translation of PQ-16 and the socio-demographic and health-related factors questionnaire. Data were analysed with IBM SPSS 28; the scale's diagnostic accuracy and internal validity were examined. RESULTS The study involved 107 adolescents aged 12% to 17%, 80.5% female, with a mean age of 14.98 (CI 14.70-15.26). Socio-demographic data and health-related variables did not significantly differ between the sexes (p > 0.05). The Latvian PQ-16 demonstrated excellent internal reliability with a Cronbach's alpha of 0.890. All 16 items were found to be valid with p < 0.001. A significant number of participants (73.8%) scored above the current cut-off of ≥ 6 with a mean of 9.17 (95% CI 8.41-9.93). Certain socio-demographic factors, such as female gender (p < 0.001), fair school performance (p = 0.048) and recent changes in school performance (p < 0.001), demonstrated a significant association with higher scores. Additionally, there were found significant associations between positive screening and health-related factors such as obstetric complications (p = 0.044), smoking (p = 0.002), alcohol consumption (p = 0.021), history of bullying in school (p < 0.001) and emotional abuse at home (p = 0.011). CONCLUSIONS Latvian translation of PQ-16 showed high internal reliability and validity levels. Positive PQ-16 screening was associated with female gender, worsened school performance, obstetric complications, substance abuse and experienced emotional violence. The average score of 9.17 positive answers and 73.8% of participants screening positive for attenuated psychotic symptoms is significantly higher than in recent studies under similar conditions.
Collapse
Affiliation(s)
- Ilana Germanenko
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
- Child Psychiatry Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Jelena Vrublevska
- University of Latvia, Riga, Latvia
- Riga Psychiatry and Narcology Centre, Riga, Latvia
| | - Nikita Bezborodovs
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
- Child Psychiatry Clinic, Children's Clinical University Hospital, Riga, Latvia
| | - Elmars Rancans
- Department of Psychiatry and Narcology, Riga Stradins University, Riga, Latvia
- Riga Psychiatry and Narcology Centre, Riga, Latvia
| |
Collapse
|
5
|
Ayilara GO, Owoyele BV. Effectiveness of Bacopa Monnieri (Brahmi) in the management of schizophrenia: a systematic review. Nutr Neurosci 2024:1-8. [PMID: 39498770 DOI: 10.1080/1028415x.2024.2421782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Schizophrenia is a psychotic disorder affecting approximately 0.32% of the global population. Despite advancements in pharmacological treatments, many patients with schizophrenia continue to experience significant impairments, and approximately one-third of these patients do not respond to antipsychotic drugs. However, various studies have demonstrated the potential benefits of herbs in managing schizophrenia due to the diverse biological activities of phytochemicals, including neuroprotective activity, anti-oxidant potential, modulation of neurotransmission, and anti-inflammatory activity. Bacopa monnieri (Brahmi) is a widely studied herb used in the treatment of the central nervous system. This study conducted a systematic review to determine the effectiveness of Brahmi in managing schizophrenia. PubMed, Scopus, Web of Science, and Cochrane databases were searched between February and March, 2024. A total of 103 articles were found, with only 9 studies meeting the eligibility criteria. Data analysis was done by using themes. The review found that Brahmi could reverse positive, negative, and cognitive symptoms of schizophrenia. It does this by changing the glutamatergic pathway and GABAergic transmission, lowering MDA levels, raising GSH levels, slowing down the activity of acetylcholinesterase (AchE), and maintaining the density of neurones. It is recommended that additional research elucidating the effects of Brahmi in other models of schizophrenia and the possible mechanisms of action be conducted.
Collapse
Affiliation(s)
- Gideon Opeyemi Ayilara
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Bamidele Victor Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
6
|
Meng P, Pan C, Qin X, Cai Q, Zhao Y, Wei W, Cheng S, Yang X, Cheng B, Liu L, He D, Shi S, Chu X, Zhang N, Jia Y, Wen Y, Liu H, Zhang F. A genome-wide gene-environmental interaction study identified novel loci for the relationship between ambient air pollution exposure and depression, anxiety. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117121. [PMID: 39357380 DOI: 10.1016/j.ecoenv.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Genetic factors and environmental exposures, including air pollution, contribute to the risk of depression and anxiety. While the association between air pollution and depression and anxiety has been established in the UK Biobank, there has been limited research exploring this relationship from a genetic perspective. METHODS Based on individual genotypic and phenotypic data from a cohort of 104,385 participants in the UK Biobank, a polygenic risk score for depression and anxiety was constructed to explore the joint effects of nitric oxide (NO), nitrogen dioxide (NO2), particulate matter (PM) with a diameter of ⩽2.5 μm (PM2.5) and 2.5-10 μm (PMcoarse) with depression and anxiety by linear and logistic regression models. Subsequently, a genome-wide gene-environmental interaction study (GWEIS) was performed using PLINK 2.0 to identify the genes interacting with air pollution for depression and anxiety. RESULTS A substantial risk of depression and anxiety development was detected in participants exposed to the high air pollution concomitantly with high genetic risk. GWEIS identified 166, 23, 18, and 164 significant candidate loci interacting with NO, NO2, PM2.5, and PMcoarse for Patient Health Questionnaire-9 (PHQ-9) score, and detected 44, 10, 10, and 114 candidate loci associated with NO, NO2, PM2.5, and PMcoarse for General Anxiety Disorder (GAD-7) score, respectively. And some significant genes overlapped among four air pollutants, like TSN (rs184699498, PNO2 = 3.47 × 10-9; rs139212326, PPM2.5 = 1.51 × 10-8) and HSP90AB7P(rs150987455, PNO2 = 1.63 × 10-11; rs150987455, PPM2.5 = 7.64 × 10-11), which were common genes affecting PHQ-9 score for both NO2 and PM2.5. CONCLUSION Our study identified the joint effects of air pollution with genetic susceptibility on the risk of depression and anxiety, and provided several novel candidate genes for the interaction, contributing to an understanding of the genetic architecture of depression and anxiety.
Collapse
Affiliation(s)
- Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Koskuvi M, Pörsti E, Hewitt T, Räsänen N, Wu YC, Trontti K, McQuade A, Kalyanaraman S, Ojansuu I, Vaurio O, Cannon TD, Lönnqvist J, Therman S, Suvisaari J, Kaprio J, Blurton-Jones M, Hovatta I, Lähteenvuo M, Rolova T, Lehtonen Š, Tiihonen J, Koistinaho J. Genetic contribution to microglial activation in schizophrenia. Mol Psychiatry 2024; 29:2622-2633. [PMID: 38519640 PMCID: PMC11420079 DOI: 10.1038/s41380-024-02529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1β) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.
Collapse
Affiliation(s)
- Marja Koskuvi
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Pörsti
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tristen Hewitt
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Noora Räsänen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ying-Chieh Wu
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Amanda McQuade
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | | | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Tyrone D Cannon
- Department of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - Jouko Lönnqvist
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | - Sebastian Therman
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Iiris Hovatta
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
| | - Taisia Rolova
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Tiihonen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jari Koistinaho
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Shboul M, Darweesh R, Abu Zahraa A, Bani Domi A, Khasawneh AG. Association between vitamin D metabolism gene polymorphisms and schizophrenia. Biomed Rep 2024; 21:134. [PMID: 39091598 PMCID: PMC11292107 DOI: 10.3892/br.2024.1822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
Schizophrenia (SZ) is a multifactorial and neurodegenerative disorder that results from the interaction between genetic and environmental factors. Notably, hundreds of single nucleotide polymorphisms (SNPs) are associated with the susceptibility to SZ. Vitamin D (VD) plays an essential role in regulating several genes important for maintaining brain function and health. To the best of the authors' knowledge, no studies have yet been conducted on the association between the VD pathway and patients with SZ. Therefore, the present study aimed to assess the potential association between eight SNPs in genes related to the VD pathway, including CYP2R1, CYP27B1, CYP24A1 and VDR among patients with SZ. A case-control study was conducted, involving a total of 400 blood samples drawn from 200 patients and 200 healthy controls. Genomic DNA was extracted and variants were genotyped using the tetra-amplification refractory mutation system-polymerase chain reaction method. The present study revealed statistically significant differences between patients with SZ and controls regarding the genotypes and allele distributions of three SNPs [CYP2R1 (rs10741657), CYP27B1 (rs10877012) and CYP24A1 (rs6013897) (P<0.0001)]. The AA genotype of rs10741657 was identified to be associated with SZ (P<0.0001) and the frequency of the A allele was higher in patients with SZ (P<0.0001) compared with the control group. Similarly, the TT genotype of rs10877012 was revealed to be associated with SZ (P<0.0001) and the T allele was more frequent in patients with SZ (P<0.0001) than in the control group. Moreover, the AA genotype of rs6013897 was revealed to be associated with SZ (P<0.0001), although no significant difference was detected between the two groups regarding the A allele (P=0.055). VDR (rs2228570, rs1544410, rs731236 and rs7975232) and CYP27B1 (rs4646536) gene polymorphisms did not exhibit a significant association with SZ. While the studied SNPs revealed promising discriminatory capacity between patients with SZ and controls, the rs10741657 SNP exhibited the most optimal area under the curve value at 0.615. A logistic model was applied considering only the significant SNPs and VD levels, which revealed that rs6013897 (T/A) and VD may have protective effects (0.267, P<0.001; 0.888, P<0.001, respectively). Moreover, a low serum VD level was highly prevalent in patients with SZ compared with the controls. Based on this finding, an association between serum 25(OH)D and SZ could be demonstrated. The present study revealed that CYP2R1 (rs10741657), CYP27B1 (rs10877012) and CYP24A1 (rs6013897) gene SNPs may be associated with SZ susceptibility.
