1
|
Wang B, Cheng P, Jin B, Jiang Y, Wang Q, Xu H. Effect of Tryptophan Restriction in the Therapy of Irritable Bowel Syndrome: a Systematic Review. Int J Gen Med 2024; 17:4141-4151. [PMID: 39308964 PMCID: PMC11414632 DOI: 10.2147/ijgm.s474525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The metabolic pathways of tryptophan (TRP) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), positing that the strategic modulation of TRP consumption may exert regulatory effects on serotonin levels, consequently altering the clinical manifestation of IBS. This systematic review was meticulously orchestrated to evaluate the effect of TRP restriction on IBS. Methods A comprehensive search of the MEDLINE/PubMed, Cochrane Library, and Embase databases was conducted. Controlled trials that compared the efficacy of TRP restriction in IBS patients were scrutinized. The primary outcomes were gastrointestinal symptoms, quality of life, and pain, whereas the secondary outcomes included anxiety, mood, and safety. The risk of bias was meticulously assessed according to the guidelines recommended by the Cochrane Collaboration. Results A total of five trials, enrolling 135 participants, were incorporated into the qualitative synthesis. Low-TRP intake attenuated gastrointestinal discomfort and enhanced psychological well-being in IBS patients, while the effects of acute TRP depletion were controversial. Safety data from one randomized controlled trial reported no occurrence of adverse events. Conclusion This systematic review suggests that moderating, rather than depleting, TRP intake may potentially be a feasible and safe adjunctive treatment for patients with IBS. Future research incorporating a high-quality study design and consensus on clinical outcome measurements for IBS is warranted.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Peilin Cheng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Bingjie Jin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qingcai Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
2
|
Kiecka A, Szczepanik M. Migraine and the microbiota. Can probiotics be beneficial in its prevention? - a narrative review. Pharmacol Rep 2024; 76:251-262. [PMID: 38502301 DOI: 10.1007/s43440-024-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
Migraine is a recurrent disease of the central nervous system that affects an increasing number of people worldwide causing a continuous increase in the costs of treatment. The mechanisms underlying migraine are still unclear but recent reports show that people with migraine may have an altered composition of the intestinal microbiota. It is well established that the gut-brain axis is involved in many neurological diseases, and probiotic supplementation may be an interesting treatment option for these conditions. This review collects data on the gastrointestinal and oral microbiota in people suffering from migraine and the use of probiotics as a novel therapeutic approach in its treatment.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland.
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, Kraków, 31-034, Poland
| |
Collapse
|
3
|
Comai S, Nunez N, Atkin T, Ghabrash MF, Zakarian R, Fielding A, Saint-Laurent M, Low N, Sauber G, Ragazzi E, Hillard CJ, Gobbi G. Dysfunction in endocannabinoids, palmitoylethanolamide, and degradation of tryptophan into kynurenine in individuals with depressive symptoms. BMC Med 2024; 22:33. [PMID: 38273283 PMCID: PMC10809514 DOI: 10.1186/s12916-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolas Nunez
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tobias Atkin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Rita Zakarian
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Allan Fielding
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Marie Saint-Laurent
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Garrett Sauber
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
4
|
Rojas Cabrera JM, Oesterle TS, Rusheen AE, Goyal A, Scheitler KM, Mandybur I, Blaha CD, Bennet KE, Heien ML, Jang DP, Lee KH, Oh Y, Shin H. Techniques for Measurement of Serotonin: Implications in Neuropsychiatric Disorders and Advances in Absolute Value Recording Methods. ACS Chem Neurosci 2023; 14:4264-4273. [PMID: 38019166 PMCID: PMC10739614 DOI: 10.1021/acschemneuro.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter in the peripheral, enteric, and central nervous systems (CNS). Within the CNS, serotonin is principally involved in mood regulation and reward-seeking behaviors. It is a critical regulator in CNS pathologies such as major depressive disorder, addiction, and schizophrenia. Consequently, in vivo serotonin measurements within the CNS have emerged as one of many promising approaches to investigating the pathogenesis, progression, and treatment of these and other neuropsychiatric conditions. These techniques vary in methods, ranging from analyte sampling with microdialysis to voltammetry. Provided this diversity in approach, inherent differences between techniques are inevitable. These include biosensor size, temporal/spatial resolution, and absolute value measurement capabilities, all of which must be considered to fit the prospective researcher's needs. In this review, we summarize currently available methods for the measurement of serotonin, including novel voltammetric absolute value measurement techniques. We also detail serotonin's role in various neuropsychiatric conditions, highlighting the role of phasic and tonic serotonergic neuronal firing within each where relevant. Lastly, we briefly review the present clinical application of these techniques and discuss the potential of a closed-loop monitoring and neuromodulation system utilizing deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Juan M. Rojas Cabrera
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Tyler S. Oesterle
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902, United States
- Robert
D. and Patricia K. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Aaron E. Rusheen
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Abhinav Goyal
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kristen M. Scheitler
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ian Mandybur
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kevin E. Bennet
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Dong Pyo Jang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| |
Collapse
|
5
|
Kunz M, Bär KJ, Karmann AJ, Wagner G, Lautenbacher S. Facial expressions of pain: the role of the serotonergic system. Psychopharmacology (Berl) 2023; 240:2597-2605. [PMID: 37676276 PMCID: PMC10640419 DOI: 10.1007/s00213-023-06455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
RATIONALE Although interest in the neurobiology of facial communication of pain has increased over the last decades, little is known about which neurotransmitter systems might be involved in regulating facial expressions of pain. OBJECTIVES We aim to investigate whether the serotonergic system (5-HT), which has been implicated in various aspects of pain processing as well as in behavioral response inhibition, might play a role in facial expressions of pain. Using acute tryptophan depletion (ATD) to manipulate 5-HT function, we examined its effects on facial and subjective pain responses. METHODS In a double-blind, placebo-controlled within-subject design, 27 participants received either an ATD or a control drink in two separate sessions. Approximately 5-h post-oral consumption, we assessed pain thresholds (heat, pressure) as well as facial and subjective responses to phasic heat pain. Moreover, situational pain catastrophizing and mood were assessed as affective state indicators. RESULTS ATD neither influenced pain thresholds nor self-report ratings, nor catastrophizing or mood. Only facial responses were significantly affected by ATD. ATD led to a decrease in pain-indicative as well as in pain-non-indicative facial responses to painful heat, compared to the control condition. CONCLUSIONS Decrease in brain 5-HT synthesis via ATD significantly reduced facial responses to phasic heat pain; possibly due to (i) diminished disposition to display social behavior or due to (ii) decreased facilitation of excitatory inputs to the facial motor neuron.
Collapse
Affiliation(s)
- Miriam Kunz
- Department of Medical Psychology and Sociology, Medical Faculty, University of Augsburg, Augsburg, Germany.
- Bamberger Living Lab Dementia (BamLiD), Otto-Friedrich University Bamberg, Bamberg, Germany.
| | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Anna J Karmann
- Bamberger Living Lab Dementia (BamLiD), Otto-Friedrich University Bamberg, Bamberg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefan Lautenbacher
- Bamberger Living Lab Dementia (BamLiD), Otto-Friedrich University Bamberg, Bamberg, Germany
| |
Collapse
|
6
|
Hung CC, Chao YP, Lee Y, Huang CW, Huang SH, Chang CC, Cheng CH. Cingulate white matter mediates the effects of fecal Ruminococcus on neuropsychiatric symptoms in patients with amyloid-positive amnestic mild cognitive impairment. BMC Geriatr 2023; 23:720. [PMID: 37936084 PMCID: PMC10631051 DOI: 10.1186/s12877-023-04417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Microbiota-gut-brain axis interacts with one another to regulate brain functions. However, whether the impacts of gut dysbiosis on limbic white matter (WM) tracts contribute to the neuropsychiatric symptoms (NPS) in patients with amyloid-positive amnestic mild cognitive impairment (aMCI+), have not been explored yet. This study aimed to investigate the mediation effects of limbic WM integrity on the association between gut microbiota and NPS in patients with aMCI+. METHODS Twenty patients with aMCI + and 20 healthy controls (HCs) were enrolled. All subjects underwent neuropsychological assessments and their microbial compositions were characterized using 16S rRNA Miseq sequencing technique. Amyloid deposition inspected by positron emission tomography imaging and limbic WM tracts (i.e., fornix, cingulum, and uncinate fasciculus) detected by diffusion tensor imaging were additionally measured in patients with aMCI+. We employed a regression-based mediation analysis using Hayes's PROCESS macro in this study. RESULTS The relative abundance of genera Ruminococcus and Lactococcus was significantly decreased in patients with aMCI + versus HCs. The relative abundance of Ruminococcus was negatively correlated with affective symptom cluster in the aMCI + group. Notably, this association was mediated by WM integrity of the left cingulate gyrus. CONCLUSIONS Our findings suggest Ruminococcus as a potential target for the management of affective impairments in patients with aMCI+.
Collapse
Affiliation(s)
- Chun-Che Hung
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yejin Lee
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Chi-Wei Huang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung university College of Medicine, No. 123 Ta-Pei Rd., Niau-Sung Dist, 833, Kaohsiung, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Road, 333, Taoyuan, Taiwan.
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
7
|
Bîlc MI, Iacob A, Szekely-Copîndean RD, Kiss B, Ștefan MG, Mureșan RC, Pop CF, Pițur S, Szentágotai-Tătar A, Vulturar R, MacLeod C, Miu AC. Serotonin and emotion regulation: the impact of tryptophan depletion on emotional experience, neural and autonomic activity. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1414-1427. [PMID: 37430145 DOI: 10.3758/s13415-023-01116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
The involvement of serotonin in emotion and psychopathology has been extensively examined. Studies using acute tryptophan depletion (ATD) have found limited effects on mood and aggression, and one of the explanations suggests that serotonin may be involved in higher-order functions, such as emotion regulation. However, there is very limited evidence for this hypothesis. The present study investigated the impact of ATD on emotion regulation in a double-blind, placebo-controlled, crossover design. A sample of psychiatrically healthy men (N = 28) completed a cognitive task assessing reappraisal ability (i.e., the success of using reappraisal, an emotion regulation strategy, to modulate emotional responses), following ATD and placebo. EEG frontal activity and asymmetry, as well as heart-rate variability (HRV), also were assessed in the reappraisal task. Both frequentist and Bayesian methods were employed for statistical analysis. Results indicated that ATD reduced plasma tryptophan, and reappraisal was effective in modulating emotional experience in the emotion regulation task. However, ATD had no significant effect on reappraisal ability, frontal activity, and HRV. These results offer direct and compelling evidence that decreasing serotonin synthesis through ATD does not alter an emotion regulation ability that is considered crucial in mood and aggression and has been linked with transdiagnostic risk of psychopathology.
