1
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
5
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
6
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
7
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
8
|
Wróbel-Kwiatkowska M, Turski W, Silska G, Rakicka-Pustułka M, Dymińska L, Rymowicz W. Determination of Bioactive Compound Kynurenic Acid in Linum usitatissimum L. Molecules 2024; 29:1702. [PMID: 38675522 PMCID: PMC11051930 DOI: 10.3390/molecules29081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Kynurenic acid (KYNA) is a bioactive compound exhibiting multiple actions and positive effects on human health due to its antioxidant, anti-inflammatory and neuroprotective properties. KYNA has been found to have a beneficial effect on wound healing and the prevention of scarring. Despite notable progress in the research focused on KYNA observed during the last 10 years, KYNA's presence in flax (Linum usitatissimum L.) has not been proven to date. In the present study, parts of flax plants were analysed for KYNA synthesis. Moreover, eight different cultivars of flax seeds were tested for the presence of KYNA, resulting in a maximum of 0.432 µg/g FW in the seeds of the cultivar Jan. The level of KYNA was also tested in the stems and roots of two selected flax cultivars: an oily cultivar (Linola) and a fibrous cultivar (Nike). The exposure of plants to the KYNA precursors tryptophan and kynurenine resulted in higher levels of KYNA accumulation in flax shoots and roots. Thus, the obtained results indicate that KYNA might be synthesized in flax. The highest amount of KYNA (295.9 µg/g dry weight [DW]) was detected in flax roots derived from plants grown in tissue cultures supplemented with tryptophan. A spectroscopic analysis of KYNA was performed using the FTIR/ATR method. It was found that, in tested samples, the characteristic KYNA vibration bands overlap with the bands corresponding to the vibrations of biopolymers (especially pectin and cellulose) present in flax plants and fibres.
Collapse
Affiliation(s)
- Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090 Lublin, Poland;
| | - Grażyna Silska
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland;
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland;
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| |
Collapse
|
9
|
Schwarcz R, Foo A, Sathyasaikumar KV, Notarangelo FM. The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine. Int J Mol Sci 2024; 25:3679. [PMID: 38612489 PMCID: PMC11011989 DOI: 10.3390/ijms25073679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (A.F.); (K.V.S.)
| | | | | | | |
Collapse
|
10
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
11
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sadok I, Jędruchniewicz K. Dietary Kynurenine Pathway Metabolites-Source, Fate, and Chromatographic Determinations. Int J Mol Sci 2023; 24:16304. [PMID: 38003492 PMCID: PMC10671297 DOI: 10.3390/ijms242216304] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Tryptophan metabolism plays an essential role in human health. In mammals, about 95% of dietary tryptophan is metabolized through the kynurenine pathway, which is associated with the development of several pathologies, including neurodegeneration. Some of the kynurenine pathway metabolites are agonists of the aryl hydrocarbon receptor involved in metabolic functions, inflammation, and carcinogenesis. Thus, their origins, fates, and roles are of widespread interest. Except for being produced endogenously, these metabolites can originate from exogenous sources (e.g., food) and undergo absorption in the digestive tract. Recently, a special focus on exogenous sources of tryptophan metabolites was observed. This overview summarizes current knowledge about the occurrence of the kynurenine pathway metabolites (kynurenines) in food and the analytical method utilized for their determination in different food matrices. Special attention was paid to sample preparation and chromatographic analysis, which has proven to be a core technique for the detection and quantification of kynurenines. A discussion of the fate and role of dietary kynurenines has also been addressed. This review will, hopefully, guide further studies on the impact of dietary kynurenines on human health.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Katarzyna Jędruchniewicz
- Laboratory of Separation and Spectroscopic Method Applications, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
13
|
Fan S, Guo W, Xiao D, Guan M, Liao T, Peng S, Feng A, Wang Z, Yin H, Li M, Chen J, Xiong W. Microbiota-gut-brain axis drives overeating disorders. Cell Metab 2023; 35:2011-2027.e7. [PMID: 37794596 DOI: 10.1016/j.cmet.2023.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/10/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Overeating disorders (ODs), usually stemming from dieting history and stress, remain a pervasive issue in contemporary society, with the pathological mechanisms largely unresolved. Here, we show that alterations in intestinal microbiota are responsible for the excessive intake of palatable foods in OD mice and patients with bulimia nervosa (BN). Stress combined with a history of dieting causes significant changes in the microbiota and the intestinal metabolism, which disinhibit the vagus nerve terminals in the gut and thereby lead to a subsequent hyperactivation of the gut-brain axis passing through the vagus, the solitary tract nucleus, and the paraventricular nucleus of the thalamus. The transplantation of a probiotic Faecalibacterium prausnitzii or dietary supplement of key metabolites restores the activity of the gut-to-brain pathway and thereby alleviates the OD symptoms. Thus, our study delineates how the microbiota-gut-brain axis mediates energy balance, unveils the underlying pathogenesis of the OD, and provides potential therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Fan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Weiwei Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dan Xiao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Mengyuan Guan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Tiepeng Liao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Airong Feng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hao Yin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230026, China.
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
14
|
Jansma J, Chatziioannou AC, Castricum K, van Hemert S, El Aidy S. Metabolic network construction reveals probiotic-specific alterations in the metabolic activity of a synthetic small intestinal community. mSystems 2023; 8:e0033223. [PMID: 37668401 PMCID: PMC10654062 DOI: 10.1128/msystems.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/13/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE The development of probiotic therapies targeted at the small intestinal microbiota represents a significant advancement in the field of probiotic interventions. This region poses unique opportunities due to its low number of gut microbiota, along with the presence of heightened immune and metabolic host responses. However, progress in this area has been hindered by a lack of detailed understanding regarding the molecular mechanisms through which probiotics exert their effects in the small intestine. Our study, utilizing a synthetic community of three small intestinal bacterial strains and the addition of two different probiotic species, and kynurenine as a representative dietary or endogenously produced compound, highlights the importance of selecting probiotic species with diverse genetic capabilities that complement the functional capacity of the resident microbiota, or alternatively, constructing a multispecies formula. This approach holds great promise for the development of effective probiotic therapies and underscores the need to consider the functional capacity of probiotic species when designing interventions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Zhen D, Ding L, Wang B, Wang X, Hou Y, Ding W, Portha B, Liu J. Oral administration of kynurenic acid delays the onset of type 2 diabetes in Goto-Kakizaki rats. Heliyon 2023; 9:e17733. [PMID: 37424591 PMCID: PMC10328841 DOI: 10.1016/j.heliyon.2023.e17733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous catabolite of tryptophan that has been found to demonstrate neuroprotective properties in psychiatric disorders. Recently, accumulating data have suggested that KYNA may also play a significant role in various metabolic diseases by stimulating energy metabolism in adipose tissue and muscle. However, whether KYNA can serves as an anti-diabetes agent has yet to be studied. In this study, we investigated the potential anti-diabetic effects of administering KYNA orally through drinking water in pre-diabetic Goto-Kakizaki rats and examined how this treatment may influence energy metabolism regulation within the liver. We found that hyperglycemic Goto-Kakizaki rats showed lower plasmatic KYNA levels compared to normal rats. Oral administration of KYNA significantly delayed the onset of diabetes in Goto-Kakizaki rats compared to untreated animals. Moreover, we found that KYNA treatment significantly increased respiration exchange ratio and promoted the energy expenditure by stimulating the expression of uncoupling protein (UCP). We confirmed that KYNA stimulated the UCP expression in HepG2 cells and mouse hepatocytes at mRNA and protein levels. Our study reveals that KYNA could potentially act as an anti-diabetic agent and KYNA-induced UCP upregulation is closely associated with the regulation of energy metabolism. These results provide further evidence for the therapeutic potential of KYNA in diabetes.