Collapse
Affiliation(s)
- Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Reem Darweesh
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Abdulmalek Abu Zahraa
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amal Bani Domi
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Aws G. Khasawneh
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
9
|
Wang L, Liu R, Liao J, Xiong X, Xia L, Wang W, Liu J, Zhao F, Zhuo L, Li H. Meta-analysis of structural and functional brain abnormalities in early-onset schizophrenia. Front Psychiatry 2024; 15:1465758. [PMID: 39247615 PMCID: PMC11377232 DOI: 10.3389/fpsyt.2024.1465758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Previous studies based on resting-state functional magnetic resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have demonstrated significant abnormalities in brain structure and resting-state functional brain activity in patients with early-onset schizophrenia (EOS), compared with healthy controls (HCs), and these alterations were closely related to the pathogenesis of EOS. However, previous studies suffer from the limitations of small sample sizes and high heterogeneity of results. Therefore, the present study aimed to effectively integrate previous studies to identify common and specific brain functional and structural abnormalities in patients with EOS. Methods The PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), and WanFang databases were systematically searched to identify publications on abnormalities in resting-state regional functional brain activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies, respectively, and followed by multimodal overlapping on this basis to comprehensively identify brain structural and functional abnormalities in patients with EOS. Results A total of 27 original studies (28 datasets) were included in the present meta-analysis, including 12 studies (13 datasets) related to resting-state functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15 datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional meta-analysis, patients with EOS showed significantly increased resting-state functional brain activity in the left middle frontal gyrus (extending to the triangular part of the left inferior frontal gyrus) and the right caudate nucleus. On the other hand, in the structural meta-analysis, patients with EOS showed significantly decreased GMV in the right superior temporal gyrus (extending to the right rolandic operculum), the right middle temporal gyrus, and the temporal pole (superior temporal gyrus). Conclusion This meta-analysis revealed that some regions in the EOS exhibited significant structural or functional abnormalities, such as the temporal gyri, prefrontal cortex, and striatum. These findings may help deepen our understanding of the underlying pathophysiological mechanisms of EOS and provide potential biomarkers for the diagnosis or treatment of EOS.
Collapse
Affiliation(s)
- Lu Wang
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ruishan Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Juan Liao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Xin Xiong
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Linfeng Xia
- Department of Neurosurgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Weiwei Wang
- Department of Psychiatry, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junqi Liu
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Fulin Zhao
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
| | - Lihua Zhuo
- Medical Imaging College, North Sichuan Medical College, Nanchong, China
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
10
|
Oscoz-Irurozqui M, Guardiola-Ripoll M, Almodóvar-Payá C, Guerrero-Pedraza A, Hostalet N, Carrion MI, Sarró S, Gomar JJ, Pomarol-Clotet E, Fatjó-Vilas M. Clinical and cognitive outcomes in first-episode psychosis: focus on the interplay between cannabis use and genetic variability in endocannabinoid receptors. Front Psychol 2024; 15:1414098. [PMID: 39193030 PMCID: PMC11348434 DOI: 10.3389/fpsyg.2024.1414098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Research data show the impact of the endocannabinoid system on psychosis through its neurotransmission homeostatic functions. However, the effect of the endocannabinoid system genetic variability on the relationship between cannabis use and psychosis has been unexplored, even less in first-episode patients. Here, through a case-only design, we investigated the effect of cannabis use and the genetic variability of endocannabinoid receptors on clinical and cognitive outcomes in first-episode psychosis (FEP) patients. Methods The sample comprised 50 FEP patients of European ancestry (mean age (sd) = 26.14 (6.55) years, 76% males), classified as cannabis users (58%) or cannabis non-users. Two Single Nucleotide Polymorphisms (SNP) were genotyped at the cannabinoid receptor type 1 gene (CNR1 rs1049353) and cannabinoid receptor type 2 gene (CNR2 rs2501431). Clinical (PANSS, GAF) and neuropsychological (WAIS, WMS, BADS) assessments were conducted. By means of linear regression models, we tested the main effect of cannabis use and its interaction with the polymorphic variants on the clinical and cognitive outcomes. Results First, as regards cannabis effects, our data showed a trend towards more severe positive symptoms (PANSS, p = 0.05) and better performance in manipulative abilities (matrix test-WAIS, p = 0.041) among cannabis users compared to non-users. Second, concerning the genotypic effects, the T allele carriers of the CNR1 rs1049353 presented higher PANSS disorganization scores than CC homozygotes (p = 0.014). Third, we detected that the observed association between cannabis and manipulative abilities is modified by the CNR2 polymorphism (p = 0.022): cannabis users carrying the G allele displayed better manipulative abilities than AA genotype carriers, while the cannabis non-users presented the opposite genotype-performance pattern. Such gene-environment interaction significantly improved the overall fit of the cannabis-only model (Δ-R2 = 8.4%, p = 0.019). Discussion Despite the preliminary nature of the sample, our findings point towards the role of genetic variants at CNR1 and CNR2 genes in the severity of the disorganized symptoms of first-episode psychosis and modulating cognitive performance conditional to cannabis use. This highlights the need for further characterization of the combined role of endocannabinoid system genetic variability and cannabis use in the understanding of the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Benito Menni CASM, C/Doctor Antoni Pujadas, Barcelona, Spain
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Isabel Carrion
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Sant Rafael, Passeig de la Vall d’Hebron, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - JJ Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Yang W, Chen HJ, Song J, Liu W, Wang J. Effect of Long-Term Tai Chi Therapy on the Immune-Inflammatory Pathway in Patients with Schizophrenia with Antipsychotic-Stabilized. Mol Neurobiol 2024:10.1007/s12035-024-04401-3. [PMID: 39126620 DOI: 10.1007/s12035-024-04401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
The primary objective of this study was to explore the influence of prolonged (24 weeks) supplementary Tai Chi therapy on cognitive capabilities and immune-inflammatory pathways in subjects diagnosed with schizophrenia. A total of 90 individuals who have been clinically diagnosed with schizophrenia were assigned to two treatment groups, namely the Tai Chi treatment (TT) group and the routine treatment (RT) group. Following a 24-week duration of intervention, the data obtained from 32 patients in the TT group and 30 patients in the RT group were meticulously analyzed. At the commencement of the investigation and upon completion of the 24-week intervention, blood samples were gathered, and clinical evaluations were executed. In plasma, the identification of nine cytokines (IL-10, IFN-γ, IL-5, GM-CSF, TNF-α, IL-13, IL-4, IL-2, and IL-12) was conducted using the multiple primer suspension chip method. The clinical evaluations encompassed CGI, WHOQUOL-BREF, SOFS, PSS, BPRS, SAPS, SANS, and RBANS. In comparison to the RT group, the patients in the TT group demonstrated decreased levels of TNF-α and IL-5 (P < 0.05). Moreover, they encountered more pronounced advancements in SAPS, SANS, PSS, SOFS, and RBANS scores (P < 0.05). Additionally, a positive connection was detected between the plasma TNF-α level in the TT group and both the SANS score and the SPFS score (P < 0.05). Tai Chi has been shown to improve clinical symptoms in patients with schizophrenia as an add-on therapy, potentially through its effects on immunomodulatory pathways.