Collapse
Affiliation(s)
- Mirela I Bîlc
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Alexandra Iacob
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Raluca D Szekely-Copîndean
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Department of Social and Human Research, Romanian Academy, Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Felicia Pop
- Nursing Discipline, Department Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simina Pițur
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Romana Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
- Department of Molecular Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Colin MacLeod
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Andrei C Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
9
|
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry 2023; 28:3243-3256. [PMID: 35854107 PMCID: PMC10618090 DOI: 10.1038/s41380-022-01661-0] [Citation(s) in RCA: 272] [Impact Index Per Article: 272.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/31/2022]
Abstract
The serotonin hypothesis of depression is still influential. We aimed to synthesise and evaluate evidence on whether depression is associated with lowered serotonin concentration or activity in a systematic umbrella review of the principal relevant areas of research. PubMed, EMBASE and PsycINFO were searched using terms appropriate to each area of research, from their inception until December 2020. Systematic reviews, meta-analyses and large data-set analyses in the following areas were identified: serotonin and serotonin metabolite, 5-HIAA, concentrations in body fluids; serotonin 5-HT1A receptor binding; serotonin transporter (SERT) levels measured by imaging or at post-mortem; tryptophan depletion studies; SERT gene associations and SERT gene-environment interactions. Studies of depression associated with physical conditions and specific subtypes of depression (e.g. bipolar depression) were excluded. Two independent reviewers extracted the data and assessed the quality of included studies using the AMSTAR-2, an adapted AMSTAR-2, or the STREGA for a large genetic study. The certainty of study results was assessed using a modified version of the GRADE. We did not synthesise results of individual meta-analyses because they included overlapping studies. The review was registered with PROSPERO (CRD42020207203). 17 studies were included: 12 systematic reviews and meta-analyses, 1 collaborative meta-analysis, 1 meta-analysis of large cohort studies, 1 systematic review and narrative synthesis, 1 genetic association study and 1 umbrella review. Quality of reviews was variable with some genetic studies of high quality. Two meta-analyses of overlapping studies examining the serotonin metabolite, 5-HIAA, showed no association with depression (largest n = 1002). One meta-analysis of cohort studies of plasma serotonin showed no relationship with depression, and evidence that lowered serotonin concentration was associated with antidepressant use (n = 1869). Two meta-analyses of overlapping studies examining the 5-HT1A receptor (largest n = 561), and three meta-analyses of overlapping studies examining SERT binding (largest n = 1845) showed weak and inconsistent evidence of reduced binding in some areas, which would be consistent with increased synaptic availability of serotonin in people with depression, if this was the original, causal abnormaly. However, effects of prior antidepressant use were not reliably excluded. One meta-analysis of tryptophan depletion studies found no effect in most healthy volunteers (n = 566), but weak evidence of an effect in those with a family history of depression (n = 75). Another systematic review (n = 342) and a sample of ten subsequent studies (n = 407) found no effect in volunteers. No systematic review of tryptophan depletion studies has been performed since 2007. The two largest and highest quality studies of the SERT gene, one genetic association study (n = 115,257) and one collaborative meta-analysis (n = 43,165), revealed no evidence of an association with depression, or of an interaction between genotype, stress and depression. The main areas of serotonin research provide no consistent evidence of there being an association between serotonin and depression, and no support for the hypothesis that depression is caused by lowered serotonin activity or concentrations. Some evidence was consistent with the possibility that long-term antidepressant use reduces serotonin concentration.
Collapse
Affiliation(s)
- Joanna Moncrieff
- Division of Psychiatry, University College London, London, UK.
- Research and Development Department, Goodmayes Hospital, North East London NHS Foundation Trust, Essex, UK.
| | - Ruth E Cooper
- Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | | | - Simone Amendola
- Department of Dynamic and Clinical Psychology, and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michael P Hengartner
- Department of Applied Psychology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Mark A Horowitz
- Division of Psychiatry, University College London, London, UK
- Research and Development Department, Goodmayes Hospital, North East London NHS Foundation Trust, Essex, UK
| |
Collapse
|
10
|
Steding J, Ritschel F, Boehm I, Geisler D, King JA, Roessner V, Smolka MN, Zepf FD, Ehrlich S. The effects of acute tryptophan depletion on instrumental reward learning in anorexia nervosa - an fMRI study. Psychol Med 2023; 53:3426-3436. [PMID: 35343412 PMCID: PMC10277771 DOI: 10.1017/s0033291721005493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The serotonin (5-HT) hypothesis of anorexia nervosa (AN) posits that individuals predisposed toward or recovered from AN (recAN) have a central nervous hyperserotonergic state and therefore restrict food intake as a means to reduce 5-HT availability (via diminished tryptophan-derived precursor supply) and alleviate associated negative mood states. Importantly, the 5-HT system has also been generally implicated in reward processing, which has also been shown to be altered in AN. METHODS In this double-blind crossover study, 22 individuals recAN and 25 healthy control participants (HC) underwent functional magnetic resonance imaging (fMRI) while performing an established instrumental reward learning paradigm during acute tryptophan depletion (ATD; a dietary intervention that lowers central nervous 5-HT availability) as well as a sham depletion. RESULTS On a behavioral level, the main effects of reward and ATD were evident, but no group differences were found. fMRI analyses revealed a group × ATD × reward level interaction in the ventral anterior insula during reward anticipation as well as in the medial orbitofrontal cortex during reward consumption. DISCUSSION The precise pattern of results is suggestive of a 'normalization' of reward-related neural responses during ATD in recAN compared to HC. Our results lend further evidence to the 5-HT hypothesis of AN. Decreasing central nervous 5-HT synthesis and availability during ATD and possibly also by dieting may be a means to normalize 5-HT availability and associated brain processes.
Collapse
Affiliation(s)
- Julius Steding
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Ritschel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Florian Daniel Zepf
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Chojnacki C, Gąsiorowska A, Popławski T, Błońska A, Konrad P, Zajdler R, Chojnacki J, Blasiak J. Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders. Nutrients 2023; 15:nu15071674. [PMID: 37049514 PMCID: PMC10097278 DOI: 10.3390/nu15071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Lymphocytic colitis (LC) is a gastrointestinal (GI) tract disease with poorly known pathogenesis, but some environmental and lifestyle factors, including certain dietary components, may play a role. Tryptophan is an essential amino acid, which plays important structural and functional roles as a component of many proteins. It is important in the development and maintenance of the body, in which it is metabolized in two main pathways: kynurenine (KYN) and serotonin. In this work, we explored the effect of reducing of TRP in the diet of patients with LC with mood disorders. We enrolled 40 LC patients who had a normal diet, 40 LC patients with the 8-week diet with TRP content reduced by 25% and 40 controls. All LC patients received budesonide at 9 mg per day, and the severity of their GI symptoms was evaluated by the Gastrointestinal Symptoms Rating Scale. Mood disorders were evaluated by the Hamilton Anxiety Rating Scale (HAM-A) and the Hamilton Depression Rating Scale (HAM-D). The concentration of TRP and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA), in urine were determined. Budesonide improved the GI and mental states of LC patients, and the diet with reduced TRP content further amended these symptoms. Dietary intervention decreased the concentration of 5-HIAA by about 50% (3.4 vs. 6.3) and QA by about 45% (3.97 vs. 7.20). These changes were correlated with a significant improvement in the profitable action of budesonide on gastrointestinal and mental health of LC patients as they displayed significantly lower GSRS, HAM-A and HAM-B scores after than before the intervention—10.5 vs. 32, 11.0 vs. 21 and 12 vs. 18, respectively. In conclusion, a reduction in TRP intake in diet may improve GI and mental symptoms in LC patients treated with budesonide and these changes may be mediated by the products of TRP metabolism.
Collapse
|
12
|
Chojnacki C, Gąsiorowska A, Popławski T, Konrad P, Chojnacki M, Fila M, Blasiak J. Beneficial Effect of Increased Tryptophan Intake on Its Metabolism and Mental State of the Elderly. Nutrients 2023; 15:847. [PMID: 36839204 PMCID: PMC9961537 DOI: 10.3390/nu15040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The elderly often suffer from sleep disorders and depression, which contribute to mood disorders. In our previous work, we showed that elderly individuals with mood disorders had a lower intake of TRP and recommended a TRP-based dietary intervention to improve the mental state of such individuals. In this work, we assessed the impact of a TRP-rich diet on the mental state of, and TRP metabolism in, elderly individuals with mood disorders. Forty elderly individuals with depression and sleep disorders and an equal number of elderly subjects without mood disorders were enrolled in this study. TRP intake was evaluated with the nutrition calculator. Patients with mood disorders had a lower TRP intake than their normal counterparts and received a TRP-rich diet with TRP content of 25 mg per kilogram of the body per day for 12 weeks. The mental state was assessed before and after this dietary intervention with the Hamilton Depression Rating Scale (HAM-D) and the Insomnia Severity Index (ISI). At those times, urinary levels of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), L-kynurenine (KYN), kynurenic acid (KYNA), and quinolinic acid (QA) were determined by liquid chromatography with tandem mass spectrometry and related to creatinine level. After TRP-based dietary intervention, the score of ISI and HAM-D decreased by more than half. A correlation analysis reveals that TRP, 5-HIAA, and KYNA might have anti-depressive action, while KYN and QA-pro-depressive. The levels of TRP, 5-HIAA, and KYNA in urine of mood disorder patients increased, while the levels of KYN and QA decreased. In conclusion, dietary consumption of adequate amount of tryptophan has a beneficial effect on mental health of the elderly with mood disorders and improves metabolism of this amino acid. Therefore, a TRP-enriched diet may be considered as a component of the treatment of elderly individuals with mood disorders.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Paulina Konrad
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Marcin Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
13
|
Tharp WG, Breidenstein MW, Friend AF, Bender SP, Raftery D. The neuroendocrine stress response compensates for suppression of insulin secretion by volatile anesthetic agents: An observational study. Physiol Rep 2023; 11:e15603. [PMID: 36808704 PMCID: PMC9937792 DOI: 10.14814/phy2.15603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/19/2023] Open
Abstract
Alterations in perioperative metabolic function, particularly hyperglycemia, are associated with increased post-operative complications, even in patients without preexisting metabolic abnormalities. Anesthetic medications and the neuroendocrine stress response to surgery may both contribute to altered energy metabolism through impaired glucose and insulin homeostasis but the discrete pathways involved are unclear. Prior human studies, though informative, have been limited by analytic sensitivity or technique, preventing resolution of underlying mechanisms. We hypothesized that general anesthesia with a volatile agent would suppress basal insulin secretion without altering hepatic insulin extraction, and that surgical stress would promote hyperglycemia through gluconeogenesis, lipid oxidation, and insulin resistance. In order to address these hypotheses, we conducted an observational study of subjects undergoing multi-level lumbar surgery with an inhaled anesthetic agent. We measured circulating glucose, insulin, c-peptide, and cortisol frequently throughout the perioperative period and analyzed the circulating metabolome in a subset of these samples. We found volatile anesthetic agents suppress basal insulin secretion and uncouple glucose-stimulated insulin secretion. Following surgical stimulus, this inhibition disappeared and there was gluconeogenesis with selective amino acid metabolism. No robust evidence of lipid metabolism or insulin resistance was observed. These results show that volatile anesthetic agents suppress basal insulin secretion, which results in reduced glucose metabolism. The neuroendocrine stress response to surgery ameliorates the inhibitory effect of the volatile agent on insulin secretion and glucose metabolism, promoting catabolic gluconeogenesis. A better understanding of the complex metabolic interaction between anesthetic medications and surgical stress is needed to inform design of clinical pathways aimed at improving perioperative metabolic function.