Collapse
Affiliation(s)
- Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yanli Hou
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS UMR 8251, Université Paris-Cité, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Gurdita A, Kwiecien JM, Choh V. Development of a new surgical technique to infuse kynurenic acid to optic nerves in chickens for studying loss of myelination. Heliyon 2023; 9:e14361. [PMID: 36938412 PMCID: PMC10020079 DOI: 10.1016/j.heliyon.2023.e14361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Prolonged infusion of a high dose of kynurenic acid (KYNA) reduces the myelin content in the rat spinal cord with preservation of the axonal integrity and without inducing an inflammatory response. We hypothesized that subdural infusion of a high concentration of KYNA can induce myelin loss in the optic nerves (ONs) of chickens. However, existing methods to deliver agents to the ON are inefficient, unlocalized and provide only acute exposure. Thus, we developed a surgical approach for sustained delivery of KYNA to the chicken ON. In brief, the novel surgical technique, which does not include excision of the extraocular muscles, involves incision of the skin and underlying fascial sheath to access the optic nerve within the muscle cone, implantation of a catheter in the dura of the optic nerve, the other end of which exits the orbit under the skin. The catheter runs under the skin near the lateral canthus, over the ears to the back of the neck, where a second incision is made to both implant the osmotic pump and to attach the catheter to the osmotic pump. India ink was used to confirm prolonged sustained administration to the optic nerves and across the chiasm. This surgical model was used to investigate KYNA's effect(s) on myelin loss in the ON. ONs of 7-day old chickens were infused with 50 mM KYNA or phosphate buffered saline (PBS) for seven days. Analysis of KYNA-infused contralateral ON g-ratios and protein levels indicated a reduction in myelin. These findings demonstrate the utility of our surgical approach for sustained delivery of KYNA into the ON and suggest a role for KYNA in modulating CNS myelination.
Collapse
Affiliation(s)
- Akshay Gurdita
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Vivian Choh
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Corresponding author. University of Waterloo, 200 Columbia St W, Waterloo, ON N2L 3G1
| |
Collapse
|
17
|
Kita A, Rytel E, Miedzianka J, Turski W, Wicha-Komsta K, Kucharska A, Lenartowicz T. The content of biologically active compounds in potato tubers of Ismena (yellow flesh) and Provita (purple flesh) varieties – A comparison. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
19
|
Sanitary Conditions on the Farm Alters Fecal Metabolite Profile in Growing Pigs. Metabolites 2022; 12:metabo12060538. [PMID: 35736471 PMCID: PMC9229933 DOI: 10.3390/metabo12060538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to use fecal metabolite profiling to evaluate the effects of contrasting sanitary conditions and the associated subclinical health status of pigs. We analyzed fecal metabolite profiles by nuclear magnetic resonance (1H NMR) from pigs aged 14 and 22 weeks. Pigs kept under low and high sanitary conditions differed in fecal metabolites related to the degradation of dietary starch, metabolism of the gut microbiome, and degradation of components of animal (host) origin. The metabolites that differed significantly (FDR < 0.1) were from metabolic processes involved in either maintaining nutrient digestive capacity, including purine metabolism, energy metabolism, bile acid breakdown and recycling, or immune system metabolism. The results show that the fecal metabolite profiles reflect the sanitary conditions under which the pigs are kept. The fecal metabolite profiles closely resembled the profiles of metabolites found in the colon of pigs. Fecal valerate and kynurenic acid could potentially be used as “non-invasive” biomarkers of immune or inflammatory status that could form the basis for monitoring subclinical health status in pigs.
Collapse
|
20
|
Sadok I, Jędruchniewicz K, Staniszewska M. Quantification of nicotinic acid, kynurenine, and kynurenine acid in poultry meat by validated liquid chromatography-single quadrupole mass spectrometry method. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Mazzini S, Princiotto S, Musso L, Passarella D, Beretta GL, Perego P, Dallavalle S. Synthesis and Investigation of the G-Quadruplex Binding Properties of Kynurenic Acid Derivatives with a Dihydroimidazoquinoline-3,5-dione Core. Molecules 2022; 27:2791. [PMID: 35566141 PMCID: PMC9103425 DOI: 10.3390/molecules27092791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found to share the structural features typical of G-quadruplex binders. Herein, structural modifications were conducted on this scaffold in order to assist the binding with a G-quadruplex, by introducing charged hydrophilic groups. The antiproliferative activity of the new analogues was evaluated on an IGROV-1 human ovarian cancer cell line, and the most active compound, compound 9, was analyzed with NMR spectrometry in order to investigate its binding mode with DNA. The results indicated that a weak, non-specific interaction was set with duplex nucleotides; on the other hand, titration in the presence of a G-quadruplex from human telomere d(TTAGGGT)4 showed a stable, although not strong, interaction at the 3'-end of the nucleotidic sequence, efficiently assisted by salt bridges between the quaternary nitrogen and the external phosphate groups. Overall, this work can be considered a platform for the development of a new class of potential G-quadruplex stabilizing molecules, confirming the crucial role of a planar system and the ability of charged nitrogen-containing groups to facilitate the binding to G-quadruplex grooves and loops.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| | | | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy; (G.L.B.); (P.P.)
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy; (G.L.B.); (P.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (L.M.); (S.D.)
