51
|
Dusatkova P, Pavlikova M, Elblova L, Larionov V, Vesela K, Kolarova K, Sumnik Z, Lebl J, Pruhova S. Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young. Acta Diabetol 2022; 59:1169-1178. [PMID: 35737141 PMCID: PMC9219402 DOI: 10.1007/s00592-022-01915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
AIMS Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovska 83, 18675, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Vladyslav Larionov
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Klara Vesela
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Katerina Kolarova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
52
|
Laakso M, Fernandes Silva L. Genetics of Type 2 Diabetes: Past, Present, and Future. Nutrients 2022; 14:nu14153201. [PMID: 35956377 PMCID: PMC9370092 DOI: 10.3390/nu14153201] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes has reached epidemic proportions worldwide. Currently, approximately 537 million adults (20–79 years) have diabetes, and the total number of people with diabetes is continuously increasing. Diabetes includes several subtypes. About 80% of all cases of diabetes are type 2 diabetes (T2D). T2D is a polygenic disease with an inheritance ranging from 30 to 70%. Genetic and environment/lifestyle factors, especially obesity and sedentary lifestyle, increase the risk of T2D. In this review, we discuss how studies on the genetics of diabetes started, how they expanded when genome-wide association studies and exome and whole-genome sequencing became available, and the current challenges in genetic studies of diabetes. T2D is heterogeneous with respect to clinical presentation, disease course, and response to treatment, and has several subgroups which differ in pathophysiology and risk of micro- and macrovascular complications. Currently, genetic studies of T2D focus on these subgroups to find the best diagnoses and treatments for these patients according to the principles of precision medicine.
Collapse
Affiliation(s)
- Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-40-672-3338
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
53
|
Zhou Y, Sun Y, Xu C, Liu F, Gao Y, Liu C, Qiao Y, Yang J, Li G. ABCC8-related maturity-onset diabetes of the young: Clinical features and genetic analysis of one case. Pediatr Diabetes 2022; 23:588-596. [PMID: 35757975 DOI: 10.1111/pedi.13388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To confirm the diagnosis of a 13-year-old adolescent with familial diabetes and further examine his genetic pathogeny. RESEARCH DESIGN AND METHODS Clinical data were collected, and genetic examination was performed. PolyPhen-2 and Mutation Taster were used to predict the deleterious effects of the variant. Clustal Omega software was used to confirm the conservation of amino acid substitutions. To examine changes in the expression of proteins, recombinant vectors were constructed, and the expression of wild-type and variant target genes was detected through quantitative polymerase chain reaction. Furthermore, the wild-type and variant eukaryotic recombinant vectors were treated with a ubiquitin degradation inhibitor (MG132) and a lysosomal degradation pathway inhibitor (CQ, 3-mA). The expression of target proteins was detected through Western blot analysis. RESULTS The patient had hyperglycaemia (27 mmol/L), a high HbA1c level (13.1%), a decreased C-peptide level (0.63 ng/ml) and no diabetes antibodies. The patient had a family history of diabetes. The novel variation of ABCC8 c.2477G>A was detected in the proband and his relatives. The mutation was predicted to be harmful. Changes in the protein structure were observed. The ABCC8 c.2477G >A variant resulted in an increase in ABCC8 expression. Furthermore, changes in the expression of the ABCC8 variant was observed after 3-MA treatment, especially after treatment with MG132. At the follow-up, the patient's glucose level was normal without drug therapy for more than 2 years until until he started taking Trelagliptin Succinate to control hyperglycemia within the recent 6 months. CONCLUSIONS The diagnosis of maturity-onset diabetes of the young (MODY)12 was confirmed in our patient. The ABCC8 variant inhibited both ubiquitination and autophagy lysosome degradation pathways, especially the ubiquitination degradation pathway.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pediatrics, Shandong Provincial Lanling People's Hospital, Linyi, China
| | - Yan Sun
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chao Xu
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fan Liu
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yuye Gao
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Caihong Liu
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Qiao
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianmei Yang
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guimei Li
- Department of Pediatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
54
|
Doğan M, Eröz R, Bolu S, Yüce H, Gezdirici A, Arslanoğlu İ, Teralı K. Study of ten causal genes in Turkish patients with clinically suspected maturity-onset diabetes of the young (MODY) using a targeted next-generation sequencing panel. Mol Biol Rep 2022; 49:7483-7495. [PMID: 35733065 DOI: 10.1007/s11033-022-07552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY), which is the most common cause of monogenic diabetes, has an autosomal dominant pattern of inheritance and exhibits marked clinical and genetic heterogeneity. The aim of the current study was to investigate molecular defects in patients with clinically suspected MODY using a next-generation sequencing (NGS)-based targeted gene panel. METHODS Candidate patients with clinical suspicion of MODY and their parents were included in the study. Molecular genetic analyses were performed on genomic DNA by using NGS. A panel of ten MODY-causal genes involving GCK, HNF1A, HNF1B, HNF4A, ABCC8, CEL, INS, KCNJ11, NEUROD1, PDX1 was designed and subsequently implemented to screen 40 patients for genetic variants. RESULTS Ten different pathogenic or likely pathogenic variants were identified in MODY-suspected patients, with a diagnostic rate of 25%. Three variants of uncertain significance were also detected in the same screen. A novel pathogenic variant in the gene HNF1A (c.505_506delAA [p.Lys169AlafsTer18]) was described for the first time in this report. Intriguingly, we were able to detect variants associated with rare forms of MODY in our study population. CONCLUSIONS Our results suggest that in heterogenous diseases such as MODY, NGS analysis enables accurate identification of underlying molecular defects in a timely and cost-effective manner. Although MODY accounts for 2-5% of all diabetic cases, molecular genetic diagnosis of MODY is necessary for optimal long-term treatment and prognosis as well as for effective genetic counseling.
Collapse
Affiliation(s)
- Mustafa Doğan
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey.
| | - Recep Eröz
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Semih Bolu
- Department of Pediatric Endocrinology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Hüseyin Yüce
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey
| | - İlknur Arslanoğlu
- Department of Pediatrics Endocrinology, Faculty of Medicine, Duzce University, 81620, Duzce, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, 99428, Kyrenia, Cyprus
| |
Collapse
|
55
|
Genetic and Epigenetic Association of Hepatocyte Nuclear Factor-1α with Glycosylation in Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13061063. [PMID: 35741825 PMCID: PMC9223288 DOI: 10.3390/genes13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex trauma-related disorder, the etiology and underlying molecular mechanisms of which are still unclear and probably involve different (epi)genetic and environmental factors. Protein N-glycosylation is a common post-translational modification that has been associated with several pathophysiological states, including inflammation and PTSD. Hepatocyte nuclear factor-1α (HNF1A) is a transcriptional regulator of many genes involved in the inflammatory processes, and it has been identified as master regulator of plasma protein glycosylation. The aim of this study was to determine the association between N-glycan levels in plasma and immunoglobulin G, methylation at four CpG positions in the HNF1A gene, HNF1A antisense RNA 1 (HNF1A-AS1), rs7953249 and HNF1A rs735396 polymorphisms in a total of 555 PTSD and control subjects. We found significant association of rs7953249 and rs735396 polymorphisms, as well as HNF1A gene methylation at the CpG3 site, with highly branched, galactosylated and sialyated plasma N-glycans, mostly in patients with PTSD. HNF1A-AS1 rs7953249 polymorphism was also associated with PTSD; however, none of the polymorphisms were associated with HNF1A gene methylation. These results indicate a possible regulatory role of the investigated HNF1A polymorphisms with respect to the abundance of complex plasma N-glycans previously associated with proinflammatory response, which could contribute to the clinical manifestation of PTSD and its comorbidities.