Collapse
Affiliation(s)
- William G. Tharp
- Department of AnesthesiologyUniversity of Vermont Medical CenterBurlingtonVermontUSA
| | - Max W. Breidenstein
- Department of AnesthesiologyUniversity of Vermont Medical CenterBurlingtonVermontUSA
| | - Alexander F. Friend
- Department of AnesthesiologyUniversity of Vermont Medical CenterBurlingtonVermontUSA
| | - S. Patrick Bender
- Department of AnesthesiologyUniversity of Vermont Medical CenterBurlingtonVermontUSA
| | - Daniel Raftery
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
14
|
No effects of acute tryptophan depletion on anxiety or mood in weight-recovered female patients with anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 2023; 273:209-217. [PMID: 35511296 PMCID: PMC9957824 DOI: 10.1007/s00406-022-01414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Previous studies have suggested that individuals recovered from anorexia nervosa (AN) are characterized by increased serotonergic (5-HT) activity that might be related to elevated levels of anxiety. Assuming these traits to be also present in individuals at risk for AN, it was further hypothesized that restricting food intake might be a means to temporarily alleviate dysphoric affective states by reducing central nervous availability of tryptophan (TRP), the sole precursor of 5-HT. One study that supported this hypothesis found anxiolytic effects in individuals with a history of AN during an experimentally induced short-term depletion of TRP supply to the brain. METHODS In this placebo-controlled, double-blind cross-over study, 22 patients weight-recovered from AN (recAN) and 25 healthy control participants (HC) completed questionnaires assessing anxiety and momentary mood during acute tryptophan depletion (ATD), a dietary intervention that lowers central 5-HT synthesis. RESULTS The ATD procedure effectively reduced the ratio of TRP to competing for large neutral amino acids in the peripheral blood, indicating decreased TRP supply to the brain. Effects of ATD on anxiety and mood did not differ between recAN and HC. Bayesian null hypothesis testing confirmed these initial results. DISCUSSION Our results do not support the hypothesis that short-term depletion of TRP and its impact on the brain 5-HT reduces anxiety or improves mood in AN. As the evidence for the role of 5-HT dysfunction on affective processes in patients with AN is limited, further studies are needed to assess its relevance in the pathophysiology of AN.
Collapse
|
15
|
von Koch L, Kathmann N, Reuter B. Lack of speeded disengagement from facial expressions of disgust in remitted major depressive disorder: Evidence from an eye-movement study. Behav Res Ther 2023; 160:104231. [PMID: 36463834 DOI: 10.1016/j.brat.2022.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Acute major depression is characterized by specific abnormalities in the way emotional material is attended to. In late stages of stimulus processing, clinically depressed and dysphoric individuals show difficulties to disengage attention from emotionally negative material. It is unclear, however, whether aberrant disengagement is a transitory attentional phenomenon tied to depressive symptoms, or whether it constitutes a more stable disposition that outlast the symptomatic episode. To address this issue, the current study examined 39 currently euthymic individuals previously affected by major depression (RMD) and 40 healthy control participants reporting no lifetime psychopathology (ND). We used a gaze-contingent eye tracking paradigm designed to separately assess the attentional components of engagement and disengagement when viewing facial expressions of sadness, disgust and happiness. Never-depressed healthy participants, but not remitted euthymic individuals, showed speeded disengagement from facial expressions of disgust. We propose that the lack of this distinct acceleration in previously depressed but fully remitted individuals might reflect an attentional disposition that carries over to euthymic phases of the disease. On the other hand, a tendency to disengage quickly from areas in the visual field that convey social disdain could potentially act as a protective, possibly mood-stabilizing bias in resilient individuals.
Collapse
Affiliation(s)
- Lara von Koch
- Department of Psychology, Humboldt-Universität zu Berlin, Germany.
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Benedikt Reuter
- Department of Psychology, Humboldt-Universität zu Berlin, Germany; Department of Medicine, MSB Medical School Berlin, Germany
| |
Collapse
|
16
|
A Reduced Tryptophan Diet in Patients with Diarrhoea-Predominant Irritable Bowel Syndrome Improves Their Abdominal Symptoms and Their Quality of Life through Reduction of Serotonin Levels and Its Urinary Metabolites. Int J Mol Sci 2022; 23:ijms232315314. [PMID: 36499643 PMCID: PMC9738361 DOI: 10.3390/ijms232315314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
(1). An essential component of any treatment for patients with irritable bowel syndrome (IBS) is an adequate diet. Currently, a low FODMAP diet is recommended as a first-line therapy, but it does not relieve abdominal discomfort in all patients, and alternative nutritional treatment is required. The purpose of this study was to evaluate the effect of a tryptophan-lowering diet (TRP) on abdominal and mental symptoms in patients with irritable bowel syndrome with predominant diarrhea (IBS-D). (2). The study included 40 patients with IBS-D, and 40 healthy subjects served as a baseline for IBS-D patients, after excluding comorbidities. The TRP intake was calculated using the nutritional calculator. The severity of abdominal symptoms was assessed using the gastrointestinal symptom rating scale (GSRS-IBS). Mental state was assessed using the Hamilton anxiety rating scale (HAM-A), the Hamilton depression rating scale (HAM-D), and the insomnia severity index (ISI). The serum levels of serotonin and melatonin and the urinary excretion of their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 6-sulfatoxymelatonin (aMT6) were determined by the ELISA method. The severity of symptoms and laboratory data were analyzed before and after a 12 week diet with tryptophan restricted to a daily dose 10 mg per kilogram body weight. (3). Compared to the control group, patients with IBS-D had a higher serum level of serotonin (198.2 ± 38.1 vs. 142.3 ± 36.4 ng/mL; p < 0.001) but a similar level of melatonin (8.6 ± 1.1 vs. 9.4 ± 3.0 pg/mL; p > 0.05). The urinary excretion of 5-HIAA was also higher in patients with IBS-D patients (7.7 ± 1.5 vs. 6.0 ± 1.7 mg/24 h; p < 0.001). After nutritional treatment, both the serum serotonin level and the urinary 5-HIAA excretion significantly decreased (p < 0.001). The severity of the abdominal symptoms and anxiety also decreased, while the HAM-D score and the ISI score remained unchanged (4). Lowering the dietary intake of tryptophan may reduce abdominal complaints and does not alter the mental state of IBS-D patients.
Collapse
|
17
|
Exploring the Tryptophan Metabolic Pathways in Migraine-Related Mechanisms. Cells 2022; 11:cells11233795. [PMID: 36497053 PMCID: PMC9736455 DOI: 10.3390/cells11233795] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Migraine is a complex neurovascular disorder, which causes intense socioeconomic problems worldwide. The pathophysiology of disease is enigmatic; accordingly, therapy is not sufficient. In recent years, migraine research focused on tryptophan, which is metabolized via two main pathways, the serotonin and kynurenine pathways, both of which produce neuroactive molecules that influence pain processing and stress response by disturbing neural and brain hypersensitivity and by interacting with molecules that control vascular and inflammatory actions. Serotonin has a role in trigeminal pain processing, and melatonin, which is another product of this pathway, also has a role in these processes. One of the end products of the kynurenine pathway is kynurenic acid (KYNA), which can decrease the overexpression of migraine-related neuropeptides in experimental conditions. However, the ability of KYNA to cross the blood-brain barrier is minimal, necessitating the development of synthetic analogs with potentially better pharmacokinetic properties to exploit its therapeutic potential. This review summarizes the main translational and clinical findings on tryptophan metabolism and certain neuropeptides, as well as therapeutic options that may be useful in the prevention and treatment of migraine.
