1
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
2
|
Retallick-Townsley KG, Lee S, Cartwright S, Cohen S, Sen A, Jia M, Young H, Dobbyn L, Deans M, Fernandez-Garcia M, Huckins LM, Brennand KJ. Dynamic stress- and inflammatory-based regulation of psychiatric risk loci in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602755. [PMID: 39026810 PMCID: PMC11257632 DOI: 10.1101/2024.07.09.602755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G. Retallick-Townsley
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Seoyeon Lee
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sam Cartwright
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sophie Cohen
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Annabel Sen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meng Jia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Hannah Young
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee Dobbyn
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Deans
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meilin Fernandez-Garcia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Laura M. Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen J. Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
3
|
Martín-Guerrero SM, Martín-Estebané M, Lara Ordóñez AJ, Cánovas M, Martín-Oliva D, González-Maeso J, Cutillas PR, López-Giménez JF. Maternal Immune Activation imprints translational dysregulation and differential MAP2 phosphorylation in descendant neural stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597886. [PMID: 38895311 PMCID: PMC11185659 DOI: 10.1101/2024.06.07.597886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alterations induced by maternal immune activation (MIA) during gestation impact the subsequent neurodevelopment of progeny, a process that in humans, has been linked to the development of several neuropsychiatric conditions. To undertake a comprehensive examination of the molecular mechanisms governing MIA, we have devised an in vitro model based on neural stem cells (NSCs) sourced from fetuses carried by animals subjected to Poly I:C treatment. These neural progenitors demonstrate proliferative capacity and can be effectively differentiated into both neurons and glial cells. Transcriptomic, proteomic, and phosphoproteomic analyses conducted on these cellular models, in conjunction with counterparts from control treatments, revealed discernible shifts in the expression levels of a specific subset of proteins implicated in neuronal function. Noteworthy, we found an absence of congruence between these alterations at the transcriptomic level, suggesting that differences in protein translation contribute to the observed dysregulation. Furthermore, the phosphoproteomic data highlighted a discernible discrepancy in the basal phosphorylation of proteins between differentiated cells from both experimental groups, particularly within proteins associated with cytoskeletal architecture and synaptic functionality, notably those belonging to the MAP family. Observed alterations in MAP phosphorylation were found to potentially have functional consequences as they correlate with changes in neuronal plasticity and the establishment of neuronal synapses. Our data agrees with previous published observations and further underscore the importance of MAP2 phosphorylation state on its function and the impact that this protein has in neuronal structure and function.
Collapse
|
4
|
Liu J, Liu JB, Ke XY. [Research progress on the mechanism of the impact of maternal childhood trauma on intergenerational transmission]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:207-212. [PMID: 38436321 PMCID: PMC10921875 DOI: 10.7499/j.issn.1008-8830.2309147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024]
Abstract
Childhood trauma refers to trauma experiences encountered during childhood and adolescence. Maternal childhood trauma experiences have a lasting impact on the next generation, affecting their physical and mental well-being. The mechanisms involved include the hypothalamic-pituitary-adrenal axis, inflammatory factors, brain structure and function, gene interactions, and parenting styles. This paper systematically reviews the mechanisms of the impact of maternal childhood trauma on intergenerational transmission, providing insights for the prevention of intergenerational transmission of childhood trauma.
Collapse
Affiliation(s)
- Juan Liu
- School of Mental Health, Jining Medical University, Jining, Shandong 272000, China (Ke X-Y, ); Department of Child Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong 518000, China (Liu J-B, 308017398@qq. com)
| | | | - Xiao-Yin Ke
- School of Mental Health, Jining Medical University, Jining, Shandong 272000, China (Ke X-Y, ); Department of Child Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong 518000, China (Liu J-B, 308017398@qq. com)
| |
Collapse
|
5
|
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17:1320319. [PMID: 38260010 PMCID: PMC10800711 DOI: 10.3389/fnins.2023.1320319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Brain development is a complex process that begins during pregnancy, and the events occurring during this sensitive period can affect the offspring's neurodevelopmental outcomes. Respiratory viral infections are frequently reported in pregnant women, and, in the last few decades, they have been related to numerous neuropsychiatric sequelae. Respiratory viruses can disrupt brain development by directly invading the fetal circulation through vertical transmission or inducing neuroinflammation through the maternal immune activation and production of inflammatory cytokines. Influenza virus gestational infection has been consistently associated with psychotic disorders, such as schizophrenia and autism spectrum disorder, while the recent pandemic raised some concerns regarding the effects of severe acute respiratory syndrome coronavirus 2 on neurodevelopmental outcomes of children born to affected mothers. In addition, emerging evidence supports the possible role of respiratory syncytial virus infection as a risk factor for adverse neuropsychiatric consequences. Understanding the mechanisms underlying developmental dysfunction allows for improving preventive strategies, early diagnosis, and prompt interventions.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Rodriguez-Zas SL, Southey NL, Rund L, Antonson AM, Nowak RA, Johnson RW. Prenatal and postnatal challenges affect the hypothalamic molecular pathways that regulate hormonal levels. PLoS One 2023; 18:e0292952. [PMID: 37851674 PMCID: PMC10584192 DOI: 10.1371/journal.pone.0292952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing. Significant differential expression (FDR-adjusted p value < 0.05) was detected in the profile of 222 genes. Genes involved in the Gene Ontology biological process of regulation of hormone levels tended to be over-expressed in individuals exposed to both challenges relative to individuals exposed to either one challenge, and most of these genes were over-expressed in MIA females relative to males across nursing levels. Differentially expressed genes included Fshb, Ttr, Agrp, Gata3, Foxa2, Tfap2b, Gh1, En2, Cga, Msx1, and Npy. The study also found that prenatal and postnatal challenges, as well as sex, impacted the regulation of neurotransmitter activity and immune effector processes in the hypothalamus. In particular, the olfactory transduction pathway genes were over-expressed in weaned MIA males, and several transcription factors were potentially found to target the differentially expressed genes. Overall, these results highlight how multiple environmental challenges can interact and affect the molecular mechanisms of the hypothalamus, including hormonal, immune response, and neurotransmitter processes.
Collapse
Affiliation(s)
- Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicole L. Southey
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Laurie Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Romana A. Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
7
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
8
|
Gravina G, Ardalan M, Chumak T, Nilsson AK, Ek JC, Danielsson H, Svedin P, Pekny M, Pekna M, Sävman K, Hellström A, Mallard C. Proteomics identifies lipocalin-2 in neonatal inflammation associated with cerebrovascular alteration in mice and preterm infants. iScience 2023; 26:107217. [PMID: 37496672 PMCID: PMC10366453 DOI: 10.1016/j.isci.2023.107217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus (S.) epidermidis is the most common nosocomial coagulase-negative staphylococci infection in preterm infants. Clinical signs of infection are often unspecific and novel markers to complement diagnosis are needed. We investigated proteomic alterations in mouse brain after S. epidermidis infection and in preterm infant blood. We identified lipocalin-2 (LCN2) as a crucial protein associated with cerebrovascular changes and astrocyte reactivity in mice. We further proved that LCN2 protein expression was associated with endothelial cells but not astrocyte reactivity. By combining network analysis and differential expression approaches, we identified LCN2 linked to blood C-reactive protein levels in preterm infants born <28 weeks of gestation. Blood LCN2 levels were associated with similar alterations of cytokines and chemokines in both infected mice and human preterm infants with increased levels of C-reactive protein. This experimental and clinical study suggests that LCN2 may be a marker of preterm infection/inflammation associated with cerebrovascular changes and neuroinflammation.