Collapse
|
56
|
de Souza Cordeiro LM, Bainbridge L, Devisetty N, McDougal DH, Peters DJM, Chhabra KH. Loss of function of renal Glut2 reverses hyperglycaemia and normalises body weight in mouse models of diabetes and obesity. Diabetologia 2022; 65:1032-1047. [PMID: 35290476 PMCID: PMC9081162 DOI: 10.1007/s00125-022-05676-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Renal GLUT2 is increased in diabetes, thereby enhancing glucose reabsorption and worsening hyperglycaemia. Here, we determined whether loss of Glut2 (also known as Slc2a2) specifically in the kidneys would reverse hyperglycaemia and normalise body weight in mouse models of diabetes and obesity. METHODS We used the tamoxifen-inducible CreERT2-Lox system in mice to knockout Glut2 specifically in the kidneys (Ks-Glut2 KO) to establish the contribution of renal GLUT2 to systemic glucose homeostasis in health and in insulin-dependent as well as non-insulin-dependent diabetes. We measured circulating glucose and insulin levels in response to OGTT or IVGTT under different experimental conditions in the Ks-Glut2 KO and their control mice. Moreover, we quantified urine glucose levels to explain the phenotype of the mice independently of insulin actions. We also used a transcription factor array to identify mechanisms underlying the crosstalk between renal GLUT2 and sodium-glucose cotransporter 2 (SGLT2). RESULTS The Ks-Glut2 KO mice exhibited improved glucose tolerance and massive glucosuria. Interestingly, this improvement in blood glucose control was eliminated when we knocked out Glut2 in the liver in addition to the kidneys, suggesting that the improvement is attributable to the lack of renal GLUT2. Remarkably, induction of renal Glut2 deficiency reversed hyperglycaemia and normalised body weight in mouse models of diabetes and obesity. Longitudinal monitoring of renal glucose transporters revealed that Sglt2 (also known as Slc5a2) expression was almost abolished 3 weeks after inducing renal Glut2 deficiency. To identify a molecular basis for this crosstalk, we screened for renal transcription factors that were downregulated in the Ks-Glut2 KO mice. Hnf1α (also known as Hnf1a) was among the genes most downregulated and its recovery restored Sglt2 expression in primary renal proximal tubular cells isolated from the Ks-Glut2 KO mice. CONCLUSIONS/INTERPRETATION Altogether, these results demonstrate a novel crosstalk between renal GLUT2 and SGLT2 in regulating systemic glucose homeostasis via glucose reabsorption. Our findings also indicate that inhibiting renal GLUT2 is a potential therapy for diabetes and obesity.
Collapse
Affiliation(s)
- Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren Bainbridge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nagavardhini Devisetty
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
57
|
Laver TW, Wakeling MN, Knox O, Colclough K, Wright CF, Ellard S, Hattersley AT, Weedon MN, Patel KA. Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not Be Included in Diagnostic Testing for MODY. Diabetes 2022; 71:1128-1136. [PMID: 35108381 PMCID: PMC9044126 DOI: 10.2337/db21-0844] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/30/2022] [Indexed: 12/05/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of monogenic diabetes, reported to be caused by variants in 16 genes. Concern has been raised about whether variants in BLK (MODY11), KLF11 (MODY7), and PAX4 (MODY9) cause MODY. We examined variant-level genetic evidence (cosegregation with diabetes and frequency in population) for published putative pathogenic variants in these genes and used burden testing to test gene-level evidence in a MODY cohort (n = 1,227) compared with a control population (UK Biobank [n = 185,898]). For comparison we analyzed well-established causes of MODY, HNF1A, and HNF4A. The published variants in BLK, KLF11, and PAX4 showed poor cosegregation with diabetes (combined logarithm of the odds [LOD] scores ≤1.2), compared with HNF1A and HNF4A (LOD scores >9), and are all too common to cause MODY (minor allele frequency >4.95 × 10-5). Ultra-rare missense and protein-truncating variants (PTV) were not enriched in a MODY cohort compared with the UK Biobank population (PTV P > 0.05, missense P > 0.1 for all three genes) while HNF1A and HNF4A were enriched (P < 10-6). Findings of sensitivity analyses with different population cohorts supported our results. Variant and gene-level genetic evidence does not support BLK, KLF11, or PAX4 as a cause of MODY. They should not be included in MODY diagnostic genetic testing.
Collapse
Affiliation(s)
- Thomas W. Laver
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | - Matthew N. Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | - Olivia Knox
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | | | - Michael N. Weedon
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | - Kashyap A. Patel
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| |
Collapse
|
58
|
Wang X, Zhang X. Hepatocellular adenoma: Where are we now? World J Gastroenterol 2022; 28:1384-1393. [PMID: 35582672 PMCID: PMC9048476 DOI: 10.3748/wjg.v28.i14.1384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular adenoma (HCA) is a benign hepatocellular neoplasm, commonly occurs in young women with a history of oral contraceptive use. Complications including hemorrhage and malignant transformation necessitate the need for a thorough understanding of the underlying molecular signatures in this entity. Recent molecular studies have significantly expanded our knowledge of HCAs. The well-developed phenotype-genotype classification system improves clinical management through identifying "high risk" subtype of HCAs. In this article, we attempt to provide updated information on clinical, pathologic and molecular features of each subtype of HCAs.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
59
|
Carrasco M, Wang C, Søviknes AM, Bjørlykke Y, Abadpour S, Paulo JA, Tjora E, Njølstad P, Ghabayen J, Nermoen I, Lyssenko V, Chera S, Ghila LM, Vaudel M, Scholz H, Ræder H. Spatial Environment Affects HNF4A Mutation-Specific Proteome Signatures and Cellular Morphology in hiPSC-Derived β-Like Cells. Diabetes 2022; 71:862-869. [PMID: 35043148 PMCID: PMC8965667 DOI: 10.2337/db20-1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Studies of monogenic diabetes are particularly useful because we can gain insight into the molecular events of pancreatic β-cell failure. Maturity-onset diabetes of the young 1 (MODY1) is a form of monogenic diabetes caused by a mutation in the HNF4A gene. Human-induced pluripotent stem cells (hiPSCs) provide an excellent tool for disease modeling by subsequently directing differentiation toward desired pancreatic islet cells, but cellular phenotypes in terminally differentiated cells are notoriously difficult to detect. Re-creating a spatial (three-dimensional [3D]) environment may facilitate phenotype detection. We studied MODY1 by using hiPSC-derived pancreatic β-like patient and isogenic control cell lines in two different 3D contexts. Using size-adjusted cell aggregates and alginate capsules, we show that the 3D context is critical to facilitating the detection of mutation-specific phenotypes. In 3D cell aggregates, we identified irregular cell clusters and lower levels of structural proteins by proteome analysis, whereas in 3D alginate capsules, we identified altered levels of glycolytic proteins in the glucose sensing apparatus by proteome analysis. Our study provides novel knowledge on normal and abnormal function of HNF4A, paving the way for translational studies of new drug targets that can be used in precision diabetes medicine in MODY.
Collapse
Affiliation(s)
- Manuel Carrasco
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Chencheng Wang
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anne M. Søviknes
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yngvild Bjørlykke
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Erling Tjora
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Pål Njølstad
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jonas Ghabayen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Nermoen
- Department of Endocrinology, Akershus University Hospital, Lorenskog, Norway
| | - Valeriya Lyssenko
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Luiza M. Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub–Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Corresponding author: Helge Ræder,
| |
Collapse
|
60
|
Kettunen JLT, Rantala E, Dwivedi OP, Isomaa B, Sarelin L, Kokko P, Hakaste L, Miettinen PJ, Groop LC, Tuomi T. A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY. Diabetologia 2022; 65:632-643. [PMID: 34951657 PMCID: PMC8894160 DOI: 10.1007/s00125-021-05631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum. METHODS We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.(Gly292fs) variant with the non-carrier relatives irrespective of diabetes status. During more than two decades, 145 carriers and 131 non-carriers from 12 families participated in the study, and 208 underwent an OGTT at least once. We assessed the polygenic risk score for type 2 diabetes, age at onset of diabetes and measures of body composition, as well as plasma glucose, serum insulin, proinsulin, C-peptide, glucagon and NEFA response during the OGTT. RESULTS Half of the carriers remained free of diabetes at 23 years, one-third at 33 years and 13% even at 50 years. The median age at diagnosis was 21 years (IQR 17-35). We could not identify clinical factors affecting the age at conversion; sex, BMI, insulin sensitivity or parental carrier status had no significant effect. However, for 1 SD unit increase of a polygenic risk score for type 2 diabetes, the predicted age at diagnosis decreased by 3.2 years. During the OGTT, the carriers had higher levels of plasma glucose and lower levels of serum insulin and C-peptide than the non-carriers. The carriers were also leaner than the non-carriers (by 5.0 kg, p=0.012, and by 2.1 kg/m2 units of BMI, p=2.2 × 10-4, using the first adult measurements) and, possibly as a result of insulin deficiency, demonstrated higher lipolytic activity (with medians of NEFA at fasting 621 vs 441 μmol/l, p=0.0039; at 120 min during an OGTT 117 vs 64 μmol/l, p=3.1 × 10-5). CONCLUSIONS/INTERPRETATION The most common causal variant of HNF1A-MODY, p.(Gly292fs), presents not only with hyperglycaemia and insulin deficiency, but also with increased lipolysis and markedly lower adult BMI. Serum insulin was more discriminative than C-peptide between carriers and non-carriers. A considerable proportion of carriers develop diabetes after young adulthood. Even among individuals with a monogenic form of diabetes, polygenic risk of diabetes modifies the age at onset of diabetes.