Collapse
|
18
|
Detection of the role of intestinal flora and tryptophan metabolism involved in antidepressant-like actions of crocetin based on a multi-omics approach. Psychopharmacology (Berl) 2022; 239:3657-3677. [PMID: 36169685 DOI: 10.1007/s00213-022-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE Depression is a serious mood disorder, and crocetin has a variety of pharmacological activities, including antidepressant effect. The alterations of intestinal flora have a significant correlation with depression, and crocetin can alter the composition of intestinal flora in mice with depression-like behaviors. OBJECTIVE This study investigated the underlying antidepressant mechanisms of crocetin through multi-omics coupled with biochemical technique validation. METHODS Chronic unpredictable stress (CUMS) was used to induce mice model of depression to evaluate the antidepressant effect of crocetin through behavioral tests, and the metagenomic and metabolomic were used to explore the potential mechanisms involved. In order to verify its underlying mechanism, western blot (WB), Elisa, immune histological and HPLC techniques were used to detect the level of inflammatory cytokines and the level of metabolites/proteins related to tryptophan metabolism in crocetin-treated mice. RESULTS Crocetin ameliorated depression-like behaviors and increased mobility in depressive mice induced by CUMS. Metagenomic results showed that crocetin regulated the structure of intestinal flora, as well as significantly regulated the function gene related to derangements in energy metabolism and amino acid metabolism in mice with depression-like behaviors. Metabolomic results showed that the tryptophan metabolism, arginine metabolism and arachidonic acid metabolism played an essential role in exerting antidepressant-like effect of crocetin. According to multi-omics approaches and validation results, tryptophan metabolism and inflammation were identified and validated as valuable biological processes involved in the antidepressant effects of crocetin. Crocetin regulated the tryptophan metabolism in mice with depression-like behaviors, including increased aryl hydrocarbon receptor (AhR) expression, reduced indoleamine 2,3-dioxygenase 1 (IDO1) and serotonin transporter (SERT) expression in the hippocampus, elevated the content of 5-HT, kynurenic acid in serum and 5-HT, tryptophan in hippocampus. In addition, crocetin also attenuated inflammation in mice with depression-like behaviors, which presented with reducing the production of inflammatory cytokines in serum and colon. Meanwhile, crocetin up-regulated the expression of zonula occludens 1 (ZO-1) and occludin in ileum and colon to repair the intestinal barrier for preventing inflammation transfer. CONCLUSION Our findings clarify that crocetin exerted antidepressant effects through its anti-inflammation, repairment of intestinal barrier, modulatory on the intestinal flora and metabolic disorders, which further regulated tryptophan metabolism and impacted mitogen-activated protein kinase (MAPK) signaling pathway to enhance neural plasticity, thereby protect neural.
Collapse
|
19
|
Haleem DJ. Nutritional importance of tryptophan for improving treatment in depression and diabetes. Nutr Rev 2022. [DOI: 10.1093/nutrit/nuac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The importance of nutrients in our diet is becoming increasingly recognized. From the viewpoint of protein synthesis and other physiologic and metabolic functions, all amino acids are important, but some of these amino acids are not synthesized endogenously. This subset, called essential amino acids, comprise dietarily indispensable nutrients. Tryptophan, an essential amino acid, is the sole precursor of neuronal as well as peripheral serotonin (5-hydroxytryptamine). Its systemic or oral administration increases serotonin synthesis because tryptophan hydroxylase, the rate-limiting enzyme of 5-hydroxytryptamine biosynthesis, is physiologically unsaturated with its substrate. Central serotonin is implicated in a number of psychiatric illnesses, including depression, and in responses to stress. Acting peripherally, serotonin affects vasoconstriction, intestinal motility, control of T cell–mediated immunity, and liver and pancreatic functions. Depression and diabetes are 2 highly prevalent diseases that often coexist. There is evidence that occurrence of depression is 2–3 times higher in people with diabetes mellitus. A comorbid condition of diabetes and depression worsens the treatment and increases risk for death. Stress, known for its causal role in depression, can also enhance risk for diabetes. Stress-induced decreases in the circulating levels of tryptophan can impair brain and pancreatic serotonin-dependent functions to precipitate these diseases. The importance of tryptophan supplementation for improving therapeutic intervention in depression and diabetes is the focus of this article. A deficiency of this essential amino acid may enhance risk for depression as well as diabetes, and can also weaken treatment efficacy of medicinal compounds for treating these diseases. Guidelines for optimal levels of circulating tryptophan can help if supplements of this amino acid can improve treatment efficacy.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- University of Karachi Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research, International Center for Chemical and Biological Science, and the Department of Biochemistry, Neurochemistry and Neuropharmacology Research Laboratory, , Karachi, Pakistan
| |
Collapse
|
20
|
Liu ZF, Sylivris A, Gordon M, Sundram S. The association between tryptophan levels and postpartum mood disorders: a systematic review and meta-analysis. BMC Psychiatry 2022; 22:539. [PMID: 35941560 PMCID: PMC9361669 DOI: 10.1186/s12888-022-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Over 50% of women experience mood disturbance in the postpartum period, with significant implications for maternal and infant health but identifying those at risk is not easily possible. The essential amino acid, tryptophan (TRP) through its neuroactive metabolites, has been implicated in the pathology of mood disorders. Thus, TRP levels tested in the peripartum period have been proposed as a potential biomarker for subsequent development of postpartum mood disturbances, in particular postpartum depression (PPD). A systematic review and meta-analysis following PROSPERO guidelines [CRD42021252462] was conducted on peer-reviewed, English language studies that measured blood levels of TRP during the postpartum period in women who were also evaluated for postpartum "blues" or PPD. Thirteen studies met the inclusion criteria, of which five studies contained sufficient data to conduct a meta-analysis. Low total TRP levels in postpartum days 1 to 5 were significantly associated with PPD (SMD: -5.39, 95%CI [-7.72, -3.05]). No significant association was found between free TRP levels in the postpartum period and PPD (SMD: -3.43, 95%CI [-7.76, 0.89]). Our findings confirm the necessity for more replicable designed studies regarding TRP and its relationship to postpartum depression. If there were greater clarity regarding TRP metabolism during pregnancy, then the next step would be to consider measuring total plasma TRP levels on postpartum days 1 to 5 to identify women at greater risk of developing PPD.
Collapse
Affiliation(s)
- Zhao Feng Liu
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Amy Sylivris
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Michael Gordon
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.,Mental Health Program, Monash Health, Melbourne, VIC, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia. .,Mental Health Program, Monash Health, Melbourne, VIC, Australia. .,Monash Medical Centre, Block P, Level 3, 246 Clayton Rd, Melbourne, 3168, VIC, Australia.
| |
Collapse
|
21
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
22
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
23
|
Association of plasma tryptophan concentration with periaqueductal gray matter functional connectivity in migraine patients. Sci Rep 2022; 12:739. [PMID: 35031640 PMCID: PMC8760301 DOI: 10.1038/s41598-021-04647-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023] Open
Abstract
Altered periaqueductal gray matter (PAG) functional connectivity contributes to brain hyperexcitability in migraine. Although tryptophan modulates neurotransmission in PAG projections through its metabolic pathways, the effect of plasma tryptophan on PAG functional connectivity (PAG-FC) in migraine has not been investigated yet. In this study, using a matched case-control design PAG-FC was measured during a resting-state functional magnetic resonance imaging session in migraine without aura patients (n = 27) and healthy controls (n = 27), and its relationship with plasma tryptophan concentration (TRP) was assessed. In addition, correlations of PAG-FC with age at migraine onset, migraine frequency, trait-anxiety and depressive symptoms were tested and the effect of TRP on these correlations was explored. Our results demonstrated that migraineurs had higher TRP compared to controls. In addition, altered PAG-FC in regions responsible for fear-cascade and pain modulation correlated with TRP only in migraineurs. There was no significant correlation in controls. It suggests increased sensitivity to TRP in migraine patients compared to controls. Trait-anxiety and depressive symptoms correlated with PAG-FC in migraine patients, and these correlations were modulated by TRP in regions responsible for emotional aspects of pain processing, but TRP did not interfere with processes that contribute to migraine attack generation or attack frequency.
Collapse
|
24
|
Ogbodo JO, Agbo CP, Njoku UO, Ogugofor MO, Egba SI, Ihim SA, Echezona AC, Brendan KC, Upaganlawar AB, Upasani CD. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions. Curr Aging Sci 2022; 15:2-25. [PMID: 33653258 DOI: 10.2174/1874609814666210302085232] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.
Collapse
Affiliation(s)
- John O Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Chinazom P Agbo
- Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Ugochi O Njoku
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Simeon I Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Stella A Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Aman B Upaganlawar
- Department of Pharmacology, Sureshdada Shriman\'s College of Pharmacy, New Dehli, India
| | | |
Collapse
|
25
|
Ohmura Y, Iwami K, Chowdhury S, Sasamori H, Sugiura C, Bouchekioua Y, Nishitani N, Yamanaka A, Yoshioka M. Disruption of model-based decision making by silencing of serotonin neurons in the dorsal raphe nucleus. Curr Biol 2021; 31:2446-2454.e5. [DOI: 10.1016/j.cub.2021.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
|
26
|
Tran SMS, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021; 13:732. [PMID: 33669008 PMCID: PMC7996516 DOI: 10.3390/nu13030732] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decade, emerging evidence has reported correlations between the gut microbiome and human health and disease, including those affecting the brain. We performed a systematic assessment of the available literature focusing on gut bacterial metabolites and their associations with diseases of the central nervous system (CNS). The bacterial metabolites short-chain fatty acids (SCFAs) as well as non-SCFAs like amino acid metabolites (AAMs) and bacterial amyloids are described in particular. We found significantly altered SCFA levels in patients with autism spectrum disorder (ASD), affective disorders, multiple sclerosis (MS) and Parkinson's disease (PD). Non-SCFAs yielded less significantly distinct changes in faecal levels of patients and healthy controls, with the majority of findings were derived from urinary and blood samples. Preclinical studies have implicated different bacterial metabolites with potentially beneficial as well as detrimental mechanisms in brain diseases. Examples include immunomodulation and changes in catecholamine production by histone deacetylase inhibition, anti-inflammatory effects through activity on the aryl hydrocarbon receptor and involvement in protein misfolding. Overall, our findings highlight the existence of altered bacterial metabolites in patients across various brain diseases, as well as potential neuroactive effects by which gut-derived SCFAs, p-cresol, indole derivatives and bacterial amyloids could impact disease development and progression. The findings summarized in this review could lead to further insights into the gut-brain-axis and thus into potential diagnostic, therapeutic or preventive strategies in brain diseases.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| |
Collapse
|
27
|
Effects of tryptophan depletion on anxiety, a systematic review. Transl Psychiatry 2021; 11:118. [PMID: 33574223 PMCID: PMC7878770 DOI: 10.1038/s41398-021-01219-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Vulnerability markers for onset of anxiety disorders are scarce. In depression, patients at risk tend to respond with a negative mood to 'acute tryptophan depletion' (ATD), while healthy volunteers and current patients do not. The serotonergic system thus provides indications for vulnerability for depression. It is unknown whether ATD reveals vulnerability in anxiety too. This study systematically reviews the effects of ATD on anxiety and assesses whether challenging anxiety modifies the response. PubMed, Embase and PsychInfo were systematically searched up to April 2019 for studies in which (1) healthy volunteers or patients with a (remitted) anxiety disorder underwent ATD and (2) levels of anxiety were reported. In total, 21 studies were included. Studies conducted in healthy volunteers (n = 13), and patients with a remitted (n = 6) or current (panic, social or generalised) anxiety disorder (n = 4). Studies were mostly of poor quality and heterogeneous regarding population, challenge test used and outcome measures. ATD did not consistently affect anxiety in any of the groups. Moreover, a challenge test after ATD (n = 17 studies) did not consistently provoke anxiety in healthy volunteers or remitted patients. A 35% CO2 challenge did consistently increase anxiety in patients with a current panic disorder (PD). To conclude, this systematic review found no clear indications that ATD provokes anxiety in those at risk for anxiety disorders. Hence, unlike in depression, ATD does not indicate vulnerability to develop an anxiety disorder. Because included studies were heterogeneous and mostly of poor quality, there is an urgent need for high quality research in homogeneous samples.