Collapse
Affiliation(s)
- Giacomo Gravina
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuropsychiatric Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joakim C. Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Danielsson
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- University of Newcastle, Newcastle, NSW, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Marcela Pekna
- University of Newcastle, Newcastle, NSW, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Laboratory of Regenerative Neurobiology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Yotova AY, Li LL, O’Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Embryonic and adult synaptic proteome perturbations after maternal immune activation: Identification of persistent changes relevant for early intervention. RESEARCH SQUARE 2023:rs.3.rs-3100753. [PMID: 37461513 PMCID: PMC10350178 DOI: 10.21203/rs.3.rs-3100753/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Maternal infections during pregnancy pose an increased risk for neurodevelopmental psychiatric disorders (NPDs) in the offspring. Here, we examined age- and sex-dependent dynamic changes of the hippocampal synaptic proteome after maternal immune activation (MIA) in embryonic and adult mice. Adult male and female MIA offspring exhibited social deficits and sex-specific depression-like behaviours, among others, validating the model. Furthermore, we observed dose-, age-, and sex-dependent synaptic proteome differences. Analysis of the embryonic synaptic proteome implicates sphingolipid and ketoacid metabolism pathway disruptions during neurodevelopment for NPD-pertinent sequelae. In the embryonic hippocampus, prenatal immune activation also led to changes in neuronal guidance, glycosphingolipid metabolism important for signalling and myelination, and post-translational modification of proteins that regulate intercellular interaction and developmental timing. In adulthood, the observed changes in synaptoneurosomes revealed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, and hormone-mediated metabolism. Importantly, 68 of the proteins with differential abundance in the embryonic brains of MIA offspring were also altered in adulthood, 75% of which retained their directionality. These proteins are involved in synaptic organisation, neurotransmitter receptor regulation, and the vesicle cycle. A cluster of persistently upregulated proteins, including AKT3, PAK1/3, PPP3CA, formed a functional network enriched in the embryonic brain that is involved in cellular responses to environmental stimuli. To infer a link between the overlapping protein alterations and cognitive and psychiatric traits, we probed human phenome-wise association study data for cognitive and psychiatric phenotypes and all, but PORCN were significantly associated with the investigated domains. Our data provide insights into the dynamic effects of an early prenatal immune activation on developing and mature hippocampi and highlights targets for early intervention in individuals exposed to such immune challenges.
Collapse
Affiliation(s)
- Anna Y. Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - Aet O’Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014, Turku, Finland
| | - David A. Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| |
Collapse
|
10
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
11
|
Alvizi L, Nani D, Brito LA, Kobayashi GS, Passos-Bueno MR, Mayor R. Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene-environment interaction. Nat Commun 2023; 14:2868. [PMID: 37225711 PMCID: PMC10209087 DOI: 10.1038/s41467-023-38526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.
Collapse
Affiliation(s)
- Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Diogo Nani
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciano Abreu Brito
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
12
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Rieger NS, Ng AJ, Lee S, Brady BH, Christianson JP. Maternal immune activation alters social affective behavior and sensitivity to corticotropin releasing factor in male but not female rats. Horm Behav 2023; 149:105313. [PMID: 36706685 PMCID: PMC9974777 DOI: 10.1016/j.yhbeh.2023.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Prenatal infection increases risk for neurodevelopmental disorders such as autism in offspring. In rodents, prenatal administration of the viral mimic Polyinosinic: polycytidylic acid (Poly I: C) allows for investigation of developmental consequences of gestational sickness on offspring social behavior and neural circuit function. Because maternal immune activation (MIA) disrupts cortical development and sociability, we examined approach and avoidance in a rat social affective preference (SAP) task. Following maternal Poly I:C (0.5 mg/kg) injection on gestational day 12.5, male adult offspring (PN 60-64) exhibited atypical social interactions with stressed conspecifics whereas female SAP behavior was unaffected by maternal Poly I:C. Social responses to stressed conspecifics depend upon the insular cortex where corticotropin releasing factor (CRF) modulates synaptic transmission and SAP behavior. We characterized insular field excitatory postsynaptic potentials (fEPSP) in adult offspring of Poly I:C or control treated dams. Male MIA offspring showed decreased sensitivity to CRF (300 nM) while female MIA offspring showed greater sensitivity to CRF compared to sham offspring. These sex specific effects appear to be behaviorally relevant as CRF injected into the insula of male and female rats prior to social exploration testing had no effect in MIA male offspring but increased social interaction in female MIA offspring. We examined the cellular distribution of CRF receptor mRNA but found no effect of maternal Poly I:C in the insula. Together, these experiments reveal sex specific effects of prenatal infection on offspring responses to social affective stimuli and identify insular CRF signaling as a novel neurobiological substrate for autism risk.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Alexandra J Ng
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Shanon Lee
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Bridget H Brady
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
14
|
Massaquoi MS, Kong GL, Chilin-Fuentes D, Ngo JS, Horve PF, Melancon E, Hamilton MK, Eisen JS, Guillemin K. Cell-type-specific responses to the microbiota across all tissues of the larval zebrafish. Cell Rep 2023; 42:112095. [PMID: 36787219 PMCID: PMC10423310 DOI: 10.1016/j.celrep.2023.112095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Animal development proceeds in the presence of intimate microbial associations, but the extent to which different host cells across the body respond to resident microbes remains to be fully explored. Using the vertebrate model organism, the larval zebrafish, we assessed transcriptional responses to the microbiota across the entire body at single-cell resolution. We find that cell types across the body, not limited to tissues at host-microbe interfaces, respond to the microbiota. Responses are cell-type-specific, but across many tissues the microbiota enhances cell proliferation, increases metabolism, and stimulates a diversity of cellular activities, revealing roles for the microbiota in promoting developmental plasticity. This work provides a resource for exploring transcriptional responses to the microbiota across all cell types of the vertebrate body and generating new hypotheses about the interactions between vertebrate hosts and their microbiota.
Collapse
Affiliation(s)
- Michelle S Massaquoi
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Thermo Fisher Scientific, 29851 Willow Creek Road, Eugene, OR 97402, USA; Thermo Fisher Scientific, 22025 20th Avenue SE, Bothell, WA 98021, USA
| | - Garth L Kong
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Daisy Chilin-Fuentes
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Julia S Ngo
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Patrick F Horve
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - M Kristina Hamilton
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA; Thermo Fisher Scientific, 29851 Willow Creek Road, Eugene, OR 97402, USA
| | - Judith S Eisen
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
15
|
Khodosevich K, Sellgren CM. Neurodevelopmental disorders-high-resolution rethinking of disease modeling. Mol Psychiatry 2023; 28:34-43. [PMID: 36434058 PMCID: PMC9812768 DOI: 10.1038/s41380-022-01876-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Neurodevelopmental disorders arise due to various risk factors that can perturb different stages of brain development, and a combinatorial impact of these risk factors programs the phenotype in adulthood. While modeling the complete phenotype of a neurodevelopmental disorder is challenging, individual developmental perturbations can be successfully modeled in vivo in animals and in vitro in human cellular models. Nevertheless, our limited knowledge of human brain development restricts modeling strategies and has raised questions of how well a model corresponds to human in vivo brain development. Recent progress in high-resolution analysis of human tissue with single-cell and spatial omics techniques has enhanced our understanding of the complex events that govern the development of the human brain in health and disease. This new knowledge can be utilized to improve modeling of neurodevelopmental disorders and pave the way to more accurately portraying the relevant developmental perturbations in disease models.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Carl M Sellgren
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
17
|
Boktor JC, Adame MD, Rose DR, Schumann CM, Murray KD, Bauman MD, Careaga M, Mazmanian SK, Ashwood P, Needham BD. Global metabolic profiles in a non-human primate model of maternal immune activation: implications for neurodevelopmental disorders. Mol Psychiatry 2022; 27:4959-4973. [PMID: 36028571 PMCID: PMC9772216 DOI: 10.1038/s41380-022-01752-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Epidemiological evidence implicates severe maternal infections as risk factors for neurodevelopmental disorders, such as ASD and schizophrenia. Accordingly, animal models mimicking infection during pregnancy, including the maternal immune activation (MIA) model, result in offspring with neurobiological, behavioral, and metabolic phenotypes relevant to human neurodevelopmental disorders. Most of these studies have been performed in rodents. We sought to better understand the molecular signatures characterizing the MIA model in an organism more closely related to humans, rhesus monkeys (Macaca mulatta), by evaluating changes in global metabolic profiles in MIA-exposed offspring. Herein, we present the global metabolome in six peripheral tissues (plasma, cerebrospinal fluid, three regions of intestinal mucosa scrapings, and feces) from 13 MIA and 10 control offspring that were confirmed to display atypical neurodevelopment, elevated immune profiles, and neuropathology. Differences in lipid, amino acid, and nucleotide metabolism discriminated these MIA and control samples, with correlations of specific metabolites to behavior scores as well as to cytokine levels in plasma, intestinal, and brain tissues. We also observed modest changes in fecal and intestinal microbial profiles, and identify differential metabolomic profiles within males and females. These findings support a connection between maternal immune activation and the metabolism, microbiota, and behavioral traits of offspring, and may further the translational applications of the MIA model and the advancement of biomarkers for neurodevelopmental disorders such as ASD or schizophrenia.