Collapse
Affiliation(s)
- Jarno L T Kettunen
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | | | - Om P Dwivedi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Bo Isomaa
- Folkhälsan Research Center, Helsinki, Finland
| | | | - Paula Kokko
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Liisa Hakaste
- Folkhälsan Research Center, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Päivi J Miettinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Leif C Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
61
|
Üstay Ö, Apaydın T, Elbasan O, Polat H, Günhan G, Dinçer C, Şeker L, Ateş EA, Yabacı A, Güney Aİ, Yavuz DG. When do we need to suspect maturity onset diabetes of the young in patients with type 2 diabetes mellitus? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:32-39. [PMID: 35029855 PMCID: PMC9991031 DOI: 10.20945/2359-3997000000431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Maturity onset diabetes of the young (MODY) patients have clinical heterogeneity as shown by many studies. Thus, often it is misdiagnosed to type 1 or type 2 diabetes(T2DM). The aim of this study is to evaluate MODY mutations in adult T2DM patients suspicious in terms of MODY, and to show clinical and laboratory differences between these two situations. METHODS In this study, we analyzed 72 type 2 diabetic patients and their relatives (35F/37M) who had been suspected for MODY and referred to genetic department for mutation analysis. The gene mutations for MODY have been assessed in the laboratory of Marmara University genetics. Totally 67 (32F/35M; median age 36.1) diabetic patients were analyzed for 7 MODY mutations. Twelve patients who have uncertain mutation (VUS) were excluded from study for further evaluation. MODY(+) (n:30) patients and T2DM patients (n:25) were compared for clinical and laboratory parameters. RESULTS In MODY(+) subjects, mutations in GCK (MODY 2) (n:12; 40%) were the most common followed by HNF4A (MODY 1) (n:4; 13.3%). Diabetes diagnosis age was younger in MODY(+) group but not statistically significant. Sixty-six percent of MODY(+) subjects had diabetes history at 3-consecutive generations in their family compared with 28% of T2DM patients statistically significant (p:0.006). Gender, BMI, C-peptide, HbA1c, lipid parameters, creatinine, GFR, microalbuminuria, vitamin D and calcium were not statistically different between the groups. CONCLUSION According to present study results, MODY mutation positivity is most probable in young autoantibody (-) diabetic patients diagnosed before 30 years of age, who have first degree family history of diabetes.
Collapse
Affiliation(s)
- Özlem Üstay
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey,
| | - Tuğçe Apaydın
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Onur Elbasan
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Hamza Polat
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Gizem Günhan
- Marmara University School of Medicine, Internal Medicine, Istanbul, Turkey
| | - Ceyda Dinçer
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| | - Lamia Şeker
- Marmara University School of Medicine, Internal Medicine, Istanbul, Turkey
| | - Esra Arslan Ateş
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Ayşegül Yabacı
- Bezmialem Vakif University School of Medicine, Department of Biostatistics, Istanbul, Turkey
| | - Ahmet İlter Güney
- Marmara University School of Medicine, Medical Genetics, Istanbul, Turkey
| | - Dilek Gogas Yavuz
- Marmara University School of Medicine, Endocrinology and Metabolism, Istanbul, Turkey
| |
Collapse
|
62
|
Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, Laddach A, Shepherd MH, Hattersley AT, Watt FM, Sancho R. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep 2022; 38:110425. [PMID: 35235779 PMCID: PMC8905088 DOI: 10.1016/j.celrep.2022.110425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and β cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1β and inhibits its function, and disrupting this interaction partially rescues HNF1β-dependent transcription. HNF1β overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1β overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues β cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1β-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients. MODY3 patient and CRISPR/Cas9 HNF1αp291fsinsC mutated iPSC lines are generated Mutant iPSCs show deficient pancreatic progenitor and β cell differentiation Mutant truncated HNF1α protein binds wild-type HNF1β protein to hinder its function HNF1β overexpression in MODY3 iPSC line partially rescues β cell differentiation
Collapse
Affiliation(s)
- Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | | | | | | | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
63
|
Sampathkumar G, Valiyaparambil PP, Kumar H, Bhavani N, Nair V, Menon U, Menon A, Abraham N, Chapla A, Thomas N. Low genetic confirmation rate in South Indian subjects with a clinical diagnosis of maturity-onset diabetes of the young (MODY) who underwent targeted next-generation sequencing for 13 genes. J Endocrinol Invest 2022; 45:607-615. [PMID: 34741762 DOI: 10.1007/s40618-021-01698-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To screen for maturity-onset diabetes of the young (MODY) variants in subjects with an early age of onset and positive family history of diabetes mellitus. METHODS 60 subjects with onset of diabetes between 3 and 30 years of age and parental history (onset < 35 years) of diabetes were recruited after excluding autoimmune, pancreatic and syndromic forms of diabetes. Detailed pedigree chart and clinical data were recorded. MODY genetic testing (MODY 1-13) was performed and variant classification was done adhering to the ACMG guidelines. RESULTS Baseline characteristics of subjects were as follows: mean age of onset of diabetes 19.9 ± 7 years, mean duration of diabetes 6.3 ± 6.8 years, BMI 23.3 ± 3 kg/m2 and C-peptide 1.56 ± 1.06 nmol/l. Four out of sixty (6.6%) were positive for variants classifiable as pathogenic/likely pathogenic: one patient with HNF4Ac.691C > T, (p.Arg231Trp), two with HNF 1A c.746C > A(p.Ser249Ter) and c.1340C > T(p.Pro447Leu), and one with ABCC8 c.4544C > T (p.Thr1515Met). MODY 1 and MODY 3 variants were documented in the paediatric age group (< 18 years). CONCLUSION A genetic diagnosis of MODY could be confirmed in only 6.6% (4/60) of patients clinically classifiable as MODY. This is less than that reported in clinically diagnosed MODY subjects of European descent. Newly published population data and more stringent criteria for assessment of pathogenicity and younger age of onset of type 2 diabetes in Indians could have contributed to the lower genetic confirmation rate. Apart from variants in the classical genes (HNF1A, HNF4A), a likely pathogenic variant in a non-classical gene (ABCC8) was noted in this study.
Collapse
Affiliation(s)
- G Sampathkumar
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - P P Valiyaparambil
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India.
| | - H Kumar
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - N Bhavani
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - V Nair
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - U Menon
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - A Menon
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - N Abraham
- Department of Endocrinology, Amrita Institute of Medical Sciences, Amrita University, Ponnekara P.O, Cochin, 682041, Kerala, India
| | - A Chapla
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
| | - N Thomas
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
64
|
Lee SJ, Chandrasekran P, Mazucanti CH, O’Connell JF, Egan JM, Kim Y. Dietary curcumin restores insulin homeostasis in diet-induced obese aged mice. Aging (Albany NY) 2022; 14:225-239. [PMID: 35017319 PMCID: PMC8791219 DOI: 10.18632/aging.203821] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Although aging is a physiological process to which all organisms are subject, the presence of obesity and type 2 diabetes accelerates biological aging. Recent studies have demonstrated the causal relationships between dietary interventions suppressing obesity and type 2 diabetes and delaying the onset of age-related endocrine changes. Curcumin, a natural antioxidant, has putative therapeutic properties such as improving insulin sensitivity in obese mice. However, how curcumin contributes to maintaining insulin homeostasis in aged organisms largely remains unclear. Thus, the objective of this study is to examine the pleiotropic effect of dietary curcumin on insulin homeostasis in a diet-induced obese (DIO) aged mouse model. Aged (18-20 months old) male mice given a high-fat high-sugar diet supplemented with 0.4% (w/w) curcumin (equivalent to 2 g/day for a 60 kg adult) displayed a different metabolic phenotype compared to mice given a high-fat high-sugar diet alone. Furthermore, curcumin supplementation altered hepatic gene expression profiling, especially insulin signaling and senescence pathways. We then mechanistically investigated how curcumin functions to fine-tune insulin sensitivity. We found that curcumin supplementation increased hepatic insulin-degrading enzyme (IDE) expression levels and preserved islet integrity, both outcomes that are beneficial to preserving good health with age. Our findings suggest that the multifaceted therapeutic potential of curcumin can be used as a protective agent for age-induced metabolic diseases.