| |
Collapse
|
22
|
Mahalak KK, Bobokalonov J, Firrman J, Williams R, Evans B, Fanelli B, Soares JW, Kobori M, Liu L. Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro. Nutrients 2022; 14:nu14061283. [PMID: 35334939 PMCID: PMC8950947 DOI: 10.3390/nu14061283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Previous studies on capsaicin, the bioactive compound in chili peppers, have shown that it may have a beneficial effect in vivo when part of a regular diet. These positive health benefits, including an anti-inflammatory potential and protective effects against obesity, are often attributed to the gut microbial community response to capsaicin. However, there is no consensus on the mechanism behind the protective effect of capsaicin. In this study, we used an in vitro model of the human gut microbiota to determine how regular consumption of capsaicin impacts the gut microbiota. Using a combination of NextGen sequencing and metabolomics, we found that regular capsaicin treatment changed the structure of the gut microbial community by increasing diversity and certain SCFA abundances, particularly butanoic acid. Through this study, we determined that the addition of capsaicin to the in vitro cultures of the human gut microbiome resulted in increased diversity of the microbial community and an increase in butanoic acid. These changes may be responsible for the health benefits associated with CAP consumption.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
- Correspondence: ; Tel.: +1-215-836-6922
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Russell Williams
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Bradley Evans
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Brian Fanelli
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA;
| | - Jason W. Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities Development Command Soldier Center, Middlesex, MA 01760, USA;
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| |
Collapse
|
23
|
Sauceda C, Bayne C, Sudqi K, Gonzalez A, Dulai PS, Knight R, Gonzalez DJ, Gonzalez CG. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease. Gut Microbes 2022; 14:2154092. [PMID: 36503356 PMCID: PMC9746627 DOI: 10.1080/19490976.2022.2154092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic immune-mediated inflammatory disease of the gastrointestinal tract that is a growing public burden. Gut microbes and their interactions with hosts play a crucial role in disease pathogenesis and progression. These interactions are complex, spanning multiple physiological systems and data types, making comprehensive disease assessment difficult, and often overwhelming single-omic capabilities. Stool-based multi-omics is a promising approach for characterizing host-gut microbiome interactions using deep integration of technologies such as 16S rRNA sequencing, shotgun metagenomics, meta-transcriptomics, metabolomics, and metaproteomics. The wealth of information generated through multi-omic studies is poised to usher in advancements in IBD research and precision medicine. This review highlights historical and recent findings from stool-based muti-omic studies that have contributed to unraveling IBD's complexity. Finally, we discuss common pitfalls, issues, and limitations, and how future pipelines should address them to standardize multi-omics in IBD research and beyond.
Collapse
Affiliation(s)
- Consuelo Sauceda
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Charlie Bayne
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Khadijeh Sudqi
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Parambir S. Dulai
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, IL, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Zhen D, Liu J, Zhang XD, Song Z. Kynurenic Acid Acts as a Signaling Molecule Regulating Energy Expenditure and Is Closely Associated With Metabolic Diseases. Front Endocrinol (Lausanne) 2022; 13:847611. [PMID: 35282457 PMCID: PMC8908966 DOI: 10.3389/fendo.2022.847611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Kynurenic acid (KYNA) is an important bio-active product of tryptophan metabolism. In addition to its well-known neuroprotective effects on mental health disorders, it has been proposed as a bio-marker for such metabolic diseases as atherosclerosis and diabetes. Emerging evidence suggests that KYNA acts as a signaling molecule controlling the networks involved in the balance of energy store and expenditure through GPR35 and AMPK signaling pathway. KYNA plays an important role in the pathogenesis and development of several endocrine and metabolic diseases. Exercise training promotes KYNA production in skeletal muscles and increases thermogenesis in the long term and limits weight gain, insulin resistance and inflammation. Additionally, KYNA is also present in breast milk and may act as an anti-obesity agent in infants. Although we are far from fully understanding the role of KYNA in our body, administration of KYNA, enzyme inhibitors or metabolites may serve as a potential therapeutic strategy for treating metabolic diseases. The present review provides a perspective on the current knowledge regarding the biological effects of KYNA in metabolic diseases and perinatal nutrition.
Collapse
Affiliation(s)
- Delong Zhen
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zehua Song
- Translational Research Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, China
- *Correspondence: Zehua Song,
| |
Collapse
|
25
|
Sadok I, Staniszewska M. Electrochemical Determination of Kynurenine Pathway Metabolites-Challenges and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:7152. [PMID: 34770460 PMCID: PMC8588338 DOI: 10.3390/s21217152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/23/2022]
Abstract
In recent years, tryptophan metabolism via the kynurenine pathway has become one of the most active research areas thanks to its involvement in a variety of physiological processes, especially in conditions associated with immune dysfunction, central nervous system disorders, autoimmunity, infection, diabetes, and cancer. The kynurenine pathway generates several metabolites with immunosuppressive functions or neuroprotective, antioxidant, or toxic properties. An increasing body of work on this topic uncovers a need for reliable analytical methods to help identify and quantify tryptophan metabolites at physiological concentrations in biological samples of different origins. Recent methodological advances in the fabrication and application of electrochemical sensors promise a rise in the future generation of novel analytical systems. This work summarizes current knowledge and provides important suggestions with respect to direct electrochemical determinations of kynurenine pathway metabolites (kynurenines) in complex biological matrices. Measurement challenges, limitations, and future opportunities of electroanalytical methods to advance study of the implementation of kynurenines in disease conditions are discussed.
Collapse
Affiliation(s)
- Ilona Sadok
- Laboratory of Separation and Spectroscopic Method Applications, Centre for Interdisciplinary Research, Faculty of Science and Health, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | | |
Collapse
|
26
|
Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo. Pharmaceuticals (Basel) 2021; 14:ph14080753. [PMID: 34451850 PMCID: PMC8398234 DOI: 10.3390/ph14080753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases.
Collapse
|
27
|
Walczak K, Kazimierczak P, Szalast K, Plech T. UVB Radiation and Selected Tryptophan-Derived AhR Ligands-Potential Biological Interactions in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22147500. [PMID: 34299117 PMCID: PMC8307169 DOI: 10.3390/ijms22147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive UV exposure is considered the major environmental factor in melanoma progression. Human skin is constantly exposed to selected tryptophan-derived aryl hydrocarbon receptor (AhR) ligands, including kynurenine (KYN) and kynurenic acid (KYNA), as they are endogenously produced and present in various tissues and body fluids. Importantly, recent studies confirmed the biological activity of KYN and KYNA toward melanoma cells in vitro. Thus, in this study, the potential biological interactions between UVB and tryptophan metabolites KYN and KYNA were studied in melanoma A375, SK-MEL-3, and RPMI-7951 cells. It was shown that UVB enhanced the antiproliferative activity of KYN and KYNA in melanoma cells. Importantly, selected tryptophan-derived AhR ligands did not affect the invasiveness of A375 and RPMI-7951 cells; however, the stimulatory effect was observed in SK-MEL-3 cells exposed to UVB. Thus, the effect of tryptophan metabolites on metabolic activity, cell cycle regulation, and cell death in SK-MEL-3 cells exposed to UVB was assessed. In conclusion, taking into account that both UVB radiation and tryptophan-derived AhR ligands may have a crucial effect on skin cancer formation and progression, these results may have a significant impact, revealing the potential biological interactions in melanoma cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
- Correspondence: ; Tel.: +48-814-486-774
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20093 Lublin, Poland;
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| |
Collapse
|
28
|
Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, Huang Y, Liu HR, Wu HG. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021; 18:135. [PMID: 34127024 PMCID: PMC8204445 DOI: 10.1186/s12974-021-02175-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD), which mainly includes ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic bowel diseases that are characterized by abdominal pain, diarrhea, and bloody stools. IBD is strongly associated with depression, and its patients have a higher incidence of depression than the general population. Depression also adversely affects the quality of life and disease prognosis of patients with IBD. The tryptophan-kynurenine metabolic pathway degrades more than 90% of tryptophan (TRP) throughout the body, with indoleamine 2,3-dioxygenase (IDO), the key metabolic enzyme, being activated in the inflammatory environment. A series of metabolites of the pathway are neurologically active, among which kynerunic acid (KYNA) and quinolinic acid (QUIN) are molecules of great interest in recent studies on the mechanisms of inflammation-induced depression. In this review, the relationship between depression in IBD and the tryptophan-kynurenine metabolic pathway is overviewed in the light of recent publications.