Collapse
Affiliation(s)
- Joseph C Boktor
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark D Adame
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Cynthia M Schumann
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Karl D Murray
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sarkis K Mazmanian
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, 95616, USA.
- The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, 95817, USA.
| | - Brittany D Needham
- Department of Anatomy, Cell Biology & Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Cipriani C, Giudice M, Petrone V, Fanelli M, Minutolo A, Miele MT, Toschi N, Maracchioni C, Siracusano M, Benvenuto A, Coniglio A, Curatolo P, Mazzone L, Sandro G, Garaci E, Sinibaldi-Vallebona P, Matteucci C, Balestrieri E. Modulation of human endogenous retroviruses and cytokines expression in peripheral blood mononuclear cells from autistic children and their parents. Retrovirology 2022; 19:26. [PMID: 36451209 PMCID: PMC9709758 DOI: 10.1186/s12977-022-00603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Putative pathogenic effects mediated by human endogenous retroviruses (HERVs) in neurological and psychiatric disorders in humans have been extensively described. HERVs may alter the development of the brain by means of several mechanisms, including modulation of gene expression, alteration of DNA stability, and activation of immune system. We recently demonstrated that autistic children and their mothers share high expression levels of some HERVs and cytokines in peripheral blood mononuclear cells (PBMCs) ex vivo, suggesting a close mother-child association in Autism Spectrum Disorder (ASD). RESULTS In the present study, PBMCs from autistic children and their parents were exposed to stimulating factors (Interleukin-2/Phytohaemagglutinin) or drugs, as Valproic acid and Efavirenz. The results show that HERVs and cytokines expression can be modulated in vitro by different stimuli in PBMCs from autistic children and their mothers, while no significant changes were found in PBMCs ASD fathers or in controls individuals. In particular, in vitro exposure to interleukin-2/Phytohaemagglutinin or valproic acid induces the expression of several HERVs and cytokines while Efavirenz inhibits them. CONCLUSION Herein we show that autistic children and their mothers share an intrinsic responsiveness to in vitro microenvironmental changes in expressing HERVs and pro-inflammatory cytokines. Remarkably, the antiretroviral drug Efavirenz restores the expression of specific HERV families to values similar to those of the controls, also reducing the expression of proinflammatory cytokines but keeping the regulatory ones high. Our findings open new perspectives to study the role of HERVs in the biological mechanisms underlying Autism.
Collapse
Affiliation(s)
- Chiara Cipriani
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giudice
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Vita Petrone
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marialaura Fanelli
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Minutolo
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martino T. Miele
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy ,grid.38142.3c000000041936754XMartinos Center for Biomedical Imaging and Harvard Medical School, Boston, USA
| | - Christian Maracchioni
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Siracusano
- grid.6530.00000 0001 2300 0941Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Arianna Benvenuto
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Antonella Coniglio
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Paolo Curatolo
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Luigi Mazzone
- grid.413009.fChild Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| | - Grelli Sandro
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,Virology Unit, Policlinic of Tor Vergata, 00133 Rome, Italy
| | - Enrico Garaci
- University San Raffaele, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Pisana, 00133 Rome, Italy
| | - Paola Sinibaldi-Vallebona
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy ,grid.5326.20000 0001 1940 4177Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Claudia Matteucci
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Emanuela Balestrieri
- grid.6530.00000 0001 2300 0941Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
19
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
20
|
Zhou J, Teng Y, Zhang F, Ru X, Li P, Wang J, Yan S, Zhu P, Tao F, Huang K. Sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development: The Ma'anshan birth cohort study. Brain Behav Immun 2022; 104:110-121. [PMID: 35661681 DOI: 10.1016/j.bbi.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Placental inflammation may contribute to brain abnormalities and childhood neuropsychiatric disorders, but limited knowledge is available on the association of placental inflammatory cytokine levels and offspring's behavioral development. This study aimed to examine the sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development. METHODS 3474 pregnant women were recruited as the initial study population in the Ma'anshan birth cohort (MABC) study. Placentas (n = 2519) were collected during childbirth, and the mRNA expression of IL-8, IL-1β, CRP, TNF-α, IL-6, IL-10, and IL-4 was assessed. The Child Behavior Checklist 1.5-5 (CBCL 1.5-5) was used to assess children's behavioral development at 4 years old. A T-score ≥ 60 on summary scales or a score ≥ 65 on syndrome scales was regarded as the borderline clinical range. Multiple linear regression models and binary logistic regression models were applied to explore the sex-specific associations between placental inflammatory cytokines mRNA transcript levels and preschoolers' behavioral development. RESULTS Sex-specific associations between placental inflammatory cytokines mRNA expression and preschoolers' behavioral development were observed. There was a positive association between IL-8 and CBCL scores for boys on anxious/depressed problems, aggressive behaviors, externalizing problems and total problems. Logistic regression models showed that high levels of IL-8 were associated with a higher risk of girls' emotionally reactive problems and sleep problems compared to low/medium levels. High TNF-α was correlated with increased sleep problem scores in boys, and medium TNF-α (vs. low levels) was associated with an increased risk of girls' externalizing problems. Medium levels of CRP, IL-1β, and IL-6 were found to be associated with a decreased risk of girls' behavioral problems compared to low/high levels. For anti-inflammatory cytokines, medium IL-10 and IL-4 (vs. low levels) were observed to be associated with a lower risk of internalizing problems in boys and externalizing problems in girls, respectively. High IL-10 was correlated with decreased attention problem scores in boys. CONCLUSION This study indicates that placental inflammatory cytokine mRNA expression of IL-8, CRP, TNF-α, IL-1β, IL-4 and IL-10 may be associated with preschoolers' behavioral development in a sex-specific manner.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Peixuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
21
|
Anderson RC, O'Keeffe GW, McDermott KW. Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. J Anat 2022; 241:938-950. [PMID: 35808977 PMCID: PMC9482694 DOI: 10.1111/joa.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal immune activation (MIA) during gestation has been implicated in the development of neurological disorders such as schizophrenia and autism. Epidemiological studies have suggested that the effect of MIA may depend on the gestational timing of the immune challenge and the region of the central nervous system (CNS) in question. This study investigated the effects of MIA with 100 μg/kg lipopolysaccharide at either Embryonic days (E)12 or E16 on the oligodendrocytes, microglia and astrocytes of the offspring spinal cord. At E16, MIA decreased the number of olig2+ and Iba‐1+ cells in multiple grey and white matter regions of the developing spinal cord 5 h after injection. These decreases were not observed at postnatal day 14. In contrast, MIA at E12 did not alter Olig2+ or Iba‐1+ cell number in the developing spinal cord 5 h after injection, however, Olig2+ cell number was decreased in the ventral grey matter of the P14 spinal cord. No changes were observed in glial fibrillary acidic protein (GFAP) expression at P14 following MIA at either E12 or E16. These data suggest that E16 may be a window of immediate vulnerability to MIA during spinal cord development, however, the findings also suggest that the developmental process may be capable of compensation over time. Potential changes in P14 animals following the challenge at E12 are indicative of the complexity of the effects of MIA during the developmental process.