Collapse
Affiliation(s)
- Su-Jeong Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Prabha Chandrasekran
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Caio Henrique Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging (NIA), Baltimore, MD 21224, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
65
|
Dabi YT, Degechisa ST. Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling. Diabetes Metab Syndr Obes 2022; 15:1785-1797. [PMID: 35719247 PMCID: PMC9199525 DOI: 10.2147/dmso.s366967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a metabolic disease characterized by chronic hyperglycemia. Polygenic diabetes, which encompasses type-1 and type-2 diabetes, is the most prevalent kind of diabetes and is caused by a combination of different genetic and environmental factors, whereas rare phenotype monogenic diabetes is caused by a single gene mutation. Monogenic diabetes includes Neonatal diabetes mellitus and Maturity-onset diabetes of the young. The majority of our current knowledge about the pathogenesis of diabetes stems from studies done on animal models. However, the genetic difference between these creatures and humans makes it difficult to mimic human clinical pathophysiology, limiting their value in modeling key aspects of human disease. Human pluripotent stem cell technologies combined with genome editing techniques have been shown to be better alternatives for creating in vitro models that can provide crucial knowledge about disease etiology. This review paper addresses genome editing and human pluripotent stem cell technologies for in vitro monogenic diabetes modeling.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Email
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
66
|
Li LM, Jiang BG, Sun LL. HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:829565. [PMID: 35299962 PMCID: PMC8921476 DOI: 10.3389/fendo.2022.829565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), or other according to the etiology. The clinical manifestations are more or less similar among the different types of diabetes, and each type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing between various types of diabetes and defining their subtypes are major challenges hindering the precise treatment of the disease. T2D is the main type of diabetes in humans as well as the most heterogeneous. Fortunately, some studies have shown that variants of certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate personalized treatment of the disease by exploring the function of the signal genes involved. Hepatocyte nuclear factor 1 homeobox A (HNF1α) is widely expressed in pancreatic β cells, the liver, the intestines, and other organs. HNF1α is highly polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of the young type 3 (MODY3) while some others do not cause MODY3 but increase the susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also differ. MODY3 is among the most common types of MODY, which is a form of monogenic diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial diseases caused by both genetic and environmental factors. Different types of diabetes mellitus have different clinical phenotypes and treatments. This review focuses on HNF1α gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the related pathogenesis and treatment methods. We hope this review will provide a valuable reference for the precise and individualized treatment of diabetes caused by abnormal HNF1α by summarizing the clinical heterogeneity of blood glucose abnormalities caused by HNF1α mutation.
Collapse
Affiliation(s)
- Li-Mei Li
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei-Ge Jiang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| | - Liang-Liang Sun
- Department of Endocrinology and Metabolism, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bei-Ge Jiang, ; Liang-Liang Sun,
| |
Collapse
|
67
|
Zhao Q, Ding L, Yang Y, Sun J, Wang M, Li X, Liu M. Clinical Characteristics of Patients With HNF1-alpha MODY: A Literature Review and Retrospective Chart Review. Front Endocrinol (Lausanne) 2022; 13:900489. [PMID: 35795147 PMCID: PMC9252268 DOI: 10.3389/fendo.2022.900489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical manifestation of hepatocyte nuclear factor-1-alpha (HNF1-alpha) maturity-onset diabetes of the young (MODY) is highly variable. This study aims to investigate the clinical characteristics of patients with HNF1-alpha MODY in general, by geographical regions (Asian or non-Asian), HNF1-alpha mutations, and islet autoantibody status. A literature review and a chart review of patients with HNF1-alpha MODY were performed. The means and proportions from studies were pooled using the inverse variance method for pooling, and subgroup analyses were performed. A total of 109 studies involving 1,325 patients [41.5%, 95% confidence interval (CI): 35.2, 48.1; male] were identified. The mean age of diagnosis was 20.3 years (95% CI: 18.3-22.2), and the mean glycated hemoglobin was 7.3% (95% CI: 7.2-7.5). In comparison, Asian patients exhibited significantly higher HbA1c (p = 0.007) and 2-h post-load C-peptide (p = 0.012) levels and lower levels of triglyceride (TG) (p < 0.001), total cholesterol (TC) (p < 0.001), and high-density lipoprotein cholesterol (HDL-c) (p < 0.001) and less often had macrovascular complications (p = 0.014). The age of diagnosis was oldest in patients with mutations in the transactivation domain (p < 0.001). The levels of 2-h post-load C-peptide (p < 0.001), TG (p = 0.007), TC (p = 0.017), and HDL-c (p = 0.001) were highest and the prevalence of diabetic neuropathy was lowest (p = 0.024) in patients with DNA-binding domain mutations. The fasting (p = 0.004) and 2-h post-load glucose (p = 0.003) levels and the prevalence of diabetic neuropathy (p = 0.010) were higher among patients with positive islet autoantibodies. The study demonstrated that the clinical manifestations of HNF1-alpha MODY differed by geographical regions, HNF1-alpha mutations, and islet autoantibody status.
Collapse
Affiliation(s)
- Qinying Zhao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Endocrinology, Tianjin, China
- *Correspondence: Xin Li, ; Ming Liu,
| |
Collapse
|
68
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
69
|
Sriravindrarajah A, Fernandes A, Wu T, Hocking S. The use of SGLT2 inhibitors in achieving glycaemic control in maturity-onset diabetes of the young type 3. Endocrinol Diabetes Metab Case Rep 2021; 2021:EDM-21-0102. [PMID: 34866061 PMCID: PMC8686174 DOI: 10.1530/edm-21-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
SUMMARY Maturity-onset diabetes of the young type 3 (MODY3) accounts for approximately 50% of cases of MODY. First-line treatment with sulfonylureas has been well established for individuals with MODY3. In contrast, the use of sodium-glucose co-transporter 2 (SGLT2) inhibitors in the treatment of individuals with MODY3 remains unclear. This case illustrates the in vivo effect of an SGLT2 inhibitor in a 30-year-old woman with MODY3 with poor glycaemic control despite the treatment with supramaximal doses of sulfonylurea and metformin. The addition of a SGLT2 inhibitor resulted in a rapid improvement in glycaemic control without any hypoglycaemic episodes. This case suggests that SGLT2 inhibitors may be an effective and potent treatment option in addition to sulfonylureas for individuals with MODY3. LEARNING POINTS Maturity-onset diabetes of the young type 3 (MODY3) arises from mutations in the hepatocyte nuclear factor-1alpha gene, which controls the expression of sodium-glucose co-transporter 2 (SGLT2) in the kidneys. Paradoxically, despite individuals with MODY3 having reduced expression of SGLT2, SGLT2 inhibitors induce higher glycosuria in individuals with MODY3 compared to individuals with type 2 diabetes mellitus. SGLT2 inhibitors may be an effective treatment for achieving glycaemic control in individuals with MODY3.
Collapse
Affiliation(s)
- Arunan Sriravindrarajah
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Amelia Fernandes
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ted Wu
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Samantha Hocking
- Royal Prince Alfred Hospital, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Charles Perkins Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
70
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
71
|
Nicht immer Typ 1 – seltene Diabetesformen bei Kindern. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
72
|
Kang E, Chung LY, Kim YJ, Oh KE, Rhie YJ. Monogenic diabetes mellitus and clinical implications of genetic diagnosis. PRECISION AND FUTURE MEDICINE 2021. [DOI: 10.23838/pfm.2021.00100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monogenic diabetes mellitus, which is diabetes caused by a defect in a single gene that is associated with β cell function or insulin action, accounts for 1% to 6% of all pediatric diabetes cases. Accurate diagnosis is important, as the effective treatment differs according to genetic etiology in some types of monogenic diabetes: high-dose sulfonylurea treatment in neonatal diabetes caused by activating mutations in KCNJ11 or ABCC8; low-dose sulfonylurea treatment in HNF1A/HNF4A-diabetes; and no treatment in GCK diabetes. Monogenic diabetes should be suspected by clinicians for certain combinations of clinical features and laboratory results, and approximately 80% of monogenic diabetes cases are misdiagnosed as type 1 diabetes or type 2 diabetes. Here, we outline the types of monogenic diabetes and the clinical implications of genetic diagnosis.
