1
|
Zhang X, Xiao W, Song C, Zhang J, Liu X, Mao R. Nutrient responses of vascular plants to N 2-fixing tree Alnus hirsuta encroachment in a boreal peatland. Oecologia 2024; 206:1-10. [PMID: 39133236 DOI: 10.1007/s00442-024-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Collapse
Affiliation(s)
- Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wen Xiao
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210046, China
| | - Xueyan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rong Mao
- Key Laboratory of State Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China.
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
2
|
Donnelly RC, Nippert JB, Wedel ER, Ferguson CJ. Grass leaf structural and stomatal trait responses to climate gradients assessed over the 20th century and across the Great Plains, USA. AOB PLANTS 2024; 16:plae055. [PMID: 39430436 PMCID: PMC11489733 DOI: 10.1093/aobpla/plae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Abstract. Using herbarium specimens spanning 133 years and field-collected measurements, we assessed intraspecific trait (leaf structural and stomatal) variability from grass species in the Great Plains of North America. We focused on two widespread, closely related grasses from the tribe Paniceae: Dichanthelium oligosanthes subsp. scribnerianum (C3) and Panicum virgatum (C4). Thirty-one specimens per taxon were sampled from local herbaria from the years 1887 to 2013 to assess trait responses across time to changes in atmospheric [CO2] and growing season precipitation and temperature. In 2021 and 2022, the species were measured from eight grasslands sites to explore how traits vary spatially across natural continental precipitation and temperature gradients. Δ13C increased with atmospheric [CO2] for D. oligosanthes but decreased for P. virgatum, likely linked to increases in precipitation in the study region over the past century. Notably, this is the first record of decreasing Δ13C over time for a C4 species illustrating 13C linkages to climate. As atmospheric [CO2] increased, C:N increased and δ15N decreased for both species and %N decreased for D. oligosanthes. Across a large precipitation gradient, D. oligosanthes leaf traits were more responsive to changes in precipitation than those of P. virgatum. In contrast, only two traits of P. virgatum responded to increases in temperature across a gradient: specific leaf area (increase) and leaf dry matter content (decrease). The only shared significant trend between species was increased C:N with precipitation. Our work demonstrates that these closely related grass species with different photosynthetic pathways exhibited various trait responses across temporal and spatial scales, illustrating the key role of scale of inquiry for forecasting leaf trait responses to future environmental change.
Collapse
Affiliation(s)
- Ryan C Donnelly
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Emily R Wedel
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Carolyn J Ferguson
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Zhang H, Jiang X, Zhu L, Liu L, Liao Z, Du B. A Preliminary Study on the Whole-Plant Regulations of the Shrub Campylotropis polyantha in Response to Hostile Dryland Conditions. Metabolites 2024; 14:495. [PMID: 39330502 PMCID: PMC11433755 DOI: 10.3390/metabo14090495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Drylands cover more than 40% of global land surface and will continue to expand by 10% at the end of this century. Understanding the resistance mechanisms of native species is of particular importance for vegetation restoration and management in drylands. In the present study, metabolome of a dominant shrub Campylotropis polyantha in a dry-hot valley were investigated. Compared to plants grown at the wetter site, C. polyantha tended to slow down carbon (C) assimilation to prevent water loss concurrent with low foliar reactive oxygen species and sugar concentrations at the drier and hotter site. Nitrogen (N) assimilation and turn over were stimulated under stressful conditions and higher leaf N content was kept at the expense of root N pools. At the drier site, roots contained more water but less N compounds derived from the citric acid cycle. The site had little effect on metabolites partitioning between leaves and roots. Generally, roots contained more C but less N. Aromatic compounds were differently impacted by site conditions. The present study, for the first time, uncovers the apparent metabolic adaptations of C. polyantha to hostile dryland conditions. However, due to the limited number of samples, we are cautious about drawing general conclusions regarding the resistance mechanisms. Further studies with a broader spatial range and larger time scale are therefore recommended to provide more robust information for vegetation restoration and management in dryland areas under a changing climate.
Collapse
Affiliation(s)
- Hua Zhang
- College of Urban and Rural Development and Planning, Mianyang Normal University, Xianren Road 30, Mianyang 621000, China;
| | - Xue Jiang
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China;
| | - Lijun Zhu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China; (L.Z.); (L.L.)
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Liu R, Yao Y, Chu Q, Wei D, Wang X, Zhang S. Enhanced soil microbial stability is associated with soil organic carbon storage under high-altitude forestation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122462. [PMID: 39270342 DOI: 10.1016/j.jenvman.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The potential of forestation to mitigate climate warming depends largely on whether it can improve terrestrial carbon (C) storage. Changes in soil microbial stability can cause ecosystem C fluctuations. Unfortunately, it remains unclear whether forestation alters soil microbial stability with cascading effects on C storage in high-altitude ecosystems. In this study, a total of 14 typical planted forests were selected on the Tibetan Plateau. We showed that high-altitude forestation, particularly with poplars, altered the microbial diversity and potentially improved the stability of soil microbial communities. These changes were associated with soil C accumulation and potentially positive feedback on soil organic C storage. Variations in the microbial community stability were mostly caused by changes in soil bulk density and dissolved organic C. Superior network stability was found in fungal community rather than bacterial community. Additionally, there were strong interactions between bacterial and fungal communities that influenced soil C storage. These findings contribute to understand the differences and relationships between bacteria and fungi in plantation soils. This work reveals the potential of high-altitude forestation to mitigate climate warming through insights into the microbial-mediated mechanisms responsible for soil C storage in high-altitude ecosystems.
Collapse
Affiliation(s)
- Ruixuan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuan Yao
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiwen Chu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Da Wei
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Xiaodan Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Wang L. Global plant nitrogen use is controlled by temperature. Nat Commun 2024; 15:7651. [PMID: 39223109 PMCID: PMC11369106 DOI: 10.1038/s41467-024-50803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Liao Z, Zhu L, Liu L, Kreuzwieser J, Werner C, Du B. Comparison of Growth and Metabolomic Profiles of Two Afforestation Cypress Species Cupressus chengiana and Platycladus orientalis Grown at Minjiang Valley in Southwest China. Metabolites 2024; 14:453. [PMID: 39195549 DOI: 10.3390/metabo14080453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, afforestation has been conducted in China's hot and dry valleys. However, there is still a paucity of knowledge regarding the performance of tree species in these semi-arid regions, particularly with regard to interspecies differences. The present study compares the growth and metabolome characteristics of two widely used cypress species, namely Cupressus chengiana and Platycladus orientalis, grown at two sites with distinct climate conditions in the hot and dry Minjiang Valley in southwestern China. The findings indicate that C. chengiana trees exhibit superior growth rates compared to P. orientalis trees at both study sites. In comparison to P. orientalis trees, C. chengiana trees demonstrated a greater tendency to close their stomata in order to prevent water loss at the hotter and drier site, Llianghekou (LHK). Additionally, C. chengiana trees exhibited significantly lower hydrogen peroxide levels than P. orientalis trees, either due to lower production and/or higher scavenging of reactive oxygen species. C. chengiana trees accumulated soluble sugars as well as sugar derivatives, particularly those involved in sucrose and galactose metabolisms under stressful conditions. The species-specific differences were also reflected in metabolites involved in the tricarboxylic acid cycle, nitrogen, and secondary metabolisms. The metabolome profiles of the two species appeared to be influenced by the prevailing climatic conditions. It appeared that the trees at the drier and hotter site, LHK, were capable of efficient nitrogen uptake from the soil despite the low soil nitrogen concentration. This study is the first to compare the growth performance and metabolic profiles of two widely used tree species with high resistance to adverse conditions. In addition to the species-specific differences and adaptations to different sites, the present study also provides insights into potential management strategies to alleviate abiotic stress, particularly with regard to nitrogen nutrients, in the context of climate change.
Collapse
Affiliation(s)
- Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Lijun Zhu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, D-79110 Freiburg, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, D-79110 Freiburg, Germany
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Ecosystem Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Köhler-Allee 53, D-79110 Freiburg, Germany
| |
Collapse
|
7
|
Hu CC, Liu XY, Driscoll AW, Kuang YW, Brookshire ENJ, Lü XT, Chen CJ, Song W, Mao R, Liu CQ, Houlton BZ. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants. Nat Commun 2024; 15:6407. [PMID: 39079989 PMCID: PMC11289379 DOI: 10.1038/s41467-024-50674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.
Collapse
Affiliation(s)
- Chao-Chen Hu
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University, Tianjin, China.
| | - Avery W Driscoll
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Yuan-Wen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - E N Jack Brookshire
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Chong-Juan Chen
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Wei Song
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Rong Mao
- Key Laboratory of National Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, Tianjin, China
| | - Benjamin Z Houlton
- Department of Global Development and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Wong WS, Ruscalleda-Alvarez J, Yong JWH, Stevens JC, Valliere JM, Veneklaas EJ. Limited efficacy of a commercial microbial inoculant for improving growth and physiological performance of native plant species. CONSERVATION PHYSIOLOGY 2024; 12:coae037. [PMID: 38894755 PMCID: PMC11184453 DOI: 10.1093/conphys/coae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Soil microbial inoculants are increasingly being explored as means to improve soil conditions to facilitate ecological restoration. In southwestern Western Australia, highly biodiverse Banksia woodland plant communities are increasingly threatened by various factors including climate change, land development and mining. Banksia woodland restoration is necessary to conserve this plant community. The use of microbial inoculation in Banksia woodland restoration has not yet been investigated. Here, we evaluated the efficacy of a commercial microbial inoculant (GOGO Juice, Neutrog Australia Pty Ltd) for improving the performance of 10 ecologically diverse Banksia woodland plant species in a pot experiment. Plants were subjected to one of two watering regimes (well-watered and drought) in combination with microbial inoculation treatments (non-inoculated and inoculated). Plants were maintained under these two watering treatments for 10 weeks, at which point plants in all treatments were subjected to a final drought period lasting 8 weeks. Plant performance was evaluated by plant biomass and allocation, gas exchange parameters, foliar carbon and nitrogen and stable isotope (δ15N and δ13C) compositions. Plant xylem sap phytohormones were analysed to investigate the effect of microbial inoculation on plant phytohormone profiles and potential relationships with other observed physiological parameters. Across all investigated plant species, inoculation treatments had small effects on plant growth. Further analysis within each species revealed that inoculation treatments did not result in significant biomass gain under well-watered or drought-stressed conditions, and effects on nitrogen nutrition and photosynthesis were variable and minimal. This suggests that the selected commercial microbial inoculant had limited benefits for the tested plant species. Further investigations on the compatibility between the microorganisms (present in the inoculant) and plants, timing of inoculation, viability of the microorganisms and concentration(s) required to achieve effectiveness, under controlled conditions, and field trials are required to test the feasibility and efficacy in actual restoration environments.
