1
|
Barros DR, Hegele RA. Fibroblast growth factor 21: update on genetics and molecular biology. Curr Opin Lipidol 2024:00041433-990000000-00094. [PMID: 39450972 DOI: 10.1097/mol.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW Since its discovery, most research on fibroblast growth factor 21 (FGF21) has focused on its antihyperglycemia properties. However, attention has recently shifted towards elucidating the ability of FGF21 to lower circulating lipid levels and ameliorate liver inflammation and steatosis. We here discuss the physiology of FGF21 and its role in lipid metabolism, with a focus on genetics, which has up until now not been fully appreciated. RECENT FINDINGS New developments have uncovered associations of common small-effect variants of the FGF21 gene, such as the single nucleotide polymorphisms rs2548957 and rs838133, with numerous physiological, biochemical and behavioural phenotypes linked to energy metabolism and liver function. In addition, rare loss-of-function variants of the cellular receptors for FGF21 have been recently associated with severe endocrine and metabolic phenotypes. These associations corroborate the findings from basic studies and preliminary clinical investigations into the therapeutic potential of FGF21 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia. Furthermore, recent breakthrough research has begun to dissect mechanisms of a potential FGF21 brain-adipose axis. Such inter-organ communication would be comparable to that seen with other potent metabolic hormones. A deeper understanding of FGF21 could prove to be further beneficial for drug development. SUMMARY FGF21 is a potent regulator of lipid and energy homeostasis and its physiology is currently at the centre of investigative efforts to develop agents targeting hypertriglyceridemia and MASLD.
Collapse
Affiliation(s)
- Daniel R Barros
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
2
|
Ramne S, García-Ureña M, Gillum MP, Ängquist L, Hansen T, Merino J, Grarup N. Distinct genetic signals at the FGF21 locus complicate studies of FGF21's role in diet regulation using human cohort data. Mol Metab 2024; 90:102049. [PMID: 39426521 DOI: 10.1016/j.molmet.2024.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Experimental and genetic studies suggest that fibroblast growth factor 21 (FGF21) modulates macronutrient and alcohol preferences, but evidence of such regulation in humans remains scarce. To address this gap in translation, we aimed to map the relationships between plasma FGF21 levels, FGF21 genetic variation and habitual macronutrient intake in a large human population. METHODS We fine-mapped and performed colocalization of the FGF21 genetic region in GWAS summary statistics of plasma FGF21 levels and macronutrient intake. UK Biobank data were used to investigate the associations between FGF21 genetic variants, plasma FGF21 protein levels, and macronutrient intake (including alcohol) assessed with repeated 24-hour recalls. One- and two-sample mendelian randomization were performed to estimate the effects of plasma FGF21 on macronutrient intake. RESULTS We show that the main macronutrient-associated variant rs838133 and the FGF21 cis-pQTL rs838131, both in the FGF21 gene, are distinct genetic signals. Effect directions also suggest that the influence of FGF21 variation on macronutrient intake appear more complex than by direct mediation through plasma FGF21. Only when considering this complexity at FGF21, is plasma FGF21 estimated to reduce alcohol and increase protein and fat intake using mendelian randomization. Importantly, plasma FGF21 levels also appear markedly elevated by primarily high alcohol and low protein intake. CONCLUSIONS These findings support the feedback diet-regulatory mechanism of FGF21 in humans, but highlights the need for mechanistic characterization of the complex FGF21 genetic region.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario García-Ureña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, Early Innovation, Outreach, and Alliances, Måløv, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Merino
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
4
|
Singar S, Nagpal R, Arjmandi BH, Akhavan NS. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients 2024; 16:2673. [PMID: 39203810 PMCID: PMC11357412 DOI: 10.3390/nu16162673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Personalized nutrition (PN) represents a transformative approach in dietary science, where individual genetic profiles guide tailored dietary recommendations, thereby optimizing health outcomes and managing chronic diseases more effectively. This review synthesizes key aspects of PN, emphasizing the genetic basis of dietary responses, contemporary research, and practical applications. We explore how individual genetic differences influence dietary metabolisms, thus underscoring the importance of nutrigenomics in developing personalized dietary guidelines. Current research in PN highlights significant gene-diet interactions that affect various conditions, including obesity and diabetes, suggesting that dietary interventions could be more precise and beneficial if they are customized to genetic profiles. Moreover, we discuss practical implementations of PN, including technological advancements in genetic testing that enable real-time dietary customization. Looking forward, this review identifies the robust integration of bioinformatics and genomics as critical for advancing PN. We advocate for multidisciplinary research to overcome current challenges, such as data privacy and ethical concerns associated with genetic testing. The future of PN lies in broader adoption across health and wellness sectors, promising significant advancements in public health and personalized medicine.
Collapse
Affiliation(s)
- Saiful Singar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Bahram H. Arjmandi
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA; (S.S.); (R.N.); (B.H.A.)
| | - Neda S. Akhavan
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
5
|
Seifi N, Bahari H, Foroumandi E, Hasanpour E, Nikoumanesh M, Ferns GA, Esmaily H, Ghayour‐Mobarhan M. The association of dietary indices for hyperinsulinemia and insulin resistance with the risk of metabolic syndrome: a population-based cross-sectional study. J Clin Hypertens (Greenwich) 2024; 26:832-841. [PMID: 38980195 PMCID: PMC11232453 DOI: 10.1111/jch.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 07/10/2024]
Abstract
We aimed to investigate the association between an empirical dietary index for hyperinsulinemia (EDIH), empirical dietary index for insulin resistance (EDIR), and MetS and its components in an adult Iranian population. In this cross-sectional study, a total of 6482 participants aged 35-65 years were recruited as part of the MASHAD cohort study. Dietary intakes were assessed using a validated food frequency questionnaire (FFQ). The International Diabetes Federation (IDF) criteria were used to define MetS. Multivariable logistic regression models were applied to determine the association between EDIH, EDIR, and MetS and its components. The mean age and BMI of participants were 48.44±8.20 years, and 27.98±4.73 kg/m2, respectively. Around 59% of the population was female. Of the total population, 35.4% had MetS. According to the full-adjusted model, there was no significant association between higher quartiles of EDIH and EDIR and odds of MetS (Q4 EDIH; OR (95%CI):0.93 (0.74-1.18), Q4 EDIR; OR (95%CI):1.14 (0.92-1.40). Regarding MetS components, EDIR was associated with increased odds of hypertension and diabetes (Q4 EDIR; OR (95%CI):1.22 (1.04-1.44) and 1.22 (1.01-1.47), respectively). EDIH was also associated with decreased odds of hypertriglyceridemia (Q4 EDIH; OR (95%CI): 0.72 (0.60-0.87)). This study showed no significant association between hyperinsulinemia and insulin resistance potential of diet and odds of MetS among Iranian adults. However, EDIR was significantly associated with increased odds of hypertension and diabetes as MetS components.
Collapse
Affiliation(s)
- Najmeh Seifi
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Hossein Bahari
- Transplant Research CenterClinical Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Elaheh Foroumandi
- Non‐Communicable Diseases Research CenterDepartment of Nutrition & BiochemistrySchool of MedicineSabzevar University of Medical SciencesSabzevarIran
| | - Elahe Hasanpour
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Mahya Nikoumanesh
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Gordon A. Ferns
- Division of Medical EducationBrighton & Sussex Medical School, FalmerBrightonSussexUK
| | - Habibollah Esmaily
- Department of BiostatisticsSchool of HealthMashhad University of Medical SciencesMashhadIran
- Social Determinants of Health Research CenterMashhad University of Medical SciencesMashhadIran
| | - Majid Ghayour‐Mobarhan
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Teymoori F, Mokhtari E, Farhadnejad H, Ahmadirad H, Akbarzadeh M, Riahi P, Zarkesh M, Daneshpour MS, Mirmiran P, Vafa M. Energy and macronutrient intake heritability: A systematic review and meta-analysis of twin and family-based studies. Clin Nutr ESPEN 2024; 61:79-87. [PMID: 38777476 DOI: 10.1016/j.clnesp.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND/AIMS The current meta-analysis aimed to examine the heritability and familial resemblance of dietary intakes, including energy and macronutrients in both twin and family-based studies. METHODS The online literature databases, including PubMed, Scopus, and Web of Science were searched comprehensively until 2023 to identify the relevant studies. The heritability index in family studies was h2 and the heritability indices for twin studies were h2, A2, and E2. Three weighted methods were used to calculate the mean and SE of heritability dietary intakes. RESULTS Eighteen papers including 8 studies on familial population and 12 for twin population studies were included in the present meta-analysis. The heritability of dietary intakes in twin studies (range of pooled estimated h2, A2, and E2 was 30-55%, 14-42%, and 52-79%, respectively) was higher than family studies (range of pooled estimated h2 = 16-39%). In family studies, the highest and lowest heritability for various nutrients was observed for the fat (%Kcal) (h2 range:36-38%) and carbohydrate in g (h2 range:16-18%), respectively. In twin studies, based on mean h2, the highest and lowest heritability for various nutrients was reported for the fat (%Kcal) (h2 range:49-55%) and protein intake in g (h2 range:30-35%), respectively. Also, based on the mean of A2, the highest and lowest heritability was observed for carbohydrates (% Kcal) (A2 range:42-42%), and protein (% Kcal) (A2 range:14-16%), respectively. Furthermore, in twin studies, the highest and lowest mean of E2 was shown for saturated fats (E2 range:74-79%) and energy intake (E2 range:52-57%), respectively. CONCLUSION Our analysis indicated that both environmental factors and genetics have noticeable contributions in determining the heritability of dietary intakes. Also, we observed higher heritability in twins compared to family studies.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parisa Riahi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Vafa
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Abdelmalek CM, Singh S, Fasil B, Horvath AR, Mulkey SB, Curé C, Campos M, Cavalcanti DP, Tong VT, Mercado M, Daza M, Marcela Benavides M, Acosta J, Gilboa S, Valencia D, Sancken CL, Newton S, Scalabrin DMF, Mussi-Pinhata MM, Vasconcelos Z, Chakhtoura N, Moye J, Leslie EJ, Bulas D, Vezina G, Marques FJP, Leyser M, Del Campo M, Vilain E, DeBiasi RL, Wang T, Nath A, Haydar T, Muenke M, Mansour TA, du Plessis AJ, Murray JC, Cordero JF, Kousa YA. Building a growing genomic data repository for maternal and fetal health through the PING Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307899. [PMID: 38826415 PMCID: PMC11142296 DOI: 10.1101/2024.05.24.24307899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Discordant outcomes among dizygotic twins could be explained by genetic susceptibly or protection. Among several well-recognized threats to the developing brain, Zika is a mosquito-borne, positive-stranded RNA virus that was originally isolated in Uganda and spread to cause epidemics in Africa, Asia, and the Americas. In the Americas, the virus caused congenital Zika syndrome and a multitude of neurodevelopmental disorders. As of now, there is no preventative treatment or cure for the adverse outcomes caused by prenatal Zika infection. The Prenatal Infection and Neurodevelopmental Genetics (PING) Consortium was initiated in 2016 to identify factors modulating prenatal brain injury and postnatal neurodevelopmental outcomes for Zika and other prenatal viral infections. Methods The Consortium has pooled information from eight multi-site studies conducted at 23 research centers in six countries to build a growing clinical and genomic data repository. This repository is being mined to search for modifiers of virally induced brain injury and developmental outcomes. Multilateral partnerships include commitments with Children's National Hospital (USA), Instituto Nacional de Salud (Colombia), the Natural History of Zika Virus Infection in Gestation program (Brazil), and Zika Instituto Fernandes Figueira (Brazil), in addition to the Centers for Disease Control and Prevention and the National Institutes of Health. Discussion Our goal in bringing together these sets of patient data was to test the hypothesis that personal and populational genetic differences affect the severity of brain injury after a prenatal viral infection and modify neurodevelopmental outcomes. We have enrolled 4,102 mothers and 3,877 infants with 3,063 biological samples and clinical data covering over 80 phenotypic fields and 5,000 variables. There were several notable challenges in bringing together cohorts enrolled in different studies, including variability in the timepoints evaluated and the collected clinical data and biospecimens. Thus far, we have performed whole exome sequencing on 1,226 participants. Here, we present the Consortium's formation and the overarching study design. We began our investigation with prenatal Zika infection with the goal of applying this knowledge to other prenatal infections and exposures that can affect brain development.