Collapse
|
73
|
Alwatban S, Alfaraidi H, Alosaimi A, Alluhaydan I, Alfadhel M, Polak M, Almutair A. Case Report: Homozygous DNAJC3 Mutation Causes Monogenic Diabetes Mellitus Associated With Pancreatic Atrophy. Front Endocrinol (Lausanne) 2021; 12:742278. [PMID: 34630333 PMCID: PMC8497828 DOI: 10.3389/fendo.2021.742278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction DNAJC3, abundant in the pancreatic cells, attenuates endoplasmic reticulum stress. Homozygous DNAJC3 mutations have been reported to cause non-immune juvenile-onset diabetes, neurodegeneration, hearing loss, short stature, and hypothyroidism. Case Description We report a case of homozygous DNAJC3 mutation in two siblings of a consanguineous family. A 3-year-old boy presented with short stature and a thyroid nodule. Laboratory findings confirmed hypothyroidism. Subsequently, levothyroxine was administered. Growth hormone (GH) stimulation test results were within the normal limits. His stature was exceedingly short (80.5 cm) (-3.79 SDS). The patient developed sensorineural hearing loss at age 6 years; his intellectual functioning was impaired. Recombinant Human Growth Hormine (rhGH) treatment was postponed until the age of 6.9 years due to a strong family history of diabetes. At age 9 years, he developed an ataxic gait. Brain magnetic resonance imaging (MRI) revealed neurodegeneration. The patient developed diabetes at the age of 11 years-5 years after the initiation of rhGH treatment. Tests for markers of autoimmune diabetes were negative. Lifestyle modification was introduced, but insulin therapy was eventually required. Whole-exome-sequencing (WES) revealed a homozygous DNAJC3 mutation, which explained his clinical presentation. MRI revealed a small, atrophic pancreas. At the age of 17, his final adult height was 143 cm (-4.7 SDS). His elder brother, who had the same mutation, had a similar history, except that he had milder ataxia and normal brain MRI finding at the age of 28 years. Conclusion We propose that DNAJC3 mutation can be considered as a cause of maturity onset diabetes of the young. Patients with DNAJC3 mutations may possess a small atrophic pancreas.
Collapse
Affiliation(s)
- Saud Alwatban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
| | - Haifa Alfaraidi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulaziz Alosaimi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Imaging Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Iram Alluhaydan
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker University Children's Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute affiliate, INSERM U1163; INSERM U1016, Université de Paris, Paris, France
| | - Angham Almutair
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
74
|
Kanamori S, Ohashi N, Ishida H, Yamamoto K, Itoh T. HNF4α Is a Covalent Bond-Forming Receptor. J Nutr Sci Vitaminol (Tokyo) 2021; 67:126-129. [PMID: 33952733 DOI: 10.3177/jnsv.67.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HNF4α is a nuclear receptor whose ligands are fatty acids. HNF4α is a target molecule for drug discovery research and thus we tested its covalent binding ability to investigate the possible development of covalent modifiers of HNF4α. Oxidized polyunsaturated fatty acids (oxo-PUFAs) have moderate flexibility and possess a Michael acceptor that participates in conjugate addition reactions with nucleophilic amino acid residues. Thus, oxo-PUFAs were used as probes and their covalent binding abilities to HNF4α were verified. Several oxo-PUFAs, such as 4-oxoDHA, were shown to be covalent modifiers of HNF4α and therefore we concluded that HNF4α can form covalent bonds to ligands.
Collapse
|
75
|
Kim DS, Gloyn AL, Knowles JW. Genetics of Type 2 Diabetes: Opportunities for Precision Medicine: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:496-512. [PMID: 34325839 PMCID: PMC8328195 DOI: 10.1016/j.jacc.2021.03.346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is highly prevalent and is a strong contributor for cardiovascular disease. However, there is significant heterogeneity in disease pathogenesis and the risk of complications. Enormous progress has been made in our ability to catalog genetic variation associated with T2D risk and variation in disease-relevant quantitative traits. These discoveries hold the potential to shed light on tractable targets and pathways for safe and effective therapeutic development, but the promise of precision medicine has been slow to be realized. Recent studies have identified subgroups of individuals with differential risk for intermediate phenotypes (eg, lipid levels, fasting insulin, body mass index) that contribute to T2D risk, helping to account for the observed clinical heterogeneity. These "partitioned genetic risk scores" not only have the potential to identify patients at greatest risk of cardiovascular disease and rapid disease progression, but also could aid patient stratification bridging the gap toward precision medicine for T2D.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA; Stanford Diabetes Research Center, Stanford University, Stanford, California, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Stanford Diabetes Research Center, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.
| |
Collapse
|
76
|
Yong J, Johnson JD, Arvan P, Han J, Kaufman RJ. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat Rev Endocrinol 2021; 17:455-467. [PMID: 34163039 PMCID: PMC8765009 DOI: 10.1038/s41574-021-00510-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is characterized by the failure of insulin-secreting pancreatic β-cells (or β-cell death) due to either autoimmunity (type 1 diabetes mellitus) or failure to compensate for insulin resistance (type 2 diabetes mellitus; T2DM). In addition, mutations of critical genes cause monogenic diabetes. The endoplasmic reticulum (ER) is the primary site for proinsulin folding; therefore, ER proteostasis is crucial for both β-cell function and survival under physiological and pathophysiological challenges. Importantly, the ER is also the major intracellular Ca2+ storage organelle, generating Ca2+ signals that contribute to insulin secretion. ER stress is associated with the pathogenesis of diabetes mellitus. In this Review, we summarize the mutations in monogenic diabetes that play causal roles in promoting ER stress in β-cells. Furthermore, we discuss the possible mechanisms responsible for ER proteostasis imbalance with a focus on T2DM, in which both genetics and environment are considered important in promoting ER stress in β-cells. We also suggest that controlled insulin secretion from β-cells might reduce the progression of a key aspect of the metabolic syndrome, namely nonalcoholic fatty liver disease. Finally, we evaluate potential therapeutic approaches to treat T2DM, including the optimization and protection of functional β-cell mass in individuals with T2DM.
Collapse
Affiliation(s)
- Jing Yong
- Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - James D Johnson
- Department of Cellular and Physiological Sciences & Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Arvan
- Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, Republic of Korea.
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
77
|
Gaál Z, Szűcs Z, Kántor I, Luczay A, Tóth-Heyn P, Benn O, Felszeghy E, Karádi Z, Madar L, Balogh I. A Comprehensive Analysis of Hungarian MODY Patients-Part I: Gene Panel Sequencing Reveals Pathogenic Mutations in HNF1A, HNF1B, HNF4A, ABCC8 and INS Genes. Life (Basel) 2021; 11:life11080755. [PMID: 34440499 PMCID: PMC8399091 DOI: 10.3390/life11080755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) has about a dozen known causal genes to date, the most common ones being HNF1A, HNF4A, HNF1B and GCK. The phenotype of this clinically and genetically heterogeneous form of diabetes depends on the gene in which the patient has the mutation. We have tested 450 Hungarian index patients with suspected MODY diagnosis with Sanger sequencing and next-generation sequencing and found a roughly 30% positivity rate. More than 70% of disease-causing mutations were found in the GCK gene, about 20% in the HNF1A gene and less than 10% in other MODY-causing genes. We found 8 pathogenic and 9 likely pathogenic mutations in the HNF1A gene in a total of 48 patients and family members. In the case of HNF1A-MODY, the recommended first-line treatment is low dose sulfonylurea but according to our data, the majority of our patients had been on unnecessary insulin therapy at the time of requesting their genetic testing. Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of the MODY subtype in order to choose the most appropriate treatment.
Collapse
Affiliation(s)
- Zsolt Gaál
- 4th Department of Medicine, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary;
| | - Zsuzsanna Szűcs
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
| | - Irén Kántor
- Department of Pediatrics, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary;
| | - Andrea Luczay
- 1st Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; (A.L.); (P.T.-H.)
| | - Péter Tóth-Heyn
- 1st Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; (A.L.); (P.T.-H.)
| | - Orsolya Benn
- Department of Pediatrics, Szent György Hospital of Fejér County, 8000 Székesfehérvár, Hungary; (O.B.); (Z.K.)
| | - Enikő Felszeghy
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsuzsanna Karádi
- Department of Pediatrics, Szent György Hospital of Fejér County, 8000 Székesfehérvár, Hungary; (O.B.); (Z.K.)
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.S.); (L.M.)