Collapse
Affiliation(s)
- Wei San Wong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Jaume Ruscalleda-Alvarez
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Jean W H Yong
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Sundsvägen 14, Alnarp, Sweden
| | - Jason C Stevens
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Department of Biodiversity, Conservation and Attractions, Kings Park Science, 1 Kattidj Close, Kings Park, WA 6005, Australia
| | - Justin M Valliere
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, United States
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia
| |
Collapse
|
9
|
Shuang R, Du L, Shao J, Tian Y, Wu D, Meng F. Decades-long organic tea production is distinguished by N deficiency: Evidence from soil and tea δ 15N data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172625. [PMID: 38670380 DOI: 10.1016/j.scitotenv.2024.172625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
To investigate the possibility of identifying commercial organic teas from conventional teas based on their isotopic signatures, we sampled tea leaves and soil samples from three tea gardens in Pu'er, China, that underwent decades of certified organic cultivation and compared them with adjacent conventional gardens. We found that long-term organic tea cultivation increased the soil organic carbon and soil pH but significantly decreased the total N content of tea. Higher δ15N values were observed in the organic teas, but significant overlap existed with non-organic teas. The lower N content of the organic tea and contrasting pattern between the organic tea δ15N and soil δ15N suggested that the decline of the N availability could potentially act as a robust characteristic for discriminating between organic and non-organic tea cultivation systems. Further analysis implies that combining tea and soil N content with δ15N value is a promising approach to organic tea identification.
Collapse
Affiliation(s)
- Ruichen Shuang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China
| | - Lijuan Du
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jinliang Shao
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Yuping Tian
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Di Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China.
| | - Fanqiao Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Pausch J, Holz M, Zhu B, Cheng W. Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling. PLANT, CELL & ENVIRONMENT 2024; 47:1987-1996. [PMID: 38369964 DOI: 10.1111/pce.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
Nitrogen availability in the rhizosphere relies on root-microorganism interactions, where root exudates trigger soil organic matter (SOM) decomposition through the rhizosphere priming effect (RPE). Though microbial necromass contribute significantly to organically bound soil nitrogen (N), the role of RPEs in regulating necromass recycling and plant nitrogen acquisition has received limited attention. We used 15N natural abundance as a proxy for necromass-N since necromass is enriched in 15N compared to other soil-N forms. We combined studies using the same experimental design for continuous 13CO2 labelling of various plant species and the same soil type, but considering top- and subsoil. RPE were quantified as difference in SOM-decomposition between planted and unplanted soils. Results showed higher plant N uptake as RPEs increased. The positive relationship between 15N-enrichment of shoots and roots and RPEs indicated an enhanced necromass-N turnover by RPE. Moreover, our data revealed that RPEs were saturated with increasing carbon (C) input via rhizodeposition in topsoil. In subsoil, RPEs increased linearly within a small range of C input indicating a strong effect of root-released C on decomposition rates in deeper soil horizons. Overall, this study confirmed the functional importance of rhizosphere C input for plant N acquisition through enhanced necromass turnover by RPEs.
Collapse
Affiliation(s)
- Johanna Pausch
- Agroecology, BayCEER, University of Bayreuth, Bayreuth, Bayern, Germany
| | - Maire Holz
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weixin Cheng
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| |
Collapse
|
11
|
Michaud TJ, Cline LC, Hobbie EA, Gutknecht JLM, Kennedy PG. Herbarium specimens reveal that mycorrhizal type does not mediate declining temperate tree nitrogen status over a century of environmental change. THE NEW PHYTOLOGIST 2024; 242:1717-1724. [PMID: 38073143 DOI: 10.1111/nph.19452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024]
Abstract
Rising atmospheric carbon dioxide concentrations (CO2) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change. In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15N, we also analyzed a subset of previously published foliar δ15N values from across the United States to parse the effects of N deposition and CO2 rise. Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15N also declined among all groups of plants and fungi; however, foliar δ15N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2 rise. Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition.
Collapse
Affiliation(s)
- Talia J Michaud
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, NH, 03824, USA
| | - Jessica L M Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota, St Paul, MN, 55108, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
12
|
Han R, Zhang Q, Xu Z. Soil organic nitrogen variation shaped by diverse agroecosystems in a typical karst area: evidence from isotopic geochemistry. PeerJ 2024; 12:e17221. [PMID: 38638157 PMCID: PMC11025543 DOI: 10.7717/peerj.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.
Collapse
Affiliation(s)
- Ruiyin Han
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zhifang Xu
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
13
|
Soldatova E, Krasilnikov S, Kuzyakov Y. Soil organic matter turnover: Global implications from δ 13C and δ 15N signatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169423. [PMID: 38128662 DOI: 10.1016/j.scitotenv.2023.169423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The turnover and residence time of carbon (C) and nitrogen (N) in soil is a fundamental parameter reflecting the rates of soil organic matter (SOM) transformation and the contribution of soils to greenhouse gases fluxes. Based on the global database of the stable isotope composition of C (δ13C) and N (δ15N) depending on soil depth (171 profiles), we assessed С and N turnover and related them to climate, biome types and soil properties. The 13C and 15N discrimination between the litter horizon and mineral soil was evaluated to explain the key processes of litter transformation. The 13C and 15N discrimination by microbial utilization of litter and SOM, as well as the continuous increase of δ13C and δ15N with depth, enabled to assess C and N turnover within SOM. N turnover was two times faster than that of C, which reflects i) repeated N recycling by microorganisms accelerating N turnover, ii) C loss as CO2 and input of new C atoms to cycling, which reduces the C turnover within soil, and iii) generally slower turnover of N free persistent organic compounds (e.g. lignin, suberin, cellulose) compared to the N containing compounds (e.g. amino acids, ribonucleic acids). An increase in temperature and precipitation accelerated C and N turnover because: i) higher microbial activity and SOM decomposition rate, ii) larger soil moisture and fast diffusion of dissolved organics towards exoenzymes, iii) downward transport of 13C-enriched organic matter (e.g. sugars, amino acids), and iii) leaching of 15N-depleted nitrates from the topsoil into subsoil and losses from the whole soil profile. Temperature accelerates SOM turnover stronger than precipitation. The temperature increase by 10 °C accelerates the C and N turnover for 40 %. SOM turnover is boosted by decreasing C/N ratio because: i) SOM with a high C/N ratio originated from litter is converted to microbially-derived SOM in mineral soil characterized by a low C/N ratio; ii) litter with a low C/N ratio is decomposed faster than litter with a high C/N; iii) microbial carbon-use efficiency increases with N availability. The biome type affects SOM decomposition by i) climate: slower turnover under wet and cold conditions, and ii) by litter quality: faster utilization of leaves than needles. Thus, the fastest C turnover is common under evergreen forests and the lowest under mixed and coniferous ones, whereas temperature and C/N ratio are the main factors controlling SOM turnover. Concluding, the assessment of SOM turnover by δ13C and δ15N approach showed two times faster N turnover compared to C, and specifics of SOM turnover depending on the biomes as well as climate conditions.
Collapse
Affiliation(s)
- Evgeniya Soldatova
- Center for Isotope Biogeochemistry, Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 6 Volodarskogo Street, 625003 Tyumen, Russia; Laboratory of Mass Transport, Geological Institute of the Russian Academy of Sciences, 7с1 Pyzhevskiy Pereulok, 119017 Moscow, Russia.
| | - Sergey Krasilnikov
- Department of Land Surveying & Geo-Informatics, Research Centre for Deep Space Explorations, The Hong Kong Polytechnic University, ZN601, 6/F, Phase 8, 181 Chatham Road South, Kowloon, Hong Kong.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 2 Büsgenweg, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia.
| |
Collapse
|
14
|
Hupperts SF, Islam KS, Gundale MJ, Kardol P, Sundqvist MK. Warming influences carbon and nitrogen assimilation between a widespread Ericaceous shrub and root-associated fungi. THE NEW PHYTOLOGIST 2024; 241:1062-1073. [PMID: 37950517 DOI: 10.1111/nph.19384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.
Collapse
Affiliation(s)
- Stefan F Hupperts
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Kazi Samiul Islam
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden
| | - Maja K Sundqvist
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, 901 83, Sweden
| |
Collapse
|
15
|
Wen D, Yang L, Ni K, Xu X, Yu L, Elrys AS, Meng L, Zhou J, Zhu T, Müller C. Topography-driven differences in soil N transformation constrain N availability in karst ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168363. [PMID: 37939962 DOI: 10.1016/j.scitotenv.2023.168363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Fragile karst ecosystems are characterized by complex topographic landscapes associated with high variations in vegetation restoration. Identifying the characteristics and driving factors of nitrogen (N) availability across the topographic gradient is essential to guide vegetation restoration in karst regions. In this study, we collected soil samples and plant leaves along the topographic gradient (ridge, upper slope, middle slope, and foot slope) of convex slopes in the karst fault basin of southwest China, and determined the indicators reflecting soil N availability, N transformation rates, and their controlling factors. Our results showed that foliar N content and δ15N value, soil inorganic N content and δ15N value, and foliar N:P ratio were substantially lower on the steep hillslopes than on the flat top ridge. Steep slope soils also had a lower enzyme C:N ratio but a higher enzyme N:P ratio than the flat ridge soils. Furthermore, the vector angles calculated by soil extracellular enzyme analysis were below 45o in all studied soils and decreased significantly with increasing slope, indicating that microbial growth was generally limited by N. These results jointly suggest the declines in soil N availability across the topographic gradient, which are further explained by the changes in soil inherent N transformation processes. As the slope became steeper, soil mineralization and autotrophic nitrification (ONH4) rates decreased significantly, while ratio of microbial NH4+ immobilization to ONH4 and NH4+ adsorption rate increased significantly, indicating the decrease in soil inorganic N supply capacity. We further found that deteriorated soil structure, decreased soil organic matter and calcium content, altered microbial abundance, and increased ratios of fungi to bacteria and gram-positive bacteria to gram-negative bacteria were the primary drivers of reduced N transformation rates and N availability across the topographic gradient. Overall, this study highlights the critical role of the topography in controlling soil N availability by regulating N transformation processes in karst regions. The topography should be considered an important factor affecting the functions and services of karst ecosystems.