Collapse
Affiliation(s)
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
22
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
23
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
24
|
Mendelian randomization of cytokines in schizophrenia and depression: What does this tell us about causal chains in these illnesses? Brain Behav Immun 2022; 99:130-131. [PMID: 34600087 DOI: 10.1016/j.bbi.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
|
25
|
Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. IMMUNO 2021. [DOI: 10.3390/immuno1040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response of gestating females to infection or stress can disrupt gene expression in the offspring’s amygdala, resulting in lasting neurodevelopmental, physiological, and behavioral disorders. The effects of maternal immune activation (MIA) can be impacted by the offspring’s sex and exposure to additional stressors later in life. The objectives of this study were to investigate the disruption of alternative splicing patterns associated with MIA in the offspring’s amygdala and characterize this disruption in the context of the second stress of weaning and sex. Differential alternative splicing was tested on the RNA-seq profiles of a pig model of viral-induced MIA. Compared to controls, MIA was associated with the differential alternative splicing (FDR-adjusted p-value < 0.1) of 292 and 240 genes in weaned females and males, respectively, whereas 132 and 176 genes were differentially spliced in control nursed female and male, respectively. The majority of the differentially spliced (FDR-adjusted p-value < 0.001) genes (e.g., SHANK1, ZNF672, KCNA6) and many associated enriched pathways (e.g., Fc gamma R-mediated phagocytosis, non-alcoholic fatty liver disease, and cGMP-PKG signaling) have been reported in MIA-related disorders including autism and schizophrenia in humans. Differential alternative splicing associated with MIA was detected in the gene MAG across all sex-stress groups except for unstressed males and SLC2A11 across all groups except unstressed females. Precise understanding of the effect of MIA across second stressors and sexes necessitates the consideration of splicing isoform profiles.
Collapse
|
26
|
Effects of maternal psychological stress during pregnancy on offspring brain development: Considering the role of inflammation and potential for preventive intervention. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:461-470. [PMID: 34718150 PMCID: PMC9043032 DOI: 10.1016/j.bpsc.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Heightened psychological stress during pregnancy has repeatedly been associated with increased risk for offspring development of behavior problems and psychiatric disorders. This review covers a rapidly growing body of research with the potential to advance a mechanistic understanding of these associations grounded in knowledge about maternal-placental-fetal stress biology and fetal brain development. Specifically, we highlight research employing magnetic resonance imaging to examine the infant brain soon after birth in relation to maternal psychological stress during pregnancy to increase capacity to identify specific alterations in brain structure and function and to differentiate between effects of pre- versus postnatal exposures. We then focus on heightened maternal inflammation during pregnancy as a mechanism through which maternal stress influences the developing fetal brain based on extensive preclinical literature and emerging research in humans. We place these findings in the context of recent work identifying psychotherapeutic interventions found to be effective for reducing psychological stress among pregnant individuals, which also show promise for reducing inflammation. We argue that a focus on inflammation, among other mechanistic pathways, has the potential to lead to a productive and necessary integration of research focused on the effects of maternal psychological stress on offspring brain development and prevention and intervention studies aimed at reducing maternal psychological stress during pregnancy. In addition to increasing capacity for common measurements and understanding potential mechanisms of action relevant to maternal mental health and fetal neurodevelopment, this focus can inform and broaden thinking about prevention and intervention strategies.
Collapse
|
27
|
Alpha lipoic acid ameliorates detrimental effects of maternal lipopolysaccharides exposure on prefrontal white matter in adult male offspring rats. J Chem Neuroanat 2021; 118:102038. [PMID: 34610418 DOI: 10.1016/j.jchemneu.2021.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Activation of the maternal immune system by lipopolysaccharide (LPS) increases the production of proinflammatory cytokines, free radicals, and reactive oxygen species (ROS), all of which play a significant role in the pathogenesis of many offspring neurodevelopmental disorders. Alpha Lipoic Acid (ALA) is a natural compound that has anti-inflammatory and antioxidant properties. This study was performed to assess the effect of prenatal exposure to LPS on the prefrontal white matter of rat offspring and evaluate the potential protective effects of ALA co-administration during pregnancy. METHODS Pregnant Wistar rats were randomly divided into six groups (n = 6 each group): (1) control, (2) received LPS (100 μg/kg, intraperitoneally (IP) on gestational day 9.5 (GD 9.5), (3) received ALA (20 mg/kg) from GD1 to GD11, (4) LPS+ALA received LPS on GD9.5 and ALA from GD1 to GD11, (5 and 6) received LPS and ALA vehicle respectively. In each group, 21-day old male offspring (2 male pups from each mother) was harvested, and then their prefrontal white matter was separated and prepared for the ultrastructural, stereological, and molecular assays. RESULTS In utero exposure to LPS led to a significant decrease in nerve cell counts, ultrastructural alterations in myelinated axons, and abnormal changes in genes expression of Sox10,Olig1,yrf,Wnt in the prefrontal of the rat offspring. Co-administration of ALA resulted in amelioration of those abnormal changes in the LPS rat offspring. CONCLUSION The findings of our preclinical study, explore that prenatal ALA treatment efficiently protects the nervous system against LPS induced abnormal changes in the offspring.
Collapse
|
28
|
Laighneach A, Desbonnet L, Kelly JP, Donohoe G, Morris DW. Meta-Analysis of Brain Gene Expression Data from Mouse Model Studies of Maternal Immune Activation Using Poly(I:C). Genes (Basel) 2021; 12:genes12091363. [PMID: 34573345 PMCID: PMC8471627 DOI: 10.3390/genes12091363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal immune activation (MIA) is a known risk factor for schizophrenia (SCZ) and autism spectrum disorder (ASD) and is often modelled in animal studies in order to study the effect of prenatal infection on brain function including behaviour and gene expression. Although the effect of MIA on gene expression are highly heterogeneous, combining data from multiple gene expression studies in a robust method may shed light on the true underlying biological effects caused by MIA and this could inform studies of SCZ and ASD. This study combined four RNA-seq and microarray datasets in an overlap analysis and ranked meta-analysis in order to investigate genes, pathways and cell types dysregulated in the MIA mouse models. Genes linked to SCZ and ASD and crucial in neurodevelopmental processes including neural tube folding, regulation of cellular stress and neuronal/glial cell differentiation were among the most consistently dysregulated in these ranked analyses. Gene ontologies including K+ ion channel function, neuron and glial cell differentiation, synaptic structure, axonal outgrowth, cilia function and lipid metabolism were also strongly implicated. Single-cell analysis identified excitatory and inhibitory cell types in the cortex, hippocampus and striatum that may be affected by MIA and are also enriched for genes associated with SCZ, ASD and cognitive phenotypes. This points to the cellular location of molecular mechanisms that may be consistent between the MIA model and neurodevelopmental disease, improving our understanding of its utility to study prenatal infection as an environmental stressor.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
- Correspondence:
| |
Collapse
|
29
|
Tsukada T, Sakata-Haga H, Shimada H, Shoji H, Hatta T. Mid-pregnancy maternal immune activation increases Pax6-positive and Tbr2-positive neural progenitor cells and causes integrated stress response in the fetal brain in a mouse model of maternal viral infection. IBRO Neurosci Rep 2021; 11:73-80. [PMID: 34409402 PMCID: PMC8363822 DOI: 10.1016/j.ibneur.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Maternal immune activation (MIA) in midpregnancy is a risk factor for neurodevelopmental disorders. Improper brain development may cause malformations of the brain; maldevelopment induced by MIA may lead to a pathology-related phenotype. In this study, a single intraperitoneal injection of 20 mg/kg polyriboinosinic–polyribocytidylic acid [poly(I:C)] was administered to C57BL/6J mice on embryonic day (E) 12.5 to mimic maternal viral infection. Histopathological analysis of neurogenesis was performed using markers for Pax6, Tbr2, and Tbr1. In these fetuses, significant increases were observed in the proportion of Pax6-positive neural progenitor cells and Pax6/Tbr2 double-positive cells 24 h after poly(I:C) injection. There were no differences in the proportion of Tbr1-positive postmitotic neurons 48 h after poly(I:C) injection. At E18.5, there were more Pax6-positive and Tbr2-positive neural progenitor cells in the poly(I:C)-injected group than in the saline-injected group. Gene ontology enrichment analysis of poly(I:C)-induced differentially expressed genes in the fetal brain at E12.5 demonstrated that these genes were enriched in terms including response to cytokine, response to decreased oxygen levels in the category of biological process. At E13.5, activating transcription factor 4 (Atf4), which is an effector of integrated stress response, was significantly upregulated in the fetal brain. Our results show that poly(I:C)-induced MIA at E12.5 leads to dysregulated neurogenesis and upregulates Atf4 in the fetal brain. These findings provide a new insight in the mechanism of MIA causing improper brain development and subsequent neurodevelopmental disorders. MIA increases Pax6-positive and Tbr2-positive neural progenitor cells. MIA impaired the process of neurogenesis from as early as the acute stage. MIA upregulated Atf4, an effector of integrated stress response, in the fetal brain.