Collapse
Affiliation(s)
- Wei Yang
- Department of Psychiatric Rehabilitation Ward 2, Wuhan Mental Health Center, Wuhan, China
| | - Hui-Jing Chen
- Department of Psychiatric Rehabilitation Ward 2, Wuhan Mental Health Center, Wuhan, China
| | - Jin Song
- Department of Psychiatric Rehabilitation Ward 2, Wuhan Mental Health Center, Wuhan, China
| | - Wei Liu
- Department of Psychiatric Rehabilitation Ward 2, Wuhan Mental Health Center, Wuhan, China
| | - Jing Wang
- Department of Early Intervention Ward 2, Wuhan Mental Health Center, Wuhan, China.
| |
Collapse
|
12
|
Wang F, Wang F, Tao X, Ni W, Li W, Lin J. Evaluation of Clinical Correlation between Insulin Resistance and Antipsychotic Drug Therapy in Patients with Schizophrenia. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:412-419. [PMID: 39129685 PMCID: PMC11319756 DOI: 10.62641/aep.v52i4.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND Treatment with different antipsychotics can lead to various metabolic side effects in patients with psychosis, impacting long-term prognosis. This study aimed to compare the changes and clinical efficacy of insulin resistance in patients treated with olanzapine and ziprasidone. METHOD A retrospective analysis was conducted on the clinical data of 80 patients with schizophrenia. The patients were divided into olanzapine treatment group and ziprasidone treatment group. Parameters including body weight, body mass index (BMI), fasting plasma glucose (FPG), fasting plasma insulin (FPI), cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), insulin resistance index, and Positive and Negative Syndrome Scale (PANSS) scores were recorded and compared before and after treatment. RESULTS BMI, FPG, FPI, homeostatic model assessment of insulin resistance (HOMA-IR), CHO, TG and LDL in both groups were significantly higher than before treatment (p < 0.05). These parameters were significantly higher in the olanzapine group than in the ziprasidone group (p < 0.05). The level of HDL in both groups was significantly decreased after treatment, and the level of HDL in the olanzapine group was significantly lower than that in the ziprasidone group after treatment (p < 0.05). After treatment, the total score and score of PANSS in both groups were significantly lower than before treatment (p < 0.05). After treatment, there was no significant difference in total score and PANSS score between both groups (p > 0.05). The incidence of insulin resistance (IR) was significantly higher in the olanzapine group compared to the ziprasidone group (χ2 = 4.021, p < 0.05). In the IR group, BMI, FPG, FPI, TG, and LDL levels were higher than in the non-IR group (p < 0.05). Multivariate analysis indicated that BMI, FPG, FPI, TG, and LDL were independent risk factors for IR (odd ratio (OR) >1, p < 0.05). CONCLUSIONS Treatment with olanzapine and ziprasidone improves clinical symptoms in patients with schizophrenia, but increases the risk of insulin resistance. The metabolic side effects of olanzapine are more pronounced.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| | - Faya Wang
- Department of Mental Health, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| | - Xiaoqing Tao
- Department of Endocrinology, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| | - Wenxian Ni
- Department of Endocrinology, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| | - Wenxin Li
- Department of Endocrinology, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| | - Jiao Lin
- Department of Endocrinology, Wuyi County First People's Hospital, 321200 Wuyi, Zhejiang, China
| |
Collapse
|
13
|
Wahbeh MH, Boyd RJ, Yovo C, Rike B, McCallion AS, Avramopoulos D. A functional schizophrenia-associated genetic variant near the TSNARE1 and ADGRB1 genes. HGG ADVANCES 2024; 5:100303. [PMID: 38702885 PMCID: PMC11130735 DOI: 10.1016/j.xhgg.2024.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Recent collaborative genome-wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes, yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated four isogenic clones homozygous for the risk allele and five clones homozygous for the non-risk allele into neural progenitor cells. Employing RNA sequencing, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at a false discovery rate (FDR) of <0.05 and 259 genes at a FDR of <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.
Collapse
Affiliation(s)
- Marah H Wahbeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Rike
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Azargoonjahromi A. Current Findings and Potential Mechanisms of KarXT (Xanomeline-Trospium) in Schizophrenia Treatment. Clin Drug Investig 2024; 44:471-493. [PMID: 38904739 DOI: 10.1007/s40261-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Shiraz University of Medical Sciences, Janbazan Blv, 14th Alley, Jahrom, Shiraz, 7417773539, Fars, Iran.
| |
Collapse
|
15
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
16
|
Bulduk BK, Tortajada J, Valiente-Pallejà A, Callado LF, Torrell H, Vilella E, Meana JJ, Muntané G, Martorell L. High number of mitochondrial DNA alterations in postmortem brain tissue of patients with schizophrenia compared to healthy controls. Psychiatry Res 2024; 337:115928. [PMID: 38759415 DOI: 10.1016/j.psychres.2024.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Previous studies have shown mitochondrial dysfunction in schizophrenia (SZ) patients, which may be caused by mitochondrial DNA (mtDNA) alterations. However, there are few studies in SZ that have analyzed mtDNA in brain samples by next-generation sequencing (NGS). To address this gap, we used mtDNA-targeted NGS and qPCR to characterize mtDNA alterations in brain samples from patients with SZ (n = 40) and healthy controls (HC) (n = 40). 35 % of SZ patients showed mtDNA alterations, a significantly higher prevalence compared to 10 % of HC. Specifically, SZ patients had a significantly higher frequency of deletions (35 vs. 5 in HC), with a mean number of deletions of 3.8 in SZ vs. 1.0 in HC. Likely pathogenic missense variants were also significantly more frequent in patients with SZ than in HC (10 vs. three HC), encompassing 14 variants in patients and three in HC. The pathogenic tRNA variant m.3243A>G was identified in one SZ patient with a high heteroplasmy level of 32.2 %. While no significant differences in mtDNA copy number (mtDNA-CN) were observed between SZ and HC, antipsychotic users had significantly higher mtDNA-CN than non-users. These findings suggest a potential role for mtDNA alterations in the pathophysiology of SZ that require further validation and functional studies.
Collapse
Affiliation(s)
- Bengisu K Bulduk
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Juan Tortajada
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain
| | - Alba Valiente-Pallejà
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luís F Callado
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, and BioBizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Catalonia, Spain.
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata (HUIPM), Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Universitat Rovira i Virgili (URV), Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Olkhova EA, Smith LA, Dennis BH, Ng YS, LeBeau FEN, Gorman GS. Delineating mechanisms underlying parvalbumin neuron impairment in different neurological and neurodegenerative disorders: the emerging role of mitochondrial dysfunction. Biochem Soc Trans 2024; 52:553-565. [PMID: 38563502 PMCID: PMC11088917 DOI: 10.1042/bst20230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.
Collapse
Affiliation(s)
- Elizaveta A. Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Laura A. Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bethany H. Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
18
|
Sun TH, Wang CC, Liu TY, Lo SC, Huang YX, Chien SY, Chu YD, Tsai FJ, Hsu KC. Utility of polygenic scores across diverse diseases in a hospital cohort for predictive modeling. Nat Commun 2024; 15:3168. [PMID: 38609356 PMCID: PMC11014845 DOI: 10.1038/s41467-024-47472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Polygenic scores estimate genetic susceptibility to diseases. We systematically calculated polygenic scores across 457 phenotypes using genotyping array data from China Medical University Hospital. Logistic regression models assessed polygenic scores' ability to predict disease traits. The polygenic score model with the highest accuracy, based on maximal area under the receiver operating characteristic curve (AUC), is provided on the GeneAnaBase website of the hospital. Our findings indicate 49 phenotypes with AUC greater than 0.6, predominantly linked to endocrine and metabolic diseases. Notably, hyperplasia of the prostate exhibited the highest disease prediction ability (P value = 1.01 × 10-19, AUC = 0.874), highlighting the potential of these polygenic scores in preventive medicine and diagnosis. This study offers a comprehensive evaluation of polygenic scores performance across diverse human traits, identifying promising applications for precision medicine and personalized healthcare, thereby inspiring further research and development in this field.
Collapse
Affiliation(s)
- Ting-Hsuan Sun
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Chun Wang
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Ting-Yuan Liu
- Million-person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shih-Chang Lo
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yi-Xuan Huang
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Shang-Yu Chien
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yu-De Chu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Division of Pediatric Genetics, Children's Hospital of China Medical University, Taichung, 40447, Taiwan.
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, 41354, Taiwan.
| | - Kai-Cheng Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Neurology, China Medical University Hospital, Taichung, 40447, Taiwan.