Collapse
Affiliation(s)
- Dongni Wen
- College of Tropical Crops, Hainan University, Haikou 570100, China; Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Lin Yang
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Kang Ni
- Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Longfei Yu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou 570100, China
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tongbin Zhu
- Key Laboratory of Karst Dynamics, MLR & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Brunello AT, Nardoto GB, Santos FLS, Sena-Souza JP, Quesada CAN, Lloyd JJ, Domingues TF. Soil δ 15N spatial distribution is primarily shaped by climatic patterns in the semiarid Caatinga, Northeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168405. [PMID: 37951261 DOI: 10.1016/j.scitotenv.2023.168405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Soil nitrogen isotopic composition (δ15Nsoil) is an invaluable tool as it integrates nitrogen (N) transformations in soils. In addition to serving as a baseline to understand the N cycle, spatial representations of δ15Nsoil across landscapes (or isoscapes) is a multi-purpose tool useful to investigate, for example, plant-microbe interactions, animal migration and forensics. We investigate the climatic and edaphic controls of δ15Nsoil utilising data from 29 geographical locations sampled across the semiarid Brazilian Caatinga biome. The sampling covered a mean annual precipitation (PA) gradient ranging from 0.51 to 1.36 m a-1 and eight soil types originating from three different geological origins. Our data show that the combination of higher aridity and lower seasonality (ψ) leads to higher values of δ15Nsoil. Moreover, soil total carbon had a positive relationship with δ15Nsoil, appearing within the best-supported models according to the information-theoretic approach undertaken here. The contribution to the plant communities by the Fabaceae trees expressed as their basal area was not related to δ15Nsoil values, suggesting that the magnitude of biological N fixation in the Caatinga is not large enough to be reflected in the soil. In addition, considering PA in a categorical fashion, i.e., 'high' (> 0.8 m a-1) and 'low' PA (< 0.8 m a-1), we found that, within the wetter category, δ15Nsoil was positively related to several soil properties (i.e., clay content, effective cation exchange capacity, exchangeable calcium, silt content, pHH2O, total phosphorus and sum of bases) and negatively related to sand content. Our study provides new insights into the functioning of semiarid ecosystems from a pedo-isotopic perspective and contributes to the overall understanding of the N cycle in the Caatinga region, with the potential to support the development of new conceptualisation of biogeochemical process and testing of global models that simulate N and C cycles.
Collapse
Affiliation(s)
- Alexandre T Brunello
- Universidade de São Paulo, FFCLRP, Departamento de Biologia, Av. dos Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Gabriela B Nardoto
- Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Fábio Luís S Santos
- Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - João Paulo Sena-Souza
- Universidade Estadual de Montes Claros (Unimontes), Departamento de Geociências, Campus Professor Darcy Ribeiro, Montes Claros, MG, Brazil
| | - Carlos A N Quesada
- Instituto Nacional de Pesquisas da Amazônia, Manaus Cx. Postal 2223 - CEP 69080-971, Amazonas, Brazil
| | - Jonathan J Lloyd
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Tomas F Domingues
- Universidade de São Paulo, FFCLRP, Departamento de Biologia, Av. dos Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Nehring L, Kranabetter JM, Harper GJ, Hawkins BJ. Tree-ring δ15N as an indicator of nitrogen dynamics in stands with N2-fixing Alnus rubra. TREE PHYSIOLOGY 2023; 43:2064-2075. [PMID: 37672228 DOI: 10.1093/treephys/tpad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 09/03/2023] [Indexed: 09/07/2023]
Abstract
Tree-ring δ15N may depict site-specific, long-term patterns in nitrogen (N) dynamics under N2-fixing species, but field trials with N2-fixing tree species are lacking and the relationship of temporal patterns in tree-ring δ15N to soil N dynamics is controversial. We examined whether the tree-ring δ15N of N2-fixing red alder (Alnus rubra Bong.) would mirror N accretion rates and δ15N of soils and whether the influence of alder-fixed N could be observed in the wood of a neighboring conifer. We sampled a 27-year-old replacement series trial on south-eastern Vancouver Island, with red alder and coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) planted in five proportions (0/100, 11/89, 25/75, 50/50 and 100/0) at a uniform stem density. An escalation in forest floor N content was evident with an increasing proportion of red alder, equivalent to a difference of ~750 kg N ha-1 between 100% Douglas-fir versus 100% alder. The forest floor horizon also had high δ15N values in treatments with more red alder. Red alder had a consistent quadratic fit in tree-ring δ15N over time, with a net increase of $\sim$1.5‰, on average, from initial values, followed by a plateau or slight decline. Douglas-fir tree-ring δ15N, in contrast, was largely unchanged over time (in three of four plots) but was significantly higher in the 50/50 mix. The minor differences in current leaf litter N content and δ15N between alder and Douglas-fir, coupled with declining growth in red alder, suggests the plateau or declining trend in alder tree-ring δ15N could coincide with lower N2-fixation rates, potentially by loss in alder vigor at canopy closure, or down-regulation via nitrate availability.
Collapse
Affiliation(s)
- L Nehring
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, 3800 Finnerty Road,Victoria, British Columbia V8P 5C2, Canada
| | - J M Kranabetter
- British Columbia Ministry of Forests, PO Box 9536, Stn Prov Govt, 4300 North Road, Victoria, British Columbia V8Z 5J3, Canada
| | - G J Harper
- British Columbia Ministry of Forests, 4th Floor - 545 Superior Street, Victoria, British Columbia V8V 1T7, Canada
| | - B J Hawkins
- Centre for Forest Biology, University of Victoria, PO Box 3020, STN CSC, 3800 Finnerty Road,Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
18
|
Pena R, Bluhm SL, Ammerschubert S, Agüi-Gonzalez P, Rizzoli SO, Scheu S, Polle A. Mycorrhizal C/N ratio determines plant-derived carbon and nitrogen allocation to symbiosis. Commun Biol 2023; 6:1230. [PMID: 38053000 PMCID: PMC10698078 DOI: 10.1038/s42003-023-05591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.
Collapse
Affiliation(s)
- Rodica Pena
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
- Department of Sustainable Land Management, School of Agriculture Policy and Development, University of Reading, Reading, UK
| | - Sarah L Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Silke Ammerschubert
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Göttingen, Germany
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.
- Centre for Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
Bassett KR, Östlund L, Gundale MJ, Fridman J, Jämtgård S. Forest inventory tree core archive reveals changes in boreal wood traits over seven decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165795. [PMID: 37499833 DOI: 10.1016/j.scitotenv.2023.165795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Boreal forests play an important role in the global carbon (C) cycle, and there is great interest in understanding how they respond to environmental change, including nitrogen (N) and water limitation, which could impact future forest growth and C storage. Utilizing tree cores archived by the Swedish National Forest Inventory, we measured stemwood traits, including stable N and C isotope composition which provides valuable information related to N availability and water stress, respectively, as well as N and C content, and C/N ratio over 1950-2017 in two central Swedish counties covering an area of ca. 55,000 sq. km (n = 1038). We tested the hypothesis that wood traits are changing over time, and that temporal patterns would differ depending on alternative dendrochronological reconstruction methods, i.e. the commonly applied "single tree method" (STM) or a conceptually stronger "multiple tree method" (MTM). Averaged across all MTMs, our data showed that all five wood traits for Picea abies and Pinus sylvestris changed over time. Wood δ15N strongly declined, indicating progressive nitrogen limitation. The decline in δ13C tracked the known atmospheric δ13CO2 signal, suggesting no change in water stress occurred. Additionally, wood N significantly increased, while C and C/N ratios declined over time. Furthermore, wood trait patterns sometimes differed between dendrochronological methods. The most notable difference was for δ15N, where the slope was much shallower for the STM compared to MTMs for both species, indicating that mobility of contemporary N is problematic when using the STM, resulting in substantially less sensitivity to detect historical signals. Our study indicates strong temporal changes in boreal wood traits and also indicates that the field of dendroecology should adopt new methods and archiving practices for studying highly mobile element cycles, such as nitrogen, which are critical for understanding environmental change in high latitude ecosystems.
Collapse
Affiliation(s)
- Kelley R Bassett
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden.
| | - Lars Östlund
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| |
Collapse
|
20
|
Chen C, Wang G, Li J, Jia Y, Chen Z. Examination of the negative correlation between leaf δ 15N and the N:P ratio across a northeast-southwest transect in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163843. [PMID: 37137362 DOI: 10.1016/j.scitotenv.2023.163843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two crucial limiting mineral elements for terrestrial plants. Although the leaf N:P ratio is extensively used to indicate plant nutrient limitations, the critical N:P ratios cannot be universally applied. Some investigations have suggested that leaf nitrogen isotopes (δ15N) can provide another proxy for nutrient limitations along with the N:P ratio, but the negative relationships between N:P and δ15N were mainly limited to fertilization experiments. It will obviously benefit the study of the nature of nutrient limitations if the relationship could be explained more generally. We analyzed leaf δ15N, N, and P contents across a northeast-southwest transect in China. Leaf δ15N was weakly negatively correlated with leaf N:P ratios for all plants, while there was no correlation between them for various plant groups, including different growth forms, genera, and species across the entire N:P range. This suggests that the use of leaf δ15N in indicating the shift of nutrient limitations across the whole N:P range still requires more validated field investigations. Notably, negative relationships between δ15N and N:P hold for plants with N:P ratios between 10 and 20 but not for plants with N:P ratios lower than 10 or higher than 20. That is, changes in leaf δ15N along with the N:P ratio of plants that are co-limited by N and P can exhibit variations in plant nutrient limitations, whereas plants that are strictly limited by N and P cannot. Moreover, these relationships are not altered by vegetation type, soil type, MAP, or MAT, indicating that the use of leaf δ15N in reflecting shifts in nutrient limitations, depending on the plant nutrient limitation range, is general. We examined the relationships between leaf δ15N and the N:P ratio across an extensive transect, providing references for the widespread use of leaf δ15N in reflecting shifts in nutrient limitation.