Collapse
Key Words
- ASD, autism spectrum disorders
- Activating transcription factor 4
- Atf4, activating transcription factor 4
- CP, cortical plate
- DEG, differentially expressed gene
- ISR, integrated stress response
- Integrated stress response
- MIA, Maternal immune activation
- Maternal immune activation
- NPCs, neural progenitor cells
- Neurogenesis
- Polyriboinosinic–polyribocytidylic acid
- SVZ, subventricular zone
- UPR, unfolded protein response
- Unfolded protein response
- VZ, ventricular zone
- [polyI:C], polyriboinosinic–polyribocytidylic acid
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author at: Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author.
| |
Collapse
|
30
|
Antonson AM, Kenney AD, Chen HJ, Corps KN, Yount JS, Gur TL. Moderately pathogenic maternal influenza A virus infection disrupts placental integrity but spares the fetal brain. Brain Behav Immun 2021; 96:28-39. [PMID: 33989741 PMCID: PMC8319055 DOI: 10.1016/j.bbi.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/15/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal infection during pregnancy is a known risk factor for offspring mental health disorders. Animal models of maternal immune activation (MIA) have implicated specific cellular and molecular etiologies of psychiatric illness, but most rely on pathogen mimetics. Here, we developed a mouse model of live H3N2 influenza A virus (IAV) infection during pregnancy that induces a robust inflammatory response but is sublethal to both dams and offspring. We observed classic indicators of lung inflammation and severely diminished weight gain in IAV-infected dams. This was accompanied by immune cell infiltration in the placenta and partial breakdown of placental integrity. However, indications of fetal neuroinflammation were absent. Further hallmarks of mimetic-induced MIA, including enhanced circulating maternal IL-17A, were also absent. Respiratory IAV infection did result in an upregulation in intestinal expression of transcription factor RORγt, master regulator of a subset of T lymphocytes, TH17 cells, which are heavily implicated in MIA-induced etiologies. Nonetheless, subsequent augmentation in IL-17A production and concomitant overt intestinal injury was not evident. Our results suggest that mild or moderately pathogenic IAV infection during pregnancy does not inflame the developing fetal brain, and highlight the importance of live pathogen infection models for the study of MIA.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Adam D Kenney
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Helen J Chen
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kara N Corps
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jacob S Yount
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Woods RM, Lorusso JM, Potter HG, Neill JC, Glazier JD, Hager R. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neurosci Biobehav Rev 2021; 129:389-421. [PMID: 34280428 DOI: 10.1016/j.neubiorev.2021.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2023]
Abstract
Maternal immune activation (mIA) during pregnancy is hypothesised to disrupt offspring neurodevelopment and predispose offspring to neurodevelopmental disorders such as schizophrenia. Rodent models of mIA have explored possible mechanisms underlying this paradigm and provide a vital tool for preclinical research. However, a comprehensive analysis of the molecular changes that occur in mIA-models is lacking, hindering identification of robust clinical targets. This systematic review assesses mIA-driven transcriptomic and epigenomic alterations in specific offspring brain regions. Across 118 studies, we focus on 88 candidate genes and show replicated changes in expression in critical functional areas, including elevated inflammatory markers, and reduced myelin and GABAergic signalling proteins. Further, disturbed epigenetic markers at nine of these genes support mIA-driven epigenetic modulation of transcription. Overall, our results demonstrate that current outcome measures have direct relevance for the hypothesised pathology of schizophrenia and emphasise the importance of mIA-models in contributing to the understanding of biological pathways impacted by mIA and the discovery of new drug targets.
Collapse
Affiliation(s)
- Rebecca M Woods
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | - Jarred M Lorusso
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Harry G Potter
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joanna C Neill
- Division of Pharmacy & Optometry, School of Health Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Jocelyn D Glazier
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Center, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
32
|
Ben-Reuven L, Reiner O. Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Mol Psychiatry 2021; 26:1535-1550. [PMID: 31740755 DOI: 10.1038/s41380-019-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Abstract
The broad impairments in cognitive and neurologic functioning found in Autism Spectrum Disorder (ASD) patients are thought to originate during early prenatal developmental stages. Indeed, postmortem and imaging studies in ASD patients detected white-matter abnormalities, as well as prefrontal and temporal cortex deficits, evident from early childhood. Here, we used Maternal Immune Activation (MIA), a mouse model for ASD, in which the offsprings exhibit Autistic-like behaviors as well as cortical abnormalities. However, the dynamics that influence the number and the identity of newly born cortical neurons following maternal inflammation remains unknown. Our study shows early changes in the duration of the S-phase of PAX6+ progenitors, leading to an increased proportion of neurogenic divisions and a reciprocal decrease in the proliferative divisions. In two different time points of maternal inflammation, MIA resulted in an overproduction of CTIP2+ cortical neurons, which remained overrepresented at the end of gestation and in postnatal mice. Interestingly, MIA-resistant IL6-KO mice did not exhibit these changes. Lastly, we propose that elevated levels of the transcription factor PAX6 following MIA supports the overproduction of CTIP2+ neurons. Taken together, our data reveals a possible link between maternal immune activation and the excess of cortical neurons found in the cortex of ASD patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
33
|
Page NF, Gandal MJ, Estes ML, Cameron S, Buth J, Parhami S, Ramaswami G, Murray K, Amaral DG, Van de Water JA, Schumann CM, Carter CS, Bauman MD, McAllister AK, Geschwind DH. Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biol Psychiatry 2021; 89:896-910. [PMID: 33386132 PMCID: PMC8052273 DOI: 10.1016/j.biopsych.2020.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal immune activation (MIA) is a proposed risk factor for multiple neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through which MIA imparts risk remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for studying underlying molecular correlates. METHODS We performed RNA sequencing across psychiatrically relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison from 3.5- to 4-year-old male MIA-exposed and control offspring-an age comparable to mid adolescence in humans. RESULTS We identify 266 unique genes differentially expressed in at least one brain region, with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal and regional differences, transcriptomic changes were shared across first- and second-trimester exposures, including for the top differentially expressed genes-PIWIL2 and MGARP. In addition to PIWIL2, several other regulators of retrotransposition and endogenous transposable elements were dysregulated following MIA, potentially connecting MIA to retrotransposition. CONCLUSIONS Together, these results begin to elucidate the brain-level molecular processes through which MIA may impart risk for psychiatric disease.