Collapse
|
8
|
Cheung MM, Hubert PA, Reed DR, Pouget ER, Jiang X, Hwang LD. Understanding the determinants of sweet taste liking in the African and East Asian ancestry groups in the U.S.-A study protocol. PLoS One 2024; 19:e0300071. [PMID: 38683826 PMCID: PMC11057733 DOI: 10.1371/journal.pone.0300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation. METHODS We will determine the differences in allele frequencies in sweet-related genetic variants and their effects on sweet liking in 426 adults of either African or East Asian ancestry, who have the highest and lowest average added sugars intake, respectively, among ancestry groups in the U.S. We will collect information on participants' sweet-liking phenotype, added sugars intake (sweetness exposure), anthropometric measures, place-of-birth, and for immigrants, duration of time living in the U.S. and age when immigrated. Ancestry-specific polygenic scores of sweet liking will be computed based on the effect sizes of the sweet-related genetic variants on the sweet-liking phenotype for each ancestry group. The predictive validity of the polygenic scores will be tested using individuals of African and East Asian ancestry from the UK Biobank. We will also compare sweet liking between U.S.-born individuals and immigrants within each ancestry group to test whether differences in environmental sweetness exposure during childhood affect sweet liking in adulthood. DISCUSSION Expanding genetic research on taste to individuals from ancestry groups traditionally underrepresented in such research is consistent with equity goals in sensory and nutrition science. Findings from this study will help in the development of a more personalized nutrition approach for diverse populations. TRIAL REGISTRATION This protocol has been preregistered with the Center for Open Science (https://doi.org/10.17605/OSF.IO/WPR9E).
Collapse
Affiliation(s)
- May M. Cheung
- City University of New York, Brooklyn College, Brooklyn, New York, United States of America
| | - Patrice A. Hubert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Danielle R. Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Enrique R. Pouget
- City University of New York, Brooklyn College, Brooklyn, New York, United States of America
| | - Xinyin Jiang
- City University of New York, Brooklyn College, Brooklyn, New York, United States of America
| | - Liang-Dar Hwang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Peters B, Vahlhaus J, Pivovarova-Ramich O. Meal timing and its role in obesity and associated diseases. Front Endocrinol (Lausanne) 2024; 15:1359772. [PMID: 38586455 PMCID: PMC10995378 DOI: 10.3389/fendo.2024.1359772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Meal timing emerges as a crucial factor influencing metabolic health that can be explained by the tight interaction between the endogenous circadian clock and metabolic homeostasis. Mistimed food intake, such as delayed or nighttime consumption, leads to desynchronization of the internal circadian clock and is associated with an increased risk for obesity and associated metabolic disturbances such as type 2 diabetes and cardiovascular diseases. Conversely, meal timing aligned with cellular rhythms can optimize the performance of tissues and organs. In this review, we provide an overview of the metabolic effects of meal timing and discuss the underlying mechanisms. Additionally, we explore factors influencing meal timing, including internal determinants such as chronotype and genetics, as well as external influences like social factors, cultural aspects, and work schedules. This review could contribute to defining meal-timing-based recommendations for public health initiatives and developing guidelines for effective lifestyle modifications targeting the prevention and treatment of obesity and associated metabolic diseases. Furthermore, it sheds light on crucial factors that must be considered in the design of future food timing intervention trials.
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Janna Vahlhaus
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Sokary S, Almaghrbi H, Bawadi H. The Interaction Between Body Mass Index Genetic Risk Score and Dietary Intake on Weight Status: A Systematic Review. Diabetes Metab Syndr Obes 2024; 17:925-941. [PMID: 38435632 PMCID: PMC10908334 DOI: 10.2147/dmso.s452660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Background The escalating global obesity epidemic and the emergence of personalized medicine strategies point to the pressing need to investigate the interplay between genetic risk scores (GRSs), dietary intake, and their combined impact on weight status. This systematic review synthesizes evidence from diverse studies to elucidate how dietary patterns and individual foods interact with genetic predisposition to obesity. Methods Literature searches were conducted in the PubMed, Embase, Science Direct, and Scopus databases until August 2023, following PRISMA guidelines. Out of 575 articles, 15 articles examining the interaction between genetic risk score for body mass index and dietary intake on weight outcomes met the inclusion criteria. All included studies were cross-sectional in design and were assessed for quality using the Newcastle‒Ottawa Scale. Results Unhealthy dietary intake exacerbated the genetic predisposition to obesity, evident in studies assessing Western diet, sulfur microbial diet, and individual macronutrients, including saturated fatty acids, sugar-sweetened beverages and fried foods. Conversely, adhering to healthier dietary intake mitigated the genetic predisposition to obesity, as observed in studies involving Alternative Healthy Eating Index, Alternative Mediterranean Diet, Dietary Approach to Stop Hypertension scores, healthy plant-based diets, and specific foods such as fruits, vegetables, and n-3 polyunsaturated fatty acids. Conclusion This is the first systematic review to explore the interaction between genetics and dietary intake in shaping obesity outcomes. The findings have implications for tailored interventions; however, more controlled clinical trials with robust designs are needed to be able to recommend personalized nutrition based on nutrition for obesity prevention and management.
Collapse
Affiliation(s)
- Sara Sokary
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Cheung MM, Hubert PA, Reed DR, Pouget ER, Jiang X, Hwang LD. Understanding the Determinants of Sweet Liking in the African and East Asian Ancestry Groups in the U.S. - A Study Protocol. RESEARCH SQUARE 2023:rs.3.rs-3644422. [PMID: 38076869 PMCID: PMC10705709 DOI: 10.21203/rs.3.rs-3644422/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background The liking for sweet taste is a powerful driver for consuming added sugars, and therefore, understanding how sweet liking is formed is a critical step in devising strategies to lower added sugars consumption. However, current research on the influence of genetic and environmental factors on sweet liking is mostly based on research conducted with individuals of European ancestry. Whether these results can be generalized to people of other ancestry groups warrants investigation. Methods We will determine the differences in allele frequencies in sweet-related genetic variants and their effects on sweet liking in 426 adults of either African or East Asian ancestry, who have the highest and lowest average added sugars intake, respectively, among ancestry groups in the U.S. We will collect information on participants' sweet-liking phenotype, added sugars intake (sweetness exposure), anthropometric measures, place-of-birth, and for immigrants, duration of time living in the U.S. and age when immigrated. Ancestry-specific polygenic scores of sweet liking will be computed based on the effect sizes of the sweet-related genetic variants on the sweet-liking phenotype for each ancestry group. The predictive validity of the polygenic scores will be tested using individuals of African and East Asian ancestry from the UK Biobank. We will also compare sweet liking between U.S.-born individuals and immigrants within each ancestry group to test whether differences in environmental sweetness exposure during childhood affect sweet liking in adulthood. Discussion Expanding genetic research on taste to individuals from ancestry groups traditionally underrepresented in such research is consistent with equity goals in sensory and nutrition science. Findings from this study will help in the development of a more personalized nutrition approach for diverse populations. Trial registration This protocol has been preregistered with the Center for Open Science (https://doi.org/10.17605/OSF.IO/WPR9E) and is approved by the City University of New York Human Research Protection Program (IRB#: 2023-0064-Brooklyn).