Collapse
Affiliation(s)
- Chongjuan Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Guoan Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jiazhu Li
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yufu Jia
- Center for Soil Protection and Landscape Design, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Zixun Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Department of Environmental Sciences and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Gauthier K, Pankovic D, Nikolic M, Hobert M, Germeier CU, Ordon F, Perovic D, Niehl A. Nutrients and soil structure influence furovirus infection of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1200674. [PMID: 37600210 PMCID: PMC10436314 DOI: 10.3389/fpls.2023.1200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Soil-borne wheat mosaic virus (SBWMV) and Soil-borne cereal mosaic virus (SBCMV), genus Furovirus, family Virgaviridae, cause significant crop losses in cereals. The viruses are transmitted by the soil-borne plasmodiophorid Polymyxa graminis. Inside P. graminis resting spores, the viruses persist in the soil for long time, which makes the disease difficult to combat. To open up novel possibilities for virus control, we explored the influence of physical and chemical soil properties on infection of wheat with SBWMV and SBCMV. Moreover, we investigated, whether infection rates are influenced by the nutritional state of the plants. Infection rates of susceptible wheat lines were correlated to soil structure parameters and nutrient contents in soil and plants. Our results show that SBWMV and SBCMV infection rates decrease the more water-impermeable the soil is and that virus transmission depends on pH. Moreover, we found that contents of several nutrients in the soil (e.g. phosphorous, magnesium, zinc) and in planta (e.g. nitrogen, carbon, boron, sulfur, calcium) affect SBWMV and SBCMV infection rates. The knowledge generated may help paving the way towards development of a microenvironment-adapted agriculture.
Collapse
Affiliation(s)
- Kevin Gauthier
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| | - Dejana Pankovic
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Mirko Hobert
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agricultural Investigations, Bernburg, Germany
| | - Christoph U. Germeier
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Quedlinburg, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Dragan Perovic
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Annette Niehl
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Brunswick, Germany
| |
Collapse
|
22
|
Bao Y, Lin Z, Yao W, Akbar S, Lin W, Powell CA, Xu J, Zhang M. Integration of Transcriptomic and Metabolomic Profiles Provides Insights into the Influence of Nitrogen on Secondary Metabolism in Fusarium sacchari. Int J Mol Sci 2023; 24:10832. [PMID: 37446015 DOI: 10.3390/ijms241310832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.
Collapse
Affiliation(s)
- Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Zhenyue Lin
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Sehrish Akbar
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Wenfeng Lin
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
| | - Charles A Powell
- IFAS Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources & Guangxi Key Lab for Sugarcane Biology & Academy of Sugarcane and Sugar Industry, Guangxi University, Nanning 530004, China
- IFAS Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
23
|
Castaño C, Hallin S, Egelkraut D, Lindahl BD, Olofsson J, Clemmensen KE. Contrasting plant-soil-microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic-alpine landscape. THE NEW PHYTOLOGIST 2023; 238:2621-2633. [PMID: 36519258 DOI: 10.1111/nph.18679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/02/2022] [Indexed: 05/19/2023]
Abstract
Global vegetation regimes vary in belowground carbon (C) and nitrogen (N) dynamics. However, disentangling large-scale climatic controls from the effects of intrinsic plant-soil-microbial feedbacks on belowground processes is challenging. In local gradients with similar pedo-climatic conditions, effects of plant-microbial feedbacks may be isolated from large-scale drivers. Across a subarctic-alpine mosaic of historic grazing fields and surrounding heath and birch forest, we evaluated whether vegetation-specific plant-microbial feedbacks involved contrasting N cycling characteristics and C and N stocks in the organic topsoil. We sequenced soil fungi, quantified functional genes within the inorganic N cycle, and measured 15 N natural abundance. In grassland soils, large N stocks and low C : N ratios associated with fungal saprotrophs, archaeal ammonia oxidizers, and bacteria capable of respiratory ammonification, indicating maintained inorganic N cycling a century after abandoned reindeer grazing. Toward forest and heath, increasing abundance of mycorrhizal fungi co-occurred with transition to organic N cycling. However, ectomycorrhizal fungal decomposers correlated with small soil N and C stocks in forest, while root-associated ascomycetes associated with small N but large C stocks in heath, uncoupling C and N storage across vegetation types. We propose that contrasting, positive plant-microbial feedbacks stabilize vegetation trajectories, resulting in diverging soil C : N ratios at the landscape scale.
Collapse
Affiliation(s)
- Carles Castaño
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Dagmar Egelkraut
- Department of Biological Sciences, University of Bergen, 5006, Bergen, Norway
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, 90187, Umeå, Sweden
| | - Karina Engelbrecht Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| |
Collapse
|
24
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
25
|
Andronikov AV, Andronikova IE, Martinkova E, Sebek O, Stepanova M. Translocation of elements and fractionation of Mg, Cu, Zn, and Cd stable isotopes in a penny bun mushroom (Boletus edulis) from western Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49339-49353. [PMID: 36773267 PMCID: PMC10104950 DOI: 10.1007/s11356-023-25753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Boletus edulis mushroom behaved as an accumulating biosystem with respect to Ag, Rb, Zn, and K. The mushroom was not an efficient accumulator of toxic As, Pb, and Cr, but Se and Cd displayed much higher concentrations in the mushroom than in the substrate samples. Other elements were bioexclusive. Different elements had different within-mushroom mobilities. The highest mobilities were displayed by Zn and Ag, and the lowest by Ti. The mushroom's fruiting body preferentially took up lighter Mg, Cu, and Cd isotopes (Δ26MgFB-soil = -0.75‰; Δ65CuFB-soil = -0.96‰; Δ114CdFB-soil = -0.63‰), and the heavier 66Zn isotope (Δ66ZnFB-soil = 0.92‰). Positive within-mushroom Zn isotope fractionation resulted in accumulation of the heavier 66Zn (Δ66Zncap-stipe = 0.12‰) in the mushroom's upper parts. Cadmium displayed virtually no within-mushroom isotope fractionation. Different parts of the fruiting body fractionated Mg and Cu isotopes differently. The middle part of the stipe (3-6 cm) was strongly depleted in the heavier 26 Mg with respect to the 0-3 cm (Δ26Mgstipe(3-6)-stipe(0-3) = -0.73‰) and 6-9 cm (Δ26Mgstipe(6-9)-stipe(3-6) = 0.28‰) sections. The same stipe part was strongly enriched in the heavier 65Cu with respect to the 0-3 cm (Δ65Custipe(3-6)-stipe(0-3) = 0.63‰) and 6-9 cm (Δ65Custipe(6-9)-stipe(3-6) = -0.42‰) sections. An overall tendency for the upper mushroom's parts to accumulate heavier isotopes was noted for Mg (Δ26Mgcap-stipe = 0.20‰), Zn (Δ66Zncap-stipe = 0.12‰), and Cd (Δ114Cdcap-stipe = 0.04‰), whereas Cu showed the opposite trend (Δ65Cucap-stipe = -0.08‰).
Collapse
Affiliation(s)
- Alexandre V Andronikov
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic.
| | - Irina E Andronikova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Eva Martinkova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Ondrej Sebek
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Marketa Stepanova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| |
Collapse
|
26
|
Shao S, Wu J, He H, Moore TR, Bubier J, Larmola T, Juutinen S, Roulet NT. Ericoid mycorrhizal fungi mediate the response of ombrotrophic peatlands to fertilization: a modeling study. THE NEW PHYTOLOGIST 2023; 238:80-95. [PMID: 36300568 DOI: 10.1111/nph.18555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.
Collapse
Affiliation(s)
- Siya Shao
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Jianghua Wu
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, St John's, NL, A1C 5S7, Canada
| | - Hongxing He
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Tim R Moore
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Jill Bubier
- Department of Environmental Studies, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790, Helsinki, Finland
| | - Sari Juutinen
- Finnish Meteorological Institute, 00560, Helsinki, Finland
| | - Nigel T Roulet
- Department of Geography, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
27
|
Scartazza A, Sbrana C, D'Andrea E, Matteucci G, Rezaie N, Lauteri M. Above- and belowground interplay: Canopy CO 2 uptake, carbon and nitrogen allocation and isotope fractionation along the plant-ectomycorrhiza continuum. PLANT, CELL & ENVIRONMENT 2023; 46:889-900. [PMID: 36541420 DOI: 10.1111/pce.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Pisa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR-IBBA), Pisa, Italy
| | - Ettore D'Andrea
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Napoli, Italy
| | - Marco Lauteri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| |
Collapse
|
28
|
Horsch CCA, Antunes PM, Kallenbach CM. Arbuscular mycorrhizal fungal communities with contrasting life-history traits influence host nutrient acquisition. MYCORRHIZA 2023; 33:1-14. [PMID: 36595061 DOI: 10.1007/s00572-022-01098-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Life-history traits differ substantially among arbuscular mycorrhizal (AM) fungal families, potentially affecting hyphal nutrient acquisition efficiency, host nutrition, and thereby plant health and ecosystem function. Despite these implications, AM fungal community life-history strategies and community trait diversity effects on host nutrient acquisition are poorly understood. To address this knowledge gap, we grew sudangrass with AM fungal communities representing contrasting life-history traits and diversity: either (1) five species in the AM family Gigasporaceae, representing competitor traits, (2) five Glomerales species, representing ruderal traits, or (3) a mixed-trait community combining all ten AM fungal species. After 12 weeks, we measured above and belowground plant biomass and aboveground nutrient uptake and concentration. Overall, AM fungal colonization increased host nutrition, biomass, and foliar δ5nitrogen enrichment compared to the uncolonized control. Between the single-trait communities, the Glomeraceae community generally outperformed the Gigasporaceae community in host nutrition and plant growth, increasing plant phosphorus (P) uptake 1.5 times more than the Gigasporaceae community. We saw weak evidence for a synergistic effect of the mixed community, which was only higher for plant P concentration (1.26 times higher) and root colonization (1.26 times higher) compared to the single-trait communities. However, this higher P concentration did not translate to more P uptake or the highest plant biomass for the mixed community. These findings demonstrate that the AM symbiosis is affected by community differences at high taxonomic levels and provide insight into how different AM fungal communities and their associated traits affect host nutrition for fast-growing plant species.