Collapse
Affiliation(s)
- Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Chun-Hui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| | - Yu Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Shi-Hua Liang
- Faculty of Economics and Business, University of Groningen, Nettelbosje 2, Groningen, 9747 AE, The Netherlands
| | - Di Wang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Lu-Yi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Hui-Rong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
29
|
Effect of 4-week physical exercises on tryptophan, kynurenine and kynurenic acid content in human sweat. Sci Rep 2021; 11:11092. [PMID: 34045580 PMCID: PMC8160349 DOI: 10.1038/s41598-021-90616-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was the detection of TRP, kynurenine (KYN), and kynurenic acid (KYNA) in human sweat, and determining whether physical activity affects their content in this secrete. Two different methods were used simultaneously—collection of sweat by means of an absorption pad from the inter scapular region, and collection of a drop of sweat from the region of the forehead. Quantitative determinations of TRP, KYN and KYNA were performed using high performance liquid chromatography with ultraviolet and fluorescence detection. Determinations of sodium was carried out by the method of inductively coupled plasma collision/reaction cell ionization mass spectrophotometry. It was found that physical exercises evoked a decrease in the amount of KYN, and an increase in the amount of KYNA in sweat recorded on day 14, but not on day 28 of training. It appears that physical exercises result in a long-term increase in the kynurenine transaminase activity responsible for the formation of KYNA from KYN. Based on this results, it can be suggested that measurement of TRP, KYN and KYNA in sweat may have diagnostic potential and may help to establish an exercise regime appropriate for the age, gender and health status of rehabilitation patients.
Collapse
|
30
|
Lette ED, Burnham QF, Lawler N, Horwitz P, Boyce MC, Broadhurst DI, Duffy R, Koenders A. Detecting Sex-Related Changes to the Metabolome of a Critically Endangered Freshwater Crayfish During the Mating Season. Front Mol Biosci 2021; 8:650839. [PMID: 33937331 PMCID: PMC8085417 DOI: 10.3389/fmolb.2021.650839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022] Open
Abstract
Captive breeding is a vital tool in the conservation of highly endangered species, as it is for the Margaret River hairy marron, Cherax tenuimanus, from the south west of Australia. A close relative, Cherax cainii, has almost completely displaced C. tenuimanus in the wild and is a successful aquaculture species, whereas C. tenuimanus has performed poorly in captivity. We used untargeted liquid chromatography-mass spectrometry to obtain metabolomic profiles of female and male C. tenuimanus held in controlled aquarium conditions during their reproductive period. Using repeated haemolymph sampling we tracked the metabolomic profiles of animals just prior to and for a period of up to 34 days after pairing with a similar sized potential mate. We identified 54 reproducible annotated metabolites including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites and excretion metabolites. Hierarchical clustering analysis distinguished five metabolite clusters. Principal component-canonical variate analysis clearly distinguished females from males, both unpaired and paired; similar trends in profile changes in both sexes after pairing; and a striking shift in males upon pairing. We discuss three main patterns of metabolomic responses: differentiation between sexes; reactive responses to the disturbance of pairing; and convergent response to the disturbance of pairing for males. Females generally had higher concentrations of metabolites involved in metabolic rate, mobilisation of energy stores and stress. Responses to the disturbance of pairing were also related to elevated stress. Females were mobilising lipid stores to deposit yolk, whereas males had a rapid and strong response to pairing, with shifts in metabolites associated with gonad development and communication, indicating males could complete reproductive readiness only once paired with a female. The metabolomic profiles support a previously proposed potential mechanism for displacement of C. tenuimanus by C. cainii in the wild and identify several biomarkers for testing hypotheses regarding reproductive success using targeted metabolomics.
Collapse
Affiliation(s)
- Emily D. Lette
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Quinton F. Burnham
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Nathan Lawler
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Pierre Horwitz
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| | - Mary C. Boyce
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - David I. Broadhurst
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
- Centre for Integrative Metabolomics and Computational Biology, Edith Cowan University, Perth, WA, Australia
| | - Rodney Duffy
- Department of Primary Industries and Regional Development of Western Australia, Perth, WA, Australia
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
31
|
Matencio A, Caldera F, Rubin Pedrazzo A, Khazaei Monfared Y, K Dhakar N, Trotta F. A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chem 2021; 356:129639. [PMID: 33819789 DOI: 10.1016/j.foodchem.2021.129639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In this work, the interaction between Kynurenic acid (KYNA) and several natural and modified cyclodextrins (CDs) is carried out. Among all the CD tested, HPβ-CD showed the strongest complexation constant (KF), with a value of 270.94 ± 29.80 M-1. Between natural (α- and β-) CDs, the complex of KYNA with β-CD was the most efficient. The inclusion complex of KYNA with CDs showed a strong influence of pH and temperature. The KF value decreased at high pH values, when the pKa was passed. Moreover, an increase of the temperature caused a decrease in the KF values. The thermodynamic parameters of the complexation (ΔH°, ΔS° and ΔG°) were studied with negative entropy, enthalpy and spontaneity of the process at 25 °C. Moreover, the inclusion complex was also characterized using FTIR and TGA. Finally, molecular docking calculations provided different interactions and their influence in the complexation constant.
Collapse
Affiliation(s)
- Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | | | | | - Nilesh K Dhakar
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
32
|
Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sin B 2021; 11:763-780. [PMID: 33777681 PMCID: PMC7982426 DOI: 10.1016/j.apsb.2020.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)−kynurenine (KYN)−kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)−indoleamine 2,3-dioxygenase 1 (IDO1)−aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity in vivo suggests that chemotherapeutics combined with the two could be a promising therapeutic strategy for cancer patients in clinic. This work highlights GPR35 and AHR as the guardian of kynurenine pathway metabolism and core component of defense responses against intestinal damage.