- Department of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
19
|
Buhusi M, Brown CK, Buhusi CV. NrCAM-deficient mice exposed to chronic stress exhibit disrupted latent inhibition, a hallmark of schizophrenia. Front Behav Neurosci 2024; 18:1373556. [PMID: 38601326 PMCID: PMC11004452 DOI: 10.3389/fnbeh.2024.1373556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The neuronal cell adhesion molecule (NrCAM) is widely expressed and has important physiological functions in the nervous system across the lifespan, from axonal growth and guidance to spine and synaptic pruning, to organization of proteins at the nodes of Ranvier. NrCAM lies at the core of a functional protein network where multiple targets (including NrCAM itself) have been associated with schizophrenia. Here we investigated the effects of chronic unpredictable stress on latent inhibition, a measure of selective attention and learning which shows alterations in schizophrenia, in NrCAM knockout (KO) mice and their wild-type littermate controls (WT). Under baseline experimental conditions both NrCAM KO and WT mice expressed robust latent inhibition (p = 0.001). However, following chronic unpredictable stress, WT mice (p = 0.002), but not NrCAM KO mice (F < 1), expressed latent inhibition. Analyses of neuronal activation (c-Fos positive counts) in key brain regions relevant to latent inhibition indicated four types of effects: a single hit by genotype in IL cortex (p = 0.0001), a single hit by stress in Acb-shell (p = 0.031), a dual hit stress x genotype in mOFC (p = 0.008), vOFC (p = 0.020), and Acb-core (p = 0.032), and no effect in PrL cortex (p > 0.141). These results indicating a pattern of differential effects of genotype and stress support a complex stress × genotype interaction model and a role for NrCAM in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | | | - Catalin V. Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
20
|
Stevens M, Ní Mhurchú S, Corley E, Egan C, Hallahan B, McDonald C, Donohoe G, Burke T. Uncinate fasciculus microstructural organisation and emotion recognition in schizophrenia: controlling for hit rate bias. Front Behav Neurosci 2024; 18:1302916. [PMID: 38566859 PMCID: PMC10985192 DOI: 10.3389/fnbeh.2024.1302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterised by functional and structural brain dysconnectivity and disturbances in perception, cognition, emotion, and social functioning. In the present study, we investigated whether the microstructural organisation of the uncinate fasciculus (UF) was associated with emotion recognition (ER) performance. Additionally, we investigated the usefulness of an unbiased hit rate (UHR) score to control for response biases (i.e., participant guessing) during an emotion recognition task (ERT). Methods Fifty-eight individuals diagnosed with SCZ were included. The CANTAB ERT was used to measure social cognition. Specific ROI manual tract segmentation was completed using ExploreDTI and followed the protocol previously outlined by Coad et al. (2020). Results We found that the microstructural organisation of the UF was significantly correlated with physical neglect and ER outcomes. Furthermore, we found that the UHR score was more sensitive to ERT subscale emotion items than the standard HR score. Finally, given the association between childhood trauma (in particular childhood neglect) and social cognition in SCZ, a mediation analysis found evidence that microstructural alterations of the UF mediated an association between childhood trauma and social cognitive performance. Discussion The mediating role of microstructural alterations in the UF on the association between childhood trauma and social cognitive performance suggests that early life adversity impacts both brain development and social cognitive outcomes for people with SCZ. Limitations of the present study include the restricted ability of the tensor model to correctly assess multi-directionality at regions where fibre populations intersect.
Collapse
Affiliation(s)
- Matthew Stevens
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Síle Ní Mhurchú
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Emma Corley
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Ciara Egan
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Brian Hallahan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| | - Tom Burke
- School of Psychology, University of Galway, Galway, Ireland
- Centre for Neuroimaging Cognition and Genomics (NICOG), University of Galway, Galway, Ireland
| |
Collapse
|
21
|
Peng X, Hou WP, Ding YS, Wang Q, Li F, Sha S, Yu CC, Zhang XJ, Zhou FC, Wang CY. Independent effects of early life adversity on social cognitive function in patients with schizophrenia. Front Psychiatry 2024; 15:1343188. [PMID: 38505800 PMCID: PMC10948615 DOI: 10.3389/fpsyt.2024.1343188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Objective The aim of this study was to investigate the impact of early life adversity on cognitive function in patients with schizophrenia, with a focus on social cognition (SC). Methods Two groups of patients with schizophrenia were recruited and matched on sociodemographic and clinical characteristics. One group consisted of 32 patients with a history of childhood trauma (SCZ-ct), and the other group consisted of 30 patients without a history of childhood trauma (SCZ-nct). In addition, 39 healthy controls without a history of childhood trauma (HC-nct) were also recruited. The intelligence of the three groups was assessed using the Wechsler Abbreviated Scale of Intelligence (WAIS-RC) short version. The cognitive function evaluation was conducted using the MATRICS Consensus Cognitive Battery (MCCB), and early life adversity was measured using the Childhood Trauma Questionnaire-Short Form (CTQ) and Bullying Scale for Adults (BSA). Results Patients with schizophrenia endosed significantly higher scores on the CTQ (F=67.61, p<0.001) and BSA (F=9.84, p<0.001) compared to the HC-nct. Analysis of covariance (ANCOVA) and post-hoc analyses revealed that SCZ-ct (F=11.20, p<0.001) exhibited the most pronounced cognitive impairment among the three groups, as indicated in MCCB total scores and in the domain score of SC. CTQ exhibited a negative correlation with MCCB (r=-0.405, p< 0.001); SC was negatively correlated with physical abuse (PA) of CTQ (r=-0.271, p=0.030) and emotional abuse (EA) of BSA (r=-0.265, p=0.034) in the whole patient sample. Higher SC performance was significantly predicted by CT_total (Beta =-0.582, p<0.001, 95% CI -0.96-0.46), and years of education (Beta=0.260, p =0.014, 95% CI 0.20-1.75) in schizophrenia. Conclusions Besides familial trauma, schizophrenia patients appear to have a higher likelihood of experiencing bullying in their early life. These experiences seem to contribute significantly to their severe impairments in SC.
Collapse
Affiliation(s)
- Xing Peng
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wen-Peng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yu-Shen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Department of Psychiatry, Fengtai Mental Health Center, Beijing, China
| | - Feng Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | | | - Xiu-Jun Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fu-Chun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
23
|
Percelay S, Lahogue C, Billard JM, Freret T, Boulouard M, Bouet V. The 3-hit animal models of schizophrenia: Improving strategy to decipher and treat the disease? Neurosci Biobehav Rev 2024; 157:105526. [PMID: 38176632 DOI: 10.1016/j.neubiorev.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| |
Collapse
|
24
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
25
|
Xenaki LA, Dimitrakopoulos S, Selakovic M, Stefanis N. Stress, Environment and Early Psychosis. Curr Neuropharmacol 2024; 22:437-460. [PMID: 37592817 PMCID: PMC10845077 DOI: 10.2174/1570159x21666230817153631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 08/19/2023] Open
Abstract
Existing literature provides extended evidence of the close relationship between stress dysregulation, environmental insults, and psychosis onset. Early stress can sensitize genetically vulnerable individuals to future stress, modifying their risk for developing psychotic phenomena. Neurobiological substrate of the aberrant stress response to hypothalamic-pituitary-adrenal axis dysregulation, disrupted inflammation processes, oxidative stress increase, gut dysbiosis, and altered brain signaling, provides mechanistic links between environmental risk factors and the development of psychotic symptoms. Early-life and later-life exposures may act directly, accumulatively, and repeatedly during critical neurodevelopmental time windows. Environmental hazards, such as pre- and perinatal complications, traumatic experiences, psychosocial stressors, and cannabis use might negatively intervene with brain developmental trajectories and disturb the balance of important stress systems, which act together with recent life events to push the individual over the threshold for the manifestation of psychosis. The current review presents the dynamic and complex relationship between stress, environment, and psychosis onset, attempting to provide an insight into potentially modifiable factors, enhancing resilience and possibly influencing individual psychosis liability.