Collapse
Affiliation(s)
- Caitlyn C A Horsch
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, Québec, H9X3V9, Canada
| | - Pedro M Antunes
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, Canada
| | - Cynthia M Kallenbach
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, Québec, H9X3V9, Canada.
| |
Collapse
|
29
|
Huang Y, Du L, Lei Y, Liang J. Nitrogen Preference of Dominant Species during Hailuogou Glacier Retreat Succession on the Eastern Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2023; 12:838. [PMID: 36840185 PMCID: PMC9961023 DOI: 10.3390/plants12040838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Plant nitrogen (N) uptake preference is a key factor affecting plant nutrient acquisition, vegetation composition and ecosystem function. However, few studies have investigated the contribution of different N sources to plant N strategies, especially during the process of primary succession of a glacial retreat area. By measuring the natural abundance of N isotopes (δ15N) of dominant plants and soil, we estimated the relative contribution of different N forms (ammonium-NH4+, nitrate-NO3- and soluble organic N-DON) and absorption preferences of nine dominant plants of three stages (12, 40 and 120 years old) of the Hailuogou glacier retreat area. Along with the chronosequence of primary succession, dominant plants preferred to absorb NO3- in the early (73.5%) and middle (46.5%) stages. At the late stage, soil NH4+ contributed more than 60.0%, In addition, the contribution of DON to the total N uptake of plants was nearly 19.4%. Thus, the dominant plants' preference for NO3- in the first two stages changes to NH4+ in the late stages during primary succession. The contribution of DON to the N source of dominant plants should not be ignored. It suggests that the shift of N uptake preference of dominant plants may reflect the adjustment of their N acquisition strategy, in response to the changes in their physiological traits and soil nutrient conditions. Better knowledge of plant preferences for different N forms could significantly improve our understanding on the potential feedbacks of plant N acquisition strategies to environmental changes, and provide valuable suggestions for the sustainable management of plantations during different successional stages.
Collapse
Affiliation(s)
- Yulin Huang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liushan Du
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbao Lei
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiye Liang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
30
|
Zhang M, Liu S, Cao X, Chen M, Chen J, Xu G, Shi Z. The effects of ectomycorrhizal and saprotropic fungi on soil nitrogen mineralization differ from those of arbuscular and ericoid mycorrhizal fungi on the eastern Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2023; 13:1069730. [PMID: 36684739 PMCID: PMC9846110 DOI: 10.3389/fpls.2022.1069730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Interactions between soil fungi and soil environmental factors regulate soil nitrogen (N) mineralization rates on the eastern Qinghai-Tibetan Plateau. Some studies have also illuminated differences in soil N mineralization rate based on different mycorrhizal forests, but the associated effect of soil fungal functional guilds and soil environmental factors underlying this process are not well-understood. Three primary forests respectively dominated by Abies fargesii var. faxoniana (ectomycorrhizal, EcM), Cupressus chengiana (arbuscular mycorrhizal, AM) and Rhododendron phaeochrysum (ericoid mycorrhizal, ErM) trees were selected in this area. Meanwhile, soil net N mineralization rate, soil fungal composition and soil enzyme activity among these three mycorrhizal forests were studied. Our results showed that there were significant differences in the seasonal variation of soil net N mineralization rates among three mycorrhizal forests. Soil net N mineralization rate in the AM forest was faster. EcM fungi and saprotroph are the main functional guilds in these three mycorrhizal forests. Meanwhile, the relative abundances of soil fungal functional guilds, soil temperature and soil peroxidase activity could explain 85.0% in the difference of soil net ammonification rate among three mycorrhizal forests. In addition, soil temperature, soil water-filled pore space and soil ammonium content play a central role in controlling the differing soil net nitrification rate among three mycorrhizal forests. Our results suggest differences in soil net mineralization among different mycorrhizal forest types are driven mainly by soil net ammonification. Soil fungal functional guilds and temperature regulate the rate of soil net ammonification by modulating soil peroxidase activity.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
31
|
Britton K, Jimenez EL, Le Corre M, Pederzani S, Daujeard C, Jaouen K, Vettese D, Tütken T, Hublin JJ, Moncel MH. Multi-isotope zooarchaeological investigations at Abri du Maras: The paleoecological and paleoenvironmental context of Neanderthal subsistence strategies in the Rhône Valley during MIS 3. J Hum Evol 2023; 174:103292. [PMID: 36455403 DOI: 10.1016/j.jhevol.2022.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022]
Abstract
The exploitation of mid- and large-sized herbivores (ungulates) was central to hominin subsistence across Late Pleistocene Europe. Reconstructing the paleoecology of prey-taxa is key to better understanding procurement strategies, decisions and behaviors, and the isotope analysis of faunal bones and teeth found at archaeological sites represent a powerful means of accessing information about past faunal behaviors. These isotope zooarchaeological approaches also have a near-unique ability to reveal environmental conditions contemporary to the human activities that produced these remains. Here, we present the results of a multi-isotope, multitissue study of ungulate remains from the Middle Paleolithic site of Abri du Maras, southern France, providing new insights into the living landscapes of the Rhône Valley during MIS 3 (level 4.2 = 55 ± 2 to 42 ± 3 ka; level 4.1 = 46 ± 3 to 40 ± 3 ka). Isotope data (carbon, nitrogen) reveal the dietary niches of different ungulate taxa, including the now-extinct giant deer (Megaloceros). Oxygen isotope data are consistent with a mild seasonal climate during level 4.2, where horse (Equus), bison (Bison), and red deer (Cervus elaphus) were exploited year-round. Strontium and sulfur isotope analyses provide new evidence for behavioral plasticity in Late Pleistocene European reindeer (Rangifer) between level 4.2 and level 4.1, indicating a change from the migratory to the sedentary ecotype. In level 4.1, the strong seasonal nature of reindeer exploitation, combined with their nonmigratory behavior, is consistent with a seasonally restricted use of the site by Neanderthals at that time or the preferential hunting of reindeer when in peak physical condition during the autumn.
Collapse
Affiliation(s)
- Kate Britton
- Department of Archaeology, University of Aberdeen, Aberdeen AB24 3UF, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Elodie-Laure Jimenez
- Department of Archaeology, University of Aberdeen, Aberdeen AB24 3UF, United Kingdom; Royal Belgian Institute of Natural Sciences, 29 Vautier Street, 1000 Brussels, Belgium
| | - Mael Le Corre
- Department of Archaeology, University of Aberdeen, Aberdeen AB24 3UF, United Kingdom
| | - Sarah Pederzani
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Camille Daujeard
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), CNRS, Muséum National d'Histoire Naturelle, Département Homme et Environnement, Institut de Paléontologie Humaine, 1 Rue René Panhard, 75013 Paris, France
| | - Klervia Jaouen
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, UMR 5563, CNRS, 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Delphine Vettese
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), CNRS, Muséum National d'Histoire Naturelle, Département Homme et Environnement, Institut de Paléontologie Humaine, 1 Rue René Panhard, 75013 Paris, France; Universita degli Studi di Ferrara, Dipartimento degli Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d'Este 32, 44121 Ferrara, Italy; Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Económicas y Ecológicas durante La Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Av/Los Castros 44, 39005 Santander, Spain
| | - Thomas Tütken
- Arbeitsgruppe für Angewandte und Analytische Paläontologie, Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, J.-J. Becherweg 21, 55128 Mainz, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Collège de France, 11, Place Marcelin Berthelot, 74005 Paris, France
| | - Marie-Hélène Moncel
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), CNRS, Muséum National d'Histoire Naturelle, Département Homme et Environnement, Institut de Paléontologie Humaine, 1 Rue René Panhard, 75013 Paris, France
| |
Collapse
|
32
|
Ding B, Tao Y, Xie J, Zeng G, Huang H. Traceability Evaluation of Wild and Cultivated Cordyceps sinensis by Elemental Analysis and GasBench II Coupled to Stable Isotope Ratio Mass Spectrometry. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Liu X, Li Y, Zhang Y, Su Q, Feng T, Song Y. 15N Natural Abundance of C3 and C4 Herbaceous Plants and Its Response to Climatic Factors along an Agro-Pastoral Zone of Northern China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3526. [PMID: 36559638 PMCID: PMC9784019 DOI: 10.3390/plants11243526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The nitrogen isotope composition of plants (δ15N) can comprehensively reflect information on climate change and ecosystems' nitrogen cycle. By collecting common herbs and soil samples along the 400 mm isoline of mean annual precipitation (MAP) in the agro-pastoral zone of North China (APZNC) and measuring their δ15N values, the statistical characteristics of foliar δ15N of herbs and the responses of foliar δ15N to the MAP and mean annual temperature (MAT) were analyzed. The results showed that: (1) the δ15N values of all herbs investigated varied from -5.5% to 15.25%. Among them, the δ15N value range of C3 herbs (-5.5~15.00%) was wider than that of C4 herbs (-2.17~15.25%), but the average value (3.27%) of C3 herbs was significantly lower than that of C4 herbaceous plants (5.55%). This difference provides an important method for identifying plants of different photosynthetic types by nitrogen isotope technology. (2) Along the transect from northeast to southwest, the δ15N of both C3 and C4 herbs decreased with the increase in the MAP, but not significantly for C3 herbs. The inverse relationship between the nitrogen isotopic signatures of herbs and MAP is consistent with previous studies. However, the MAP in the APZNC is found to only explain a small amount of the observed variance in the δ15N herbs (C3 herbs: 10.40%; C4 herbs: 25.03%). (3) A strong negative relationship was found between δ15N of herbs and MAT across the transect (C3 herbs: -0.368%/°C; C4 herbs: -0.381%/°C), which was contrary to the global pattern and some regional patterns. There was no significant difference in the δ15N responses of two different photosynthetic herbs to temperature, but the effect of temperature on the variances of δ15N of C3 and C4 herbs was significantly greater than that of precipitation. This suggests that temperature is a key factor affecting foliar δ15N of herbs in this transect. The above findings may be of value to global change researchers studying the processes of the nitrogen cycle and gaining an insight into climate dynamics of the past.