Collapse
|
12
|
Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis 2023; 10:2351-2365. [PMID: 37554175 PMCID: PMC10404889 DOI: 10.1016/j.gendis.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Raubenheimer D, Simpson SJ. Protein appetite as an integrator in the obesity system: the protein leverage hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220212. [PMID: 37661737 PMCID: PMC10475875 DOI: 10.1098/rstb.2022.0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the large volume and extensive range of obesity research, there is substantial disagreement on the causes and effective preventative strategies. We suggest the field will benefit from greater emphasis on integrative approaches that examine how various potential contributors interact, rather than regarding them as competing explanations. We demonstrate the application of nutritional geometry, a multi-nutrient integrative framework developed in the ecological sciences, to obesity research. Such studies have shown that humans, like many other species, regulate protein intake more strongly than other dietary components, and consequently if dietary protein is diluted there is a compensatory increase in food intake-a process called protein leverage. The protein leverage hypothesis (PLH) proposes that the dilution of protein in modern food supplies by fat and carbohydrate-rich highly processed foods has resulted in increased energy intake through protein leverage. We present evidence for the PLH from a variety of sources (mechanistic, experimental and observational), and show that this mechanism is compatible with many other findings and theories in obesity research. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Vámos A, Arianti R, Vinnai BÁ, Alrifai R, Shaw A, Póliska S, Guba A, Csősz É, Csomós I, Mocsár G, Lányi C, Balajthy Z, Fésüs L, Kristóf E. Human abdominal subcutaneous-derived active beige adipocytes carrying FTO rs1421085 obesity-risk alleles exert lower thermogenic capacity. Front Cell Dev Biol 2023; 11:1155673. [PMID: 37416800 PMCID: PMC10321670 DOI: 10.3389/fcell.2023.1155673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: White adipocytes store lipids, have a large lipid droplet and few mitochondria. Brown and beige adipocytes, which produce heat, are characterized by high expression of uncoupling protein (UCP) 1, multilocular lipid droplets, and large amounts of mitochondria. The rs1421085 T-to-C single-nucleotide polymorphism (SNP) of the human FTO gene interrupts a conserved motif for ARID5B repressor, resulting in adipocyte type shift from beige to white. Methods: We obtained abdominal subcutaneous adipose tissue from donors carrying FTO rs1421085 TT (risk-free) or CC (obesity-risk) genotypes, isolated and differentiated their preadipocytes into beige adipocytes (driven by the PPARγ agonist rosiglitazone for 14 days), and activated them with dibutyryl-cAMP for 4 hours. Then, either the same culture conditions were applied for additional 14 days (active beige adipocytes) or it was replaced by a white differentiation medium (inactive beige adipocytes). White adipocytes were differentiated by their medium for 28 days. Results and Discussion: RNA-sequencing was performed to investigate the gene expression pattern of adipocytes carrying different FTO alleles and found that active beige adipocytes had higher brown adipocyte content and browning capacity compared to white or inactive beige ones when the cells were obtained from risk-free TT but not from obesity-risk CC genotype carriers. Active beige adipocytes carrying FTO CC had lower thermogenic gene (e.g., UCP1, PM20D1, CIDEA) expression and thermogenesis measured by proton leak respiration as compared to TT carriers. In addition, active beige adipocytes with CC alleles exerted lower expression of ASC-1 neutral amino acid transporter (encoded by SLC7A10) and less consumption of Ala, Ser, Cys, and Gly as compared to risk-free carriers. We did not observe any influence of the FTO rs1421085 SNP on white and inactive beige adipocytes highlighting its exclusive and critical effect when adipocytes were activated for thermogenesis.
Collapse
Affiliation(s)
- Attila Vámos
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalanbaru, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Guba
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltán Balajthy
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Le TDV, Fathi P, Watters AB, Ellis BJ, Besing GLK, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Fibroblast growth factor-21 is required for weight loss induced by the glucagon-like peptide-1 receptor agonist liraglutide in male mice fed high carbohydrate diets. Mol Metab 2023; 72:101718. [PMID: 37030441 PMCID: PMC10131131 DOI: 10.1016/j.molmet.2023.101718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, β-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal β-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.
Collapse
Affiliation(s)
- Thao D V Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Payam Fathi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Amanda B Watters
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Blair J Ellis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Gai-Linn K Besing
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Misty B Perez
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Jesse P Rose
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Laurie L Baggio
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Jacqueline Koehler
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Jennifer L Brown
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA
| | - Michelle B Bales
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| | - Kaitlyn G Nwaba
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, Durham, NC 27701, USA.
| | - Daniel J Drucker
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Department of Medicine, University of Toronto, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA.
| | - Randy J Seeley
- Department of Surgery, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Merino J, Dashti HS, Levy DE, Del Rocío Sevilla-González M, Hivert MF, Porneala BC, Saxena R, Thorndike AN. Genetic predisposition to macronutrient preference and workplace food choices. Mol Psychiatry 2023; 28:2606-2611. [PMID: 37217678 DOI: 10.1038/s41380-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Prior research identified genetic variants influencing macronutrient preference, but whether genetic differences underlying nutrient preference affect long-term food choices is unknown. Here we examined the associations of polygenic scores for carbohydrate, fat, and protein preference with 12 months' workplace food purchases among 397 hospital employees from the ChooseWell 365 study. Food purchases were obtained retrospectively from the hospital's cafeteria sales data for the 12 months before participants were enrolled in the ChooseWell 365 study. Traffic light labels, visible to employees when making purchases, measured the quality of workplace purchases. During the 12-month study period, there were 215,692 cafeteria purchases. Each SD increase in the polygenic score for carbohydrate preference was associated with 2.3 additional purchases/month (95%CI, 0.2 to 4.3; p = 0.03) and a higher number of green-labeled purchases (β = 1.9, 95%CI, 0.5-3.3; p = 0.01). These associations were consistent in subgroup and sensitivity analyses accounting for additional sources of bias. There was no evidence of associations between fat and protein polygenic scores and cafeteria purchases. Findings from this study suggest that genetic differences in carbohydrate preference could influence long-term workplace food purchases and may inform follow-up experiments to enhance our understanding of the molecular mechanisms underlying food choice behavior.
Collapse
Affiliation(s)
- Jordi Merino
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Douglas E Levy
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mongan Institute Health Policy Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Magdalena Del Rocío Sevilla-González
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, 100 Cambridge, Boston, MA, USA
| | - Marie-France Hivert
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Bianca C Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anne N Thorndike
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Lee HJ, Shon J, Park YJ. Association of NAFLD with FGF21 Polygenic Hazard Score, and Its Interaction with Protein Intake Level in Korean Adults. Nutrients 2023; 15:2385. [PMID: 37242268 PMCID: PMC10220598 DOI: 10.3390/nu15102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that participates in the regulation of energy homeostasis and is induced by dietary protein restriction. Preclinical studies have suggested that FGF21 induction exerts a protective effect against non-alcoholic fatty liver disease (NAFLD), while human studies have revealed elevated levels of and potential resistance to FGF21 in patients with NAFLD. However, whether the FGF21 pathway also contributes to NAFLD risk at the genetic level remains uncertain. A few attempts to investigate the impact of individual genetic variants at the loci encoding FGF21 and its receptors on NAFLD risk have failed to establish a clear association due to a limited effect size. Therefore, this study aimed to (1) develop a polygenic hazard score (PHS) for FGF21-related loci that are associated with NAFLD risk and (2) investigate the effect of its interaction with protein intake level on NAFLD risk. Data on 3501 participants of the Korean Genome Epidemiology Study (Ansan-Ansung) were analyzed. Eight single-nucleotide polymorphisms of fibroblast growth factor receptors and beta-klotho were selected for PHS determination using forward stepwise analysis. The association between the PHS and NAFLD was validated (p-trend: 0.0171 for men and <0.0001 for women). Moreover, the association was significantly modulated by the protein intake level in all participants as well as women (p-interaction = 0.0189 and 0.0131, respectively) but not in men. In particular, the women with the lowest PHS values and a protein intake lower than the recommended nutrient intake (RNI) exhibited a greater NAFLD risk (HR = 2.021, p-trend = 0.0016) than those with an intake equal to or greater than the RNI; however, those with higher PHS values had a high risk, regardless of protein intake level. These findings demonstrate the contribution of FGF21-related genetic variants and restricted protein intake to NAFLD incidence.
Collapse
Affiliation(s)
- Hae Jin Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinyoung Shon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
19
|
Semmler G, Datz C, Trauner M. Eating, diet, and nutrition for the treatment of non-alcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S244-S260. [PMID: 36517001 PMCID: PMC10029946 DOI: 10.3350/cmh.2022.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD). Summarizing our rapidly advancing understanding of how our diet influences our metabolism and focusing on specific effects on the liver, we provide a comprehensive overview of dietary concepts to counteract the increasing burden of NAFLD. Specifically, we emphasize the importance of dietary calorie restriction independently of the macronutrient composition together with adherence to a Mediterranean diet low in added fructose and processed meat that seems to exert favorable effects beyond calorie restriction. Also, we discuss intermittent fasting as a type of diet specifically tailored to decrease liver fat content and increase ketogenesis, awaiting future study results in NAFLD. Finally, personalized dietary recommendations could be powerful tools to increase the effectiveness of dietary interventions in patients with NAFLD considering the genetic background and the microbiome, among others.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Le TDV, Fathi P, Watters AB, Ellis BJ, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Liver Fibroblast Growth Factor 21 (FGF21) is Required for the Full Anorectic Effect of the Glucagon-Like Peptide-1 Receptor Agonist Liraglutide in Male Mice fed High Carbohydrate Diets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522509. [PMID: 36711605 PMCID: PMC9881863 DOI: 10.1101/2023.01.03.522509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal β-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.
Collapse
|
21
|
Carbinatti T, Régnier M, Parlati L, Benhamed F, Postic C. New insights into the inter-organ crosstalk mediated by ChREBP. Front Endocrinol (Lausanne) 2023; 14:1095440. [PMID: 36923222 PMCID: PMC10008936 DOI: 10.3389/fendo.2023.1095440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023] Open
Abstract
Carbohydrate response element binding protein (ChREBP) is a glucose responsive transcription factor recognized by its critical role in the transcriptional control of glycolysis and de novo lipogenesis. Substantial advances in the field have revealed novel ChREBP functions. Indeed, due to its actions in different tissues, ChREBP modulates the inter-organ communication through secretion of peptides and lipid factors, ensuring metabolic homeostasis. Dysregulation of these orchestrated interactions is associated with development of metabolic diseases such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Here, we recapitulate the current knowledge about ChREBP-mediated inter-organ crosstalk through secreted factors and its physiological implications. As the liver is considered a crucial endocrine organ, we will focus in this review on the role of ChREBP-regulated hepatokines. Lastly, we will discuss the involvement of ChREBP in the progression of metabolic pathologies, as well as how the impairment of ChREBP-dependent signaling factors contributes to the onset of such diseases.