Collapse
|
28
|
Kanen JW, Arntz FE, Yellowlees R, Christmas DM, Price A, Apergis-Schoute AM, Sahakian BJ, Cardinal RN, Robbins TW. Effect of Tryptophan Depletion on Conditioned Threat Memory Expression: Role of Intolerance of Uncertainty. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:590-598. [PMID: 33631385 PMCID: PMC8099731 DOI: 10.1016/j.bpsc.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022]
Abstract
Background Responding emotionally to danger is critical for survival. Normal functioning also requires flexible alteration of emotional responses when a threat becomes safe. Aberrant threat and safety learning occur in many psychiatric disorders, including posttraumatic stress disorder, obsessive-compulsive disorder, and schizophrenia, in which emotional responses can persist pathologically. While there is evidence that threat and safety learning can be modulated by the serotonin systems, there have been few studies in humans. We addressed a critical clinically relevant question: How does lowering serotonin affect memory retention of conditioned threat and safety memory? Methods Forty-seven healthy participants underwent conditioning to two stimuli predictive of threat on day 1. One stimulus but not the other was subsequently presented in an extinction session. Emotional responding was assessed by the skin conductance response. On day 2, we employed acute dietary tryptophan depletion to lower serotonin temporarily, in a double-blind, placebo-controlled, randomized between-groups design. We then tested for the retention of conditioned threat and extinction memory. We also measured self-reported intolerance of uncertainty, known to modulate threat memory expression. Results The expression of emotional memory was attenuated in participants who had undergone tryptophan depletion. Individuals who were more intolerant of uncertainty showed even greater attenuation of emotion following depletion. Conclusions These results support the view that serotonin is involved in predicting aversive outcomes and refine our understanding of the role of serotonin in the persistence of emotional responsivity, with implications for individual differences in vulnerability to psychopathology.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederique E Arntz
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, Leiden University, Leiden, the Netherlands
| | - Robyn Yellowlees
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David M Christmas
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annabel Price
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annemieke M Apergis-Schoute
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
30
|
Fonseca F, Mestre-Pintó JI, Gómez-Gómez À, Martinez-Sanvisens D, Rodríguez-Minguela R, Papaseit E, Pérez-Mañá C, Langohr K, Valverde O, Pozo ÓJ, Farré M, Torrens M. The Tryptophan System in Cocaine-Induced Depression. J Clin Med 2020; 9:jcm9124103. [PMID: 33352710 PMCID: PMC7766966 DOI: 10.3390/jcm9124103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Major depression disorder (MDD) is the most prevalent psychiatric comorbid condition in cocaine use disorder (CUD). The comorbid MDD might be primary-MDD (CUD-primary-MDD) or cocaine-induced MDD (CUD-induced-MDD), and their accurate diagnoses and treatment is a challenge for improving prognoses. This study aimed to assess the tryptophan/serotonin (Trp/5-HT) system with the acute tryptophan depletion test (ATD), and the kynurenine pathway in subjects with CUD-primary-MDD, CUD-induced-MDD, MDD and healthy controls. The ATD was performed with a randomized, double-blind, crossover, and placebo-controlled design. Markers of enzymatic activity of indoleamine 2,3-dioxygenase/tryptophan 2,3-dioxygenase, kynurenine aminotransferase (KAT) and kynureninase were also established. Following ATD, we observed a decrease in Trp levels in all groups. Comparison between CUD-induced-MDD and MDD revealed significant differences in 5-HT plasma concentrations (512 + 332 ng/mL vs. 107 + 127 ng/mL, p = 0.039) and the Kyn/5-HT ratio (11 + 15 vs. 112 + 136; p = 0.012), whereas there were no differences between CUD-primary-MDD and MDD. Effect size coefficients show a gradient for all targeted markers (d range 0.72-1.67). Results suggest different pathogenesis for CUD-induced-MDD, with lower participation of the tryptophan system, probably more related to other neurotransmitter pathways and accordingly suggesting the need for a different pharmacological treatment approach.
Collapse
Affiliation(s)
- Francina Fonseca
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, 08003 Barcelona, Spain;
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
| | - Joan-Ignasi Mestre-Pintó
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Correspondence: (J.-I.M.-P.); (M.T.); Tel.: +34-932483175 (M.T.)
| | - Àlex Gómez-Gómez
- Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
| | | | - Rocío Rodríguez-Minguela
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
| | - Esther Papaseit
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Clara Pérez-Mañá
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
- Department of Statistics and Operations Research, Universitat Politècnica de Barcelona Barcelonatech, 08034 Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain;
- Neurobiology of Behaviour Research Group, Neuroscience Research Programme, Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Óscar J. Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (K.L.); (Ó.J.P.)
| | - Magí Farré
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), 08003 Badalona, Spain
| | - Marta Torrens
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (F.F.); (R.R.-M.)
- Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, 08003 Barcelona, Spain;
- Department of Psychiatry and Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona (UAB), 08290 Cerdanyola del Vallès, Spain; (E.P.); (C.P.-M.); (M.F.)
- Correspondence: (J.-I.M.-P.); (M.T.); Tel.: +34-932483175 (M.T.)
| | | |
Collapse
|
31
|
Aquili L. The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. Int J Tryptophan Res 2020; 13:1178646920964825. [PMID: 33149600 PMCID: PMC7586026 DOI: 10.1177/1178646920964825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/31/2023] Open
Abstract
The serotonergic precursor tryptophan and the dopaminergic precursor tyrosine have been shown to be important modulators of mood, behaviour and cognition. Specifically, research on the function of tryptophan has characterised this molecule as particularly relevant in the context of pathological disorders such as depression. Moreover, a large body of evidence has now been accumulated to suggest that tryptophan may also be involved in executive function and reward processing. Despite some clear differentiation with tryptophan, the data reviewed in this paper illustrates that tyrosine shares similar functions with tryptophan in the regulation of executive function and reward, and that these processes in turn, rather than acting in isolation, causally influence each other.
Collapse
Affiliation(s)
- Luca Aquili
- College of Health & Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
32
|
Yıldırım A, Kraimi N, Constantin P, Mercerand F, Leterrier C. Effects of tryptophan and probiotic supplementation on growth and behavior in quail. Poult Sci 2020; 99:5206-5213. [PMID: 33142436 PMCID: PMC7647826 DOI: 10.1016/j.psj.2020.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 01/12/2023] Open
Abstract
In laying hens, a diet supplemented with tryptophan (Trp) has been shown to affect their pecking behavior. However, unlike this positive effect, Trp is also involved in negative effects on behavior and stress through indolic pathways. Indole production can be reduced by probiotics (Pro), thus we hypothesized that Pro may prevent negative effects of Trp and increase beneficial effects on behavior in birds. Combined effects of Pro and Trp were also expected. To investigate the effects on behavior in birds of supplementing with a high level of Trp with or without Pro, Japanese quail were used because their behavior can be influenced by Pediococcus acidilactici, and they can be highly aggressive. Quails (n = 120) were assigned to 4 groups in a 2 × 2 factorial design for 55 d: C-C (control diet with usual Trp level, 0.3%; without Pro; n = 30), Trp-C (Trp: 2%; without Pro; n = 30), C-Pro (control diet; with Pro: 1 x 109 CFU/L P. acidilactici in drinking water; n = 30), and Trp-Pro (Trp 2%; with Pro; n = 30). Body weight was measured every week, and different tests were conducted to investigate behavioral characteristics of each quail. Contrary to our hypothesis, there was almost no interaction between Trp and Pro treatments. Tryptophan supplementation significantly (P < 0.05) reduced live weight up to 27 d, whereas Pro treatment had no effect. There was no significant difference between groups for tonic immobility variables (P > 0.05). The birds fed the high Trp diet spent significantly less time in the periphery of the open field than those fed the control diet and moved less in the arena during the social isolation test. Interindividual distances were significantly lower in males fed with Trp 2% than with the control diet, whereas Trp and Pro supplements interacted in females. The treatments did not affect sexual motivation in males. These results indicate that a high level of Trp reduced growth and appeared to enhance emotional reactivity in quails and that supplementing with Pro did not reduce these effects. In conclusion, feeding high Trp for 55 d cannot be recommended as a strategy to improve social behavior unlike effects observed in laying hens.
Collapse
Affiliation(s)
- A Yıldırım
- Department of Animal Science, Faculty of Agriculture, Tokat Gaziosmanpasa University, 60000 Tokat, Turkey
| | - N Kraimi
- UMR85 Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, Center Val de Loire, 37380 Nouzilly, France
| | - P Constantin
- UMR85 Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, Center Val de Loire, 37380 Nouzilly, France
| | - F Mercerand
- UE PEAT, INRAE, Center Val de Loire, 37380 Nouzilly, France
| | - C Leterrier
- UMR85 Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, Center Val de Loire, 37380 Nouzilly, France.
| |
Collapse
|
33
|
Kubacka J, Stefańska A, Sypniewska G. Kynurenine pathway: the link between depressive disorders and inflammation. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.3454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Depression is highly prevalent worldwide and the leading cause of disability. It is believed that currently more than 300 million people of all ages suffer from depression. However, the unambiguous cause of the depression remains unknown. It is suggested that the occurrence of this disease is primarily affected by genetic factors, psychological factors and atypical brain structure or function. Recently, an increasingly important role is attributed to the inflammatory response, which is considered to be the main cause of depression. Activation of the kynurenine pathway (KP) is one of the described mechanisms by which inflammation can induce depression. Kynurenine pathway activation is associated with several neuropsychiatric diseases, including major depression disorder (MDD). The imbalance between the neuroprotective and neurotoxic metabolites in the kynurenine pathway and the associated serotonin and melatonin deficiency, may contribute to the manifestation of depressive symptoms. In this review we discuss the role of the major enzymes of the tryptophan KP: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) and the role of selected kynurenic metabolites in the depressive disorders. Particular attention was also paid to the genetic basis of depressive disorders and to the summary of current knowledge on the effectiveness of treatment and supplementation with tryptophan and 5-hydroxytryptophan in depression.