Collapse
Affiliation(s)
- Nicholas F Page
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, New Jersey
| | - Michael J Gandal
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California
| | - Myka L Estes
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Scott Cameron
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Jessie Buth
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Sepideh Parhami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Gokul Ramaswami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Karl Murray
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Judy A Van de Water
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cameron S Carter
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - A Kimberley McAllister
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Daniel H Geschwind
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California; Department of Neurology, Center for Autism Research and Treatment, Los Angeles, California; Department of Human Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
34
|
Interaction of maternal immune activation and genetic interneuronal inhibition. Brain Res 2021; 1759:147370. [PMID: 33600830 DOI: 10.1016/j.brainres.2021.147370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Genes and environment interact during intrauterine life, and potentially alter the developmental trajectory of the brain. This can result in life-long consequences on brain function. We have previously developed two transgenic mouse lines that suppress Gad1 expression in parvalbumin (PVALB) and neuropeptide Y (NPY) expressing interneuron populations using a bacterial artificial chromosome (BAC)-driven miRNA-based silencing technology. We were interested to assess if maternal immune activation (MIA), genetic interneuronal inhibition, and the combination of these two factors disrupt and result in long-term changes in neuroinflammatory gene expression, sterol biosynthesis, and acylcarnitine levels in the brain of maternally exposed offspring. Pregnant female WT mice were given a single intraperitoneal injection of saline or polyinosinic-polycytidilic acid [poly(I:C)] at E12.5. Brains of offspring were analyzed at postnatal day 90. We identified complex and persistent neuroinflammatory gene expression changes in the hippocampi of MIA-exposed offspring, as well in the hippocampi of Npy/Gad1 and Pvalb/Gad1 mice. In addition, both MIA and genetic inhibition altered the post-lanosterol sterol biosynthesis in the neocortex and disrupted the typical acylcarnitine profile. In conclusion, our findings suggest that both MIA and inhibition of interneuronal function have long-term consequences on critical homeostatic mechanisms of the brain, including immune function, sterol levels, and energy metabolism.
Collapse
|
35
|
Nakamura JP, Gillespie B, Gibbons A, Jaehne EJ, Du X, Chan A, Schroeder A, van den Buuse M, Sundram S, Hill RA. Maternal immune activation targeted to a window of parvalbumin interneuron development improves spatial working memory: Implications for autism. Brain Behav Immun 2021; 91:339-349. [PMID: 33096253 DOI: 10.1016/j.bbi.2020.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022] Open
Abstract
Maternal immune activation (MIA) increases risk for neuropsychiatric disorders such as autism spectrum disorder (ASD) in offspring later in life through unknown causal mechanisms. Growing evidence implicates parvalbumin-containing GABAergic interneurons as a key target in rodent MIA models. We targeted a specific neurodevelopmental window of parvalbumin interneurons in a mouse MIA model to examine effects on spatial working memory, a key domain in ASD that can manifest as either impairments or improvements both clinically and in animal models. Pregnant dams received three consecutive intraperitoneal injections of Polyinosinic:polycytidylic acid (poly(I:C), 5 mg/kg) at gestational days 13, 14 and 15. Spatial working memory was assessed in young adult offspring using touchscreen operant chambers and the Trial-Unique Non-matching to Location (TUNL) task. Anxiety, novelty seeking and short-term memory were assessed using Elevated Plus Maze (EPM) and Y-maze novelty preference tasks. Fluorescent immunohistochemistry was used to assess hippocampal parvalbumin cell density, intensity and co-expression with perineuronal nets. qPCR was used to assess the expression of putatively implicated gene pathways. MIA targeting a window of parvalbumin interneuron development increased spatial working memory performance on the TUNL touchscreen task which was not influenced by anxiety or novelty seeking behaviour. The model reduced fetal mRNA levels of Gad1 and adult hippocampal mRNA levels of Pvalb and the distribution of low intensity parvalbumin interneurons was altered. We speculate a specific timing window for parvalbumin interneuron development underpins the apparently paradoxical improved spatial working memory phenotype found both across several rodent models of autism and clinically in ASD.
Collapse
Affiliation(s)
- Jay P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Andrew Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Emily J Jaehne
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Aaron Chan
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology, La Trobe University, Victoria 3086, Australia; Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
36
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
37
|
Holingue C, Budavari AC, Rodriguez KM, Zisman CR, Windheim G, Fallin MD. Sex Differences in the Gut-Brain Axis: Implications for Mental Health. Curr Psychiatry Rep 2020; 22:83. [PMID: 33216233 PMCID: PMC7717677 DOI: 10.1007/s11920-020-01202-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to highlight how sex differences in the gut-brain axis may contribute to the discrepancies in incidence of neurodevelopmental, psychiatric, and neurodegenerative disorders between females and males. We focus on autism spectrum disorder, psychotic disorders, stress and anxiety disorders, depression, Alzheimer's disease, and Parkinson's disease and additionally discuss the comorbidity between inflammatory bowel disorder and mental health disorders. RECENT FINDINGS Human and animal studies show that sex may modify the relationship between the gut or immune system and brain and behavior. Sex also appears to modify the effect of microbial treatments such as probiotics and antibiotics on brain and behavior. There is emerging evidence that assessing the role of sex in the gut-brain axis may help elucidate the etiology of and identify effective treatments for neurodevelopmental, psychiatric, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA.
- , Baltimore, USA.
| | - Alexa Curhan Budavari
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Katrina M Rodriguez
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Corina R Zisman
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| | - Grace Windheim
- Public Health Studies, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
38
|
Estes ML, Prendergast K, MacMahon JA, Cameron S, Aboubechara JP, Farrelly K, Sell GL, Haapanen L, Schauer JD, Horta A, Shaffer IC, Le CT, Kincheloe GN, Tan DJ, van der List D, Bauman MD, Carter CS, Van de Water J, McAllister AK. Baseline immunoreactivity before pregnancy and poly(I:C) dose combine to dictate susceptibility and resilience of offspring to maternal immune activation. Brain Behav Immun 2020; 88:619-630. [PMID: 32335198 PMCID: PMC7415552 DOI: 10.1016/j.bbi.2020.04.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the potential of rodent models of maternal immune activation (MIA) to identify new biomarkers and therapeutic interventions for a range of psychiatric disorders, current approaches using these models ignore two of the most important aspects of this risk factor for human disease: (i) most pregnancies are resilient to maternal viral infection and (ii) susceptible pregnancies can lead to different combinations of phenotypes in offspring. Here, we report two new sources of variability-the baseline immunoreactivity (BIR) of isogenic females prior to pregnancy and differences in immune responses in C57BL/6 dams across vendors-that contribute to resilience and susceptibility to distinct combinations of behavioral and biological outcomes in offspring. Similar to the variable effects of human maternal infection, MIA in mice does not cause disease-related phenotypes in all pregnancies and a combination of poly(I:C) dose and BIR predicts susceptibility and resilience of pregnancies to aberrant repetitive behaviors and alterations in striatal protein levels in offspring. Even more surprising is that the intermediate levels of BIR and poly(I:C) dose are most detrimental to offspring, with higher BIR and poly(I:C) doses conferring resilience to measured phenotypes in offspring. Importantly, we identify the BIR of female mice as a biomarker before pregnancy that predicts which dams will be most at risk as well as biomarkers in the brains of newborn offspring that correlate with changes in repetitive behaviors. Together, our results highlight considerations for optimizing MIA protocols to enhance rigor and reproducibility and reveal new factors that drive susceptibility of some pregnancies and resilience of others to MIA-induced abnormalities in offspring.