Collapse
Affiliation(s)
- Xianzhao Liu
- School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yang Li
- School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yong Zhang
- School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qing Su
- College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Teng Feng
- School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yan Song
- School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
34
|
Serk H, Nilsson MB, Figueira J, Krüger JP, Leifeld J, Alewell C, Schleucher J. Organochemical Characterization of Peat Reveals Decomposition of Specific Hemicellulose Structures as the Main Cause of Organic Matter Loss in the Acrotelm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17410-17419. [PMID: 36399683 PMCID: PMC9730845 DOI: 10.1021/acs.est.2c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Peatlands store carbon in the form of dead organic residues. Climate change and human impact impose risks on the sustainability of the peatlands carbon balance due to increased peat decomposition. Here, we investigated molecular changes in the upper peat layers (0-40 cm), inferred from high-resolution vertical depth profiles, from a boreal peatland using two-dimensional 1H-13C nuclear magnetic resonance (NMR) spectroscopy, and comparison to δ13C, δ15N, and carbon and nitrogen content. Effects of hydrological conditions were investigated at respective sites: natural moist, drainage ditch, and natural dry. The molecular characterization revealed preferential degradation of specific side-chain linkages of xylan-type hemicelluloses within 0-14 cm at all sites, indicating organic matter losses up to 25%. In contrast, the xylan backbone, galactomannan-type hemicelluloses, and cellulose were more resistant to degradation and accumulated at the natural moist and drainage site. δ13C, δ15N, and carbon and nitrogen content did not correlate with specific hemicellulose structures but reflected changes in total carbohydrates. Our analysis provides novel insights into peat carbohydrate decomposition and indicates substantial organic matter losses in the acrotelm due to the degradation of specific hemicellulose structures. This suggests that variations in hemicellulose content and structure influence peat stability, which may have important implications with respect to climate change.
Collapse
Affiliation(s)
- Henrik Serk
- Department
of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Mats B. Nilsson
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - João Figueira
- Department
of Chemistry, SciLife Lab, Umeå University, SE-90187 Umeå, Sweden
| | - Jan Paul Krüger
- UDATA
GmbH − Umwelt und Bildung, Hindenburgstrasse 1, 67433 Neustadt an der Weinstraße, Germany
- Departement
Umweltgeowissenschaften, Universität
Basel, Bernoullistrasse
30, CH-4056 Basel, Switzerland
| | - Jens Leifeld
- Departement
Umweltgeowissenschaften, Universität
Basel, Bernoullistrasse
30, CH-4056 Basel, Switzerland
- Agroscope,
Climate and Agriculture Group, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland
| | - Christine Alewell
- Departement
Umweltgeowissenschaften, Universität
Basel, Bernoullistrasse
30, CH-4056 Basel, Switzerland
| | - Jürgen Schleucher
- Department
of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
35
|
Yang N, Hua J, Zhang J, Liu D, Bhople P, Li X, Zhang Y, Ruan H, Xing W, Mao L. Soil nutrients and plant diversity affect ectomycorrhizal fungal community structure and functional traits across three subalpine coniferous forests. Front Microbiol 2022; 13:1016610. [PMID: 36274721 PMCID: PMC9583403 DOI: 10.3389/fmicb.2022.1016610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The symbiotic relationship between ectomycorrhizal fungi (EMF) and the roots of host plants is significantly important in regulating the health and stability of ecosystems, especially of those such as the climate warming affected subalpine forest ecosystems. Therefore, from the coniferous forest systems located in the Southern Qinghai-Tibetan Plateau, root tips from three forest tree species: Pinus wallichiana, Abies spectabilis and Picea spinulosa, were collected to look for the local causes of EMF community composition and diversity patterns. The EMF colonization rate, diversity and taxonomic community structure were determined by morphotyping and sanger sequencing of the fungal ITS gene from the root tip samples. Soil exploration types were identified based on the morphologies of the ectomycorrhizas, coupled with soil properties analysis and plant diversity survey. Contrasting patterns of EMF community and functional diversity were found across the studied three forests types dominated by different coniferous tree species. In terms of associations between soil and EMF properties, the total phosphorus (TP) and nitrate (NO3−) contents in soil negatively correlated with the colonization rate and the Shannon diversity index of EMF in contrast to the positive relationship between TP and EMF richness. The soil total nitrogen (TN), ammonium (NH4+) and plant diversity together caused 57.6% of the total variations in the EMF taxonomic community structure at the three investigated forest systems. Whereas based on the soil exploration types alone, NH4+ and TN explained 74.2% of variance in the EMF community structures. Overall, the findings of this study leverage our understanding of EMF dynamics and local influencing factors in coniferous forests dominated by different tree species within the subalpine climatic zone.
Collapse
Affiliation(s)
- Nan Yang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiani Hua
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiangbao Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Parag Bhople
- Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Xiuxiu Li
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China
- Yangzhou Urban Forest Ecosystem National Research Station, Jiangsu, Yangzhou, China
- *Correspondence: Wei Xing,
| | - Lingfeng Mao
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Lingfeng Mao,
| |
Collapse
|
36
|
Chattha MS, Ali Q, Haroon M, Afzal MJ, Javed T, Hussain S, Mahmood T, Solanki MK, Umar A, Abbas W, Nasar S, Schwartz-Lazaro LM, Zhou L. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:994306. [PMID: 36237509 PMCID: PMC9552886 DOI: 10.3389/fpls.2022.994306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 05/22/2023]
Abstract
Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.
Collapse
Affiliation(s)
- Muhammad Sohaib Chattha
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qurban Ali
- Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tahir Mahmood
- Department of Plant Breeding & Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manoj K. Solanki
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shanza Nasar
- Department of Botany, University of Gujrat Hafiz Hayat Campus, Gujrat, Pakistan
| | - Lauren M. Schwartz-Lazaro
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
37
|
Watershed-scale Variation in Potential Fungal Community Contributions to Ectomycorrhizal Biogeochemical Syndromes. Ecosystems 2022. [DOI: 10.1007/s10021-022-00788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Zhang M, Liu S, Chen M, Chen J, Cao X, Xu G, Xing H, Li F, Shi Z. The below-ground carbon and nitrogen cycling patterns of different mycorrhizal forests on the eastern Qinghai-Tibetan Plateau. PeerJ 2022; 10:e14028. [PMID: 36124133 PMCID: PMC9482363 DOI: 10.7717/peerj.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Mycorrhizal fungi can form symbiotic associations with tree species, which not only play an important role in plant survival and growth, but also in soil carbon (C) and nitrogen (N) cycling. However, the understanding of differences in soil C and N cycling patterns among forests with different mycorrhizal types is still incomplete. In order to determine the similarities and differences of soil C and N cycling patterns in different mycorrhizal forest types, three primary forests dominated by ectomycorrhizal (EcM), arbuscular mycorrhizal (AM) and ericoid mycorrhizal (ErM) trees respectively were studied on the eastern Qinghai-Tibetan Plateau. Indicators associated with soil C and N cycling, including leaf litter quality, soil C and N contents, soil C and N fluxes, and soil microbial biomass C and N contents were measured in each mycorrhizal type forest. The results showed that leaf litter quality was significantly lower with high C:N ratio and lignin: N ratio in ErM forest than that in AM and EcM forests. Soil CO2 flux (508.25 ± 65.51 mg m-2 h-1) in AM forest was significantly higher than that in EcM forest (387.18 ± 56.19 mg m-2 h-1) and ErM forest (177.87 ± 58.40 mg m-2 h-1). Furthermore, soil inorganic N content was higher in the AM forest than that in EcM and ErM forests. Soil net N mineralization rate (-0.02 ± 0.03 mg kg-1 d-1) was lower in ErM forest than that in EcM and AM forests. We speculated that AM and EcM forests were relatively characterized by rapid soil C cycling comparing to ErM forest. The soil N cycling in EcM and ErM forests were lower, implying they were 'organic' N nutrition patterns, and the pattern in ErM forest was more obvious.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China,Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, Sichuan, China,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China,Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
39
|
Garcia J, Gannett M, Wei L, Cheng L, Hu S, Sparks J, Giovannoni J, Kao-Kniffin J. Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield in Brassica rapa. Commun Biol 2022; 5:959. [PMID: 36104398 PMCID: PMC9474469 DOI: 10.1038/s42003-022-03860-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Microbial experimental systems provide a platform to observe how networks of groups emerge to impact plant development. We applied selection pressure for microbiome enhancement of Brassica rapa biomass to examine adaptive bacterial group dynamics under soil nitrogen limitation. In the 9th and final generation of the experiment, selection pressure enhanced B. rapa seed yield and nitrogen use efficiency compared to our control treatment, with no effect between the random selection and control treatments. Aboveground biomass increased for both the high biomass selection and random selection plants. Soil bacterial diversity declined under high B. rapa biomass selection, suggesting a possible ecological filtering mechanism to remove bacterial taxa. Distinct sub-groups of interactions emerged among bacterial phyla such as Proteobacteria and Bacteroidetes in response to selection. Extended Local Similarity Analysis and NetShift indicated greater connectivity of the bacterial community, with more edges, shorter path lengths, and altered modularity through the course of selection for enhanced plant biomass. In contrast, bacterial communities under random selection and no selection showed less complex interaction profiles of bacterial taxa. These results suggest that group-level bacterial interactions could be modified to collectively shift microbiome functions impacting the growth of the host plant under soil nitrogen limitation.