Collapse
Affiliation(s)
- Justyna Kubacka
- Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Anna Stefańska
- Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Grażyna Sypniewska
- Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
34
|
The role of dopaminergic and serotonergic transmission in the processing of primary and monetary reward. Neuropsychopharmacology 2020; 45:1490-1497. [PMID: 32392573 PMCID: PMC7360589 DOI: 10.1038/s41386-020-0702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Abstract
Natural rewards such as erotic stimuli activate common neural pathways with monetary rewards. In human studies, the manipulation of dopamine and serotonin play an important role in the processing of monetary rewards with less understood on its role on erotic stimuli. In this study, we investigate the neuromodulatory effects of dopaminergic and serotonergic transmission in the processing of erotic versus monetary visual stimuli. We scanned one hundred and two (N = 102) healthy volunteers using functional magnetic resonance imaging while performing a modified version of the well-validated monetary incentive delay task consisting of erotic, monetary and neutral visual stimuli. We show a role for enhanced central dopamine and lowered central serotonin levels in increasing activity in the right caudate and left anterior insula during anticipation of erotic relative to monetary rewards in healthy controls. We further show differential activation in the anticipation of natural versus monetary rewards with the former associated with ventromesial and dorsomesial activity and the latter with dorsal cingulate, striatal and anterior insular activity. These findings are consistent with preclinical and clinical findings of a role for dopaminergic and serotonergic mechanisms in the processing of natural rewards. Our study provides further insights into the neural substrates underlying reward processing for natural primary erotic rewards and yields importance for the neurochemical systems of addictive disorders including gambling disorder.
Collapse
|
35
|
Stewart RM, Wong JWY, Mahfouda S, Morandini HAE, Rao P, Runions KC, Zepf FD. Acute Tryptophan Depletion Moja-De: A Method to Study Central Nervous Serotonin Function in Children and Adolescents. Front Psychiatry 2020; 10:1007. [PMID: 32210845 PMCID: PMC7067742 DOI: 10.3389/fpsyt.2019.01007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) is widely implicated as a key neurotransmitter relevant to a range of psychiatric disorders and psychological processes. The role of central nervous 5-HT function underlying these processes can be examined through serotonergic challenge methodologies. Acute tryptophan depletion (ATD) is a key challenge method whereby a diminished dietary intake of tryptophan-the amino acid precursor to brain 5-HT synthesis-results in temporary diminished central nervous 5-HT synthesis. While this particular methodology has been used in adult populations, it was only recently that modifications were made to enable the use of ATD in child and adolescent populations. Additionally, the Moja-De modification of the ATD challenge methodology has demonstrated benefits over other ATD techniques used previously. The aim of this protocol paper is to describe the ATD Moja-De methodology in detail, its benefits, as well as studies that have been conducted to validate the procedure in child and adolescent samples. The ATD Moja-De protocol provides a potential methodology for investigating the role of central nervous 5-HT via manipulation of brain tryptophan availability in human psychopathology from a developmental viewpoint.
Collapse
Affiliation(s)
- Richard M. Stewart
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Janice W. Y. Wong
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Specialised Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Simone Mahfouda
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- School of Psychological Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia
| | - Hugo A. E. Morandini
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Pradeep Rao
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Community Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Kevin C. Runions
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Community Child and Adolescent Mental Health Services, Department of Health, Perth, WA, Australia
| | - Florian D. Zepf
- Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
- Brain and Behaviour, Telethon Kids Institute, Perth, WA, Australia
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
36
|
Königschulte W, Civai C, Hildebrand P, Gaber TJ, Fink GR, Zepf FD. Effects of serotonin depletion and dopamine depletion on bimodal divided attention. World J Biol Psychiatry 2020; 21:183-194. [PMID: 30295116 DOI: 10.1080/15622975.2018.1532110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objectives: This study aimed to explore the effects of acute phenylalanine tyrosine depletion (APTD) and acute tryptophan depletion (ATD) on bimodal divided attention. A balanced amino acid mixture (BAL) served as control condition.Methods: Fifty-three healthy adults (final analyzed sample was N = 49, age: M = 23.8 years) were randomly assigned to APTD, ATD or BAL in a double-blind, between-subject approach. Divided attention was assessed after 4 h. Blood samples were taken before and 6 h after challenge intake.Results: Amino acid concentrations following challenge intake significantly decreased (all P ≤ 0.01). There was a significant difference in the mean reaction time (RT) towards auditory stimuli, but not towards visual stimuli between the groups. Post-hoc comparison of mean RTs (auditory stimuli) showed a significant difference between ATD (RT = 604.0 ms, SD = 56.9 ms) and APTD (RT = 556.4 ms, SD = 54.2 ms; P = 0.037), but no RT difference between ATD and BAL or APTD and BAL (RT = 573.6 ms, SD = 45.7 ms).Conclusions: The results indicate a possible dissociation between the effects of a diminished brain 5-HT and DA synthesis on the performance in a bimodal divided attention task. The difference was exclusively observed within the RT towards auditory signals.
Collapse
Affiliation(s)
- W Königschulte
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - C Civai
- School of Psychology, University of Kent, Canterbury, UK
| | - P Hildebrand
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - T J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany
| | - G R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.,JARA Translational Brain Medicine, Aachen & Jülich, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Germany.,Centre and Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, School of Medicine, Division of Psychiatry and Clinical Neurosciences & Division of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| |
Collapse
|
37
|
Dalton S, Smith K, Singh K, Kaiser H, Kolhe R, Mondal AK, Khayrullin A, Isales CM, Hamrick MW, Hill WD, Fulzele S. Accumulation of kynurenine elevates oxidative stress and alters microRNA profile in human bone marrow stromal cells. Exp Gerontol 2020; 130:110800. [PMID: 31790802 PMCID: PMC6998036 DOI: 10.1016/j.exger.2019.110800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/09/2023]
Abstract
Kynurenine, a metabolite of tryptophan breakdown, has been shown to increase with age, and plays a vital role in a number of age-related pathophysiological changes, including bone loss. Accumulation of kynurenine in bone marrow stromal cells (BMSCs) has been associated with a decrease in cell proliferation and differentiation, though the exact mechanism by which kynurenine mediates these changes is poorly understood. MiRNAs have been shown to regulate BMSC function, and accumulation of kynurenine may alter the miRNA expression profile of BMSCs. The aim of this study was to identify differentially expressed miRNAs in human BMSCs in response to treatment with kynurenine, and correlate miRNAs function in BMSCs biology through bioinformatics analysis. Human BMSCs were cultured and treated with and without kynurenine, and subsequent miRNA isolation was performed. MiRNA array was performed to identify differentially expressed miRNA. Microarray analysis identified 50 up-regulated, and 36 down-regulated miRNAs in kynurenine-treated BMSC cultures. Differentially expressed miRNA included miR-1281, miR-330-3p, let-7f-5p, and miR-493-5p, which are important for BMSC proliferation and differentiation. KEGG analysis found up-regulated miRNA targeting glutathione metabolism, a pathway critical for removing oxidative species. Our data support that the kynurenine dependent degenerative effect is partially due to changes in the miRNA profile of BMSCs.
Collapse
Affiliation(s)
- Sherwood Dalton
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Kathryn Smith
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Kanwar Singh
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - Helen Kaiser
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Ravindra Kolhe
- Departments of Pathology, Augusta University, Augusta, GA 30912, United States of America
| | - Ashis K Mondal
- Departments of Pathology, Augusta University, Augusta, GA 30912, United States of America
| | - Andrew Khayrullin
- Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
38
|
Lund A, Nordrehaug JE, Slettom G, Solvang SEH, Pedersen EKR, Midttun Ø, Ulvik A, Ueland PM, Nygård O, Giil LM. Plasma kynurenines and prognosis in patients with heart failure. PLoS One 2020; 15:e0227365. [PMID: 31923223 PMCID: PMC6953806 DOI: 10.1371/journal.pone.0227365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Metabolites of the kynurenine pathway (mKP) relate to important aspects of heart failure pathophysiology, such as inflammation, energy-homeostasis, apoptosis, and oxidative stress. We aimed to investigate whether mKP predict mortality in patients with heart failure. METHODS The study included 202 patients with heart failure (73.8% with coronary artery disease (CAD)), propensity score matched to 384 controls without heart disease, and 807 controls with CAD (71%). All underwent coronary angiography and ventriculography at baseline. Plasma mKP, pyridoxal 5'phosphate (PLP) and CRP were measured at baseline. Case-control differences were assessed by logistic regression and survival by Cox regression, adjusted for age, gender, smoking, diabetes, ejection fraction, PLP, eGFR and CRP. Effect measures are reported per standard deviation increments. RESULTS Higher plasma levels of kynurenine, 3- hydroxykynurenine (HK), quinolinic acid (QA), the kynurenine-tryptophan-ratio (KTR) and the ratio of HK to xanthurenic acid (HK/XA) were detected in heart failure compared to both control groups. The mortality rate per 1000 person-years was 55.5 in patients with heart failure, 14.6 in controls without heart disease and 22.2 in CAD controls. QA [HR 1.80, p = 0.013], HK [HR 1.77, p = 0.005], HK/XA [HR 1.67, p < 0.001] and KTR [HR 1.55, p = 0.009] were associated with increased mortality in patients with heart failure, while XA [HR 0.68-0.80, p = 0.013-0.037] were associated with lower mortality in all groups. HK and HK/XA had weak associations with increased mortality in CAD-controls. CONCLUSION Elevated plasma levels of mKP and metabolite ratios are associated with increased mortality, independent of CAD, in patients with heart failure.