- Correspondence:
| |
Collapse
|
78
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
79
|
Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 2021; 9:1248-1257. [PMID: 35873023 PMCID: PMC9293700 DOI: 10.1016/j.gendis.2021.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The present review focuses on the roles and underlying mechanisms of action of hepatic nuclear factor-1 (HNF-1) in lipid metabolism and the development of lipid metabolism disorders. HNF-1 is a transcriptional regulator that can form homodimers, and the HNF-1α and HNF-1β isomers can form heterodimers. Both homo- and heterodimers recognize and bind to specific cis-acting elements in gene promoters to transactivate transcription and to coordinate the expression of target lipid-related genes, thereby influencing the homeostasis of lipid metabolism. HNF-1 was shown to restrain lipid anabolism, including synthesis, absorption, and storage, by inhibiting the expression of lipogenesis-related genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1/2 (SREBP-1/2). Moreover, HNF-1 enhances the expression of various genes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9), glutathione peroxidase 1 (GPx1), and suppressor of cytokine signaling-3 (SOCS-3) and negatively regulates signal transducer and activator of transcription (STAT) to facilitate lipid catabolism in hepatocytes. HNF-1 reduces hepatocellular lipid decomposition, which alleviates the progression of nonalcoholic fatty liver disease (NAFLD). HNF-1 impairs preadipocyte differentiation to reduce the number of adipocytes, stunting the development of obesity. Furthermore, HNF-1 reduces free cholesterol levels in the plasma to inhibit aortic lipid deposition and lipid plaque formation, relieving dyslipidemia and preventing the development of atherosclerotic cardiovascular disease (ASCVD). In summary, HNF-1 transcriptionally regulates lipid-related genes to manipulate intracorporeal balance of lipid metabolism and to suppress the development of lipid metabolism disorders.
Collapse
|
80
|
Vishnopolska SA, Mercogliano MF, Camilletti MA, Mortensen AH, Braslavsky D, Keselman A, Bergadá I, Olivieri F, Miranda L, Marino R, Ramírez P, Pérez Garrido N, Patiño Mejia H, Ciaccio M, Di Palma MI, Belgorosky A, Martí MA, Kitzman JO, Camper SA, Pérez-Millán MI. Comprehensive Identification of Pathogenic Gene Variants in Patients With Neuroendocrine Disorders. J Clin Endocrinol Metab 2021; 106:1956-1976. [PMID: 33729509 PMCID: PMC8208670 DOI: 10.1210/clinem/dgab177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/12/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Congenital hypopituitarism (CH) can present in isolation or with other birth defects. Mutations in multiple genes can cause CH, and the use of a genetic screening panel could establish the prevalence of mutations in known and candidate genes for this disorder. It could also increase the proportion of patients that receive a genetic diagnosis. METHODS We conducted target panel genetic screening using single-molecule molecular inversion probes sequencing to assess the frequency of mutations in known hypopituitarism genes and new candidates in Argentina. We captured genomic deoxyribonucleic acid from 170 pediatric patients with CH, either alone or with other abnormalities. We performed promoter activation assays to test the functional effects of patient variants in LHX3 and LHX4. RESULTS We found variants classified as pathogenic, likely pathogenic, or with uncertain significance in 15.3% of cases. These variants were identified in known CH causative genes (LHX3, LHX4, GLI2, OTX2, HESX1), in less frequently reported genes (FOXA2, BMP4, FGFR1, PROKR2, PNPLA6) and in new candidate genes (BMP2, HMGA2, HNF1A, NKX2-1). CONCLUSION In this work, we report the prevalence of mutations in known CH genes in Argentina and provide evidence for new candidate genes. We show that CH is a genetically heterogeneous disease with high phenotypic variation and incomplete penetrance, and our results support the need for further gene discovery for CH. Identifying population-specific pathogenic variants will improve the capacity of genetic data to predict eventual clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Alexis Vishnopolska
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Florencia Mercogliano
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Maria Andrea Camilletti
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Amanda Helen Mortensen
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ana Keselman
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá,” (CEDIE), FEI – CONICET – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Ciudad de Buenos Aires, C1425EFD, Argentina
| | - Federico Olivieri
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Lucas Miranda
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Roxana Marino
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Pablo Ramírez
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Natalia Pérez Garrido
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Helen Patiño Mejia
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Marta Ciaccio
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Maria Isabel Di Palma
- Servicio de Endocrinología, Hospital Garrahan, Ciudad de Buenos Aires, C1245, Argentina
| | - Alicia Belgorosky
- Hospital de Pediatría Garrahan-CONICET, Ciudad de Buenos Aires, Argentina
| | - Marcelo Adrian Martí
- Instituto de Química Biología en Exactas y Naturales (IQUIBICEN-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
| | - Jacob Otto Kitzman
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
| | - Sally Ann Camper
- Deptartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48198-5618, USA
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| | - Maria Ines Pérez-Millán
- Instituto de Biociencias, Biotecnología y Biología Traslacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires,Argentina
- Correspondence: Sally A. Camper, PhD, University of Michigan Medical School, Ann Arbor, MI 48198-5618, United States. E-mail: ; or Maria Ines Perez-Millan, PhD, University of Buenos Aires, Buenos Aires, C1428EHA, Argentina. E-mail:
| |
Collapse
|
81
|
Sjöholm Å. GAD-65 antibodies in a case of HNF1A-Maturity-Onset Diabetes of the Young: Double diabetes? Clin Case Rep 2021; 9:e04151. [PMID: 34194751 PMCID: PMC8222641 DOI: 10.1002/ccr3.4151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Diabetes classification is not as defined as it used to be. A patient with one type of diabetes can have diagnostic criteria of another type, which may affect the course of the disease. Clinicians need to consider that when dealing with patients who do not fit the exact description of their diagnosed type of diabetes.
Collapse
Affiliation(s)
- Åke Sjöholm
- Division of Endocrinology and DiabetologyDepartment of Internal MedicineGävle HospitalGävleSweden
- University of GävleGävleSweden
| |
Collapse
|
82
|
Heller S, Melzer MK, Azoitei N, Julier C, Kleger A. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants. Front Endocrinol (Lausanne) 2021; 12:648284. [PMID: 34079523 PMCID: PMC8166226 DOI: 10.3389/fendo.2021.648284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on β-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.
Collapse
Affiliation(s)
- Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael Karl Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Cécile Julier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
83
|
Fujino S, Miyoshi N, Ito A, Yasui M, Matsuda C, Ohue M, Uemura M, Mizushima T, Doki Y, Eguchi H. HNF1A regulates colorectal cancer progression and drug resistance as a downstream of POU5F1. Sci Rep 2021; 11:10363. [PMID: 33990627 PMCID: PMC8121855 DOI: 10.1038/s41598-021-89126-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
POU5F1-expressing cells can self-renew and differentiate, contributing to metastasis formation in colorectal cancer (CRC), but it plays an important role in normal pluripotent stem cells. Here, we identified the CRC-specific gene, HNF1A, which is the downstream of POU5F1. HNF1A associates with fatty acid and glucose metabolism, and CRC cells highly expressed it. In 198 CRC patients, high HNF1A expression was an independent predictor of disease-free (P = 0.031) and overall (P = 0.007) survival. HNF1A-knockdown showed significantly reduced cell growth, increased apoptosis, and improved anticancer drug sensitivity. We revealed that HNF1A regulated controlled GLUT1 expression via HIF1A and multidrug resistance protein function to suppress SRI. HNF1A expression was elevated in persister cells after exposure to anticancer drugs, and anticancer drug sensitivity was also improved in persister cells via the inhibition of HNF1A. In conclusion, HNF1A expression can reflect resistance to anticancer drug treatment, and its suppression improves anticancer drug sensitivity as a new therapeutic target.
Collapse
Affiliation(s)
- Shiki Fujino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan.
- Innovative Oncology Research and Translational Medicine, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| | - Aya Ito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Masayoshi Yasui
- Department of Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Chu Matsuda
- Department of Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| |
Collapse
|
84
|
Nagaya M, Hasegawa K, Uchikura A, Nakano K, Watanabe M, Umeyama K, Matsunari H, Osafune K, Kobayashi E, Nakauchi H, Nagashima H. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes. World J Diabetes 2021; 12:306-330. [PMID: 33889282 PMCID: PMC8040081 DOI: 10.4239/wjd.v12.i4.306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is among the top 10 causes of death in adults and caused approximately four million deaths worldwide in 2017. The incidence and prevalence of diabetes is predicted to increase. To alleviate this potentially severe situation, safer and more effective therapeutics are urgently required. Mice have long been the mainstay as preclinical models for basic research on diabetes, although they are not ideally suited for translating basic knowledge into clinical applications. To validate and optimize novel therapeutics for safe application in humans, an appropriate large animal model is needed. Large animals, especially pigs, are well suited for biomedical research and share many similarities with humans, including body size, anatomical features, physiology, and pathophysiology. Moreover, pigs already play an important role in translational studies, including clinical trials for xenotransplantation. Progress in genetic engineering over the past few decades has facilitated the development of transgenic animals, including porcine models of diabetes. This article discusses features that attest to the attractiveness of genetically modified porcine models of diabetes for testing novel treatment strategies using recent technical advances.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki 261-8511, Kanagawa, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Ayuko Uchikura
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Research and Development, PorMedTec Co. Ltd, Kawasaki 214-0034, Kanagawa, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Shinjuku 160-8582, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, United States
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato 108-8639, Tokyo, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
85
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
86
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
87
|
Pollin TI, Taylor SI. YIPF5 mutations cause neonatal diabetes and microcephaly: progress for precision medicine and mechanistic understanding. J Clin Invest 2021; 130:6228-6231. [PMID: 33164987 DOI: 10.1172/jci142364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Identifying genes that result in monogenic diabetes can provide insights that can build a scientific foundation for precision medicine. At present, nearly 20% of neonatal diabetes cases have unknown causes. In this issue of the JCI, De Franco and Lytrivi et al. sequenced the genome of two probands with a rare neonatal diabetes subtype that also associated with microcephaly and epilepsy. The authors revealed mutations in the YIPF5 gene. YIPF5 resides in the Golgi apparatus and is thought to play a critical role in vesicular trafficking. Notably, disrupting YIPF5 in β cell-based models induced ER stress signaling and resulted in the accumulation of intracellular proinsulin. We believe that utilizing registries and biobanks to reveal other monogenic atypical forms of diabetes is an important approach to gaining insight and suggest that an insulin sensitizer may alleviate ER stress associated with YIPF5 disruption by decreasing the demand for insulin secretion.