Collapse
Affiliation(s)
- Joshua Garcia
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Maria Gannett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - LiPing Wei
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Liang Cheng
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Shengyuan Hu
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jed Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | | - Jenny Kao-Kniffin
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
40
|
Groß-Schmölders M, Klein K, Emsens WJ, van Diggelen R, Aggenbach CJS, Liczner Y, Frouz J, Leifeld J, Alewell C. Stable isotopes (δ 13C, δ 15N) and biomarkers as indicators of the hydrological regime of fens in a European east-west transect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156603. [PMID: 35690201 DOI: 10.1016/j.scitotenv.2022.156603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Peatland degradation is tightly connected to hydrological changes and microbial metabolism. To better understand these metabolism processes, more information is needed on how microbial communities and substrate cycling are affected by changing hydrological regimes. These activities should be imprinted in stable isotope bulk values (δ 15N, δ 13C) due to specific isotopic fractionation by different microbial communities, their metabolic pathways and nutrient sources. We hypothesize that stable isotope values and microbial abundance are correlated and act as indicators of different hydrological regimes. We sampled an East-West transect across European fens in 14 areas and conducted a stable isotope (δ 13C, δ 15N) and membrane fatty acid (mFA) analysis. Within each area an undrained, drained and rewetted site was selected. Rewetted sites were separated based on when rewetting occurred. We found differences in the upper layers of all sites in microbial-derived mFAs and stable isotope values corresponding to hydrological regimes. The highest and lowest quantities of microbial-derived mFAs were measured in undrained and drained sites, respectively. Fungal-derived mFAs were especially lower in drained sites. Simultaneously, δ15N stable isotope values were highest in drained sites. In addition, stable isotope values and microbial-derived mFAs showed distinct depth trends. In undrained sites stable isotopes values slightly increased with depth. In drained sites, δ15N values decreased downwards, whereas δ13C values increased. Overall microbial-derived mFAs decreased with depth. These patterns presumably result from anoxic conditions and high peat recalcitrance in the deeper layers. In sites with short time of rewetting, the microbial-derived mFAs and stable isotope values were similar to values of drained sites, while with increasing rewetting time values shifted to those of undrained sites. We conclude that biomarkers indicate that stable isotope values reflect specific microbial metabolic processes, which differ with hydrological regimes, and thus could indicate both drainage and rewetting in fens.
Collapse
Affiliation(s)
- Miriam Groß-Schmölders
- Environmental Geosciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland; Agroscope, Climate and Agriculture Group, Reckenholzstraße 191, CH-8046 Zürich, Switzerland.
| | - Kristy Klein
- Environmental Geosciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland; Agroscope, Climate and Agriculture Group, Reckenholzstraße 191, CH-8046 Zürich, Switzerland.
| | - Willem-Jan Emsens
- Department of Biology, University of Antwerp, Universiteitsplein 1, BE - 2610 Wilrijk, Belgium.
| | - Rudy van Diggelen
- Department of Biology, University of Antwerp, Universiteitsplein 1, BE - 2610 Wilrijk, Belgium.
| | - Camiel J S Aggenbach
- KWR Water cycle Research Institute, Post Box 1072, NL-3430 BB, Nieuwegein, Netherlands.
| | - Yvonne Liczner
- Department of Biology, University of Antwerp, Universiteitsplein 1, BE - 2610 Wilrijk, Belgium.
| | - Jan Frouz
- Institute for Environmental Studies, Charles University Benátská 2, CZ-128282801, Prague, Czech Republic.
| | - Jens Leifeld
- Environmental Geosciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland; Agroscope, Climate and Agriculture Group, Reckenholzstraße 191, CH-8046 Zürich, Switzerland.
| | - Christine Alewell
- Environmental Geosciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland.
| |
Collapse
|
41
|
Chen Q, Chen J, Andersen MN, Cheng X. Elevational shifts in foliar-soil δ 15 N in the Hengduan Mountains and different potential mechanisms. GLOBAL CHANGE BIOLOGY 2022; 28:5480-5491. [PMID: 35713965 DOI: 10.1111/gcb.16306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The natural abundance of stable nitrogen isotopes (δ15 N) provides insights into the N dynamics of terrestrial ecosystems, the determination of which is considered an effective approach for gaining a better understanding ecosystem N cycling. However, there is currently little information available regarding the patterns and mechanisms underlying the variation in foliar-soil δ15 N among mountain ecosystems. In this study, we examined the determinants of foliar-soil δ15 N in association with N transportation rates along an elevational gradient in the Hengduan Mountains. Despite the relatively high levels of available N produced from high N fixation and mineralization, we detected the lowest levels of foliar δ15 N at 3500 m a.s.l., reflecting the stronger vegetation N limitation at medium high elevations. The enhanced vegetation N limitation was driven by the combined effects of higher microbial immobilization and inherent plant dynamic (the shifts of δ15 N in vegetation preference, including vegetation community) with changing climate along the elevational gradient. Unexpectedly, we established that soil δ15 N was characterized by an undulating rise and uncoupled correlation with foliar δ15 N with increasing elevation, thereby indicating that litter input might not be a prominent driver of soil δ15 N. Conversely, soil nitrification and denitrification were found to make a more pronounced contribution to the pattern of soil δ15 N along the elevational gradient. Collectively, our results serve to highlight the importance of microbial immobilization in soil N dynamics and provide novel insights that will contribute to enhancing our understanding of N cycling as indicated by foliar-soil δ15 N along elevational gradients.
Collapse
Affiliation(s)
- Qiong Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| |
Collapse
|
42
|
Nadeem F, Mahmood R, Sabir M, Khan WUD, Haider MS, Wang R, Zhong Y, Ishfaq M, Li X. Foxtail millet [Setaria italica (L.) Beauv.] over-accumulates ammonium under low nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:35-44. [PMID: 35660775 DOI: 10.1016/j.plaphy.2022.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) deficiency is a primary limiting factor for crop production worldwide. Previously, we reported root system architectural modifications of hydroponically cultured foxtail millet [Setaria italica (L.) Beauv.] to facilitate N translocation under N limitation. Here, we investigated foxtail millet for its shoot adaptation to low N in terms of internal N regulation under hydroponic culture. The results of this study revealed that the shoot N and nitrate (NO3-) concentrations significantly declined as compared to control (CK); however, the shoot over-accumulated ammonium (NH4+) under low N (LN). N shortage resulted in down-regulation of expressions of SiPetA, SiccsA, SipsbA, SirpoB, SipsaA, SiatpA, Sirps16, and SiPEPC which, undermined chloroplast functioning and CO2 assimilation for the provision of carbon skeleton. Carbon deficiency and lower activities of GS decelerated ammonia assimilation and led to over-accumulation of NH4+ in the LN-shoot, as indicated by lower concentrations of total amino acids. Thus, enhanced GOGAT activity was to assimilate NH4+ while, those of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were to scavenge reactive oxygen species (ROS) of NH4+ toxicity framework. The weakened chloroplast factory eventually minimized photosynthesis and reduced dry mass of the LN shoot. Such regulation of N by the shoot, perhaps, resurrected physiological functions which maintained internal mineral status under nitrogen limitation in foxtail millet.
Collapse
Affiliation(s)
- Faisal Nadeem
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China; Department of Soil Science, University of the Punjab, Lahore, 54590, Pakistan
| | - Rashid Mahmood
- Department of Soil Science, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | | | - Ruifeng Wang
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ishfaq
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
43
|
Zhu G, Cheng D, Wang X, Guo Q, Zhang Q, Zhang J, Tu Q, Li W. Free amino acids, carbon and nitrogen isotopic compositions responses to cadmium stress in two castor (Ricinus communis L.) species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:40-46. [PMID: 35623112 DOI: 10.1016/j.plaphy.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) toxicity induce various disturbances in metabolic processes and impair plant establishment. The composition of carbon and nitrogen stable isotopes (δ13C and δ15N) and free amino acids (FAAs) can reflect the response of plants to environmental stress. In the present study, a solution culture experiment was carried out, and the secretion characteristics of FAAs as well as δ13C and δ15N were evaluated as indicative of the functional performance of two castor species (Zibo-3 and Zibo-9) under various Cd concentrations stress (0, 1, 2, and 5 mg L-1). The results indicated that: 1) The treatment of the plants with 5 mg L-1 of a Cd solution resulted in a significant decline of biomasses by 22.4% and 11.6% in Zibo-3 and Zibo-9, respectively, relative to controls; additionally, the accumulation levels for Cd in Zibo-9 were higher than those in Zibo-3, thus Zibo-9 showed higher tolerance and enrichment ability to Cd. 2) The exposure of castor to Cd treatments results in significant modifications in individual FAAs, suggesting a differential sensitivity of each biosynthetic pathway to this stress; however, a positive correlation was found between the accumulation of total FAAs and Cd treatment dosages; higher proportion of asparagine and glutamate in total amino acids for Zibo-9, and abundant secretion of arginine in Cd treated Zibo-9 may be associated with the higher Cd-tolerance and Cd-accumulation in Zibo-9. 3) Cd stress increased leaf δ13C and δ15N values regardless of the castor species; δ13C and δ15N could be used as monitoring tools for heavy metal stress in plants.
Collapse
Affiliation(s)
- Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China.
| | - Dandan Cheng
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China
| | - Xingfeng Wang
- College of Biology and Environment Engineering, Guiyang University, Guiyang, 550005, China
| | - QingJun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - WangJun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| |
Collapse
|
44
|
Novotny JL, Goodell K. Utility of carbon and nitrogen stable isotopes for inferring wild bee (Hymenoptera: Apoidea) use of adjacent foraging habitats. PLoS One 2022; 17:e0271095. [PMID: 35830429 PMCID: PMC9278760 DOI: 10.1371/journal.pone.0271095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Isotope analysis has proven useful for understanding diets of animals that are difficult to track for extended periods. Bees are small yet highly mobile and often forage from multiple habitats. However, current methods of assessing diet are limited in scope. Efficient methods of tracking bee diets that integrate across life stages, distinguish habitat use, and are sensitive to taxonomic differences will inform conservation strategies. We evaluated the utility of stable isotope analysis for estimating contributions of adjacent habitats to bees’ diets. We also investigated taxonomic variation in bee and flower isotope composition. We measured natural abundance of carbon and nitrogen stable isotopes in two body regions from three wild bee genera, as well as in 25 species of flowers that likely comprised their diets. Bee ∂13C and ∂15N varied with habitat and taxonomic groups (conflated with month), but did not match spatial or seasonal trends in their food plants. Flower ∂13C was lowest in the forest and in April–June, as expected if driven by water availability. However, bee ∂13C was elevated in the spring, likely from overwintering nutritional stress or unpredictable food availability. Bumble bees (Bombus) were enriched in ∂15N compared to others, possibly reflecting differences in larval feeding. Bee diet mixing models had high variation and should be interpreted with caution. Models estimated similar habitat contributions to diets of spring Andrena and overwintered Bombus queens. Summer Bombus queens and workers were indistinguishable. Sweat bees (Halictus) were estimated to use comparatively more field flowers than others. Overall, taxon more strongly influenced isotope composition than either foraging habitat or month, likely because of associated differences in sociality and timing of annual activity. Future studies seeking to reveal bee diets by isotope analysis may gain better resolution in more isotopically distinct habitats, in conjunction with controlled feeding or isotope labeling experiments.