Collapse
Affiliation(s)
- Lida-Alkisti Xenaki
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Stefanos Dimitrakopoulos
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Mirjana Selakovic
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| | - Nikos Stefanis
- First Department of Psychiatry, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 72 Vas. Sophias Ave., Athens, 115 28, Greece
| |
Collapse
|
26
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
27
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
28
|
Singh M, Pradhan D, Kkani P, Prasad Rao G, Dhagudu NK, Kumar L, Ramasubramanian C, Kumar SG, Sonttineni S, Mohan KN. Genome-scale copy number variant analysis in schizophrenia patients and controls from South India. Front Mol Neurosci 2023; 16:1268827. [PMID: 38178910 PMCID: PMC10764592 DOI: 10.3389/fnmol.2023.1268827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Copy number variants (CNVs) are among the main genetic factors identified in schizophrenia (SZ) through genome-scale studies conducted mostly in Caucasian populations. However, to date, there have been no genome-scale CNV reports on patients from India. To address this shortcoming, we generated, for the first time, genome-scale CNV data for 168 SZ patients and 168 controls from South India. In total, 63 different CNVs were identified in 56 patients and 46 controls with a significantly higher proportion of medium-sized deletions (100 kb-1 Mb) after multiple testing (FDR = 2.7E-4) in patients. Of these, 13 CNVs were previously reported; however, when searched against GWAS, transcriptome, exome, and DNA methylation studies, another 17 CNVs with candidate genes were identified. Of the total 30 CNVs, 28 were present in 38 patients and 12 in 27 controls, indicating a significantly higher representation in the former (p = 1.87E-5). Only 4q35.1-q35.2 duplications were significant (p = 0.020) and observed in 11 controls and 2 patients. Among the others that are not significant, a few examples of patient-specific and previously reported CNVs include deletions of 11q14.1 (DLG2), 22q11.21, and 14q21.1 (LRFN5). 16p13.3 deletion (RBFOX1), 3p14.2 duplication (CADPS), and 7p11.2 duplication (CCT6A) were some of the novel CNVs containing candidate genes. However, these observations need to be replicated in a larger sample size. In conclusion, this report constitutes an important foundation for future CNV studies in a relatively unexplored population. In addition, the data indicate that there are advantages in using an integrated approach for better identification of candidate CNVs for SZ and other mental health disorders.
Collapse
Affiliation(s)
- Minali Singh
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
| | - Dibyabhabha Pradhan
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Poornima Kkani
- Department of Zoology, Thiagarajar College, Madurai, India
| | | | | | - Lov Kumar
- Department of Computer Engineering, National Institute of Technology, Kurukshetra, India
| | | | | | | | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani – Hyderabad Campus, Hyderabad, India
| |
Collapse
|
29
|
Wahbeh MH, Boyd RJ, Yovo C, Rike B, McCallion AS, Avramopoulos D. A Functional Schizophrenia-associated genetic variant near the TSNARE1 and ADGRB1 genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.570831. [PMID: 38187620 PMCID: PMC10769312 DOI: 10.1101/2023.12.18.570831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.
Collapse
Affiliation(s)
- Marah H Wahbeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christian Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bailey Rike
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Misztal MC, Tio ES, Mohan A, Felsky D. Interactions between genetic risk for 21 neurodevelopmental and psychiatric disorders and sport activity on youth mental health. Psychiatry Res 2023; 330:115550. [PMID: 37973444 DOI: 10.1016/j.psychres.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Childhood is a sensitive period where behavioral disturbances, determined by genetics and environmental factors including sport activity, may emerge and impact risk of mental illness in adulthood. We aimed to determine if participation in sports can mitigate genetic risk for neurodevelopmental and psychiatric disorders in youth. We analyzed 4975 unrelated European youth (ages 9-10) from the Adolescent Brain Cognitive Development Study. Our outcomes were eight Child Behavior Checklist (CBCL) scores, measured annually. Polygenic risk scores (PRSs) were calculated for 21 disorders, and sport frequency and type were summarized. PRSs and sport variables were tested for main effects and interactions against CBCL outcomes using linear models. Cross-sectionally, PRSs for attention-deficit/hyperactivity disorder and major depressive disorder were associated with increases in multiple CBCL outcomes. Participation in non-contact or team sports, as well as more frequent sport participation reduced all cross-sectional CBCL outcomes, whereas involvement in contact sports increased attention problems and rule-breaking behavior. Interactions revealed that more frequent exercise was significantly associated with less rule breaking behavior in individuals with high genetic risk for obsessive compulsive disorder. Associations with longitudinal CBCL outcomes demonstrated weaker effects. We highlight the importance of genetic context when considering sports as an intervention for early life behavioural problems.
Collapse
Affiliation(s)
- Melissa C Misztal
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Akshay Mohan
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Centre for Industrial Relations and Human Resources, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Yang K, Ayala-Grosso C, Bhattarai JP, Sheriff A, Takahashi T, Cristino AS, Zelano C, Ma M. Unraveling the Link between Olfactory Deficits and Neuropsychiatric Disorders. J Neurosci 2023; 43:7501-7510. [PMID: 37940584 PMCID: PMC10634556 DOI: 10.1523/jneurosci.1380-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/10/2023] Open
Abstract
Smell loss has caught public attention during the recent COVID-19 pandemic. Research on olfactory function in health and disease gains new momentum. Smell deficits have long been recognized as an early clinical sign associated with neuropsychiatric disorders. Here we review research on the associations between olfactory deficits and neuropathological conditions, focusing on recent progress in four areas: (1) human clinical studies of the correlations between smell deficits and neuropsychiatric disorders; (2) development of olfactory mucosa-derived tissue and cell models for studying the molecular pathologic mechanisms; (3) recent findings in brain imaging studies of structural and functional connectivity changes in olfactory pathways in neuropsychiatric disorders; and (4) application of preclinical animal models to validate and extend the findings from human subjects. Together, these studies have provided strong evidence of the link between the olfactory system and neuropsychiatric disorders, highlighting the relevance of deepening our understanding of the role of the olfactory system in pathophysiological processes. Following the lead of studies reviewed here, future research in this field may open the door to the early detection of neuropsychiatric disorders, personalized treatment approaches, and potential therapeutic interventions through nasal administration techniques, such as nasal brush or nasal spray.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas, Caracas, 1020-A, Venezuela
- Unit of Advanced Therapies, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud, Bogotá, Colombia 111-611
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Andrew Sheriff
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
32
|
Girdhar K, Bendl J, Baumgartner A, Therrien K, Venkatesh S, Mathur D, Dong P, Rahman S, Kleopoulos SP, Misir R, Reach SM, Auluck PK, Marenco S, Lewis DA, Haroutunian V, Funk C, Voloudakis G, Hoffman GE, Fullard JF, Roussos P. The neuronal chromatin landscape in adult schizophrenia brains is linked to early fetal development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.02.23296067. [PMID: 37873320 PMCID: PMC10593028 DOI: 10.1101/2023.10.02.23296067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.
Collapse
Affiliation(s)
- Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Karen Therrien
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah M Reach
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| |
Collapse
|
33
|
Girdhar K, Bendl J, Baumgartner A, Therrien K, Venkatesh S, Mathur D, Dong P, Rahman S, Kleopoulos SP, Misir R, Reach SM, Auluck PK, Marenco S, Lewis DA, Haroutunian V, Funk C, Voloudakis G, Hoffman GE, Fullard JF, Roussos P. The neuronal chromatin landscape in adult schizophrenia brains is linked to early fetal development. RESEARCH SQUARE 2023:rs.3.rs-3393581. [PMID: 37886514 PMCID: PMC10602154 DOI: 10.21203/rs.3.rs-3393581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex. Across both regions, we observed notable differences in neuronal chromatin accessibility between schizophrenia cases and controls. A per-sample disease pseudotime was positively associated with genetic liability for schizophrenia. Organizing chromatin into cis- and trans-regulatory domains, identified a prominent neuronal trans-regulatory domain (TRD1) active in immature glutamatergic neurons during fetal development. Polygenic risk score analysis using genetic variants within chromatin accessibility of TRD1 successfully predicted susceptibility to schizophrenia in the Million Veteran Program cohort. Overall, we present the most extensive resource to date of chromatin accessibility in the human cortex, yielding insights into the cell-type specific etiology of schizophrenia.
Collapse
Affiliation(s)
- Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Karen Therrien
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah M Reach
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, New York, 10468, USA
| |
Collapse
|
34
|
Severance EG, Prandovszky E, Yang S, Leister F, Lea A, Wu CL, Tamouza R, Leboyer M, Dickerson F, Yolken RH. Prospects and Pitfalls of Plasma Complement C4 in Schizophrenia: Building a Better Biomarker. Dev Neurosci 2023; 45:349-360. [PMID: 37734326 DOI: 10.1159/000534185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ching-Lien Wu
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Grosu ȘA, Dobre M, Milanesi E, Hinescu ME. Blood-Based MicroRNAs in Psychotic Disorders-A Systematic Review. Biomedicines 2023; 11:2536. [PMID: 37760977 PMCID: PMC10525934 DOI: 10.3390/biomedicines11092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophysiology, involving genetics and environmental factors, and their interaction. The identification of accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs were found differentially expressed in the blood of psychotic patients compared to controls. Seventeen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a, miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096) were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note, miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies, respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with the amelioration of negative symptoms. The panel of miRNAs identified in this review could be validated in future studies in large and well-characterized cohorts of psychotic patients.