Collapse
|
88
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
89
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
90
|
The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol 2020; 6:20. [PMID: 33292863 PMCID: PMC7640483 DOI: 10.1186/s40842-020-00112-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background The most common type of monogenic diabetes is maturity-onset diabetes of the young (MODY), a clinically and genetically heterogeneous group of endocrine disorders that affect 1–5% of all patients with diabetes mellitus. MODY is characterized by autosomal dominant inheritance but de novo mutations have been reported. Clinical features of MODY include young-onset hyperglycemia, evidence of residual pancreatic function, and lack of beta cell autoimmunity or insulin resistance. Glucose-lowering medications are the main treatment options for MODY. The growing recognition of the clinical and public health significance of MODY by clinicians, researchers, and governments may lead to improved screening and diagnostic practices. Consequently, this review article aims to discuss the epidemiology, pathogenesis, diagnosis, and treatment of MODY based on relevant literature published from 1975 to 2020. Main body The estimated prevalence of MODY from European cohorts is 1 per 10,000 in adults and 1 per 23,000 in children. Since little is known about the prevalence of MODY in African, Asian, South American, and Middle Eastern populations, further research in non-European cohorts is needed to help elucidate MODY’s exact prevalence. Currently, 14 distinct subtypes of MODY can be diagnosed through clinical assessment and genetic analysis. Various genetic mutations and disease mechanisms contribute to the pathogenesis of MODY. Management of MODY is subtype-specific and includes diet, oral antidiabetic drugs, or insulin. Conclusions Incidence and prevalence estimates for MODY are derived from epidemiologic studies of young people with diabetes who live in Europe, Australia, and North America. Mechanisms involved in the pathogenesis of MODY include defective transcriptional regulation, abnormal metabolic enzymes, protein misfolding, dysfunctional ion channels, or impaired signal transduction. Clinicians should understand the epidemiology and pathogenesis of MODY because such knowledge is crucial for accurate diagnosis, individualized patient management, and screening of family members.
Collapse
|
91
|
Sato Y, Rahman MM, Haneda M, Tsuyama T, Mizumoto T, Yoshizawa T, Kitamura T, Gonzalez FJ, Yamamura KI, Yamagata K. HNF1α controls glucagon secretion in pancreatic α-cells through modulation of SGLT1. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165898. [DOI: 10.1016/j.bbadis.2020.165898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
|
92
|
Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes (Basel) 2020; 11:genes11111256. [PMID: 33113859 PMCID: PMC7693799 DOI: 10.3390/genes11111256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023] Open
Abstract
(1) Aims: Diabesity, defined as diabetes occurring in the context of obesity, is a serious health problem that is associated with an increased risk of premature heart attack, stroke, and death. To date, a key challenge has been to understand the molecular pathways that play significant roles in diabesity. In this study, we aimed to investigate the genetic links between diabetes and obesity in diabetic individuals and highlight the role(s) of shared genes in individuals with diabesity. (2) Methods: The interactions between the genes were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) tool after the compilation of obesity genes associated with type 1 diabetes (T1D), type 2 diabetes (T2D), and maturity-onset diabetes of the young (MODY). Cytoscape plugins were utilized for enrichment analysis. (3) Results: We identified 546 obesity genes that are associated with T1D, T2D, and MODY. The network backbone of the identified genes comprised 514 nodes and 4126 edges with an estimated clustering coefficient of 0.242. The Molecular Complex Detection (MCODE) generated three clusters with a score of 33.61, 16.788, and 6.783, each. The highest-scoring nodes of the clusters were AGT, FGB, and LDLR genes. The genes from cluster 1 were enriched in FOXO-mediated transcription of oxidative stress, renin secretion, and regulation of lipolysis in adipocytes. The cluster 2 genes enriched in Src homology 2 domain-containing (SHC)-related events triggered by IGF1R, regulation of lipolysis in adipocytes, and GRB2: SOS produce a link to mitogen-activated protein kinase (MAPK) signaling for integrins. The cluster 3 genes ere enriched in IGF1R signaling cascade and insulin signaling pathway. (4) Conclusion: This study presents a platform to discover potential targets for diabesity treatment and helps in understanding the molecular mechanism.
Collapse
|
93
|
Abstract
Diabetes mellitus is a chronic heterogeneous metabolic disorder with complex pathogenesis. It is characterized by elevated blood glucose levels or hyperglycemia, which results from abnormalities in either insulin secretion or insulin action or both. Hyperglycemia manifests in various forms with a varied presentation and results in carbohydrate, fat, and protein metabolic dysfunctions. Long-term hyperglycemia often leads to various microvascular and macrovascular diabetic complications, which are mainly responsible for diabetes-associated morbidity and mortality. Hyperglycemia serves as the primary biomarker for the diagnosis of diabetes as well. In this review, we would be focusing on the classification of diabetes and its pathophysiology including that of its various types.
Collapse
Affiliation(s)
- Mujeeb Z Banday
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh Hospital, Srinagar, Kashmir, India
| | - Aga S Sameer
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdul Aziz University for Health Sciences, King Abdullah International Medical Research Centre, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Saniya Nissar
- Department of Biochemistry, Government Medical College and Associated Shri Maharaja Hari Singh Hospital, Srinagar, Kashmir, India
| |
Collapse
|
94
|
Villemain L, Prigent S, Abou-Lovergne A, Pelletier L, Chiral M, Pontoglio M, Foufelle F, Caruso S, Pineau R, Rebouissou S, Chevet E, Zucman-Rossi J, Combettes L. Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α. Cancers (Basel) 2020; 12:cancers12082213. [PMID: 32784704 PMCID: PMC7464972 DOI: 10.3390/cancers12082213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.