Collapse
|
22
|
Larsson SC, Michaëlsson K, Mola-Caminal M, Höijer J, Mantzoros CS. Genome-wide association and Mendelian randomization study of fibroblast growth factor 21 reveals causal associations with hyperlipidemia and possibly NASH. Metabolism 2022; 137:155329. [PMID: 36208799 DOI: 10.1016/j.metabol.2022.155329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a hepatokine that produces metabolic benefits, such as improvements of lipid profile. We performed a genome-wide association study (GWAS) to identify genetic variants associated with circulating FGF21 and investigated the causal effects of FGF21 on pertinent outcomes using Mendelian randomization (MR). METHODS We conducted a GWAS testing ∼7.8 million DNA sequence variants with circulating FGF21 in a discovery cohort of 6259 Swedish adults with replication in 4483 Swedish women. We then performed two-sample MR analyses of genetically predicted circulating FGF21 in relation to alcohol and nutrient intake, cardiovascular and metabolic biomarkers and diseases, and liver function biomarkers using publicly available GWAS summary statistics data. RESULTS Our GWAS identified multiple single-nucleotide polymorphisms with genome-wide significant associations (P < 5 × 10-8) with circulating FGF21 on chromosomes 2 and 19 in or near the GCKR and FGF21 genes, respectively. The strongest signal at the FGF21 locus (rs2548957, β = 0.181, P < 2.18 × 10-42) displayed in two-sample MR analyses robust associations with lower alcohol intake, lower circulating low-density lipoprotein cholesterol, apolipoprotein B, C-reactive protein, gamma-glutamyl transferase, and galectin-3 concentrations, and higher circulating insulin-like growth factor-I and alkaline phosphatase concentrations after correcting for multiple testing (P < 0.0018) whereas associations with fat mass, type 2 diabetes, and cardiovascular disease were largely null. CONCLUSIONS We identified robust associations of certain genetic variants in or near the GCKR and FGF21 genes with circulating FGF21 concentrations. Furthermore, our results support a strong causal effect of FGF21 on improved lipid profile, reduced alcohol consumption and C-reactive protein concentrations, and liver function biomarkers including fibrosis. We found largely null or weak positive associations with fat mass, diabetes, and cardiovascular disease as well as higher insulin-like growth factor-I concentrations, which could indicate a compensatory increase to regulate the above FGF21 resistant states in humans.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Karl Michaëlsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marina Mola-Caminal
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Höijer
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Najd-Hassan-Bonab L, Safarpour M, Moazzam-Jazi M, Azizi F, Daneshpour MS. The role of FTO variant rs1421085 in the relationship with obesity: a systematic review and meta-analysis. Eat Weight Disord 2022; 27:3053-3062. [PMID: 36434470 DOI: 10.1007/s40519-022-01509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Fat mass and obesity-associated (FTO) is considered the first locus associated with adiposity, a concerning health problem worldwide. Many studies have evaluated the relationship between the FTO variants and obesity susceptibility. While the strong association of FTO rs1421085 with the risk of obesity across populations was reported in different studies, some researchers found a lack of association of this variant with adiposity. This systematic review and meta-analysis aimed to assess the association between obesity and rs1421085 polymorphism. METHODS We systematically searched PubMed, Scopus, and Google Scholar up to June 2022 to find pertinent studies. To further assess this issue, we surveyed the probable association of rs1421085 with obesity development among Iranian adults using the logistic regression analysis, and the obtained results were used for doing meta-analysis. After selection, nine eligible studies were included in the meta-analysis through the random- and fixed-effect models to determine the combined odds ratios (OR) and 95% confidence intervals (CI). RESULTS According to our meta-analysis conducted on 5169 obese and 7772 non-obese individuals using different genetic models, including recessive, dominant, over-dominant, and additive, rs1421085 could positively increase the risk of obesity under all tested genetic models. Also, we detected a high to moderate level of heterogeneity among different studies under various genetic models. CONCLUSION This meta-analysis further verified the positive association of FTO rs1421085 with the risk of developing obesity. STUDY REGISTRATION This study is registered as PROSPERO CRD42021220092. LEVEL OF EVIDENCE Level I, systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Leila Najd-Hassan-Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, Iran
| | - Mahdi Safarpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, Iran
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, Iran.
| |
Collapse
|
24
|
Plasma FGF21 Levels Are Not Associated with Weight Loss or Improvements in Metabolic Health Markers upon 12 Weeks of Energy Restriction: Secondary Analysis of an RCT. Nutrients 2022; 14:nu14235061. [PMID: 36501091 PMCID: PMC9735516 DOI: 10.3390/nu14235061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that circulating fibroblast growth factor 21 (FGF21) may be a marker of metabolic health status. We performed a secondary analysis of a 12-week randomized controlled trial to investigate the effects of two energy restriction (ER) diets on fasting and postprandial plasma FGF21 levels, as well as to explore correlations of plasma FGF21 with metabolic health markers, (macro)nutrient intake and sweet-taste preference. Abdominally obese subjects aged 40-70 years (n = 110) were randomized to one of two 25% ER diets (high-nutrient-quality diet or low-nutrient-quality diet) or a control group. Plasma FGF21 was measured in the fasting state and 120 min after a mixed meal. Both ER diets did not affect fasting or postprandial plasma FGF21 levels despite weight loss and accompanying health improvements. At baseline, the postprandial FGF21 response was inversely correlated to fasting plasma glucose (ρ = -0.24, p = 0.020) and insulin (ρ = -0.32, p = 0.001), HOMA-IR (ρ = -0.34, p = 0.001), visceral adipose tissue (ρ = -0.24, p = 0.046), and the liver enzyme aspartate aminotransferase (ρ = -0.23, p = 0.021). Diet-induced changes in these markers did not correlate to changes in plasma FGF21 levels upon intervention. Baseline higher habitual polysaccharide intake, but not mono- and disaccharide intake or sweet-taste preference, was related to lower fasting plasma FGF21 (p = 0.022). In conclusion, we found no clear evidence that fasting plasma FGF21 is a marker for metabolic health status. Circulating FGF21 dynamics in response to an acute nutritional challenge may reflect metabolic health status better than fasting levels.
Collapse
|
25
|
Mompeo O, Freidin MB, Gibson R, Hysi PG, Christofidou P, Segal E, Valdes AM, Spector TD, Menni C, Mangino M. Genome-Wide Association Analysis of Over 170,000 Individuals from the UK Biobank Identifies Seven Loci Associated with Dietary Approaches to Stop Hypertension (DASH) Diet. Nutrients 2022; 14:4431. [PMID: 36297114 PMCID: PMC9611599 DOI: 10.3390/nu14204431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Diet is a modifiable risk factor for common chronic diseases and mental health disorders, and its effects are under partial genetic control. To estimate the impact of diet on individual health, most epidemiological and genetic studies have focused on individual aspects of dietary intake. However, analysing individual food groups in isolation does not capture the complexity of the whole diet pattern. Dietary indices enable a holistic estimation of diet and account for the intercorrelations between food and nutrients. In this study we performed the first ever genome-wide association study (GWA) including 173,701 individuals from the UK Biobank to identify genetic variants associated with the Dietary Approaches to Stop Hypertension (DASH) diet. DASH was calculated using the 24 h-recall questionnaire collected by UK Biobank. The GWA was performed using a linear mixed model implemented in BOLT-LMM. We identified seven independent single-nucleotide polymorphisms (SNPs) associated with DASH. Significant genetic correlations were observed between DASH and several educational traits with a significant enrichment for genes involved in the AMP-dependent protein kinase (AMPK) activation that controls the appetite by regulating the signalling in the hypothalamus. The colocalization analysis implicates genes involved in body mass index (BMI)/obesity and neuroticism (ARPP21, RP11-62H7.2, MFHAS1, RHEBL1). The Mendelian randomisation analysis suggested that increased DASH score, which reflect a healthy diet style, is causal of lower glucose, and insulin levels. These findings further our knowledge of the pathways underlying the relationship between diet and health outcomes. They may have significant implications for global public health and provide future dietary recommendations for the prevention of common chronic diseases.
Collapse
Affiliation(s)
- Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Rachel Gibson
- Department of Nutritional Sciences, King’s College London, London SE1 9NH, UK
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Paraskevi Christofidou
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ana M. Valdes
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Academic Rheumatology Clinical Sciences Building, Nottingham City Hospital, University of Nottingham, Nottingham NG5 1PB, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
26
|
Qi L. Nutrition for precision health: The time is now. Obesity (Silver Spring) 2022; 30:1335-1344. [PMID: 35785484 DOI: 10.1002/oby.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Precision nutrition has emerged as a boiling area of nutrition research, with a particular focus on revealing the individual variability in response to diets that is determined mainly by the complex interactions of dietary factors with the multi-tiered "omics" makeups. Reproducible findings from the observational studies and diet intervention trials have lent preliminary but consistent evidence to support the fundamental role of gene-diet interactions in determining the individual variability in health outcomes including obesity and weight loss. Recent investigations suggest that the abundance and diversity of the gut microbiome may also modify the dietary effects; however, considerable instability in the results from the microbiome research has been noted. In addition, growing studies suggest that a complicated multiomics algorithm would be developed by incorporating the genome, epigenome, metabolome, proteome, and microbiome in predicting the individual variability in response to diets. Moreover, precision nutrition would also scrutinize the role of biological (circadian) rhythm in determining the individual variability of dietary effects. The evidence gathered from precision nutrition research will be the basis for constructing precision health dietary recommendations, which hold great promise to help individuals and their health care providers create precise and effective diet plans for precision health in the future.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
28
|
VerHague M, Albright J, Barron K, Kim M, Bennett BJ. Obesogenic and diabetic effects of CD44 in mice are sexually dimorphic and dependent on genetic background. Biol Sex Differ 2022; 13:14. [PMID: 35410390 PMCID: PMC8996418 DOI: 10.1186/s13293-022-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction CD44 is a candidate gene for obesity and diabetes development and may be a critical mediator of a systemic inflammation associated with obesity and diabetes. Methods We investigated the relationship of CD44 with obesity in CD44-deficient mice challenged with a high-fat diet. Results In mice fed a diet high in fat, cholesterol, and sucrose for 12 weeks fat mass accumulation was reduced in CD44-deficient mice bred onto both a C57BL/6J and the naturally TLR deficient C3H/HeJ background. Reduced fat mass could not be attributed to lower food intake or an increase in energy expenditure as measured by indirect calorimetry. However, we observed a 40–60% lower mRNA expression of the inflammation markers, F4/80, CD11b, TNF-α, and CD14, in adipose tissue of CD44-deficient mice on the C57BL/6J background but not the C3H/HeJ background, perhaps indicating that alternative factors may be affecting adiposity in this model. Measures of hepatic steatosis and insulin sensitivity were improved in CD44-deficient mice on a C57BL/6J but not in the C3H/HeJ mice. These results were highly sexually dimorphic as there were no detectable effects of CD44 inactivation in female mice on a C57BL/6 J or C3H/HeJ background. Conclusion CD44 was associated with adiposity, liver fat, and glucose in male mice. However, the effects of CD44 on obesity may be independent of TLR4 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00426-2.