Collapse
Key Words
- 1-MT, 1-methyl-tryptophan
- AG, AG490
- AHR
- AHR, aryl hydrocarbon receptor
- ARNT, aryl hydrocarbon receptor nuclear translocator
- BCA, bicinchoninic acid
- BSA, bovine serum albumin
- CH, CH223191
- CPT-11, irinotecan
- CYP1A1, cytochrome P450 1A1
- DAI, disease activity index
- DMSO, dimethyl sulfoxide
- DPP-4, dipeptidyl peptidase-4
- DRE, dioxin response elements
- DSS, dextran sulphate sodium
- Dens-Cl, N-diethyl-amino naphthalene-1-sulfonyl chloride
- Dns-Cl, N-dimethyl-amino naphthalene-1-sulfonyl chloride
- ECL, enhanced chemiluminescence
- ELISA, enzyme-linked immunosorbent assay
- ERK1/2, extracellular regulated protein kinases 1/2
- ESI, electrospray ionization
- FBS, fetal bovine serum
- GE, gastric emptying
- GFP, green fluorescence protein
- GI, gastrointestinal transit
- GPR35
- GPR35, G protein-coupled receptor 35
- Gradually sensing
- HE, hematoxylin and eosin
- HRP, horseradish peroxi-dase
- IBD, inflammatory bowel disease
- IDO1, indoleamine 2,3-dioxygenase 1
- IL-6, interleukin-6
- IS, internal standard
- Intestinal toxicity
- JAK2, janus kinase 2
- KA, kynurenic acid
- KAT, kynurenine aminotransferase
- KYN, kynurenine
- Kynurenine pathway
- LC–MS, liquid chromatography–mass spectrometry
- LPS, lipopolysaccharides
- Linag, linagliptin
- MOE, molecular operating environment
- MOI, multiplicity of infection
- MRM, multiple-reaction monitoring
- MTT, thiazolyl blue tetrazolium bromide
- PBS, phosphate buffer saline
- PDB, protein data bank
- PDE5, phosphodiesterase type-5
- PF, PF-04859989
- PMA, phorbol 12-myristate 13-acetate
- PMSF, phenylmethylsulfonyl fluoride
- RIPA, radioimmunoprecipitation
- RPKM, reads per kilobase per million mapped reads
- RPMI 1640, Roswell Park Memorial Institute 1640
- RT-PCR, real-time polymerase chain reaction
- STAT3, signal transducer and activator of transcription 3
- Trp, tryptophan
- VCR, vincristine
- Vard, vardenafil
Collapse
|
33
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
34
|
Jansma J, El Aidy S. Understanding the host-microbe interactions using metabolic modeling. MICROBIOME 2021; 9:16. [PMID: 33472685 PMCID: PMC7819158 DOI: 10.1186/s40168-020-00955-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health. Video abstract.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sahar El Aidy
- Host-Microbe metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
35
|
Juhász L, Rutai A, Fejes R, Tallósy SP, Poles MZ, Szabó A, Szatmári I, Fülöp F, Vécsei L, Boros M, Kaszaki J. Divergent Effects of the N-Methyl-D-Aspartate Receptor Antagonist Kynurenic Acid and the Synthetic Analog SZR-72 on Microcirculatory and Mitochondrial Dysfunction in Experimental Sepsis. Front Med (Lausanne) 2020; 7:566582. [PMID: 33330526 PMCID: PMC7729001 DOI: 10.3389/fmed.2020.566582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction: Sepsis is a dysregulated host response to infection with macro- and microhemodynamic deterioration. Kynurenic acid (KYNA) is a metabolite of the kynurenine pathway of tryptophan catabolism with pleiotropic cell-protective effects under pro-inflammatory conditions. Our aim was to investigate whether exogenously administered KYNA or the synthetic analog SZR-72 affects the microcirculation and mitochondrial function in a clinically relevant rodent model of intraabdominal sepsis. Methods: Male Sprague–Dawley rats (n = 8/group) were subjected to fecal peritonitis (0.6 g kg−1 feces ip) or a sham operation. Septic animals were treated with sterile saline or received ip KYNA or SZR-72 (160 μmol kg−1 each) 16 and 22 h after induction. Invasive monitoring was performed on anesthetized animals to evaluate respiratory, cardiovascular, renal, hepatic and metabolic dysfunctions (PaO2/FiO2 ratio, mean arterial pressure, urea, AST/ALT ratio and lactate levels, respectively) based on the Rat Organ Failure Assessment (ROFA) score. The ratio of perfused vessels (PPV) of the ileal serosa was quantified with the intravital imaging technique. Complex I- and II-linked (CI; CII) oxidative phosphorylation capacities (OXPHOS) and mitochondrial membrane potential (ΔΨmt) were evaluated by High-Resolution FluoRespirometry (O2k, Oroboros, Austria) in liver biopsies. Plasma endothelin-1 (ET-1), IL-6, intestinal nitrotyrosine (NT) and xanthine oxidoreductase (XOR) activities were measured as inflammatory markers. Results: Sepsis was characterized by an increased ROFA score (5.3 ± 1.3 vs. 1.3 ± 0.7), increased ET-1, IL-6, NT and XOR levels, and decreased serosal PPV (65 ± 12% vs. 87 ± 7%), ΔΨmt and CI–CII-linked OXPHOS (73 ± 16 vs. 158 ± 14, and 189 ± 67 vs. 328 ± 81, respectively) as compared to controls. Both KYNA and SZR-72 reduced systemic inflammatory activation; KYNA treatment decreased serosal perfusion heterogeneity, restored PPV (85 ± 11%) and complex II-linked OXPHOS (307 ± 38), whereas SZR-72 improved both CI- and CII-linked OXPHOS (CI: 117 ± 18; CII: 445 ± 107) without effects on PPV 24 h after sepsis induction. Conclusion: Treatment with SZR-72 directly modulates mitochondrial respiration, leading to improved conversion of ADP to ATP, while administration of KYNA restores microcirculatory dysfunction. The results suggest that microcirculatory and mitochondrial resuscitation with KYNA or the synthetic analog SZR-72 might be an appropriate supportive tool in sepsis therapy.
Collapse
Affiliation(s)
- László Juhász
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Attila Rutai
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Roland Fejes
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Szabolcs P Tallósy
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marietta Z Poles
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Andrea Szabó
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Research Group for Stereochemistry, Institute of Pharmaceutical Chemistry, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Research Group for Stereochemistry, Institute of Pharmaceutical Chemistry, Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Hungarian Academy of Sciences (MTA)-University of Szeged (SZTE), Neuroscience Research Group, Szeged, Hungary
| | - Mihály Boros
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - József Kaszaki
- Faculty of Medicine, Institute of Surgical Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Suzuki T, Morishita H, Fukuhara K. Reactions of kynurenic acid with hypobromous acid and hypochlorous acid. J Clin Biochem Nutr 2020; 68:215-220. [PMID: 34025023 PMCID: PMC8129975 DOI: 10.3164/jcbn.20-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022] Open
Abstract
Kynurenic acid, a tryptophan metabolite, acts as antagonist or agonist of several receptors. Hypobromous acid (HOBr) and hypochlorous acid (HOCl) are generated by eosinophils and neutrophils. At inflammation sites, kynurenic acid may encounter HOBr and HOCl to generate products. When kynurenic acid was incubated with HOBr under neutral conditions, kynurenic acid generated a single product almost exclusively. This was identified as 3-bromokynurenic acid. Kynurenic acid reacted with HOCl, generating two products. The major product was identified as 3-chlorokynurenic acid with its oxidative decarboxylation product, 3-chloro-4-hydroxy-2(1H)-quinolinone as a by-product. Free amino acids suppressed the reactions of kynurenic acid with HOBr and HOCl. Taurine suppressed the HOCl reaction but not the HOBr reaction. An eosinophil peroxidase system containing H2O2, NaCl, and NaBr reacted with kynurenic acid, generating 3-bromokynurenic acid under mildly acidic conditions. Although a myeloperoxidase system containing H2O2 and NaCl reacted with kynurenic acid to generate 3-chlorokynurenic acid under mildly acidic conditions, the product was altered to 3-bromokynurenic acid by addition of NaBr to the system. These results suggest that 3-bromokynurenic acid and 3-chlorokynurenic acid may be generated from kynurenic acid at inflammation sites in humans, although their formation will be suppressed by coexistent amino acids.