Collapse
Affiliation(s)
- Myka L Estes
- Center for Neuroscience, University of California, Davis, United States
| | | | - Jeremy A MacMahon
- Center for Neuroscience, University of California, Davis, United States
| | - Scott Cameron
- Center for Neuroscience, University of California, Davis, United States
| | | | - Kathleen Farrelly
- Center for Neuroscience, University of California, Davis, United States
| | - Gabrielle L Sell
- Center for Neuroscience, University of California, Davis, United States
| | - Lori Haapanen
- Department of Internal Medicine, University of California, Davis, United States
| | - Joseph D Schauer
- Department of Internal Medicine, University of California, Davis, United States
| | - Aurora Horta
- Center for Neuroscience, University of California, Davis, United States
| | - Ida C Shaffer
- Center for Neuroscience, University of California, Davis, United States
| | - Catherine T Le
- Center for Neuroscience, University of California, Davis, United States; Department of Dermatology, University of California, Davis, United States
| | - Greg N Kincheloe
- Center for Neuroscience, University of California, Davis, United States
| | - Danielle John Tan
- Center for Neuroscience, University of California, Davis, United States
| | | | - Melissa D Bauman
- Dept. of Psychiatry, University of California, Davis, United States
| | - Cameron S Carter
- Center for Neuroscience, University of California, Davis, United States; Dept. of Psychiatry, University of California, Davis, United States; Imaging Research Center, University of California, Davis, United States
| | - Judy Van de Water
- Department of Internal Medicine, University of California, Davis, United States
| | | |
Collapse
|
39
|
Ball G, Seidlitz J, Beare R, Seal M. Cortical remodelling in childhood is associated with genes enriched for neurodevelopmental disorders. Neuroimage 2020; 215:116803. [DOI: 10.1016/j.neuroimage.2020.116803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
|
40
|
Baines KJ, Hillier DM, Haddad FL, Rajakumar N, Schmid S, Renaud SJ. Maternal Immune Activation Alters Fetal Brain Development and Enhances Proliferation of Neural Precursor Cells in Rats. Front Immunol 2020; 11:1145. [PMID: 32582210 PMCID: PMC7295982 DOI: 10.3389/fimmu.2020.01145] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of neurodevelopment is a major risk factor for behavioral deficits and psychiatric illness in offspring. A spectrum of behavioral abnormalities can be recapitulated in rodents by inducing MIA using the viral mimetic, PolyI:C. Many studies have focused on long-term changes in brain structure and behavioral outcomes in offspring following maternal PolyI:C exposure, but acute changes in prenatal development are not well-characterized. Using RNA-Sequencing, we profiled acute transcriptomic changes in rat conceptuses (decidua along with nascent embryo and placenta) after maternal PolyI:C exposure during early gestation, which enabled us to capture gene expression changes provoked by MIA inclusive to the embryonic milieu. We identified a robust increase in expression of genes related to antiviral inflammation following maternal PolyI:C exposure, and a corresponding decrease in transcripts associated with nervous system development. At mid-gestation, regions of the developing cortex were thicker in fetuses prenatally challenged with PolyI:C, with females displaying a thicker ventricular zone and males a thicker cortical mantle. Along these lines, neural precursor cells (NPCs) isolated from fetal brains prenatally challenged with PolyI:C exhibited a higher rate of self-renewal. Expression of Notch1 and the Notch ligand, delta-like ligand 1, which are both highly implicated in maintenance of NPCs and nervous system development, was increased following PolyI:C exposure. These results suggest that MIA elicits rapid gene expression changes within the conceptus, including repression of neurodevelopmental pathways, resulting in profound alterations in fetal brain development.
Collapse
Affiliation(s)
- Kelly J Baines
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dendra M Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Faraj L Haddad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Nagalingam Rajakumar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
41
|
Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I, Schwartz M. Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol Psychiatry 2020; 25:1050-1067. [PMID: 31772304 PMCID: PMC7192855 DOI: 10.1038/s41380-019-0604-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Viral infection during pregnancy is often associated with neuropsychiatric conditions. In mice, exposure of pregnant dams to the viral mimetic poly(I:C), serves as a model that simulates such pathology in the offspring, through a process known as Maternal Immune Activation (MIA). To investigate the mechanism of such effect, we hypothesized that maternal upregulation of Type-I interferon (IFN-I), as part of the dam's antiviral response, might contribute to the damage imposed on the offspring. Using mRNA sequencing and flow cytometry analyses we found that poly(I:C) treatment during pregnancy caused reduced expression of genes related to proliferation and cell cycle in the offspring's microglia relative to controls. This was found to be associated with an IFN-I signature in the embryonic yolk sac, the origin of microglia in development. Neutralizing IFN-I signaling in dams attenuated the effect of MIA on the newborn's microglia, while systemic maternal administration of IFNβ was sufficient to mimic the effect of poly(I:C), and led to increased vulnerability of offspring's microglia to subsequent stress. Furthermore, maternal elevation of IFNβ resulted in behavioral manifestations reminiscent of neuropsychiatric disorders. In addition, by adopting a "two-hit" experimental paradigm, we show a higher sensitivity of the offspring to postnatal stress subsequent to the maternal IFNβ elevation, demonstrated by behavioral irregularities. Our results suggest that maternal upregulation of IFN-I, in response to MIA, interferes with the offspring's programmed microglial developmental cascade, increases their susceptibility to postnatal stress, and leads to behavioral abnormalities.
Collapse
Affiliation(s)
- Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Matcovitch-Natan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Spinrad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Haddad FL, Patel SV, Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci Biobehav Rev 2020; 113:546-567. [PMID: 32320814 DOI: 10.1016/j.neubiorev.2020.04.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) in response to a viral infection during early and mid-gestation has been linked through various epidemiological studies to a higher risk for the child to develop autism or schizophrenia-related symptoms.. This has led to the establishment of the pathogen-free poly I:C-induced MIA animal model for neurodevelopmental disorders, which shows relatively high construct and face validity. Depending on the experimental variables, particularly the timing of poly I:C administration, different behavioural and molecular phenotypes have been described that relate to specific symptoms of neurodevelopmental disorders such as autism spectrum disorder and/or schizophrenia. We here review and summarize epidemiological evidence for the effects of maternal infection and immune activation, as well as major findings in different poly I:C MIA models with a focus on poly I:C exposure timing, behavioural and molecular changes in the offspring, and characteristics of the model that relate it to autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Faraj L Haddad
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Salonee V Patel
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| | - Susanne Schmid
- Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
43
|
Birnbaum R, Weinberger DR. A Genetics Perspective on the Role of the (Neuro)Immune System in Schizophrenia. Schizophr Res 2020; 217:105-113. [PMID: 30850283 PMCID: PMC6728242 DOI: 10.1016/j.schres.2019.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
The immune system has long been hypothesized to play a role in schizophrenia pathogenesis based on data from diverse disciplines. Recent reports of the identification of schizophrenia-associated genetic variants and their initial biological characterization have renewed investigation of the role of the immune system in schizophrenia. In the current review, the plausibility of a role of the immune system in schizophrenia pathogenesis is examined, by revisiting epidemiology, neuroimaging, pharmacology, and developmental biology from a genetics perspective, as well as by synthesizing diverse findings from the emerging and dynamic schizophrenia genomics field. Genetic correlations between schizophrenia and immunological disorders are inconsistent and often contradictory, as are neuroimaging studies of microglia markers. Small therapeutic trials of anti-inflammatory agents targeting immune function have been consistently negative. Some gene expression analyses of post-mortem brains of patients with schizophrenia have reported an upregulation of genes of immune function though others report downregulation, and overall transcriptome profiling to date does not support an upregulation of immune pathways associated with schizophrenia genetic risk. The currently reviewed genetic data do not converge to reveal consistent evidence of the neuroimmune system in schizophrenia pathogenesis, and indeed, a substantive role for the neuroimmune system in schizophrenia has yet to be established.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, United States of America
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Institute of Genomics Medicine, Baltimore, MD, United States of America; Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD, United States of America.
| |
Collapse
|
44
|
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front Psychiatry 2020; 11:852. [PMID: 33061910 PMCID: PMC7475700 DOI: 10.3389/fpsyt.2020.00852] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.