Collapse
Affiliation(s)
- Melissa VerHague
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Keri Barron
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Myungsuk Kim
- Department of Nutrition, University of California, Davis, 95616, USA.,Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Brian J Bennett
- Obesity and Metabolism Research Unit USDA, ARS Western Human Nutrition Research Center, 430 W Health Sciences Drive, Davis, CA, 95616, USA. .,Department of Nutrition, University of California, Davis, 95616, USA.
| |
Collapse
|
29
|
Szczepańska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res 2022; 54:203-211. [PMID: 35413740 DOI: 10.1055/a-1778-4159] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fibroblast growth factor (FGF) 21 is a recently recognized metabolic regulator that evokes interest due to its beneficial action of maintaining whole-body energy balance and protecting the liver from excessive triglyceride production and storage. Together with FGF19 and FGF23, FGF21 belongs to the FGF family with hormone-like activity. Serum FGF21 is generated primarily in the liver under nutritional stress stimuli like prolonged fasting or the lipotoxic diet, but also during increased mitochondrial and endoplasmic reticulum stress. FGF21 exerts its endocrine action in the central nervous system and adipose tissue. Acting in the ventromedial hypothalamus, FGF21 diminishes simple sugar intake. In adipose tissue, FGF21 promotes glucose utilization and increases energy expenditure by enhancing adipose tissue insulin sensitivity and brown adipose tissue thermogenesis. Therefore, FGF21 favors glucose consumption for heat production instead of energy storage. Furthermore, FGF21 specifically acts in the liver, where it protects hepatocytes from metabolic stress caused by lipid overload. FGF21 stimulates hepatic fatty acid oxidation and reduces lipid flux into the liver by increasing peripheral lipoprotein catabolism and reducing adipocyte lipolysis. Paradoxically, and despite its beneficial action, FGF21 is elevated in insulin resistance states, that is, fatty liver, obesity, and type 2 diabetes.
Collapse
Affiliation(s)
- Ewa Szczepańska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
30
|
Wu CT, Chaffin AT, Ryan KK. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J Clin Med 2022; 11:580. [PMID: 35160033 PMCID: PMC8836936 DOI: 10.3390/jcm11030580] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.
Collapse
Affiliation(s)
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA; (C.-T.W.); (A.T.C.)
| |
Collapse
|
31
|
Kwon YJ, Park DH, Choi JE, Lee D, Hong KW, Lee JW. Identification of the interactions between specific genetic polymorphisms and nutrient intake associated with general and abdominal obesity in middle-aged adults. Clin Nutr 2022; 41:543-551. [PMID: 35030529 DOI: 10.1016/j.clnu.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Comprehensive understanding of gene-diet interactions is necessary to establish proper dietary guidelines to prevent and manage general and abdominal obesity. We investigated the role of genetic variants and their interactions with general and abdominal obesity-associated nutrients using a largescale genome-wide association study of Korean adults. METHODS A total of 50,808 participants from a Korean genome and epidemiology study were included. Dietary intake was assessed using a food frequency questionnaire. Obesity was defined as a body mass index ≥25 kg/m2. Abdominal obesity (AO) was defined as waist circumference ≥90 cm and 80 cm in males and females, respectively. Dietary nutrient intake was classified based on Korean Dietary Reference Intakes (DRIs). Odds ratios and 95% confidence intervals were calculated after adjusting for age, sex, exercise, smoking, alcohol drinking, total energy consumption, PC1, and PC2. RESULTS Among the individuals consuming fat (%) above DRI, carriers of Ca binding protein 39 (CAB39)- rs6722579 minor allele (A) have a higher risk of AO than those not carrying the SNP (odds ration [OR] = 3.73, p-value = 2.05e-07; interaction p-value = 1.80e-07). Among the individuals consuming vitamin C above DRI, carriers of carboxypeptidase Q (CPQ)- rs59465035 minor allele (T) have a lower risk of AO than those without that SNP (OR = 0.89, p-value = 1.44e-08; interaction p-value = 9.50e-06). The genetic association with obesity was stronger among individuals with a genetic variant rs4130113 near GHR gene region in those consume folate above DRI and with a genetic variant rs5760920 near CRYBB2 gene region in those consume vitamin B2 above DRI. CONCLUSION Our study results suggested that interactions of specific polymorphisms at loci and certain nutrients may influence obesity and abdominal obesity.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Gyeonggi-do, Republic of Korea
| | - Da Hyun Park
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Dasom Lee
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea.
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea.
| |
Collapse
|
32
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
33
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
34
|
Al-Jawadi AA, Priliani L, Oktavianthi S, Febinia CA, Daya M, Artika IM, Malik SG. Association of FTO rs1421085 single nucleotide polymorphism with fat and fatty acid intake in Indonesian adults. BMC Res Notes 2021; 14:411. [PMID: 34743743 PMCID: PMC8574008 DOI: 10.1186/s13104-021-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Recent studies showed that genetic polymorphisms in the fat mass and obesity-associated gene (FTO) were associated with obesity and dietary intake. In this study of 71 adults in Jakarta, Indonesia, we investigated FTO rs1421085 association with body mass index (BMI), macronutrient intake, and fatty acid intake. The association was evaluated using linear regression analyses assuming co-dominant, dominant, recessive, over-dominant, and additive genetic models. Results Only individuals with the CC genotype had a considerably higher BMI (p < 0.001), which indicates a recessive genetic trait, but the incidence for this genotype is low (68 TT + TC vs. 3 CC). Individuals with the minor C allele had an estimated increase of fat intake by 3.45–4.06% across various genetic models (dominant: p < 0.010, over-dominant: p < 0.030, additive: p < 0.010). Subjects with TC/CC genotypes had increased dietary monounsaturated fatty acid (MUFA; 1.14%, p = 0.046) and saturated fatty acid (SAFA; 2.06%, p = 0.023) intakes, compared to those with the TT genotype. In conclusion, our study provided evidence for the association between FTO rs1421085 risk allele with higher BMI and individual preferences for consuming more fat, MUFA, and SAFA. This study highlights the important role of FTO gene in food preference, and its influence on body weight. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05823-1.
Collapse
Affiliation(s)
- Athraa Alaulddin Al-Jawadi
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Dramaga, Jl. Raya Dramaga, Bogor, 16680, West Java, Indonesia
| | - Lidwina Priliani
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jl. Diponegoro No. 69, Jakarta, 10430, Indonesia
| | - Sukma Oktavianthi
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jl. Diponegoro No. 69, Jakarta, 10430, Indonesia
| | - Clarissa A Febinia
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jl. Diponegoro No. 69, Jakarta, 10430, Indonesia
| | - Mulianah Daya
- Department of Nutrition, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Dramaga, Jl. Raya Dramaga, Bogor, 16680, West Java, Indonesia.,Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jl. Diponegoro No. 69, Jakarta, 10430, Indonesia
| | - Safarina G Malik
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology/National Research and Innovation Agency, Jl. Diponegoro No. 69, Jakarta, 10430, Indonesia.
| |
Collapse
|
35
|
Single Nucleotide Polymorphisms in Close Proximity to the Fibroblast Growth Factor 21 (FGF21) Gene Found to Be Associated with Sugar Intake in a Swedish Population. Nutrients 2021; 13:nu13113954. [PMID: 34836209 PMCID: PMC8622171 DOI: 10.3390/nu13113954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hereditary mechanisms are partially responsible for individual differences in sensitivity to and the preference for sweet taste. The primary aim of this study was to examine the associations between 10 genetic variants and the intake of total sugar, added sugar, and sugars with sweet taste (i.e., monosaccharides and sucrose) in a middle-aged Swedish population. Two single nucleotide polymorphisms (SNPs) within the Fibroblast grow factor 21 (FGF21) gene, seven top hits from a genome-wide association study (GWAS) on total sugar intake, and one SNP within the fat mass and obesity associated (FTO) gene (the only SNP reaching GWAS significance in a previous study), were explored in relation to various forms of sugar intake in 22,794 individuals from the Malmö Diet and Cancer Study, a population-based cohort for which data were collected between 1991-1996. Significant associations (p = 6.82 × 10-7 - 1.53 × 10-3) were observed between three SNPs (rs838145, rs838133, and rs8103840) in close relation to the FGF21 gene with high Linkage Disequilibrium, and all the studied sugar intakes. For the rs11642841 within the FTO gene, associations were found exclusively among participants with a body mass index ≥ 25 (p < 5 × 10-3). None of the remaining SNPs studied were associated with sugar intake in our cohort. A further GWAS should be conducted to identify novel genetic variants associated with the intake of sugar.
Collapse
|
36
|
FTO and PLAG1 Genes Expression and FTO Methylation Predict Changes in Circulating Levels of Adipokines and Gastrointestinal Peptides in Children. Nutrients 2021; 13:nu13103585. [PMID: 34684585 PMCID: PMC8538237 DOI: 10.3390/nu13103585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Adipokines and gastrointestinal tract hormones are important metabolic parameters, and both epigenetic factors and differential gene expression patterns may be associated with the alterations in their concentrations in children. The function of the FTO gene (FTO alpha-ketoglutarate dependent dioxygenase) in the regulation of the global metabolic rate is well described, whereas the influence of protooncogene PLAG1 (PLAG1 zinc finger) is still not fully understood. A cross-sectional study on a group of 26 children with various BMI values (15.3–41.7; median 28) was carried out. The aim was to evaluate the dependencies between the level of methylation and expression of aforementioned genes with the concentration of selected gastrointestinal tract hormones and adipokines in children. Expression and methylation were measured in peripheral blood mononuclear DNA by a microarray technique and a restriction enzyme method, respectively. All peptide concentrations were determined using the enzyme immunoassay method. The expression level of both FTO and PLAG1 genes was statistically significantly related to the concentration of adipokines: negatively for apelin and leptin receptor, and positively for leptin. Furthermore, both FTO methylation and expression negatively correlated with the concentration of resistin and visfatin. Cholecystokinin was negatively correlated, whereas fibroblast growth factor 21 positively correlated with methylation and expression of the FTO gene, while FTO and PLAG1 expression was negatively associated with the level of cholecystokinin and glucagon-like peptide-1. The PLAG1 gene expression predicts an increase in leptin and decrease in ghrelin levels. Our results indicate that the FTO gene correlates with the concentration of hormones produced by the adipose tissue and gastrointestinal tract, and PLAG1 gene may be involved in adiposity pathogenesis. However, the exact molecular mechanisms still need to be clarified.