Collapse
Affiliation(s)
- Ștefania-Alexandra Grosu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| |
Collapse
|
36
|
Murlanova K, Pletnikov MV. Modeling psychotic disorders: Environment x environment interaction. Neurosci Biobehav Rev 2023; 152:105310. [PMID: 37437753 DOI: 10.1016/j.neubiorev.2023.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Schizophrenia is a major psychotic disorder with multifactorial etiology that includes interactions between genetic vulnerability and environmental risk factors. In addition, interplay of multiple environmental adversities affects neurodevelopment and may increase the individual risk of developing schizophrenia. Consistent with the two-hit hypothesis of schizophrenia, we review rodent models that combine maternal immune activation as the first hit with other adverse environmental exposures as the second hit. We discuss the strengths and pitfalls of the current animal models of environment x environment interplay and propose some future directions to advance the field.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Peng Q, Dai Z, Yin J, Lv D, Luo X, Xiong S, Yang Z, Chen G, Wei Y, Wang Y, Zhang D, Wang L, Yu D, Zhao Y, Lin D, Liao Z, Zhong Y, Lin Z, Lin J. Schizophrenia plausible protective effect of microRNA-137 is potentially related to estrogen and prolactin in female patients. Front Psychiatry 2023; 14:1187111. [PMID: 37680447 PMCID: PMC10482089 DOI: 10.3389/fpsyt.2023.1187111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Background Schizophrenia (SCZ) is a serious chronic mental disorder. Our previous case-control genetic association study has shown that microRNA-137 (miR-137) may only protect females against SCZ. Since estrogen, an important female sex hormone, exerts neuroprotective effects, the relationship between estrogen and miR-137 in the pathophysiology of SCZ was further studied in this study. Methods Genotyping of single-nucleotide polymorphism rs1625579 of miR-137 gene in 1,004 SCZ patients and 896 healthy controls was conducted using the iMLDR assay. The effect of estradiol (E2) on the miR-137 expression was evaluated on the human mammary adenocarcinoma cell line (MCF-7) and the mouse hippocampal neuron cell line (HT22). The relationships between serum E2, prolactin (PRL), and peripheral blood miR-137 were investigated in 41 SCZ patients and 43 healthy controls. The miR-137 and other reference miRNAs were detected by real-time fluorescent quantitative reverse transcription-PCR. Results Based on the well-known SNP rs1625579, the distributions of protective genotypes and alleles of the miR-137 gene were not different between patients and healthy controls but were marginally significantly lower in female patients. E2 upregulated the expression of miR-137 to 2.83 and 1.81 times in MCF-7 and HT22 cells, respectively. Both serum E2 and blood miR-137 were significantly decreased or downregulated in SCZ patients, but they lacked expected positive correlations with each other in both patients and controls. When stratified by sex, blood miR-137 was negatively correlated with serum E2 in female patients. On the other hand, serum PRL was significantly increased in SCZ patients, and the female patients had the highest serum PRL level and a negative correlation between serum PRL and blood miR-137. Conclusion The plausible SCZ-protective effect of miR-137 may be female specific, of which the underlying mechanism may be that E2 upregulates the expression of miR-137. This protective mechanism may also be abrogated by elevated PRL in female patients. These preliminary findings suggest a new genetic/environmental interaction mechanism for E2/miR-137 to protect normal females against SCZ and a novel E2/PRL/miR-137-related pathophysiology of female SCZ, implying some new antipsychotic ways for female patients in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
38
|
Shishido R, Kunii Y, Hino M, Izumi R, Nagaoka A, Hayashi H, Kakita A, Tomita H, Yabe H. Evidence for increased DNA damage repair in the postmortem brain of the high stress-response group of schizophrenia. Front Psychiatry 2023; 14:1183696. [PMID: 37674553 PMCID: PMC10478254 DOI: 10.3389/fpsyt.2023.1183696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 09/08/2023] Open
Abstract
Background Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods We selected the following stress-responsive molecules: interleukin (IL) -1β, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.
Collapse
Affiliation(s)
- Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
39
|
Mahdavinoor SMM, Mollaei A, Farhang S. Global environmental risk factors of schizophrenia: a study protocol for systematic review and meta-analysis of cohort studies. BMJ Open 2023; 13:e068626. [PMID: 37558446 PMCID: PMC10414075 DOI: 10.1136/bmjopen-2022-068626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/11/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Schizophrenia is a chronic, complex and severe psychiatric disorder affecting millions of people every year and inflicting different costs to the individual, family and community. A growing body of evidence has introduced several genetic and environmental factors and their interactions as aetiological factors of schizophrenia. The goal of this systematic review and meta-analysis is to present an updated representation of the global environmental risk factors of schizophrenia. METHOD AND ANALYSIS This protocol is developed and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols guideline. We will systematically search the databases such as PubMed, Scopus, Web of Science, PsycINFO and Embase until 30 September 2022. We include Cohort studies that have reported one or more risk factors of schizophrenia. We will also search Google Scholar search engine and references lists of included articles. Extracting the relevant data and assessing the quality of the included studies will be independently performed by different authors of our team. The risk of bias for the included studies will be evaluated using Newcastle-Ottawa Scale. Subgroup analysis, meta-regression or sensitivity analysis will be our solution to deal with heterogeneity between studies. We will use a funnel diagram as well as Begg and Egger tests to check for possible publication bias. ETHICS AND DISSEMINATION Ethical approval is not required because there will be no primary data collection or human involvement. The results of this study will be published in an international peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42022359327.
Collapse
Affiliation(s)
- Seyyed Muhammad Mahdi Mahdavinoor
- Student Research Committee, Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran (the Islamic Republic of)
| | - Aghil Mollaei
- Student Research Committee, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran (the Islamic Republic of)
| | - Sara Farhang
- University of Groningen, University medical center Groningen, University Center for Psychiatry, Rob Giel research center, Groningen, The Netherlands
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Kohler CG, Wolf DH, Abi-Dargham A, Anticevic A, Cho YT, Fonteneau C, Gil R, Girgis RR, Gray DL, Grinband J, Javitch JA, Kantrowitz JT, Krystal JH, Lieberman JA, Murray JD, Ranganathan M, Santamauro N, Van Snellenberg JX, Tamayo Z, Gur RC, Gur RE, Calkins ME. Illness Phase as a Key Assessment and Intervention Window for Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:340-350. [PMID: 37519466 PMCID: PMC10382701 DOI: 10.1016/j.bpsgos.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
The phenotype of schizophrenia, regardless of etiology, represents the most studied psychotic disorder with respect to neurobiology and distinct phases of illness. The early phase of illness represents a unique opportunity to provide effective and individualized interventions that can alter illness trajectories. Developmental age and illness stage, including temporal variation in neurobiology, can be targeted to develop phase-specific clinical assessment, biomarkers, and interventions. We review an earlier model whereby an initial glutamate signaling deficit progresses through different phases of allostatic adaptation, moving from potentially reversible functional abnormalities associated with early psychosis and working memory dysfunction, and ending with difficult-to-reverse structural changes after chronic illness. We integrate this model with evidence of dopaminergic abnormalities, including cortical D1 dysfunction, which develop during adolescence. We discuss how this model and a focus on a potential critical window of intervention in the early stages of schizophrenia impact the approach to research design and clinical care. This impact includes stage-specific considerations for symptom assessment as well as genetic, cognitive, and neurophysiological biomarkers. We examine how phase-specific biomarkers of illness phase and brain development can be incorporated into current strategies for large-scale research and clinical programs implementing coordinated specialty care. We highlight working memory and D1 dysfunction as early treatment targets that can substantially affect functional outcome.