Collapse
Affiliation(s)
- Toshinori Suzuki
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroyuki Morishita
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Kosumo Fukuhara
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
37
|
Effect of Tryptophan-Derived AhR Ligands, Kynurenine, Kynurenic Acid and FICZ, on Proliferation, Cell Cycle Regulation and Cell Death of Melanoma Cells-In Vitro Studies. Int J Mol Sci 2020; 21:ijms21217946. [PMID: 33114713 PMCID: PMC7663343 DOI: 10.3390/ijms21217946] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tryptophan metabolites: kynurenine (KYN), kynurenic acid (KYNA) and 6-formylindolo[3,2-b]carbazole (FICZ) are considered aryl hydrocarbon receptor (AhR) ligands. AhR is mainly expressed in barrier tissues, including skin, and is involved in various physiological and pathological processes in skin. We studied the effect of KYN, KYNA and FICZ on melanocyte and melanoma A375 and RPMI7951 cell toxicity, proliferation and cell death. KYN and FICZ inhibited DNA synthesis in both melanoma cell lines, but RPMI7951 cells were more resistant to pharmacological treatment. Tested compounds were toxic to melanoma cells but not to normal human adult melanocytes. Changes in the protein level of cyclin D1, CDK4 and retinoblastoma tumor suppressor protein (Rb) phosphorylation revealed different mechanisms of action of individual AhR ligands. Importantly, all tryptophan metabolites induced necrosis, but only KYNA and FICZ promoted apoptosis in melanoma A375 cells. This effect was not observed in RPMI7951 cells. KYN, KYNA and FICZ in higher concentrations inhibited the protein level of AhR but did not affect the gene expression. To conclude, despite belonging to the group of AhR ligands, KYN, KYNA and FICZ exerted different effects on proliferation, toxicity and induction of cell death in melanoma cells in vitro.
Collapse
|
38
|
Quon T, Lin LC, Ganguly A, Tobin AB, Milligan G. Therapeutic Opportunities and Challenges in Targeting the Orphan G Protein-Coupled Receptor GPR35. ACS Pharmacol Transl Sci 2020; 3:801-812. [PMID: 33073184 PMCID: PMC7551713 DOI: 10.1021/acsptsci.0c00079] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 02/07/2023]
Abstract
GPR35 is a class A, rhodopsin-like G protein-coupled receptor (GPCR) first identified more than 20 years ago. In the intervening period, identification of strong expression in the lower intestine and colon, in a variety of immune cells including monocytes and a variety of dendritic cells, and in dorsal root ganglia has suggested potential therapeutic opportunities in targeting this receptor in a range of conditions. GPR35 is, however, unusual in a variety of ways that challenge routes to translation. These include the following: (i) Although a substantial range and diversity of endogenous ligands have been suggested as agonist partners for this receptor, it officially remains defined as an "orphan" GPCR. (ii) Humans express two distinct protein isoform sequences, while rodents express only a single form. (iii) The pharmacologies of the human and rodent orthologues of GPR35 are very distinct, with variation between rat and mouse GPR35 being as marked as that between either of these species and the human forms. Herein we provide perspectives on each of the topics above as well as suggesting ways to overcome the challenges currently hindering potential translation. These include a better understanding of the extent and molecular basis for species selective GPR35 pharmacology and the production of novel mouse models in which both "on-target" and "off-target" effects of presumptive GPR35 ligands can be better defined, as well as a clear understanding of the human isoform expression profile and its significance at both tissue and individual cell levels.
Collapse
Affiliation(s)
- Tezz Quon
- Centre for Translational Pharmacology,
Institute of Molecular Cell and Systems Biology, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United Kingdom of Great
Britain and Northern Ireland
| | - Li-Chiung Lin
- Centre for Translational Pharmacology,
Institute of Molecular Cell and Systems Biology, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United Kingdom of Great
Britain and Northern Ireland
| | - Amlan Ganguly
- Centre for Translational Pharmacology,
Institute of Molecular Cell and Systems Biology, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United Kingdom of Great
Britain and Northern Ireland
| | - Andrew B. Tobin
- Centre for Translational Pharmacology,
Institute of Molecular Cell and Systems Biology, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United Kingdom of Great
Britain and Northern Ireland
| | - Graeme Milligan
- Centre for Translational Pharmacology,
Institute of Molecular Cell and Systems Biology, College of Medical,
Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8QQ, United Kingdom of Great
Britain and Northern Ireland
| |
Collapse
|
39
|
Wicha-Komsta K, Skibiński R, Kocki T, Turski WA, Komsta Ł. Lipophilicity of tryptophan, its metabolites and derivatives measured by thin-layer chromatography. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Katarzyna Wicha-Komsta
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Łukasz Komsta
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
40
|
Wróbel‐Kwiatkowska M, Turski W, Kocki T, Rakicka‐Pustułka M, Rymowicz W. An efficient method for production of kynurenic acid by
Yarrowia lipolytica. Yeast 2020; 37:541-547. [DOI: 10.1002/yea.3469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Magdalena Wróbel‐Kwiatkowska
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology Medical University of Lublin Lublin Poland
| | - Magdalena Rakicka‐Pustułka
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology Wrocław University of Environmental and Life Sciences Wrocław Poland
| |
Collapse
|
41
|
3-Hydroxymethyl-1,4-dihydro-4-oxoquinoline like compound with promising biological and complexing activity. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2019-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Matta C, Juhász T, Fodor J, Hajdú T, Katona É, Szűcs-Somogyi C, Takács R, Vágó J, Oláh T, Bartók Á, Varga Z, Panyi G, Csernoch L, Zákány R. N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis. Cell Commun Signal 2019; 17:166. [PMID: 31842918 PMCID: PMC6915923 DOI: 10.1186/s12964-019-0487-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background In vitro chondrogenesis depends on the concerted action of numerous signalling pathways, many of which are sensitive to the changes of intracellular Ca2+ concentration. N-methyl-D-aspartate (NMDA) glutamate receptor is a cation channel with high permeability for Ca2+. Whilst there is now accumulating evidence for the expression and function of NMDA receptors in non-neural tissues including mature cartilage and bone, the contribution of glutamate signalling to the regulation of chondrogenesis is yet to be elucidated. Methods We studied the role of glutamatergic signalling during the course of in vitro chondrogenesis in high density chondrifying cell cultures using single cell fluorescent calcium imaging, patch clamp, transient gene silencing, and western blotting. Results Here we show that key components of the glutamatergic signalling pathways are functional during in vitro chondrogenesis in a primary chicken chondrogenic model system. We also present the full glutamate receptor subunit mRNA and protein expression profile of these cultures. This is the first study to report that NMDA-mediated signalling may act as a key factor in embryonic limb bud-derived chondrogenic cultures as it evokes intracellular Ca2+ transients, which are abolished by the GluN2B subunit-specific inhibitor ifenprodil. The function of NMDARs is essential for chondrogenesis as their functional knock-down using either ifenprodil or GRIN1 siRNA temporarily blocks the differentiation of chondroprogenitor cells. Cartilage formation was fully restored with the re-expression of the GluN1 protein. Conclusions We propose a key role for NMDARs during the transition of chondroprogenitor cells to cartilage matrix-producing chondroblasts.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Katona