Collapse
|
37
|
Makarova E, Kazantseva A, Dubinina A, Jakovleva T, Balybina N, Baranov K, Bazhan N. The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 2021; 22:10561. [PMID: 34638898 PMCID: PMC8508620 DOI: 10.3390/ijms221910561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
The preference for high-calorie foods depends on sex and contributes to obesity development. Fibroblast growth factor 21 (FGF21) beneficially affects taste preferences and obesity, but its action has mainly been studied in males. The aim of this study was to compare the effects of FGF21 on food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with diet-induced obesity. Mice were injected with FGF21 or vehicle for 7 days. Body weight, choice between standard (SD) and high-fat (HFD) diets, blood parameters, and gene expression in white (WAT) and brown (BAT) adipose tissues, liver, muscles, and the hypothalamus were assessed. Compared to males, females had a greater preference for HFD; less WAT; lower levels of cholesterol, glucose, and insulin; and higher expression of Fgf21, Insr, Ppara, Pgc1, Acca and Accb in the liver and Dio2 in BAT. FGF21 administration decreased adiposity; blood levels of cholesterol, glucose, and insulin; hypothalamic Agrp expression, increased SD intake, decreased HFD intake independently of sex, and increased WAT expression of Pparg, Lpl and Lipe only in females. Thus, FGF21 administration beneficially affected mice of both sexes despite obesity-associated sex differences in metabolic characteristics, and it induced female-specific activation of gene expression in WAT.
Collapse
Affiliation(s)
- Elena Makarova
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Antonina Kazantseva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Anastasia Dubinina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Tatiana Jakovleva
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Natalia Balybina
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| | - Konstantin Baranov
- The Institute of Molecular and Cellular Biology, 630090 Novosibirsk, Russia;
| | - Nadezhda Bazhan
- The Laboratory of Physiological Genetics, The Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.K.); (A.D.); (T.J.); (N.B.); (N.B.)
| |
Collapse
|
38
|
Pan F, Owen N, Oddy WH. Sugar sweetened beverages and increasing prevalence of type 2 diabetes in the Indigenous community of Australia. Nutr Metab Cardiovasc Dis 2021; 31:2825-2830. [PMID: 34353701 DOI: 10.1016/j.numecd.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this viewpoint was to discuss a profound health gap in type 2 diabetes that exists between Indigenous and non-Indigenous Australians. DATA SYNTHESIS In Australia, type 2 diabetes is ranked as the fastest growing chronic condition, with the rates of type 2 diabetes higher among Indigenous than non-Indigenous Australians. Improvements to diet could aid in reducing overweight and obesity in the Indigenous community, with sugar sweetened beverages (SSBs) examples of discretionary foods that contain a high amount of sugar. The marked increase in type 2 diabetes, obesity and consumption of SSBs in the Indigenous community may suggest that type 2 diabetes may result from weight gain caused by SSB consumption. Recent evidence suggests that higher consumption of SSBs was associated with greater incidence of type 2 diabetes independent of adiposity. Some determinants influencing increased SSBs consumption in the Indigenous population include advertising, marketing, availability and affordability. CONCLUSIONS The prevalence rates of type 2 diabetes continue to be higher among Indigenous than non-Indigenous Australians and overall, a link between SSBs and risk of type 2 diabetes is reported. Three solutions to high SSBs consumption in Indigenous communities include increased availability, affordability, and accessibility of healthy food and drink, engagement of Indigenous people in offering solutions including discussion of a sugar tax on SSBs framed with Indigenous input, and the provision of clean community water supply and water bubblers.
Collapse
Affiliation(s)
- Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Neville Owen
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia; Swinburne University of Technology, Hawthorn, 3122, Australia
| | - Wendy H Oddy
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
39
|
Ortega PEN, Meneses ME, Delgado-Enciso I, Irecta-Nájera CA, Castro-Quezada I, Solís-Hernández R, Flores-Guillén E, García-Miranda R, Valladares-Salgado A, Locia-Morales D, Ochoa-Díaz-López H. Association of rs9939609-FTO with metabolic syndrome components among women from Mayan communities of Chiapas, Mexico. J Physiol Anthropol 2021; 40:11. [PMID: 34454619 PMCID: PMC8403373 DOI: 10.1186/s40101-021-00259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/01/2021] [Indexed: 11/12/2022] Open
Abstract
Background Metabolic syndrome (MetS) is a complex cluster of risk factors, considered as a polygenic and multifactorial entity. The objective of this study was to determine the association of rs9939609-FTO polymorphism and MetS components in adult women of Mayan communities of Chiapas. Methods In a cross-sectional study, sociodemographic, anthropometric, clinical, and biochemical data were obtained from 291 adult women from three regions of Chiapas, Mexico. The prevalence of MetS and the allele and genotype frequencies of the rs9939609-FTO were estimated. Multivariate logistic regression models were used to assess the association of the single nucleotide polymorphism (SNP) with each of the MetS components. Results The MetS prevalence was 60%. We found a statistically significant association between rs9939609-FTO and hyperglycemia in the dominant model (OR 2.6; 95% CI 1.3–5.3; p = 0.007). Conclusions Women from Mayan communities of Chiapas presented a high prevalence of MetS and a relevant association of the FTO variant with hyperglycemia. This is the first study carried out in these Mayan indigenous communities from Chiapas.
Collapse
Affiliation(s)
- Pilar E Núñez Ortega
- Health Department, El Colegio de La Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico
| | - María E Meneses
- National Council for Science and Technology, Postgraduate College Campus Puebla, Puebla, Mexico
| | - Iván Delgado-Enciso
- Facultad de Medicina, Universidad de Colima, Colima, Mexico.,Instituto Estatal de Cancer, Secretaria de Salud de Colima, Colima, Mexico
| | | | | | - Roberto Solís-Hernández
- Health Department, El Colegio de La Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Elena Flores-Guillén
- Faculty of Nutrition and Food Science, University of Science and Arts of Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Rosario García-Miranda
- Health Department, El Colegio de La Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico.,School of Languages-Campus San Cristobal, Autonomous University of Chiapas, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Daniel Locia-Morales
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Héctor Ochoa-Díaz-López
- Health Department, El Colegio de La Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico.
| |
Collapse
|
40
|
Hunjan AK, Hübel C, Lin Y, Eley TC, Breen G. Association between polygenic propensity for psychiatric disorders and nutrient intake. Commun Biol 2021; 4:965. [PMID: 34446809 PMCID: PMC8390493 DOI: 10.1038/s42003-021-02469-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Despite the observed associations between psychiatric disorders and nutrient intake, genetic studies are limited. We examined whether polygenic scores for psychiatric disorders are associated with nutrient intake in UK Biobank (N = 163,619) using linear mixed models. We found polygenic scores for attention-deficit/hyperactivity disorder, bipolar disorder, and schizophrenia showed the highest number of associations, while a polygenic score for autism spectrum disorder showed no association. The relatively weaker obsessive-compulsive disorder polygenic score showed the greatest effect sizes suggesting its association with diet traits may become more apparent with larger genome-wide analyses. A higher alcohol dependence polygenic score was associated with higher alcohol intake and individuals with higher persistent thinness polygenic scores reported their food to weigh less, both independent of socioeconomic status. Our findings suggest that polygenic propensity for a psychiatric disorder is associated with dietary behaviour. Note, nutrient intake was self-reported and findings must therefore be interpreted mindfully. Hunjan et al. report that polygenic propensity for a psychiatric disorder is associated with nutrient intake on an average day. They found broad associations with attention-deficit/hyperactivity disorder, bipolar disorder, and schizophrenia, and more restricted associations with other psychiatric disorders.
Collapse
Affiliation(s)
- Avina K Hunjan
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health; South London and Maudsley NHS Trust, London, UK
| | - Christopher Hübel
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health; South London and Maudsley NHS Trust, London, UK.,National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Yuhao Lin
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Thalia C Eley
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health; South London and Maudsley NHS Trust, London, UK
| | - Gerome Breen
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health; South London and Maudsley NHS Trust, London, UK.
| |
Collapse
|
41
|
Chauhdary Z, Rehman K, Akash MSH. The composite alliance of FTO locus with obesity-related genetic variants. Clin Exp Pharmacol Physiol 2021; 48:954-965. [PMID: 33735452 DOI: 10.1111/1440-1681.13498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Obesity has become a genuine global pandemic due to lifestyle and environmental modifications, and is associated with chronic lethal comorbidities. Various environmental factors such as lack of physical activity due to modernization and higher intake of energy-rich diets are primary obesogenic factors in pathogenesis of obesity. Genome-wide association study has identified the crucial role of FTO (fat mass and obesity) in human obesity. A bunch of SNPs in the first intron of FTO has been identified and subsequently correlated to body mass index and body composition. Findings of in silico, in vitro, and in vivo studies have manifested the robust role of FTO in regulation of energy expenditure and food consumption. Numerous studies have highlighted the mechanistic pathways behind the concomitant functions of FTO in adipogenesis and body size. Current investigation has also revealed the link of FTO neighbouring genes i.e., RPGRIP1L, IRX3 and IRX5 and epigenetic factors with obesity phenotypes. The motive behind this review is to cite the consequences of FTO on obesity vulnerability.