Collapse
Affiliation(s)
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
45
|
Caputo MP, Radlowski EC, Lawson M, Antonson A, Watson JE, Matt SM, Leyshon BJ, Das A, Johnson RW. Herring roe oil supplementation alters microglial cell gene expression and reduces peripheral inflammation after immune activation in a neonatal piglet model. Brain Behav Immun 2019; 81:455-469. [PMID: 31271868 PMCID: PMC6754775 DOI: 10.1016/j.bbi.2019.06.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 01/29/2023] Open
Abstract
Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.
Collapse
Affiliation(s)
- Megan P. Caputo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Veterinary Medical Scholars Program, Office of Research and Advanced Studies, University of Illinois at Urbana-Champaign, College of Veterinary Medicine, 3505 VMBSB, 2001 South Lincoln Ave, Urbana, IL, 61802 USA
| | - Emily C. Radlowski
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Marcus Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Adrienne Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Josephine E. Watson
- Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL, 61802 USA
| | - Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| | - Brian J. Leyshon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL 61802, USA; Department of Biochemistry, School of Molecular & Cellular Biology, University of Illinois at Urbana-Champaign, 393 Morrill Hall, 505 South Goodwin Ave, Urbana, IL 61802, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 VMBSB, 2001 South Lincoln Ave, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL 61801, USA; Bioengineering Department, University of Illinois at Urbana-Champaign, 1102 Everitt Lab, MC-278, 1406 West Green St., Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Matthews Ave, M/C 251, Urbana, IL 61801, USA.
| | - Rodney W. Johnson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 449 Bevier Hall, 905 South Goodwin Ave, Urbana, IL, 61802 USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Dr., Urbana, IL, 61802 USA,Neuroscience Program, University of Illinois at Urbana-Champaign, 2325/21 Beckman Institute, 405 North Matthews Ave, Urbana, IL, 61801 USA
| |
Collapse
|
46
|
Maternal viral infection causes global alterations in porcine fetal microglia. Proc Natl Acad Sci U S A 2019; 116:20190-20200. [PMID: 31527230 DOI: 10.1073/pnas.1817014116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming. Thus, we examined fetal microglial activity during prenatal development in response to maternal infection with live porcine reproductive and respiratory syndrome virus. Fetuses were obtained by cesarean sections performed 7 and 21 d postinoculation (dpi). MIA fetuses had reduced brain weights at 21 dpi compared to controls. Furthermore, MIA microglia increased expression of major histocompatibility complex class II that was coupled with reduced phagocytic and chemotactic activity compared to controls. High-throughput gene-expression analysis of microglial-enriched genes involved in neurodevelopment, the microglia sensome, and inflammation revealed differential regulation in primary microglia and in whole amygdala tissue. Microglia density was increased in the fetal amygdala at 7 dpi. Our data also reveal widespread sexual dimorphisms in microglial gene expression and demonstrate that the consequences of MIA are sex dependent. Overall, these results indicate that fetal microglia are significantly altered by maternal viral infection, presenting a potential mechanism through which MIA impacts prenatal brain development and function.
Collapse
|
47
|
Weber-Stadlbauer U, Meyer U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
O'Connor TG, Miller RK, Salafia C. Placental Studies for Child Development. CHILD DEVELOPMENT PERSPECTIVES 2019; 13:193-198. [PMID: 31413725 DOI: 10.1111/cdep.12338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on children's psychological and behavioral development readily incorporates changing biological models and techniques. In this article, we suggest that, in response to increasing evidence of robust influences of prenatal exposures on children's neurodevelopment and mental and physical health, developmental science also needs to consider the placenta's role in development. We argue why placental mechanisms are plausible targets in developmental science, and suggest initial and practical steps toward integrating placenta markers and mechanisms into research on child development.
Collapse
|
49
|
Dabbah-Assadi F, Alon D, Golani I, Doron R, Kremer I, Beloosesky R, Shamir A. The influence of immune activation at early vs late gestation on fetal NRG1-ErbB4 expression and behavior in juvenile and adult mice offspring. Brain Behav Immun 2019; 79:207-215. [PMID: 30738182 DOI: 10.1016/j.bbi.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023] Open
Abstract
Maternal inflammation during pregnancy is associated with a higher incidence of mental disorders (e.g. schizophrenia and autism) in the offspring. In our study, we investigate the involvement of the NRG-ErbB signaling pathway in rodent fetal brains four hours following maternal immune activation (MIA) insult at two different gestational days (i.e. early vs late). Furthermore, we test the long-term behavioral alteration of the exposed MIA mice at juvenile and adulthood. We demonstrate that MIA at late, but not at early gestation day, altered the expression of NRG1, its receptor ErbB4, and the dopamine D2 receptor four hours post injection of viral or bacterial mimic material in fetal brain. At the behavioral levels, adult late-MIA-exposed female offspring, but not juvenile, display lack preference to a novel object. While working memory alteration observed only in adult male MIA-exposed offspring at late gestation day. In addition, we found that adult females MIA-exposed mice spent more time in the center of the open field than female-saline groups. On the other hand, juvenile male offspring exposed to MIA at early, but not late, gestation day displayed a significant alteration in social interaction. Our results suggest that MIA during late gestation immediately influences the expression levels of the NRG1 and ErbB4 genes, and affects long-term behavioral changes at adulthood. These behavioral changes are time related and sex-specific. Thus, immune activation at late stages of the embryonic brain development initiates the activation of the NRG1-ErbB4 pathway and this disturbance might result in cognitive dysfunction in adulthood.
Collapse
Affiliation(s)
- F Dabbah-Assadi
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - D Alon
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - I Golani
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - R Doron
- Psychobiology Laboratory, School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Israel; Department of Education and Psychology, The Open University, Raanana, Israel
| | - I Kremer
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - R Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - A Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
50
|
Amodeo DA, Lai CY, Hassan O, Mukamel EA, Behrens MM, Powell SB. Maternal immune activation impairs cognitive flexibility and alters transcription in frontal cortex. Neurobiol Dis 2019; 125:211-218. [PMID: 30716470 DOI: 10.1016/j.nbd.2019.01.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epidemiological studies suggest that the risk of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia is increased by prenatal exposure to viral or bacterial infection during pregnancy. It is still unclear how activation of the maternal immune response interacts with underlying genetic factors to influence observed ASD phenotypes. METHODS The current study investigated how maternal immune activation (MIA) in mice impacts gene expression in the frontal cortex in adulthood, and how these molecular changes relate to deficits in cognitive flexibility and social behavior, and increases in repetitive behavior that are prevalent in ASD. Poly(I:C) (20 mg/kg) was administered to dams on E12.5 and offspring were tested for social approach behavior, repetitive grooming, and probabilistic reversal learning in adulthood (n = 8 vehicle; n = 9 Poly(I:C)). We employed next-generation high-throughput mRNA sequencing (RNA-seq) to comprehensively investigate the transcriptome profile in frontal cortex of adult offspring of Poly(I:C)-exposed dams. RESULTS Exposure to poly(I:C) during gestation impaired probabilistic reversal learning and decreased social approach in MIA offspring compared to controls. We found long-term effects of MIA on expression of 24 genes, including genes involved in glutamatergic neurotransmission, mTOR signaling and potassium ion channel activity. Correlations between gene expression and specific behavioral measures provided insight into genes that may be responsible for ASD-like behavioral alterations. CONCLUSIONS These findings suggest that MIA can lead to impairments in cognitive flexibility in mice similar to those exhibited in ASD individuals, and that these impairments are associated with altered gene expression in frontal cortex.
Collapse
Affiliation(s)
- Dionisio A Amodeo
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Psychology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, United States
| | - Chi-Yu Lai
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92093, United States
| | - Omron Hassan
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92093, United States; Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States.
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, CA 9500 Gilman Drive, La Jolla, CA 92093, United States; VISN-22 Mental Illness Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|