Collapse
Affiliation(s)
- Anders Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - Grete Slettom
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Stein-Erik Hafstad Solvang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Eva Kristine Ringdal Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Lasse Melvaer Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
39
|
Virág D, Király M, Drahos L, Édes AE, Gecse K, Bagdy G, Juhász G, Antal I, Klebovich I, Dalmadi Kiss B, Ludányi K. Development, validation and application of LC-MS/MS method for quantification of amino acids, kynurenine and serotonin in human plasma. J Pharm Biomed Anal 2019; 180:113018. [PMID: 31851908 DOI: 10.1016/j.jpba.2019.113018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
Altered serotonergic neurotransmission is a key factor in several neurologic and psychiatric disorders such as migraine. Human and animal studies suggest that chronically low interictal serotonin levels of plasma and brain may facilitate increased activity of the trigeminovascular pathway, and may contribute to development of repeated migraine attacks. However, brain serotonin synthesis is affected by the concentration of tryptophan, its metabolites and a number of amino acids. In this work a simple and robust LC-MS/MS method for the quantitative determination of valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serotonin and kynurenine in human plasma has been developed and validated. Sample preparation was achieved by protein precipitation, using trifluoroacetic acid. Chromatographic separation was carried out on a Supelco Ascentis® Express C18 column (3.0 mm i.d. × 150 mm, 2.7 μm) equipped with an Agilent Zorbax Eclipse XDB C8 guard-column under isocratic conditions at a flow rate of 0.4 mL/min, over a 6.5 min run time. Mobile phase was 0.2% trifluoroacetic acid - acetonitrile (85:15, v/v). The eight analytes and two internal standards were ionized by positive electrospray ionization and detected in multiple reaction monitoring mode. A "fit-for-purpose" validation approach was adopted using surrogate matrix for the preparation of calibration samples. The calibration curves of all analytes showed excellent linearities with a correlation coefficient (r2) of 0.998 or better. Spiked surrogate matrix samples and pooled human plasma were used as quality control samples. Intra-day and inter-day precisions were less than 11.8% and 14.3%, and accuracies were within the ranges of 87.4-114.3% and 87.7-113.3%, respectively. Stability of the components in standard solutions, surrogate matrix, pooled plasma and processed samples were found to be acceptable under all relevant conditions. No significant carryover effect was observed. The surrogate matrix behaved parallel to human plasma when assessed by standard addition method and diluting the authentic matrix with surrogate matrix. The method was successfully applied for analysis of 800 human plasma samples to support a clinical study.
Collapse
Affiliation(s)
- Dávid Virág
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary
| | - Márton Király
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Andrea Edit Édes
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Kinga Gecse
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Gabriella Juhász
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary
| | - Imre Klebovich
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary
| | - Borbála Dalmadi Kiss
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes Endre utca 7, Budapest H-1092, Hungary.
| |
Collapse
|
40
|
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. MICROBIAL CELL 2019; 6:454-481. [PMID: 31646148 PMCID: PMC6780009 DOI: 10.15698/mic2019.10.693] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.
Collapse
Affiliation(s)
- Giorgia Caspani
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| | - Sidney Kennedy
- Centre for Mental Health and Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, CA.,Mental Health Services, St. Michael's Hospital, University of Toronto, Toronto, ON, CA.,Department of Psychiatry, University of Toronto, Toronto, ON, CA.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, CA
| | - Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Swann
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
41
|
Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, Andrén PE, Tanaka KF, Setou M, Fagarasan S, Suematsu M, Sugiura Y. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using Mass Spectrometry Imaging. iScience 2019; 20:359-372. [PMID: 31614319 PMCID: PMC6818351 DOI: 10.1016/j.isci.2019.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Monoamine neurotransmitters are released by specialized neurons regulating behavioral, motor, and cognitive functions. Although the localization of monoaminergic neurons in the brain is well known, the distribution and kinetics of monoamines remain unclear. Here, we generated a murine brain atlas of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) levels using mass spectrometry imaging (MSI). We found several nuclei rich in both 5-HT and a catecholamine (DA or NE) and identified the paraventricular nucleus of the thalamus (PVT), where 5-HT and NE are co-localized. The analysis of 5-HT fluctuations in response to acute tryptophan depletion and infusion of isotope-labeled tryptophan in vivo revealed a close kinetic association between the raphe nuclei, PVT, and amygdala but not the other nuclei. Our findings imply the existence of a highly dynamic 5-HT-mediated raphe to PVT pathway that likely plays a role in the brain monoamine system. A murine brain atlas of monoamine (5-HT, DA, NE) levels was generated via MS imaging We identified several nuclei rich in both 5-HT and a catecholamine (DA or NE) The paraventricular nucleus of the thalamus (PVT) had high levels of 5-HT and NE The level of 5-HT in raphe to PVT pathway changed dynamically in response to blood Trp level
Collapse
Affiliation(s)
- Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Matteo M Guerrini
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuko Hattori
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Patrik Källback
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden; Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Box 591 BMC, 75124 Uppsala, Sweden
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
42
|
Hildebrandt CS, Helmbold K, Linden M, Langen KJ, Filss CP, Runions KC, Stewart RM, Rao P, Moore JK, Mahfouda S, Morandini HAE, Wong JWY, Rink L, Zepf FD. No detectable effects of acute tryptophan depletion on short-term immune system cytokine levels in healthy adults. World J Biol Psychiatry 2019; 20:416-423. [PMID: 29353534 DOI: 10.1080/15622975.2018.1428357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Recent research suggested an influence of diminished central nervous serotonin (5-HT) synthesis on the leptin axis via immunological mechanisms in healthy adult females. However, studies assessing immunological parameters in combination with dietary challenge techniques that impact brain 5-HT synthesis in humans are lacking. Methods: In the present trial, a pilot analysis was conducted on data obtained in healthy adult humans receiving either different dietary acute tryptophan depletion (ATD) challenge or tryptophan (TRP)-balanced control conditions (BAL) to study the effects of reduced central nervous 5-HT synthesis on serum tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 concentrations. The data of N = 35 healthy adults were analysed who were randomly subjected to one of the following two dietary conditions in a double-blind between-subject approach: (1) The Moja-De ATD challenge (ATD), or (2) TRP-balanced control condition for ATD Moja-De (BAL). Serum concentrations for the assessment of relevant parameters (TNF-α, IL-1β and IL-6) and relevant TRP-related characteristics after the respective challenge procedures were assessed at baseline (T0) and in hourly intervals after administration over a period of 6 h (T1-T6). Results: The ATD condition did not result in significant changes to cytokine concentrations for the entire study sample, or in male and female subgroups. Depletion of CNS 5-HT via dietary TRP depletion appears to have no statistically significant short-term impact on cytokine concentrations in healthy adults. Conclusions: Future research on immunological stressors in combination with challenge techniques will be of value in order to further disentangle the complex interplay between brain 5-HT synthesis and immunological pathways.
Collapse
Affiliation(s)
- Caroline S Hildebrandt
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany.,c Clinics of the City Cologne GmbH , Child and Adolescent Psychiatry and Psychotherapy , Cologne , Germany
| | - Katrin Helmbold
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany
| | - Maike Linden
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany
| | - Karl-Josef Langen
- d Institute of Neuroscience and Medicine (INM-4) Research Centre Jülich , Jülich , Germany.,e Section JARA-Brain , Jülich-Aachen Research Alliance (JARA) , Jülich , Germany.,f Department of Nuclear Medicine , RWTH Aachen University Hospital , Aachen , Germany
| | - C P Filss
- e Section JARA-Brain , Jülich-Aachen Research Alliance (JARA) , Jülich , Germany.,f Department of Nuclear Medicine , RWTH Aachen University Hospital , Aachen , Germany
| | - Kevin C Runions
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia
| | - Richard M Stewart
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia
| | - Pradeep Rao
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,i Department of Health , Community Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Julie K Moore
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,j Princess Margaret Hospital, Department of Health , Pediatric Consultation Liason Program, Acute Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Simone Mahfouda
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia
| | - Hugo A E Morandini
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia
| | - Janice W Y Wong
- g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia.,k Department of Health , Specialised Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| | - Lothar Rink
- l Department of Immunology , RWTH Aachen University Hospital , Aachen , Germany
| | - Florian D Zepf
- a Jülich Aachen Research Alliance, JARA Translational Brain Medicine , Aachen , Germany.,b Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , RWTH Aachen University , Aachen , Germany.,g Centre & Discipline of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy; School of Medicine, Division of Psychiatry and Clinical Neurosciences and Division of Paediatrics and Child Health , The University of Western Australia , Perth , Australia.,h Telethon Kids Institute , Perth , Australia.,k Department of Health , Specialised Child and Adolescent Mental Health Services (CAMHS) , Perth , Western Australia , Australia
| |
Collapse
|
43
|
Dome P, Tombor L, Lazary J, Gonda X, Rihmer Z. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull 2019; 146:51-78. [DOI: 10.1016/j.brainresbull.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/04/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
|
44
|
Metts AV, Rubin-Falcone H, Ogden RT, Lin X, Wilner DE, Burke AK, Sublette ME, Oquendo MA, Miller JM, Mann JJ. Antidepressant medication exposure and 5-HT 1A autoreceptor binding in major depressive disorder. Synapse 2019; 73:e22089. [PMID: 30693567 DOI: 10.1002/syn.22089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We have previously reported higher brain serotonin 1A (5-HT1A ) autoreceptor binding in antidepressant-naïve patients with Major Depressive Disorder (MDD) compared with healthy volunteers, and a decrease in binding in MDD after selective serotonin reuptake inhibitor (SSRI) treatment. This SSRI effect is also present in rodents administered SSRIs chronically. We therefore sought to determine the duration of antidepressant medication effects on 5-HT1A receptor binding after medication discontinuation. METHODS Positron emission tomography (PET) imaging with the 5-HT1A receptor radioligand [11 C]WAY-100635 was performed in 66 individuals with current DSM-IV MDD to examine relationships between 5-HT1A binding and time since most recent antidepressant treatment. All subjects were medication-free for at least 2 weeks prior to scanning. Thirty-two additional MDD comparison subjects were antidepressant naïve. RESULTS No differences in [11 C]WAY-100635 binding were observed between antidepressant naïve and antidepressant exposed MDD groups in 13 a priori cortical and subcortical regions of interest, including raphe autoreceptors, assessed simultaneously in linear mixed effects models. Furthermore, [11 C]WAY-100635 binding did not correlate with time off antidepressants in the antidepressant exposed patients considering these ROIs. The same results were observed when effects of treatment discontinuation of any psychotropic medication used to treat their depression was examined. CONCLUSION These results indicate that any antidepressant-associated downregulation of 5-HT1A autoreceptor binding reverses within 2 weeks of medication discontinuation. Since this effect is hypothesized to mediate the antidepressant action of SSRIs, and perhaps other antidepressants, it suggests that patients who need ongoing treatment may relapse rapidly when medication is discontinued. Moreover, 2 weeks appears to be a sufficiently long washout of antidepressant medications for a reliable measure of illness-related binding levels.