Collapse
Affiliation(s)
- Zunera Chauhdary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
42
|
Basolo A, Hollstein T, Shah MH, Walter M, Krakoff J, Votruba SB, Piaggi P. Higher fasting plasma FGF21 concentration is associated with lower ad libitum soda consumption in humans. Am J Clin Nutr 2021; 114:1518-1522. [PMID: 34159373 PMCID: PMC8488863 DOI: 10.1093/ajcn/nqab204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The hepatokine fibroblast growth factor 21 (FGF21) influences eating behavior and sugar consumption in rodent models. However, whether circulating FGF21 concentration is associated with food and soda intake in humans is still unclear. OBJECTIVE We investigated whether fasting plasma FGF21 concentration is associated with objective measures of ad libitum food intake and soda consumption. METHODS Healthy individuals [n = 109; 69 men, aged 34 ± 10 y; BMI (kg/m2): 30.4 ± 7.7; body fat by DXA: 30.5% ± 8.9%] with available plasma for hormonal measurements participated in an inpatient cohort study to objectively quantify ad libitum food and soda intake for 3 d using an automated and reproducible vending machine paradigm. Fasting plasma FGF21 concentration was measured by ELISA prior to ad libitum feeding. RESULTS Fasting FGF21 concentration was inversely associated with daily soda intake (R = -0.22, P = 0.02 adjusted for demographics and anthropometrics), such that an interindividual difference of 200 pg/mL was associated with an average lower soda consumption by 68 kcal/d. Conversely, no associations were observed with total daily energy intake or macronutrient intake (all P > 0.17). CONCLUSIONS Higher plasma fasting FGF21 concentration is associated with lower ad libitum soda intake. Although this inverse correlation does not imply causation, the present results support the putative role of FGF21 in the reward pathways regulating sugar consumption in humans. This trial was registered at www.clinicaltrials.gov as NCT00342732.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA,Division of Endocrinology, Diabetology, and Clinical Nutrition, Department of Medicine 1, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mujtaba H Shah
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Mary Walter
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Susanne B Votruba
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | | |
Collapse
|
43
|
Bayoumi A, Elsayed A, Han S, Petta S, Adams LA, Aller R, Khan A, García‐Monzón C, Arias‐Loste MT, Miele L, Latchoumanin O, Alenizi S, Gallego‐Durán R, Fischer J, Berg T, Craxì A, Metwally M, Qiao L, Liddle C, Yki‐Järvinen H, Bugianesi E, Romero‐Gomez M, George J, Eslam M. Mistranslation Drives Alterations in Protein Levels and the Effects of a Synonymous Variant at the Fibroblast Growth Factor 21 Locus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004168. [PMID: 34141520 PMCID: PMC8188187 DOI: 10.1002/advs.202004168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived hormone with pleiotropic beneficial effects on metabolism. Paradoxically, FGF21 levels are elevated in metabolic diseases. Interventions that restore metabolic homeostasis reduce FGF21. Whether abnormalities in FGF21 secretion or resistance in peripheral tissues is the initiating factor in altering FGF21 levels and function in humans is unknown. A genetic approach is used to help resolve this paradox. The authors demonstrate that the primary event in dysmetabolic phenotypes is the elevation of FGF21 secretion. The latter is regulated by translational reprogramming in a genotype- and context-dependent manner. To relate the findings to tissues outcomes, the minor (A) allele of rs838133 is shown to be associated with increased hepatic inflammation in patients with metabolic associated fatty liver disease. The results here highlight a dominant role for translation of the FGF21 protein to explain variations in blood levels that is at least partially inherited. These results provide a framework for translational reprogramming of FGF21 to treat metabolic diseases.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Asmaa Elsayed
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shuanglin Han
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Salvatore Petta
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Leon A. Adams
- Medical SchoolSir Charles Gairdner Hospital UnitUniversity of Western AustraliaNedlandsWA6009Australia
| | - Rocio Aller
- GastroenterologyHospital Clinico Universitario de ValladolidSchool of MedicineValladolid UniversityValladolid47002Spain
| | - Anis Khan
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Carmelo García‐Monzón
- Liver Research UnitInstituto de Investigacion Sanitaria PrincesaUniversity Hospital Santa CristinaCIBERehdMadrid28009Spain
| | - María Teresa Arias‐Loste
- Gastroenterology and Hepatology DepartmentMarqués de Valdecilla University HospitalSantander39008Spain
| | - Luca Miele
- Department of Internal MedicineCatholic University of the Sacred HeartRome20123Italy
| | - Olivier Latchoumanin
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Shafi Alenizi
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Rocio Gallego‐Durán
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Janett Fischer
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Thomas Berg
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzig04103Germany
| | - Antonio Craxì
- Section of Gastroenterology and HepatologyPROMISEUniversity of PalermoPalermo90133Italy
| | - Mayada Metwally
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Liang Qiao
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Christopher Liddle
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Hannele Yki‐Järvinen
- Department of MedicineUniversity of Helsinki and Helsinki University Hospital and Minerva Foundation Institute for Medical ResearchHelsinki00290Finland
| | - Elisabetta Bugianesi
- Division of GastroenterologyDepartment of Medical ScienceUniversity of TurinTurin10124Italy
| | - Manuel Romero‐Gomez
- Virgen del Rocío University HospitalInstitute of Biomedicine of SevilleSevilla41013Spain
| | - Jacob George
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| | - Mohammed Eslam
- Storr Liver CentreWestmead Institute for Medical ResearchWestmead Hospital and University of SydneyWestmeadNSW2145Australia
| |
Collapse
|
44
|
Naja F, Itani L, Hammoudeh S, Manzoor S, Abbas N, Radwan H, Saber-Ayad M. Dietary Patterns and Their Associations With the FTO and FGF21 Gene Variants Among Emirati Adults. Front Nutr 2021; 8:668901. [PMID: 34095191 PMCID: PMC8171665 DOI: 10.3389/fnut.2021.668901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose: To examine the dietary patterns and their associations with the FTO and FGF21 gene variants among Emirati adults. Methods: Using a cross-sectional design, healthy adult male and female Emiratis (n = 194) were recruited from primary health care centers in Sharjah, UAE. Participants completed a 61-item semi-quantitative food frequency questionnaire. In addition, a saliva sample was obtained for the genetic analysis. Genotyping was performed for FTOrs9939609(A>T), FTOrs9930506(A>G), FGF21 rs838133 (A > G), and FGF21 rs838145 (A > G). Dietary patterns were derived using the principal component analysis. Logistic regression analyses were used to examine the association of dietary patterns with genetic variants. Results: Three dietary patterns were identified: "Western": consisting of fast food, sweets, and processed meat; "Traditional Emirati" rich in vegetables, traditional Emirati-mixed-dishes and whole dairy; while whole grains, low-fat dairy, and bulgur were components of the "Prudent" pattern. Subjects carrying the A allele of the FTO rs9939609 were 2.41 times more likely to adhere to the Western pattern compared to subjects with genotype TT (OR:2.41; 95%CI:1.05-5.50). Compared with subjects with A/A, those carrying the G allele of the FTO rs9930506 were more likely to follow a Western diet (OR: 2.19; 95%CI: 1.00-4.97). Participants carrying the risk allele (A) of the FGF21 rs838133 were twice more likely to adhere to the Traditional pattern as compared to subjects with genotype GG (OR: 1.9, 95%CI: 1.01-3.57). Conclusions: The findings of this study suggested associations among specific FTO and FGF21 gene variants with dietary patterns among Emirati adults. These findings could be used to inform evidence-based targeted nutrition preventive recommendations, especially those aiming to limit intake of western type foods.
Collapse
Affiliation(s)
- Farah Naja
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Leila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Sarah Hammoudeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada Abbas
- Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
45
|
Liu YS, Wu QJ, Lv JL, Jiang YT, Sun H, Xia Y, Chang Q, Zhao YH. Dietary Carbohydrate and Diverse Health Outcomes: Umbrella Review of 30 Systematic Reviews and Meta-Analyses of 281 Observational Studies. Front Nutr 2021; 8:670411. [PMID: 33996880 PMCID: PMC8116488 DOI: 10.3389/fnut.2021.670411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: The associations between dietary carbohydrate and diverse health outcomes remain controversial and confusing. To summarize the existing evidence of the association between dietary carbohydrate intake and diverse health outcomes and to evaluate the credibility of these sources of evidence. We performed this umbrella review of evidence from meta-analyses of observational studies. Methods: PubMed, Embase, Web of Science databases, and manual screening of references up to July 2020 were searched. Systematic reviews with meta-analyses of observational studies in humans investigating the association between dietary carbohydrate intake and multiple health outcomes were identified. We assessed the evidence levels by using summary effect sizes, 95% prediction intervals, between-study heterogeneity, evidence of small-study effects, and evidence of excess significance bias for each meta-analysis. Results: We included 43 meta-analyses of observational research studies with 23 health outcomes, including cancer (n = 26), mortality (n = 4), metabolic diseases (n = 4), digestive system outcomes (n = 3), and other outcomes [coronary heart disease (n = 2), stroke (n = 1), Parkinson's disease (n = 1), and bone fracture (n = 2)]. This umbrella review summarized 281 individual studies with 13,164,365 participants. Highly suggestive evidence of an association between dietary carbohydrate intake and metabolic syndrome was observed with adjusted summary odds ratio of 1.25 [95% confidence interval (CI) 1.15–1.37]. The suggestive evidences were observed in associations of carbohydrate consumption with esophageal adenocarcinoma (0.57, 95% CI = 0.42–0.78) and all-cause mortality (adjusted summary hazard ratio 1.19, 95% CI = 1.09–1.30). Conclusions: Despite the fact that numerous systematic reviews and meta-analyses have explored the relationship between carbohydrate intake and diverse health outcomes, there is no convincing evidence of a clear role of carbohydrate intake. However, there is highly suggestive evidence suggested carbohydrate intake is associated with high risk of metabolic syndrome, suggestive evidence found its association with increased risk of all-cause mortality and decreased risk of esophageal adenocarcinoma. Systematic Review Registration: CRD42020197424.
Collapse
Affiliation(s)
- Ya-Shu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Sun
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
The Effect of FGF21 and Its Genetic Variants on Food and Drug Cravings, Adipokines and Metabolic Traits. Biomedicines 2021; 9:biomedicines9040345. [PMID: 33805553 PMCID: PMC8065804 DOI: 10.3390/biomedicines9040345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a regulator of addictive behavior. Increasing evidence suggests an impact of FGF21 on eating behavior, food and drug cravings and on other adipokines like insulin-like growth factor 1 (IGF-1) or adiponectin. We investigated the association of serum FGF21 and genetic variants with aspects of food and drug craving and obesity related metabolic parameters including serum adipokine levels. Standardized questionnaires, blood samples and anthropometric data of the Sorbs cohort (n = 1046) were analyzed using SPSS. For genetic analyses, the FGF21-locus ±10 kb was genotyped and analyzed using PLINK. Validation was conducted in a second independent cohort (n = 704). FGF21 was significantly associated with alcohol and coffee consumption, smoking and eating behavior (disinhibition). We confirmed correlations of FGF21 serum levels with IGF-1, adiponectin, pro-enkephalin, adipocyte fatty-acid-binding protein, chemerin and progranulin. FGF21 genetic variants were associated with anthropometric and metabolic parameters, adipokines, food and drug craving while strongest evidence was seen with low-density lipoprotein cholesterol (LDL-C). We highlight the potential role of FGF21 in food and drug cravings and provide new insights regarding the link of FGF21 with other adipokines as well as with metabolic traits, in particular those related to lipid metabolism (LDL-C).