Collapse
Affiliation(s)
- Christian G. Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H. Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Alan Anticevic
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Youngsun T. Cho
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Clara Fonteneau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Ragy R. Girgis
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - David L. Gray
- Cerevel Therapeutics Research and Development, East Cambridge, Massachusetts
| | - Jack Grinband
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Jonathan A. Javitch
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York
| | - Joshua T. Kantrowitz
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
- New York State Psychiatric Institute, New York
- Nathan Kline Institute, Orangeburg, New York
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jeffrey A. Lieberman
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - John D. Murray
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Santamauro
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook
| | - Zailyn Tamayo
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica E. Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Eweida RS, Shaheen SHAEM, Abou-Elmaaty GM. "Feeling shattered and ephemeral": How do positive and negative symptoms affect self-concept clarity among individuals experiencing psychosis? Arch Psychiatr Nurs 2023; 44:18-25. [PMID: 37197857 DOI: 10.1016/j.apnu.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/06/2023] [Accepted: 03/11/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Incoherence in sense of self in schizophrenia may mask individuals' ability to perceive reality accurately, and cause them to feel alienated from themselves and others. This descriptive correlational study investigates the relationship between positive and negative symptoms in relation to self-concept clarity (SCC) in schizophrenia. METHOD A sample of 200 inpatients with schizophrenia were recruited to complete the Self-Concept Clarity Scale and were rated on the Brief Psychiatric Rating Scale (BPRS-version 4.0). RESULTS A strong inverse correlation between positive and negative symptoms in relation to SCC (r = 0.242, P < 0.001, and r = 0.225, P = 0.001, respectively). CONCLUSION The overall BPRS scores were identified as independent precursors of low SCC.
Collapse
Affiliation(s)
- Rasha Salah Eweida
- Psychiatric and Mental Health Nursing Department, Faculty of Nursing, Alexandria University, Egypt; Psychiatric and Mental Health Specialty, Nursing Department, College of Health and Sport Sciences, University of Bahrain, Bahrain.
| | | | | |
Collapse
|
42
|
Mullapudi T, Debnath M, Govindaraj R, Raj P, Banerjee M, Varambally S. Effects of a six-month yoga intervention on the immune-inflammatory pathway in antipsychotic-stabilized schizophrenia patients: A randomized controlled trial. Asian J Psychiatr 2023; 86:103636. [PMID: 37290243 DOI: 10.1016/j.ajp.2023.103636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Schizophrenia is a complex neuropsychiatric disorder for which several etiopathological theories have been proposed, one of the prominent ones being immune dysfunction. Recent studies on yoga as an add-on therapy have shown improvement in negative symptoms, cognition, and quality of life in schizophrenia patients. However, the biological mechanism/s of action of yoga in schizophrenia are not clear. The current study was aimed at exploring the effects of long-term (6 months) add-on yoga therapy on the immune inflammatory pathway in schizophrenia patients. METHODS Sixty schizophrenia patients were randomized to add-on yoga therapy (YT=30) and treatment-as-usual (TAU=30) groups of which 21 patients in YT and 20 in TAU group completed the study. Blood samples and clinical assessments were obtained at baseline and at the end of 6 months. The plasma levels of nine cytokines (IL-2, IL-4, IL-5, IL-10, IL-12(p70), IL-13, GM-CSF, IFN-γ, and TNF-α) were quantified using multiplex suspension array. The clinical assessments included SAPS, SANS, BPRS, PSS, CGI, SOFS and WHOQUOL-BREF. RESULTS Patients in the yoga group showed significant reductions in plasma TNF-α (Z = 2.99, p = 0.003) and IL-5 levels (Z = 2.20, p = 0.03) and greater clinical improvements in SAPS, SANS, PSS, and SOFS scores as compared to TAU group. Further, plasma TNF-α levels exhibited a positive correlation with negative symptoms (rs =0.45, p = 0.02) and socio-occupational functioning (rs =0.61, p = 0.002) in the YT group. CONCLUSIONS The findings of the study suggest that improvements in schizophrenia psychopathology with yoga interventions are associated with immuno-modulatory effects.
Collapse
Affiliation(s)
- Thrinath Mullapudi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Ramajayam Govindaraj
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Praveen Raj
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Moinak Banerjee
- Human Molecular Genetics Lab, Rajiv Gandhi Centre for Biotechnology (RGCB), Trivandrum, Kerala, India.
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
43
|
Adamu MJ, Qiang L, Nyatega CO, Younis A, Kawuwa HB, Jabire AH, Saminu S. Unraveling the pathophysiology of schizophrenia: insights from structural magnetic resonance imaging studies. Front Psychiatry 2023; 14:1188603. [PMID: 37275974 PMCID: PMC10236951 DOI: 10.3389/fpsyt.2023.1188603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Background Schizophrenia affects about 1% of the global population. In addition to the complex etiology, linking this illness to genetic, environmental, and neurobiological factors, the dynamic experiences associated with this disease, such as experiences of delusions, hallucinations, disorganized thinking, and abnormal behaviors, limit neurological consensuses regarding mechanisms underlying this disease. Methods In this study, we recruited 72 patients with schizophrenia and 74 healthy individuals matched by age and sex to investigate the structural brain changes that may serve as prognostic biomarkers, indicating evidence of neural dysfunction underlying schizophrenia and subsequent cognitive and behavioral deficits. We used voxel-based morphometry (VBM) to determine these changes in the three tissue structures: the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). For both image processing and statistical analysis, we used statistical parametric mapping (SPM). Results Our results show that patients with schizophrenia exhibited a significant volume reduction in both GM and WM. In particular, GM volume reductions were more evident in the frontal, temporal, limbic, and parietal lobe, similarly the WM volume reductions were predominantly in the frontal, temporal, and limbic lobe. In addition, patients with schizophrenia demonstrated a significant increase in the CSF volume in the left third and lateral ventricle regions. Conclusion This VBM study supports existing research showing that schizophrenia is associated with alterations in brain structure, including gray and white matter, and cerebrospinal fluid volume. These findings provide insights into the neurobiology of schizophrenia and may inform the development of more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Mohammed Jajere Adamu
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
- Department of Computer Science, Yobe State University, Damaturu, Nigeria
| | - Li Qiang
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Charles Okanda Nyatega
- Department of Information and Communication Engineering, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- Department of Electronics and Telecommunication Engineering, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Ayesha Younis
- Department of Electronic Science and Technology, School of Microelectronics, Tianjin University, Tianjin, China
| | - Halima Bello Kawuwa
- Department of Biomedical Engineering and Scientific Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo, Nigeria
| | - Sani Saminu
- Department of Biomedical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
44
|
Loureiro CM, Corsi-Zuelli F, Fachim HA, Shuhama R, de Oliveira AM, Menezes PR, Dalton CF, Louzada-Junior P, Belangero SI, Coeli-Lacchini F, Reynolds GP, Lacchini R, Del-Ben CM. Lifetime cannabis use and childhood trauma associated with CNR1 genetic variants increase the risk of psychosis: findings from the STREAM study. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 45:226-235. [PMID: 36918037 PMCID: PMC10288472 DOI: 10.47626/1516-4446-2022-2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. METHODS Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. RESULTS Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. CONCLUSION Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.
Collapse
Affiliation(s)
- Camila Marcelino Loureiro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| | - Fabiana Corsi-Zuelli
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rosana Shuhama
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| | | | - Paulo Rossi Menezes
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
- Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | | | - Paulo Louzada-Junior
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | - Riccardo Lacchini
- Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Cristina Marta Del-Ben
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
- Centro de Pesquisas em Saúde Mental da População, São Paulo, SP, Brazil
| |
Collapse
|
45
|
Fischer B, Hall W, Fidalgo TM, Hoch E, Foll BL, Medina-Mora ME, Reimer J, Tibbo PG, Jutras-Aswad D. Recommendations for Reducing the Risk of Cannabis Use-Related Adverse Psychosis Outcomes: A Public Mental Health-Oriented Evidence Review. J Dual Diagn 2023; 19:71-96. [PMID: 37450645 DOI: 10.1080/15504263.2023.2226588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Objective: Cannabis use is increasingly normalized; psychosis is a major adverse health outcome. We reviewed evidence on cannabis use-related risk factors for psychosis outcomes at different stages toward recommendations for risk reduction by individuals involved in cannabis use. Methods: We searched primary databases for pertinent literature/data 2016 onward, principally relying on reviews and high-quality studies which were narratively summarized and quality-graded; recommendations were developed by international expert consensus. Results: Genetic risks, and mental health/substance use problem histories elevate the risks for cannabis-related psychosis. Early age-of-use-onset, frequency-of-use, product composition (i.e., THC potency), use mode and other substance co-use all influence psychosis risks; the protective effects of CBD are uncertain. Continuous cannabis use may adversely affect psychosis-related treatment and medication effects. Risk factor combinations further amplify the odds of adverse psychosis outcomes. Conclusions: Reductions in the identified cannabis-related risks factors-short of abstinence-may decrease risks of related adverse psychosis outcomes, and thereby protect cannabis users' health.