Collapse
Affiliation(s)
- A V Metts
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - H Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - R T Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - X Lin
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - D E Wilner
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - A K Burke
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - M E Sublette
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - M A Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - J M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| | - J J Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
45
|
Kuypers KPC. Psychedelic medicine: The biology underlying the persisting psychedelic effects. Med Hypotheses 2019; 125:21-24. [PMID: 30902145 DOI: 10.1016/j.mehy.2019.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
Psychedelic substances have regained interest as therapeutic agents in the treatment of stress-related disorders. The effects seem to be of persisting nature even after a single dose. Also in lower than 'regular' recreational doses, so-called micro-doses, without the typical effects on consciousness, users report beneficial effects on cognitive processes and well-being. The exact neurobiological mechanism underlying these persisting effects is not clear. While previous research has mainly focused on the central nervous system including the immune system and the neuroendocrine system, I propose a central role for sleep and the microbiome in the effects of regular and low doses of psychedelics respectively. It will be explained why this is hypothesized and studies to test this idea proposed. It is concluded that while these studies are needed to understand the biology underlying psychedelic medicine, it is also important to approach it in a holistic way, including all the above mentioned biological processes psychedelics are known to affect, and explore the role of other substance-related factors like route of administration and form, and factors like diet and lifestyle which are part of the psychedelic experience.
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
46
|
Abstract
OBJECTIVE Central nervous system (CNS) serotonin (5-HT) exerts both excitatory and inhibitory effects on the sympathetic nervous system (SNS) in animals. In this study, we examine the effects of tryptophan enhancement and depletion on plasma catecholamine levels in humans. METHODS The total sample consisted of 164 healthy men and women who were tested for 2 days. Seventy-nine participants were randomized to a tryptophan enhancement condition and 85 to a tryptophan depletion condition. Both protocols consisted of a "sham day," followed by an "active day." Blood samples for assessment of plasma norepinephrine and epinephrine levels were collected before and after tryptophan enhancement/depletion. Data were analyzed using general linear models. Separate analyses were conducted for each study arm and for each measure. RESULTS In the depletion condition, both epinephrine (F(5,330) = 2.69, p = .021) and norepinephrine (F(5,335) = 2.79, p = .018) showed small increases on active versus "sham" depletion days. There were also significant day by time interactions for epinephrine (F(3,171) = 39.32, p < .0001) and norepinephrine (F(3,195) = 31.09, p < .0001) levels in the enhancement arm. Tryptophan infusion resulted in a marked increase in epinephrine (Premean = 23.92 (12.23) versus Postmean = 81.57 (62.36)) and decrease in norepinephrine (Premean = 257.2 (106.11) versus Postmean = 177.04 (87.15)), whereas levels of both catecholamines were stable on the "sham day." CONCLUSIONS CNS 5-HT exerts both inhibitory and excitatory effects on SNS activity in humans, potentially due to stimulation of CNS 5-HT receptors that have shown to have inhibitory (5-HT1A) and excitatory (5-HT1A and/or 5-HT2) SNS effects in animal models.
Collapse
|
47
|
Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F, Passamonti L, Bevan-Jones WR, Regenthal R, Chamberlain SR, Robbins TW, Sahakian BJ. Dissociable effects of acute SSRI (escitalopram) on executive, learning and emotional functions in healthy humans. Neuropsychopharmacology 2018; 43:2645-2651. [PMID: 30305705 PMCID: PMC6224451 DOI: 10.1038/s41386-018-0229-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 02/02/2023]
Abstract
Serotonin is implicated in multiple executive functions including goal-directed learning, cognitive flexibility, response inhibition and emotional regulation. These functions are impaired in several psychiatric disorders, such as depression and obsessive-compulsive disorder. We tested the cognitive effects of the selective serotonin reuptake inhibitor escitalopram, using an acute and clinically relevant dose (20 mg), in 66 healthy male and female volunteers in a double-blind, placebo-controlled study. Participants performed a cognitive test battery including a probabilistic and reversal learning task, the CANTAB intra-dimensional/extra-dimensional shift test of cognitive flexibility, a response inhibition task with interleaved stop-signal and No-Go trials and tasks measuring emotional processing. We showed that acute escitalopram administration impaired learning and cognitive flexibility, but improved the ability to inhibit responses in stop-signal trials while leaving unaffected acute emotional processing. Our findings suggest a dissociation of effects of acute escitalopram on cognitive functions, possibly mediated by differential modulation of brain serotonin levels in distinct functional neural circuits.
Collapse
Affiliation(s)
- Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
| | - James B Rowe
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Julia B Deakin
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Medical Faculty, Leipzig, Germany
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Trevor W Robbins
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Venkatraghavan L, Li L, Bailey T, Manninen PH, Tymianski M. Sumatriptan improves postoperative quality of recovery and reduces postcraniotomy headache after cranial nerve decompression. Br J Anaesth 2018; 117:73-9. [PMID: 27317706 DOI: 10.1093/bja/aew152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Microvascular decompression (MVD) is a surgical treatment for cranial nerve disorders via a small craniotomy. The postoperative pain of this procedure can be classified as surgical site somatic pain and postcraniotomy headache similar in nature to a migraine, including its association with photophobia, nausea, and vomiting. This headache can be difficult to treat and can impact on postoperative recovery. Sumatriptan is used to treat migraine-like headaches in various settings. This single-centre randomized controlled trial investigated whether postoperative administration of sumatriptan after MVD surgery impacts the quality of postoperative recovery. METHODS Fifty patients who complained of postoperative headache after MVD were randomized to receive an s.c. injection of sumatriptan (6 mg) or saline. The primary outcome was quality of recovery as measured by the Quality of Recovery-40 (QoR-40) score at 24 h. RESULTS The QoR-40 scores were significantly higher in the sumatriptan group (median 184; interquartile range 169-196) than in the placebo group (133; 119-155; P<0.01), suggesting higher quality of recovery. The sumatriptan group also had significantly lower headache scores at 4, 12, and 24 h. There were no significant differences in other secondary outcomes. CONCLUSIONS Use of sumatriptan improved the quality of recovery as measured by the QoR-40 and reduction of headache at 24 h after surgery. Sumatriptan is a useful alternative treatment for postcraniotomy headache. The mechanism remains unknown but could be related to reduction in headache, mood modulation, or both, mediated by a serotonin effect. CLINICAL TRIAL REGISTRATION NCT01632657.
Collapse
Affiliation(s)
| | - L Li
- Department of Anesthesia Present address: Department of Anaesthesia, Ninewells Hospital and Medical School, Dundee, UK
| | - T Bailey
- Department of Anesthesia Present address: Department of Anaesthesia, Waikato Hospital, Hamilton 3204, New Zealand
| | | | - M Tymianski
- Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, Hygino J, Wing AC, Andrade RM, Rueda F, Sales MC, Vasconcelos CC, Bento CAM. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4 + T-cell subsets in multiple sclerosis patients. Eur J Immunol 2018; 48:1376-1388. [PMID: 29719048 DOI: 10.1002/eji.201847525] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Excessive levels of proinflammatory cytokines in the CNS are associated with reduced serotonin (5-HT) synthesis, a neurotransmitter with diverse immune effects. In this study, we evaluated the ability of exogenous 5-HT to modulate the T-cell behavior of patients with MS, a demyelinating autoimmune disease mediated by Th1 and Th17 cytokines. Here, 5-HT attenuated, in vitro, T-cell proliferation and Th1 and Th17 cytokines production in cell cultures from MS patients. Additionally, 5-HT reduced IFN-γ and IL-17 release by CD8+ T cells. By contrast, 5-HT increased IL-10 production by CD4+ T cells from MS patients. A more accurate analysis of these IL-10-secreting CD4+ T cells revealed that 5-HT favors the expansion of FoxP3+ CD39+ regulatory T cells (Tregs) and type 1 regulatory T cells. Notably, this neurotransmitter also elevated the frequency of Treg17 cells, a novel regulatory T-cell subset. The effect of 5-HT in upregulating CD39+ Treg and Treg17 cells was inversely correlated with the number of active brain lesions. Finally, in addition to directly reducing cytokine production by purified Th1 and Th17 cells, 5-HT enhanced in vitro Treg function. In summary, our data suggest that serotonin may play a protective role in the pathogenesis of MS.
Collapse
Affiliation(s)
- Priscila M Sacramento
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarice Monteiro
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aleida S O Dias
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís B Ferreira
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Hygino
- Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina Wing
- Post-graduate Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regis M Andrade
- Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Rueda
- Clinical of Diagnosis by Image, Barra da Tijuca Unity, Rio de Janeiro, Brazil
| | - Marisa C Sales
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cleonice A M Bento
- Post-graduate Program in Microbiology, Department of General Medicine Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.,Post-graduate Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 92:29-42. [PMID: 29775696 DOI: 10.1016/j.neubiorev.2018.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in brain serotonin synthesis. The TPH2 gene has frequently been investigated in relation to psychiatric morbidity. The aim of the present review is to integrate results from association studies between TPH2 single nucleotide polymorphisms (SNPs) and various psychiatric disorders, which we furthermore quantified with meta-analysis. We reviewed 166 studies investigating 69 TPH2 SNPs in a broad range of psychiatric disorders, including over 30,000 patients. According to our meta-analysis, TPH2 polymorphisms show strongest associations with mood disorders, suicide (attempt) and schizophrenia. Despite small effect sizes, we conclude that TPH2 SNPs in the coding and non-coding areas (rs4570625, rs11178997, rs11178998, rs10748185, rs1843809, rs4290270, rs17110747) are each associated with one or more psychopathological conditions. Our findings highlight the possible common serotonergic mechanisms of the investigated psychiatric disorders. Yet, the functional relevance of most TPH2 polymorphisms is unclear. Characterizing how exactly the different TPH2 variants influence the serotonergic neurotransmission is a next necessary step in understanding the psychiatric disorders where serotonin is implicated.
Collapse
|