Collapse
|
47
|
Abstract
As a non-canonical fibroblast growth factor, fibroblast growth factor 21 (FGF21) functions as an endocrine hormone that signals to distinct targets throughout the body. Interest in therapeutic applications for FGF21 was initially sparked by its ability to correct metabolic dysfunction and decrease body weight associated with diabetes and obesity. More recently, new functions for FGF21 signalling have emerged, thus indicating that FGF21 is a dynamic molecule capable of regulating macronutrient preference and energy balance. Here, we highlight the major physiological and pharmacological effects of FGF21 related to nutrient and energy homeostasis and summarize current knowledge regarding FGF21’s pharmacodynamic properties. In addition, we provide new perspectives and highlight critical unanswered questions surrounding this unique metabolic messenger.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
48
|
Freuer D, Meisinger C, Linseisen J. Causal relationship between dietary macronutrient composition and anthropometric measures: A bidirectional two-sample Mendelian randomization analysis. Clin Nutr 2021; 40:4120-4131. [PMID: 33610420 DOI: 10.1016/j.clnu.2021.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND The question whether the proportion of energy provided by fat and carbohydrates in the diet is associated with body mass index (BMI) and waist circumference (WC) is an important public health issue, but determining causality is difficult in epidemiological studies. OBJECTIVES Using a two-sample bidirectional Mendelian randomization (MR) in both a univariable and multivariable setting, we aimed to determine whether the relative proportion of different macronutrients in the diet (in % of total energy intake (E%)) is causally related to BMI and WC and vice versa. METHODS All analyses were based on genome-wide association studies including 268,922 Europeans with dietary data (SSGAC Consortium) and at least 232,101 with anthropometric measures (GIANT Consortium). An inverse-variance weighted approach using modified second-order weights within the radial regression framework was performed. Radial MR-Egger, weighted median and mode, Robust Adjusted Profile Score (RAPS), and Pleiotropy RESidual Sum and Outlier (PRESSO) methods were used in sensitivity analyses to verify MR assumptions. Additionally, multivariable MR was conducted to account for inter correlation between macronutrient intakes. All estimates represent the standard deviation (SD) change in each outcome per one SD change in the respective exposure. RESULTS We found that genetically predicted relative carbohydrate intake (E%) reduced BMI (β = -0.529; 95% CI: -0.745, -0.312; P-value = 2⋅10-6) and WC (β = -0.459; 95% CI: -0.656, -0.262; P-value = 5⋅10-6). Both effects were also supported by the multivariable approach: β = -0.441 (95% CI: -0.772, -0.109; P-value = 0.009) for BMI and β = -0.410 (95% CI: -0.667, -0.154; P-value = 0.002) for WC. Genetically predicted dietary intake of fat (E%) was weaker and positively related to both anthropometric measures. We obtained evidence that a higher BMI and WC increased the relative dietary intake of fat and protein (E%). For example, each SD higher BMI increased protein intake (E%) by 0.114 SD (95% CI: 0.081, 0.147; P-value = 9⋅10-12) and each SD higher WC increased protein intake (E%) by 0.078 SD (95% CI: 0.035, 0.121; P-value = 4⋅10-4). Sensitivity analyses confirmed these findings revealing consistent effect estimates. CONCLUSIONS Using genetic information to improve causal inference we found evidence, that a low relative carbohydrate proportion (E%) and a high proportion of fat (E%) in the diet is causally related to a higher BMI and a higher WC. Further research considering carbohydrate, fat, and protein quality and possible consequences on micronutrient intake is needed to define the implications for dietary intake recommendations.
Collapse
Affiliation(s)
- Dennis Freuer
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians-Universität München, 86156 Augsburg, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany.
| | - Christa Meisinger
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians-Universität München, 86156 Augsburg, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Jakob Linseisen
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians-Universität München, 86156 Augsburg, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| |
Collapse
|
49
|
Topless RKG, Major TJ, Florez JC, Hirschhorn JN, Cadzow M, Dalbeth N, Stamp LK, Wilcox PL, Reynolds RJ, Cole JB, Merriman TR. The comparative effect of exposure to various risk factors on the risk of hyperuricaemia: diet has a weak causal effect. Arthritis Res Ther 2021; 23:75. [PMID: 33663556 PMCID: PMC7931603 DOI: 10.1186/s13075-021-02444-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prevention of hyperuricaemia (HU) is critical to the prevention of gout. Understanding causal relationships and relative contributions of various risk factors to hyperuricemia is therefore important in the prevention of gout. Here, we use attributable fraction to compare the relative contribution of genetic, dietary, urate-lowering therapy (ULT) and other exposures to HU. We use Mendelian randomisation to test for the causality of diet in urate levels. METHODS Four European-ancestry sample sets, three from the general population (n = 419,060) and one of people with gout (n = 6781) were derived from the Database of Genotypes and Phenotypes (ARIC, FHS, CARDIA, CHS) and UK Biobank. Dichotomised exposures to diet, genetic risk variants, BMI, alcohol, diuretic treatment, sex and age were used to calculate adjusted population and average attributable fractions (PAF/AAF) for HU (≥0.42 mmol/L [≥7 mg/dL]). Exposure to ULT was also assessed in the gout cohort. Two sample Mendelian randomisation was done in the UK Biobank using dietary pattern-associated genetic variants as exposure and serum urate levels as outcome. RESULTS Adherence to dietary recommendations, BMI (< 25 kg/m2), and absence of the SLC2A9 rs12498742 urate-raising allele produced PAFs for HU of 20 to 24%, 59 to 69%, and 57 to 64%, respectively, in the three non-gout cohorts. In the gout cohort, diet, BMI, SLC2A9 rs12498742 and ULT PAFs for HU were 12%, 49%, 48%, and 63%, respectively. Mendelian randomisation demonstrated weak causal effects of four dietary habits on serum urate levels (e.g. preferentially drinking skim milk increased urate, β = 0.047 mmol/L, P = 3.78 × 10-8). These effects were mediated by BMI, and they were not significant (P ≥ 0.06) in multivariable models assessing the BMI-independent effect of diet on urate. CONCLUSIONS Diet has a relatively minor role in determining serum urate levels and HU. In gout, the use of ULT was the largest attributable fraction tested for HU.
Collapse
Affiliation(s)
- Ruth K. G. Topless
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tanya J. Major
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jose C. Florez
- grid.66859.34Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA
| | - Joel N. Hirschhorn
- grid.66859.34Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.2515.30000 0004 0378 8438Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA USA
| | - Murray Cadzow
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- grid.9654.e0000 0004 0372 3343Department of Medicine, Faculty of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Lisa K. Stamp
- grid.29980.3a0000 0004 1936 7830Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Philip L. Wilcox
- grid.29980.3a0000 0004 1936 7830Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Richard J. Reynolds
- grid.265892.20000000106344187Division of Clinical Immunology and Rheumatology, University of Alabama Birmingham, Birmingham, AL USA
| | - Joanne B. Cole
- grid.66859.34Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.2515.30000 0004 0378 8438Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA USA
| | - Tony R. Merriman
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand ,grid.265892.20000000106344187Division of Clinical Immunology and Rheumatology, University of Alabama Birmingham, Birmingham, AL USA
| |
Collapse
|
50
|
Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C, Okbay A, Turley P, Rietveld CA, Fontana MA, Ghanbari M, Imamura F, McMahon G, van der Most PJ, Voortman T, Wade KH, Anderson EL, Braun KVE, Emmett PM, Esko T, Gonzalez JR, Kiefte-de Jong JC, Langenberg C, Luan J, Muka T, Ring S, Rivadeneira F, Snieder H, van Rooij FJA, Wolffenbuttel BHR, Smith GD, Franco OH, Forouhi NG, Ikram MA, Uitterlinden AG, van Vliet-Ostaptchouk JV, Wareham NJ, Cesarini D, Harden KP, Lee JJ, Benjamin DJ, Chow CC, Koellinger PD. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 2021; 26:2056-2069. [PMID: 32393786 PMCID: PMC7767645 DOI: 10.1038/s41380-020-0697-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
Collapse
Affiliation(s)
- S. Fleur W. Meddens
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands ,grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Ronald de Vlaming
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Peter Bowers
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Casper A. P. Burik
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Richard Karlsson Linnér
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Chanwook Lee
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Aysu Okbay
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Patrick Turley
- grid.32224.350000 0004 0386 9924Analytical and Translational Genetics Unit, Massachusetts General Hospital, Richard B. Simches Research building, 185 Cambridge St, CPZN-6818, Boston, MA 02114 USA ,grid.66859.34Stanley Center for Psychiatric Genomics, The Broad Institute at Harvard and MIT, 75 Ames St, Cambridge, MA 02142 USA ,grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Cornelius A. Rietveld
- grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.6906.90000000092621349Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus, University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Mark Alan Fontana
- grid.239915.50000 0001 2285 8823Center for the Advancement of Value in Musculoskeletal Care, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, 402 East 67th Street, New York, NY 10065 USA
| | - Mohsen Ghanbari
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.411583.a0000 0001 2198 6209Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, University Campus, 9177948564 Mashhad, Iran
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - George McMahon
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Peter J. van der Most
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Trudy Voortman
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Kaitlin H. Wade
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Emma L. Anderson
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Kim V. E. Braun
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Pauline M. Emmett
- grid.5337.20000 0004 1936 7603Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8, 2BN, Bristol, UK
| | - Tonũ Esko
- grid.10939.320000 0001 0943 7661Estonian Genome Center, University of Tartu, Riia 23b, Tartu, 51010 Estonia
| | - Juan R. Gonzalez
- grid.434607.20000 0004 1763 3517Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, Barcelona, 8003 Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Ramon Trias Fargas 25-27, Barcelona, 8005 Spain ,grid.413448.e0000 0000 9314 1427CIBER Epidemiología y Salud Pública (CIBERESP), Pabellón 11, Calle Monforte de Lemos, 3-5, Madrid, 280229 Spain
| | - Jessica C. Kiefte-de Jong
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.5132.50000 0001 2312 1970Leiden University College, Anna van Buerenplein 301, 2595 DG Den Haag, The Netherlands
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Taulant Muka
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Susan Ring
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Fernando Rivadeneira
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Harold Snieder
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frank J. A. van Rooij
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | - George Davey Smith
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Oscar H. Franco
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - M. Arfan Ikram
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Jana V. van Vliet-Ostaptchouk
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - David Cesarini
- grid.137628.90000 0004 1936 8753Department of Economics, New York University, 19 W. 4th Street, New York, NY 10012 USA
| | - K. Paige Harden
- grid.89336.370000 0004 1936 9924Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop #A8000, Austin, TX 78704 USA
| | - James J. Lee
- grid.17635.360000000419368657Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455 USA
| | - Daniel J. Benjamin
- grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA ,grid.250279.b0000 0001 0940 3170National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138 USA ,grid.42505.360000 0001 2156 6853Department of Economics, University of Southern California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Carson C. Chow
- grid.94365.3d0000 0001 2297 5165Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National, Institutes of Health, Bethesda, MD 20892 USA
| | - Philipp D. Koellinger
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|