Collapse
Affiliation(s)
- Benedikt Fischer
- Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Research and Graduate Studies Division, University of the Fraser Valley, Abbotsford, Canada
- School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Wayne Hall
- National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Thiago M Fidalgo
- Department of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eva Hoch
- Department of Psychiatry, Ludwig-Maximilian-University, Munich, Germany
- Institut für Therapieforschung (IFT), Munich, Germany
| | - Bernard Le Foll
- Translational Addiction Research Laboratory and Campbell Family Mental Health Research Institute and Acute Care Program, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Pharmacology and Toxicology and Dalla Lana School of Public Health and Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| | - Maria-Elena Medina-Mora
- Center for Global Mental Health Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
- Department of Psychiatry and Mental Health, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jens Reimer
- Departments of Psychiatry and Psychotherapy, Center for Interdisciplinary Addiction Research, University of Hamburg, Hamburg, Germany
- Center for Psychosocial Medicine, Academic Teaching Hospital Itzehoe, Itzehoe, Germany
| | - Philip G Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, Canada
- Nova Scotia Health, Halifax, Canada
| | - Didier Jutras-Aswad
- Research Centre, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Faculty of Medicine, Université de Montréal, Édouard Montpetit Boulevard, Montreal, Canada
| |
Collapse
|
46
|
Matuszewska A, Kowalski K, Jawień P, Tomkalski T, Gaweł-Dąbrowska D, Merwid-Ląd A, Szeląg E, Błaszczak K, Wiatrak B, Danielewski M, Piasny J, Szeląg A. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int J Mol Sci 2023; 24:6492. [PMID: 37047464 PMCID: PMC10094807 DOI: 10.3390/ijms24076492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Schizophrenia is a severe mental disorder with a chronic, progressive course. The etiology of this condition is linked to the interactions of multiple genes and environmental factors. The earlier age of onset of schizophrenia, the higher frequency of negative symptoms in the clinical presentation, and the poorer response to antipsychotic treatment in men compared to women suggests the involvement of sex hormones in these processes. This article aims to draw attention to the possible relationship between testosterone and some clinical features in male schizophrenic patients and discuss the complex nature of these phenomena based on data from the literature. PubMed, Web of Science, and Google Scholar databases were searched to select the papers without limiting the time of the publications. Hormone levels in the body are regulated by many organs and systems, and take place through the neuroendocrine, hormonal, neural, and metabolic pathways. Sex hormones play an important role in the development and function of the organism. Besides their impact on secondary sex characteristics, they influence brain development and function, mood, and cognition. In men with schizophrenia, altered testosterone levels were noted. In many cases, evidence from available single studies gave contradictory results. However, it seems that the testosterone level in men affected by schizophrenia may differ depending on the phase of the disease, types of clinical symptoms, and administered therapy. The etiology of testosterone level disturbances may be very complex. Besides the impact of the illness (schizophrenia), stress, and antipsychotic drug-induced hyperprolactinemia, testosterone levels may be influenced by, i.a., obesity, substances of abuse (e.g., ethanol), or liver damage.
Collapse
Affiliation(s)
- Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Krzysztof Kowalski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 25/27, 50-375 Wroclaw, Poland
| | - Tomasz Tomkalski
- Department of Endocrinology, Diabetology and Internal Medicine, Tadeusz Marciniak Lower Silesia Specialist Hospital–Centre for Medical Emergency, A.E. Fieldorfa 2, 54-049 Wroclaw, Poland
| | - Dagmara Gaweł-Dąbrowska
- Department of Population Health, Division of Public Health, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Ewa Szeląg
- Department of Maxillofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Karolina Błaszczak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| |
Collapse
|
47
|
Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm (Vienna) 2023; 130:195-205. [PMID: 36370183 PMCID: PMC9660136 DOI: 10.1007/s00702-022-02567-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany.
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
48
|
Li X, Wu X, Li W, Yan Q, Zhou P, Xia Y, Yao W, Zhu F. HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via linc01930/cGAS Axis in Recent-Onset Schizophrenia. Int J Mol Sci 2023; 24:ijms24033000. [PMID: 36769337 PMCID: PMC9917391 DOI: 10.3390/ijms24033000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting about 1% of individuals worldwide. Increased innate immune activation and neuronal apoptosis are common findings in schizophrenia. Interferon beta (IFN-β), an essential cytokine in promoting and regulating innate immune responses, causes neuronal apoptosis in vitro. However, the precise pathogenesis of schizophrenia is unknown. Recent studies indicate that a domesticated endogenous retroviral envelope glycoprotein of the W family (HERV-W ENV, also called ERVWE1 or syncytin 1), derived from the endogenous retrovirus group W member 1 (ERVWE1) locus on chromosome 7q21.2, has a high level in schizophrenia. Here, we found an increased serum IFN-β level in schizophrenia and showed a positive correlation with HERV-W ENV. In addition, serum long intergenic non-protein coding RNA 1930 (linc01930), decreased in schizophrenia, was negatively correlated with HERV-W ENV and IFN-β. In vitro experiments showed that linc01930, mainly in the nucleus and with noncoding functions, was repressed by HERV-W ENV through promoter activity suppression. Further studies indicated that HERV-W ENV increased IFN-β expression and neuronal apoptosis by restraining the expression of linc01930. Furthermore, HERV-W ENV enhanced cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes protein (STING) expression and interferon regulatory factor 3 (IRF3) phosphorylation in neuronal cells. Notably, cGAS interacted with HERV-W ENV and triggered IFN-β expression and neuronal apoptosis caused by HERV-W ENV. Moreover, Linc01930 participated in the increased neuronal apoptosis and expression level of cGAS and IFN-β induced by HERV-W ENV. To summarize, our results suggested that linc01930 and IFN-β might be novel potential blood-based biomarkers in schizophrenia. The totality of these results also showed that HERV-W ENV facilitated antiviral innate immune response, resulting in neuronal apoptosis through the linc01930/cGAS/STING pathway in schizophrenia. Due to its monoclonal antibody GNbAC1 application in clinical trials, we considered HERV-W ENV might be a reliable therapeutic choice for schizophrenia.
Collapse
Affiliation(s)
- Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu Road, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
49
|
Helaly AMN, Ghorab DSED. Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 2023; 38:795-804. [PMID: 36656396 PMCID: PMC9849842 DOI: 10.1007/s11011-022-01147-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Helaly
- Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shame El Din Ghorab
- Basic Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
50
|
Zhang C, Dong N, Xu S, Ma H, Cheng M. Identification of hub genes and construction of diagnostic nomogram model in schizophrenia. Front Aging Neurosci 2022; 14:1032917. [PMID: 36313022 PMCID: PMC9614240 DOI: 10.3389/fnagi.2022.1032917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 04/01/2024] Open
Abstract
Schizophrenia (SCZ), which is characterized by debilitating neuropsychiatric disorders with significant cognitive impairment, remains an etiological and therapeutic challenge. Using transcriptomic profile analysis, disease-related biomarkers linked with SCZ have been identified, and clinical outcomes can also be predicted. This study aimed to discover diagnostic hub genes and investigate their possible involvement in SCZ immunopathology. The Gene Expression Omnibus (GEO) database was utilized to get SCZ Gene expression data. Differentially expressed genes (DEGs) were identified and enriched by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and disease ontology (DO) analysis. The related gene modules were then examined using integrated weighted gene co-expression network analysis. Single-sample gene set enrichment (GSEA) was exploited to detect immune infiltration. SVM-REF, random forest, and least absolute shrinkage and selection operator (LASSO) algorithms were used to identify hub genes. A diagnostic model of nomogram was constructed for SCZ prediction based on the hub genes. The clinical utility of nomogram prediction was evaluated, and the diagnostic utility of hub genes was validated. mRNA levels of the candidate genes in SCZ rat model were determined. Finally, 24 DEGs were discovered, the majority of which were enriched in biological pathways and activities. Four hub genes (NEUROD6, NMU, PVALB, and NECAB1) were identified. A difference in immune infiltration was identified between SCZ and normal groups, and immune cells were shown to potentially interact with hub genes. The hub gene model for the two datasets was verified, showing good discrimination of the nomogram. Calibration curves demonstrated valid concordance between predicted and practical probabilities, and the nomogram was verified to be clinically useful. According to our research, NEUROD6, NMU, PVALB, and NECAB1 are prospective biomarkers in SCZ and that a reliable nomogram based on hub genes could be helpful for SCZ risk prediction.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Naifu Dong
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Shihan Xu
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Min Cheng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|