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla Szűcs-Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Ádám Bartók
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
43
|
Dudzińska E, Szymona K, Kloc R, Gil-Kulik P, Kocki T, Świstowska M, Bogucki J, Kocki J, Urbanska EM. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819881304. [PMID: 31666808 PMCID: PMC6801885 DOI: 10.1177/1756284819881304] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Complex interaction of genetic defects with environmental factors seems to play a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Accumulating data implicate a potential role of disturbed tryptophan metabolism in IBD. Kynurenic acid (KYNA), a derivative of tryptophan (TRP) along the kynurenine (KYN) pathway, displays cytoprotective and immunomodulating properties, whereas 3-OH-KYN is a cytotoxic compound, generating free radicals. METHODS The expression of lymphocytic mRNA encoding enzymes synthesizing KYNA (KAT I-III) and serum levels of TRP and its metabolites were evaluated in 55 patients with IBD, during remission or relapse [27 patients with ulcerative colitis (UC) and 28 patients with Crohn's disease (CD)] and in 50 control individuals. RESULTS The increased expression of KAT1 and KAT3 mRNA characterized the entire cohorts of patients with UC and CD, as well as relapse-remission subsets. Expression of KAT2 mRNA was enhanced in patients with UC and in patients with CD in remission. In the entire cohorts of UC or CD, TRP levels were lower, whereas KYN, KYNA and 3-OH-KYN were not altered. When analysed in subsets of patients with UC and CD (active phase-remission), KYNA level was significantly lower during remission than relapse, yet not versus control. Functionally, in the whole groups of patients with UC or CD, the TRP/KYN ratio has been lower than control, whereas KYN/KYNA and KYNA/3-OH-KYN ratios were not altered. The ratio KYN/3-OH-KYN increased approximately two-fold among all patients with CD; furthermore, patients with CD with relapse, manifested a significantly higher KYNA/3-OH-KYN ratio than patients in remission. CONCLUSION The presented data indicate that IBD is associated with an enhanced expression of genes encoding KYNA biosynthetic enzymes in lymphocytes; however, additional mechanisms appear to influence KYNA levels. Higher metabolic conversion of serum TRP in IBD seems to be followed by the functional shift of KYN pathway towards the arm producing KYNA during exacerbation. We propose that KYNA, possibly via interaction with aryl hydrocarbon receptor or G-protein-coupled orphan receptor 35, may serve as a counter-regulatory mechanism, decreasing cytotoxicity and inflammation in IBD. Further longitudinal studies evaluating the individual dynamics of TRP and KYN pathway in patients with IBD, as well as the nature of precise mechanisms regulating KYNA synthesis, should be helpful in better understanding the processes underlying the observed changes.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Medical University of Lublin, Chodźki 1 Street,
Lublin, 20-093, Lubelskie, Poland
| | - Kinga Szymona
- Medical University of Lublin, Lublin, Lubelskie,
Poland
| | - Renata Kloc
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Małgorzata Świstowska
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Jacek Bogucki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Ewa M. Urbanska
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| |
Collapse
|
44
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Kynurenines and the Endocannabinoid System in Schizophrenia: Common Points and Potential Interactions. Molecules 2019; 24:molecules24203709. [PMID: 31619006 PMCID: PMC6832375 DOI: 10.3390/molecules24203709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia, which affects around 1% of the world’s population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.
Collapse
|
46
|
Vázquez-Manjarrez N, Weinert CH, Ulaszewska MM, Mack CI, Micheau P, Pétéra M, Durand S, Pujos-Guillot E, Egert B, Mattivi F, Bub A, Dragsted LO, Kulling SE, Manach C. Discovery and Validation of Banana Intake Biomarkers Using Untargeted Metabolomics in Human Intervention and Cross-sectional Studies. J Nutr 2019; 149:1701-1713. [PMID: 31240312 DOI: 10.1093/jn/nxz125] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Banana is one of the most widely consumed fruits in the world. However, information regarding its health effects is scarce. Biomarkers of banana intake would allow a more accurate assessment of its consumption in nutrition studies. OBJECTIVES Using an untargeted metabolomics approach, we aimed to identify the banana-derived metabolites present in urine after consumption, including new candidate biomarkers of banana intake. METHODS A randomized controlled study with a crossover design was performed on 12 healthy subjects (6 men, 6 women, mean ± SD age: 30.0 ± 4.9 y; mean ± SD BMI: 22.5 ± 2.3 kg/m2). Subjects underwent 2 dietary interventions: 1) 250 mL control drink (Fresubin 2 kcal fiber, neutral flavor; Fresenius Kabi), and 2) 240 g banana + 150 mL control drink. Twenty-four-hour urine samples were collected and analyzed with ultra-performance liquid chromatography coupled to a quadrupole time-of-flight MS and 2-dimensional GC-MS. The discovered biomarkers were confirmed in a cross-sectional study [KarMeN (Karlsruhe Metabolomics and Nutrition study)] in which 78 subjects (mean BMI: 22.8; mean age: 47 y) were selected reflecting high intake (126-378 g/d), low intake (47.3-94.5 g/d), and nonconsumption of banana. The confirmed biomarkers were examined singly or in combinations, for established criteria of validation for biomarkers of food intake. RESULTS We identified 33 potentially bioactive banana metabolites, of which 5 metabolites, methoxyeugenol glucuronide (MEUG-GLUC), dopamine sulfate (DOP-S), salsolinol sulfate, xanthurenic acid, and 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-β-carboline sulfate, were confirmed as candidate intake biomarkers. We demonstrated that the combination of MEUG-GLUC and DOP-S performed best in predicting banana intake in high (AUCtest = 0.92) and low (AUCtest = 0.87) consumers. The new biomarkers met key criteria establishing their current applicability in nutrition and health research for assessing the occurrence of banana intake. CONCLUSIONS Our metabolomics study in healthy men and women revealed new putative bioactive metabolites of banana and a combined biomarker of intake. These findings will help to better decipher the health effects of banana in future focused studies. This study was registered at clinicaltrials.gov as NCT03581955 and with the Ethical Committee for the Protection of Human Subjects Sud-Est 6 as CPP AU 1251, IDRCB 2016-A0013-48; the KarMeN study was registered with the German Clinical Trials Register (DRKS00004890). Details about the study can be obtained from https://www.drks.de.