Collapse
Affiliation(s)
- Laure Villemain
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Sylvie Prigent
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Aurélie Abou-Lovergne
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Magali Chiral
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Marco Pontoglio
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, Sorbonne University, Inserm, U1138” Metabolic diseases, diabetes and co-morbidities” F-75006 Paris, France;
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Raphael Pineau
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Eric Chevet
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
- Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris, France
| | - Laurent Combettes
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
- Correspondence: ; Tel.: +01-6915-6396
| |
Collapse
|
95
|
Dusatkova P, Pavlikova M, Spirkova A, Elblova L, Zdarska DJ, Rozenkova K, Hron J, Sumnik Z, Cinek O, Lebl J, Pruhova S. Quality of Life and Treatment Satisfaction in Participants with Maturity-Onset Diabetes of the Young: A Comparison to Other Major Forms of Diabetes. Exp Clin Endocrinol Diabetes 2020; 130:85-93. [PMID: 32722819 DOI: 10.1055/a-1200-1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS We investigated the quality of life (QoL), treatment satisfaction and perception of genetic results in participants with Maturity-Onset Diabetes of the Young (MODY) and compared the results with those of subjects with type 1 (T1D) or type 2 (T2D) diabetes. METHODS A total of 162 adults with GCK-MODY, 62 with HNF1A-MODY and 29 with HNF4A-MODY answered the questionnaire Audit of Diabetes Dependent Quality of Life, the Diabetes Treatment Satisfaction Questionnaire and non-validated instrument examining the respondent's perception of the genetic results. Data from GCK-MODY patients were compared with 84 participants with T2D and HNF-MODY subjects were compared with 81 participants having T1D. RESULTS Higher age (p=0.004), higher haemoglobin A1c (p=0.026) and medication (p=0.019) were associated with lower general QoL in GCK-MODY patients. In HNF-MODY patients, lower general QoL was associated with a longer time since diagnosis (p=0.005), worse haemoglobin bA1c (p=0.006) and insulin treatment (p=0.019). Similar numbers of participants with GCK- and HNF-MODY considered the genetic diagnosis of MODY to be positive, negative and without significance. The patient with GCK-MODY did not differ from those with T2D in terms of their QoL, but they were less satisfied with their treatment (p<0.001). QoL was better in patients with HNF-MODY compared with patients with T1D (p=0.006), and they did not differ in terms of treatment satisfaction. CONCLUSIONS QoL was affected in both GCK-MODY and HNF-MODY subjects. Apprehension of genetic diagnosis was not single-valued in MODY respondents.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Alena Spirkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Denisa Janickova Zdarska
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Klara Rozenkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondrej Cinek
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
96
|
Abreu GDM, Soares CDAPD, Tarantino RM, da Fonseca ACP, de Souza RB, Pereira MDFC, Cabello PH, Rodacki M, Zajdenverg L, Zembrzuski VM, Campos Junior M. Identification of the First PAX4-MODY Family Reported in Brazil. Diabetes Metab Syndr Obes 2020; 13:2623-2631. [PMID: 32801813 PMCID: PMC7399458 DOI: 10.2147/dmso.s256858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this study was to sequence the coding region of the PAX4 gene in a Brazilian cohort with clinical manifestations of monogenic diabetes. PATIENTS AND METHODS This study included 31 patients with autosomal dominant history of diabetes, age at diagnosis ≤40 years, BMI <30 kg/m2, and no mutations in GCK or HNF1A, HNF4A, and HNF1B. Screening of the PAX4 coding region was performed by Sanger sequencing. In silico algorithms were used to assess the potential impact of amino acid substitutions on protein structure and function. Additionally, PAX4-MODY family members and 158 control subjects without diabetes were analyzed for the identified mutation. RESULTS The molecular analysis of PAX4 has detected one missense mutation, p.Arg164Gln (c.491G>A), segregating with diabetes in a large Brazilian family. The mutation was absent among the control group. The index case is a woman diagnosed at 32 years of age with polyneuropathy and treated with insulin. She did not present diabetic renal disease or retinopathy. Family members with the PAX4 p.Arg164Gln mutation have a heterogeneous clinical manifestation and treatment response, with age at diagnosis ranging from 24 years to 50 years. CONCLUSION To the best of our knowledge, this is the first study to report a PAX4-MODY family in Brazil. The age of PAX4-MODY diagnosis in the Brazilian family seems to be higher than the classical criteria for MODY. Our results reinforce the importance of screening large monogenic diabetes families for the understanding of the clinical manifestations of rare forms of diabetes for the specific and personalized treatment.
Collapse
Affiliation(s)
| | | | - Roberta Magalhães Tarantino
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Ambulatory of Diabetes, State Institute for Diabetes and Endocrinology Luiz Capriglione, Rio de Janeiro, Brazil
| | | | - Ritiele Bastos de Souza
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Pedro Hernan Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Genetics, School of Health Science, University of Grande Rio, Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
97
|
Defective functions of HNF1A variants on BCL2L1 transactivation and beta-cell growth. Biochem Biophys Res Commun 2020; 529:826-833. [PMID: 32684311 DOI: 10.1016/j.bbrc.2020.05.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 10/23/2022]
Abstract
Maturity-onset diabetes of the young type 3 (MODY3) is caused by mutations in a gene encoding transcription factor hepatocyte nuclear factor 1-alpha (HNF1A). Although the roles of HNF1A in regulation of hepatic and pancreatic genes to maintain glucose homeostasis were investigated, the functions of HNF1A are not completely elucidated. To better understand the functions of HNF1A, we characterized mutations of HNF1A in Thai MODY3 patients and studied the functions of wild-type HNF1A and variant proteins. We demonstrate for the first time that HNF1A upregulates transactivation of an anti-apoptotic gene BCL2 Like 1 (BCL2L1) and that all the identified HNF1A variants including p.D80V, p.R203C, p.P475L, and p.G554fsX556, reduce this ability. The four HNF1A variants impair HNF1A function in promoting INS-1 cell transition from G1 to S phase of cell cycle, which thereby retard cell growth. This finding indicates the role of HNF1A in beta-cell viability by upregulation of anti-apoptotic gene expression and also reaffirms its role in beta-cell growth through cell cycle control.
Collapse
|
98
|
Transcriptional Regulation of the Angptl8 Gene by Hepatocyte Nuclear Factor-1 in the Murine Liver. Sci Rep 2020; 10:9999. [PMID: 32561878 PMCID: PMC7305314 DOI: 10.1038/s41598-020-66570-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/20/2020] [Indexed: 01/25/2023] Open
Abstract
Brief refeeding times (~60 min) enhanced hepatic Angptl8 expression in fasted mice. We cloned the mouse Angptl8 promoter region to characterise this rapid refeeding-induced increase in hepatic Angptl8 expression. Deletion of the −309/−60 promoter region significantly attenuated basal promoter activity in hepatocytes. A computational motif search revealed a potential binding motif for hepatocyte nuclear factor 1α/1β (HNF-1α/β) at −84/−68 bp of the promoter. Mutation of the HNF-1 binding site significantly decreased the promoter activity in hepatocytes, and the promoter carrying the mutated HNF-1 site was not transactivated by co-transfection of HNF-1 in a non-hepatic cell line. Silencing Hnf-1 in hepatoma cells and mouse primary hepatocytes reduced Angptl8 protein levels. Electrophoretic mobility-shift assays confirmed direct binding of Hnf-1 to its Angptl8 promoter binding motif. Hnf-1α expression levels increased after short-term refeeding, paralleling the enhanced in vivo expression of the Angptl8 protein. Chromatin immunoprecipitation (ChIP) confirmed the recruitment of endogenous Hnf-1 to the Angptl8 promoter region. Insulin-treated primary hepatocytes showed increased expression of Angptl8 protein, but knockdown of Hnf-1 completely abolished this enhancement. HNF-1 appears to play essential roles in the rapid refeeding-induced increases in Angptl8 expression. HNF-1α may therefore represent a primary medical target for ANGPTL8-related metabolic abnormalities. The study revealed the transcriptional regulation of the mouse hepatic Angptl8 gene by HNF-1.
Collapse
|
99
|
Hahn E, Putra J. Hepatocellular adenoma in the paediatric population: Molecular classification and clinical associations. World J Gastroenterol 2020; 26:2294-2304. [PMID: 32476794 PMCID: PMC7243640 DOI: 10.3748/wjg.v26.i19.2294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular adenomas (HCAs) represent rare, benign liver tumours occurring predominantly in females taking oral contraceptives. In children, HCAs comprise less than 5% of hepatic tumours and demonstrate association with various conditions. The contemporary classification of HCAs, based on their distinctive genotypes and clinical phenotypes, includes hepatocyte nuclear factor 1 homeobox alpha-inactivated HCAs, beta-catenin-mutated HCAs, inflammatory HCAs, combined beta-catenin-mutated and inflammatory HCAs, sonic hedgehog-activated HCAs, and unclassified HCAs. In children, there is a lack of literature on the characteristics and distribution of HCA subtypes. In this review, we summarized different HCA subtypes and the clinicopathologic spectrum of HCAs in the paediatric population.
Collapse
Affiliation(s)
- Elan Hahn
- Division of Pathology, Department of Paediatric Laboratory Medicine, the Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Juan Putra
- Division of Pathology, Department of Paediatric Laboratory Medicine, the Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| |
Collapse
|
100
|
Sekiya M, Matsuda T, Yamamoto Y, Furuta Y, Ohyama M, Murayama Y, Sugano Y, Ohsaki Y, Iwasaki H, Yahagi N, Yatoh S, Suzuki H, Shimano H. Deciphering genetic signatures by whole exome sequencing in a case of co-prevalence of severe renal hypouricemia and diabetes with impaired insulin secretion. BMC MEDICAL GENETICS 2020; 21:91. [PMID: 32375679 PMCID: PMC7201978 DOI: 10.1186/s12881-020-01031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/22/2020] [Indexed: 11/21/2022]
Abstract
Background Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic β-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. Case presentation We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8–7.0 mg/dl), 41.6 μmol/l (226–416 μmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 μg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic β-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. Conclusion We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic β-cell functions that deserve further scrutiny.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takaaki Matsuda
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Yamamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuhisa Furuta
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mariko Ohyama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Sugano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Ohsaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|