Collapse
Affiliation(s)
- Jessie Lanterman Novotny
- Department of Biology, Hiram College, Hiram, Ohio, United States of America
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Newark, Ohio, United States of America
- * E-mail:
| | - Karen Goodell
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Newark, Ohio, United States of America
| |
Collapse
|
45
|
Oulehle F, Tahovská K, Ač A, Kolář T, Rybníček M, Čermák P, Štěpánek P, Trnka M, Urban O, Hruška J. Changes in forest nitrogen cycling across deposition gradient revealed by δ 15N in tree rings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119104. [PMID: 35301033 DOI: 10.1016/j.envpol.2022.119104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Tree rings provide valuable insight into past environmental changes. This study aimed to evaluate perturbations in tree ring width (TRW) and δ15N alongside soil acidity and nutrient availability gradients caused by the contrasting legacy of air pollution (nitrogen [N] and sulphur [S] deposition) and tree species (European beech, Silver fir and Norway spruce). We found consistent declines of tree ring δ15N, which were temporarily unrelated to the changes in the TRW. The rate of δ15N change in tree rings was related to the contemporary foliar carbon (C) to phosphorus (P) ratio. This observation suggested that the long-term accumulation of 15N depleted N in tree rings, likely mediated by retained N from deposition, was restricted primarily to stands with currently higher P availability. The shifts observed in tree-ring δ15N and TRW suggest that acidic air pollution rather than changes in stand productivity determined alteration of N and C cycles. Stable N isotopes in tree rings provided helpful information on the trajectory of the N cycle over the last century with direct consequences for a better understanding of future interactions among N, P and C cycles in terrestrial ecosystems.
Collapse
Affiliation(s)
- Filip Oulehle
- Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Karolina Tahovská
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Alexandr Ač
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Petr Čermák
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Petr Štěpánek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Hruška
- Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
46
|
Carillo P, Rouphael Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:899522. [PMID: 35783949 PMCID: PMC9244799 DOI: 10.3389/fpls.2022.899522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 05/29/2023]
Abstract
Over the past five decades, nitrogen (N) fertilization has been an essential tool for boosting crop productivity in agricultural systems. To avoid N pollution while preserving the crop yields and profit margins for farmers, the scientific community is searching for eco-sustainable strategies aimed at increasing plants' nitrogen use efficiency (NUE). The present article provides a refined definition of the NUE based on the two important physiological factors (N-uptake and N-utilization efficiency). The diverse molecular and physiological mechanisms underlying the processes of N assimilation, translocation, transport, accumulation, and reallocation are revisited and critically discussed. The review concludes by examining the N uptake and NUE in tandem with chloride stress and eustress, the latter being a new approach toward enhancing productivity and functional quality of the horticultural crops, particularly facilitated by soilless cultivation.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
47
|
Divergent Response of the Supply Capacity and Turnover of Inorganic Nitrogen to Pitaya Cultivation in the Subtropical Karst Region of Southwest China. LAND 2022. [DOI: 10.3390/land11060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Determining the availability and supply capacity of soil inorganic nitrogen (N) can effectively guide the appropriate application of N fertilizers during crop cultivation. However, the mechanism underlying soil inorganic N production remains unknown for cash crops in karst regions. In this study, the rates of organic N mineralization to ammonium (NH4+) and NH4+ nitrification to nitrate (NO3−) were determined using a 15N tracing technique to evaluate the supply capacity of inorganic N in soils from woodland and pitaya plantations with different cultivation years (3, 9, and 15 years) in the subtropical karst region of China. The conversion of woodland to pitaya plantations significantly decreased the content of soil organic carbon (SOC), total N, calcium (Ca), and magnesium (Mg), along with the soil pH and cation-exchange capacity (CEC), but significantly increased the content of available potassium, available phosphorus, iron, and aluminum, in a more pronounced fashion with the increasing length of pitaya cultivation. The conversion of woodland to pitaya plantations has not significantly changed soil NH4+ and NO3− content, but this land use has resulted in divergent effects on mineralization and nitrification rates. Compared to woodland (5.49 mg N kg−1 d−1), pitaya cultivation significantly reduced the mineralization rate to 0.62–2.38 mg N kg−1 d−1. Conversely, the nitrification rate significantly increased from 4.71 mg N kg−1 d−1 in soil under woodland to 9.32 mg N kg−1 d−1 in soil under 3-year pitaya cultivation, but this rate decreased to 1.74 mg N kg−1 d−1 under 15-year cultivation. Furthermore, the mean residence time of inorganic N was significantly higher in long-term than in short-term pitaya plantations, indicating the decline in inorganic N turnover with the increasing length of pitaya cultivation. Taken together, long-term pitaya cultivation could significantly decrease the supply capacity and turnover of inorganic N in soil. The Ca, Mg, SOC, and total N content, as well as CEC, were significantly and positively related to the mineralization rate, but negatively related to the mean residence time of NH4+ and NO3−, suggesting that the incorporation of organic matter can accelerate the soil inorganic N supply and turnover for long-term pitaya plantation in subtropical regions.
Collapse
|
48
|
Differed Adaptive Strategies to Nutrient Status between Native and Exotic Mangrove Species. FORESTS 2022. [DOI: 10.3390/f13050804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To rapidly rehabilitate mangrove forests, exotic mangrove species characterized by high growth rates have been introduced in China, which would undoubtedly affect the nutrient status, nutrient acquisition and utilization strategies of mangrove plants, but the mechanism remains unclear. Qi’ao Island (a suburb of Zhuhai City) has the largest continuous exotic mangrove forests in China, where a mass collection of mangrove soils, plant tissues and tidewater was conducted. Ecological stoichiometric ratios and isotopic compositions were then analyzed to evaluate the ecosystem-scale nutrient status and compare the nutrient acquisition and utilization strategies of native Kandelia obovata (KO) and exotic Sonneratia apetala (SA) species. Soil and foliar C:N:P stoichiometries indicated that there is high P availability but N limitations, while further isotopic evidence indicated that native KO and exotic SA responded differently to the N limitation status. First, native KO seemed to prefer NO3−, while exotic SA preferred NH4+, according to the Δ15Nleaf–root (leaf–root δ15N difference) as well as the relationships between foliar δ15N and soil-extracted NH4+ δ15N, and between N and heavy metal contents. This suggested possible inter-specific competition between native KO and exotic SA, leading to different N species’ preferences to maximize resource utilization. Next, native KO likely adopted the “conservative” strategy to ensure survival with reduced investment in N-rich growth components but root systems leading to lower growth rates and higher N use efficiency (NUE) and intrinsic water use efficiency (iWUE), while exotic SA adopted the “aggressive” strategy to ensure fast growth with heavy investment in N-rich growth components, leading to rapid growth and lower NUE and iWUE, and showing signs of invasiveness. Further, native KO is more responsive to aggravated N limitation by enhancing NUE. This study will provide insights into the adaptation of different mangrove species to nutrient limitations and the risks associated with large-scale plantations of exotic mangrove species.
Collapse
|
49
|
Pereira JP, Garbin ML, Carrijo TT, da Silva JA, Bourguignon TP, Cavatte PC. Lack of coordination between stomatal and vein traits provides functional benefits to the dioecious tropical tree Myrsine coriacea. PHYSIOLOGIA PLANTARUM 2022; 174:e13719. [PMID: 35587454 DOI: 10.1111/ppl.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change will affect the distribution of many tropical plant species. However, the understanding of how dioecious tropical species cope with different environmental conditions is still limited. To address this issue, we investigated how secondary trait attributes in populations of the dioecious tropical tree Myrsine coriacea change along an altitudinal gradient. Eighty individual plants (40 male and 40 female) were selected among seven natural populations. Leaf variation in morphological and stomatal traits, and carbon and nitrogen isotopic compositions were analyzed. Female plants had greater isotopic leaf carbon composition (δ13 C) and nitrogen content than male plants, increasing their carboxylation capacity. Plants of both sexes had smaller stomata, greater water-use efficiency (greater δ13 C), and greater nitrogen isotopic composition (δ15 N) at higher altitudes. They also showed lower δ15 N and had greater carbon: nitrogen ratios at lower altitudes. There was a lack of coordination between stomatal and vein traits, which was compensated for by variation in specific leaf areas. This mechanism was essential for increasing plant performance under the limiting conditions found by the species at higher altitudes.
Collapse
Affiliation(s)
- Jéssica Priscilla Pereira
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Mário Luís Garbin
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Tatiana Tavares Carrijo
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Josimar Aleixo da Silva
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Cachoeiro de Itapemirim, Alegre, ES, Brazil
| | - Tayna Poppe Bourguignon
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Paulo Cezar Cavatte
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
- Laboratório de Botânica, Departamento de Biologia, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| |
Collapse
|
50
|
Mason RE, Craine JM, Lany NK, Jonard M, Ollinger SV, Groffman PM, Fulweiler RW, Angerer J, Read QD, Reich PB, Templer PH, Elmore AJ. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 2022; 376:eabh3767. [PMID: 35420945 DOI: 10.1126/science.abh3767] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The productivity of ecosystems and their capacity to support life depends on access to reactive nitrogen (N). Over the past century, humans have more than doubled the global supply of reactive N through industrial and agricultural activities. However, long-term records demonstrate that N availability is declining in many regions of the world. Reactive N inputs are not evenly distributed, and global changes-including elevated atmospheric carbon dioxide (CO2) levels and rising temperatures-are affecting ecosystem N supply relative to demand. Declining N availability is constraining primary productivity, contributing to lower leaf N concentrations, and reducing the quality of herbivore diets in many ecosystems. We outline the current state of knowledge about declining N availability and propose actions aimed at characterizing and responding to this emerging challenge.
Collapse
Affiliation(s)
- Rachel E Mason
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | | | - Nina K Lany
- Northern Research Station, USDA Forest Service, Durham, NH, USA
| | - Mathieu Jonard
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Scott V Ollinger
- Earth Systems Research Center, University of New Hampshire, Durham, NH, USA
| | - Peter M Groffman
- Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY, USA.,Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Robinson W Fulweiler
- Department of Earth and Environment, Boston University, Boston, MA, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - Jay Angerer
- Fort Keogh Livestock and Range Research Laboratory, USDA Agricultural Research Service, Miles City, MT, USA
| | - Quentin D Read
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | | | - Andrew J Elmore
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA.,Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| |
Collapse
|