Collapse
Affiliation(s)
- Natalia Vázquez-Manjarrez
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Maria M Ulaszewska
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
| | - Carina I Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Pierre Micheau
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Stephanie Durand
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, Plateforme d'Exploration du Métabolisme MetaboHUB, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Centre of Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Claudine Manach
- Human Nutrition Unit, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
47
|
Milart P, Paluszkiewicz P, Dobrowolski P, Tomaszewska E, Smolinska K, Debinska I, Gawel K, Walczak K, Bednarski J, Turska M, Raban M, Kocki T, Turski WA. Kynurenic acid as the neglected ingredient of commercial baby formulas. Sci Rep 2019; 9:6108. [PMID: 30988385 PMCID: PMC6465401 DOI: 10.1038/s41598-019-42646-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 02/05/2023] Open
Abstract
The global increase in resorting to artificial nutritional formulas replacing breastfeeding has been identified among the complex causes of the obesity epidemic in infants and children. One of the factors recently recognized to influence metabolism and weight gain is kynurenic acid (KYNA), an agonist of G protein-coupled receptor (GPR35). Therefore the aim of the study was to determine the concentration of KYNA in artificial nutritional formulas in comparison with its level in human breast milk and to evaluate developmental changes in rats exposed to KYNA enriched diet during the time of breastfeeding. KYNA levels were measured in milk samples from 25 heathy breast-feeding women during the first six months after labor and were compared with 21 time-adjusted nutritional formulas. Animal experiments were performed on male Wistar rats. KYNA was administered in drinking water. The content of KYNA in human milk increases more than 13 times during the time of breastfeeding while its level is significantly lower in artificial formulas. KYNA was detected in breast milk of rats and it was found that the supplementation of rat maternal diet with KYNA in drinking water results in its increase in maternal milk. By means of the immunoblotting technique, GPR35 was evidenced in the mucosa of the jejunum of 1-day-old rats and distinct morphological changes in the jejunum of 21-day-old rats fed by mothers exposed to water supplemented with KYNA were found. A significant reduction of body weight gain of rats postnatally exposed to KYNA supplementation without changes in total body surface and bone mineral density was observed. The rat offspring fed with breast milk with artificially enhanced KYNA content demonstrated a lower mass gain during the first 21 days of life, which indicates that KYNA may act as an anti-obesogen. Further studies are, therefore, warranted to investigate the mechanisms regulating KYNA secretion via breast milk, as well as the influence of breast milk KYNA on mass gain. In the context of lifelong obesity observed worldwide in children fed artificially, our results imply that insufficient amount of KYNA in baby formulas could be considered as one of the factors associated with increased mass gain.
Collapse
Affiliation(s)
- Pawel Milart
- 3rd Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL-20090, Lublin, Poland.
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery Institute of Haematology and Transfusion Medicine, Indiry Gandhi 14, PL-02776, Warsaw, Poland.,Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka 19, PL-20033, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, PL-20950, Lublin, Poland
| | - Katarzyna Smolinska
- Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Iwona Debinska
- Department of Surgery and Surgical Nursing, Medical University of Lublin, Szkolna 18, PL-20124, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| | - Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodzki 4a, PL-20093, Lublin, Poland
| | - Jerzy Bednarski
- Chair of Human Anatomy (Department of Normal Anatomy), Medical University of Lublin, Jaczewskiego 4, PL-20090, Lublin, Poland
| | - Monika Turska
- Department of Pharmacology, Medical University of Lublin, Chodzki 4a, PL-20093, Lublin, Poland
| | - Michal Raban
- 2nd Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Staszica 16, PL-20081, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, PL-20090, Lublin, Poland
| |
Collapse
|
48
|
Xu K, Bai M, Bin P, Duan Y, Wu X, Liu H, Yin Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3005-3016. [PMID: 30478950 DOI: 10.1002/jsfa.9514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the effect of dynamic feeding models of dietary tryptophan on sows' performance during late pregnancy. RESULTS The average piglet birth weight and live farrowing rate from sows consuming a high-low tryptophan diet (0.39% Trp in the morning and 0.13% Trp in the afternoon) were decreased compared with those fed a 2×tryptophan diet (0.26% Trp in the morning and afternoon). Compared with the 2×tryptophan group, sow serum kynurenic acid and the newborn liver n-6:n-3 polyunsaturated fatty acid ratio were significantly higher, and sow serum taurine and newborn serum taurine, phosphoserine, cysteine and proline were lower in the high-low tryptophan diet group. Eighty-eight genes were differentially expressed in newborn piglets' livers between the 2×tryptophan and high-low groups. Genes related to cytotoxic effector regulation (major histocompatibility complex class I proteins), NADH oxidation, reactive oxygen species (ROS) metabolism and tissue development were differentially expressed between these two groups. CONCLUSION Together, the results provide information on new biomarkers in serum or liver and provide novel insights into variations in the fetal liver during exogenous stimulus response and biological processes of ROS metabolism in fetuses during late pregnancy caused by a single excessive tryptophan ingestion daily in the morning. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Miaomiao Bai
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Yehui Duan
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Xin Wu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Kondarl Agro-pastoral Technology Co., Ltd., Dongguan, China
- Academician Workstation of Changsha Medical University, Changsha, China
| |
Collapse
|
49
|
Langner E, Jeleniewicz W, Turski WA, Plech T. Quinaldic acid induces changes in the expression of p53 tumor suppressor both on protein and gene level in colon cancer LS180 cells. Pharmacol Rep 2019; 71:189-193. [PMID: 30780127 DOI: 10.1016/j.pharep.2018.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Origin, synthesis and activity of quinaldic acid (QA), proposed derivative of kynurenic acid, have been poorly studied to date. Previously, we have demonstrated the antiproliferative effect of QA in a colon cancer model in vitro. The goal of present study was to verify QA activity to modify the expression of p53 tumor suppressor in colon cancer cells, and to relate it to its cancer cell growth inhibiting activity in vitro. METHODS LS180 colon cancer cells possessing the wild type form of p53 were used in the study. Real-time PCR and immunobloting techniques were used to test the expression of p53 at gene and protein level, respectively. Next, immunocytochemistry was used to visualize the localization of p53 protein within the cells. Furthermore, the antiproliferative activity of QA was retested in cells with siRNA silenced P53 gene. RESULTS The activity of QA to modify both the expression and phosphorylation of p53 protein as well as the level of P53 gene is shown. Concomitantly, the nuclear and cytoplasmic localization of phospho-p53 protein upon QA treatment is also presented. Moreover, reduced activity of QA in colon cancer cells with silenced p53 expression is observed. CONCLUSION QA affects the expression of p53 tumor suppressor, both at gene and protein level. The prominent contribution of p53 to the antiproliferative effect of QA in LS180 colon cancer cells can be suggested.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Pharmacology, Medical University in Lublin, Lublin, Poland; Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland.
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University in Lublin, Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University in Lublin, Lublin, Poland
| |
Collapse
|
50
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|